2016全国三卷理科数学高考真 题及答案

合集下载

【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)

【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案)

2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T =( )(A) [2,3] (B)(- ,2] [3,+) (C) [3,+) (D)(0,2] [3,+) (2)若,则( ) (A)1 (B) -1(C) i (D)-i(3)已知向量 , 则ABC =( )(A)300 (B) 450(C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C.下面叙述不正确的是( ) (A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若 ,则( ) (A)(B) (C) 1 (D) (6)已知,,,则( ){}{}|(2)(3)0,|0S x x x T x x =--≥=>I ∞U ∞∞U ∞12z i =+41izz =-1(,)22BA =uu v 1(),22BC =uu u v ∠3tan 4α=2cos 2sin 2αα+=642548251625432a =254b =1325c =(A ) (B ) (C ) (D ) (7)执行下图的程序框图,如果输入的,那么输出的( )(A )3 (B )4 (C )5 (D )6 (8)在中,,BC 边上的高等于,则( ) (A(B(C )(D )(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为() (A ) (B ) (C )90 (D )81(10) 在封闭的直三棱柱内有一个体积为V 的球,若,,,,则V 的最大值是( )(A )4π (B )(C )6π (D )(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C的左,右顶点P 为C 上一点,且轴.过点A 的直线l 与线段交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )(B )(C )(D ) (12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个(B )16个(C )14个(D )12个b ac <<a b c <<b c a <<c a b <<46a b ==,n =ABC △π4B =13BC cos A =--18+54+111ABC A B C -AB BC ⊥6AB =8BC =13AA =92π323π22221(0)x y a b a b+=>>PF x ⊥PF 131223342k m ≤12,,,k a a a第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若满足约束条件则的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到.(15)已知为偶函数,当时,,则曲线在点处的切线方程是_______________.(16)已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若__________________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列的前n 项和,其中. (I )证明是等比数列,并求其通项公式; (II )若 ,求.,x y 1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩z x y =+sin y x x =sin y x x =()f x 0x <()ln()3f x x x =-+()y f x =(1,3)-l 30mx y m ++=2212x y +=,A B ,A B l x ,C D AB =||CD ={}n a 1n n S a λ=+0λ≠{}n a 53132S =λ(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 参考数据:,,7≈2.646.参考公式:相关系数回归方程 中斜率和截距的最小二乘估计公式分别为:719.32ii y==∑7140.17i i i t y ==∑0.55=()()niit t y y r --=∑y a bt =+121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -(19)(本小题满分12分)如图,四棱锥中,平面,AD BC ∥,,,为线段上一点,,为的中点.(I )证明MN ∥平面;(II )求直线与平面所成角的正弦值.(20)(本小题满分12分)已知抛物线:的焦点为,平行于轴的两条直线分别交于两 点,交的准线于两点.(I )若在线段上,是的中点,证明AR FQ ∥;(II )若的面积是的面积的两倍,求中点的轨迹方程.P ABC -PA ⊥ABCD 3AB AD AC ===4PA BC ==M AD 2AM MD =NPC PAB AN PMN C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ PQF ∆ABF ∆AB(21)(本小题满分12分)设函数,其中,记的最大值为. (Ⅰ)求; (Ⅱ)求;(Ⅲ)证明.请考生在[22]、[23]、[24]题中任选一题作答.作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 中AB 的中点为,弦分别交于两点. (I )若,求的大小;(II )若的垂直平分线与的垂直平分线交于点,证明.()cos 2(1)(cos 1)f x a x a x =+-+0a >|()|f x A ()f x 'A |()|2f x A '≤P PC PD ,AB E F ,2PFB PCD ∠=∠PCD ∠EC FD G OG CD ⊥23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(I )写出的普通方程和的直角坐标方程;(II )设点P 在上,点Q 在上,求|PQ |的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I )当a =2时,求不等式的解集;(II )设函数当时,,求的取值范围.xOy 1C ()sin x y θθθ⎧⎪⎨=⎪⎩为参数x 2C sin()4ρθπ+=1C 2C 1C 2C ()|2|f x x a a =-+()6f x ≤()|21|,g x x =-x ∈R ()()3f x g x +≥a参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【答案】D考点:1、不等式的解法;2、集合的交集运算. (2)【答案】C 【解析】试题分析:,故选C . 考点:1、复数的运算;2、共轭复数. (3)【答案】A 【解析】试题分析:由题意,得,所以,故选A .考点:向量夹角公式. (4)考点:1、平均数;2、统计图 (5)【答案】A 【解析】试题分析:由,得或,所以,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. (6)【答案】 A44(12)(12)11i ii i i zz ==+---112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯30ABC ∠=︒3tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-2161264cos 2sin 24252525αα+=+⨯=【解析】试题分析:因为,,所以,故选A . 考点:幂函数的图象与性质. (7)【答案】B考点:程序框图. (8)【答案】C 【解析】试题分析:设边上的高线为,则,所以,.由余弦定理,知,故选C . 考点:余弦定理. (9)【答案】B考点:空间几何体的三视图及表面积. (10)【答案】B 【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B . 考点:1、三棱柱的内切球;2、球的体积. (11)【答案】A422335244a b ==>=1223332554c a ==>=b a c <<BC AD 3BC AD=AC ==AB=222222cos 2AB AC BC A AB AC +-===⋅V R 32334439()3322R πππ==考点:椭圆方程与几何性质.(12)【答案】C【解析】试题分析:由题意,得必有,,则具体的排法列表如下:二、填空题:本大题共3小题,每小题5分(13)【答案】1a=81a=32考点:简单的线性规划问题. (14)【答案】 【解析】试题分析:因为,= ,所以函数的图像可由函数的图像至少向右平移个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数. (15)【答案】考点:1、函数的奇偶性与解析式;2、导数的几何意义. (16)【答案】4 【解析】试题分析:因为,且圆的半径为到直线,,解得,代入直线的方程,得的倾斜角为,由平面几何知识知在梯形中,.考点:直线与圆的位置关系.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【答案】(Ⅰ);(Ⅱ). 【解析】32πsin 2sin()3y x x x π=+=+sin 2sin()3y x x x π==-2sin[()]33x π2π+-sin y x x =sin y x x =32π21y x =--||AB =(0,0)30mx y m ++=3=3=m =l 3y x =+l 30︒ABDC ||||4cos30AB CD ==︒1)1(11---=n n a λλλ1λ=-考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为. (18)(本小题满分12分)【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.(Ⅱ)由及(Ⅰ)得, . 所以,关于的回归方程为:. 将2016年对应的代入回归方程得:. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 考点:线性相关与线性回归方程的求法与应用.n a n n S n nS 331.1732.9≈=y 103.02889.2)())((ˆ71271≈=---=∑∑==i ii i ity y t tb 92.04103.0331.1ˆˆ≈⨯-≈-=t b y ay t t y10.092.0ˆ+=9=t 82.1910.092.0ˆ=⨯+=y(19)【答案】(Ⅰ)见解析;.设为平面的法向量,则,即,可取,于是.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积. (20)【答案】(Ⅰ)见解析;(Ⅱ).),,(z y x n =PMN ⎪⎩⎪⎨⎧=⋅=⋅00⎪⎩⎪⎨⎧=-+=-0225042z y x z x )1,2,0(=n 2558|||||,cos |==><AN n AN n 21y x =-考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法. (21)(本小题满分12分)【答案】(Ⅰ);(Ⅱ);(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)直接可求;(Ⅱ)分两种情况,结合三角函数的有界'()2sin 2(1)sin f x a x a x =---2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩()f x '1,01a a ≥<<性求出,但须注意当时还须进一步分为两种情况求解;(Ⅲ)首先由(Ⅰ)得到,然后分,三种情况证明试题解析:(Ⅰ). (Ⅱ)当时,因此,. ………4分当时,将变形为.令,则是在上的最大值,,,且当时,取得极小值,极小值为. 令,解得(舍去),.考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性. 22. 【答案】(Ⅰ);(Ⅱ)见解析.A 01a <<110,155a a <≤<<|()|2|1|f x a a '≤+-1a ≥110,155a a <≤<<'()2sin 2(1)sin f x a x a x =---1a ≥'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =32A a =-01a <<()f x 2()2cos (1)cos 1f x a x a x =+--2()2(1)1g t at a t =+--A |()|g t [1,1]-(1)g a -=(1)32g a =-14a t a -=()g t 221(1)61()1488a a a a g a a a--++=--=-1114a a --<<13a <-15a>60︒考点:1、圆周角定理;2、三角形内角和定理;3、垂直平分线定理;4、四点共圆.23.【答案】(Ⅰ)的普通方程为,的直角坐标方程为;(Ⅱ).考点:1、椭圆的参数方程;2、直线的极坐标方程. 24.【答案】(Ⅰ);(Ⅱ). 【解析】试题分析:(Ⅰ)利用等价不等式,进而通过解不等式可求得;1C 2213x y +=2C 40x y +-=31(,)22{|13}x x -≤≤[2,)+∞|()|()h x a a h x a ≤⇔-≤≤(Ⅱ)根据条件可首先将问题转化求解的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于的不等式求解即可. 试题解析:(Ⅰ)当时,. 解不等式,得.因此,的解集为. ………………5分 (Ⅱ)当时,,当时等号成立,考点:1、绝对值不等式的解法;2、三角形绝对值不等式的应用.()()f x g x +a 2a =()|22|2f x x =-+|22|26x -+≤13x -≤≤()6f x ≤{|13}x x -≤≤x R ∈()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+12x=。

2016年高考理科数学全国Ⅲ卷试题及答案

2016年高考理科数学全国Ⅲ卷试题及答案

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA =uu v,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,学科&网A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

(完整word版)2016全国三卷理科数学高考真题及答案.docx

(完整word版)2016全国三卷理科数学高考真题及答案.docx

2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。

(完整)【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案),推荐文档

(完整)【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案),推荐文档

2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T =( )(A) [2,3] (B)(- ,2] [3,+) (C) [3,+) (D)(0,2] [3,+) (2)若,则( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量 , 则ABC =( ) (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C.下面叙述不正确的是( ) (A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若 ,则( ) (A)(B) (C) 1 (D) (6)已知,,,则( ){}{}|(2)(3)0,|0S x x x T x x =--≥=>I ∞U ∞∞U ∞12z i =+41izz =-13(,)2BA =uu v 31(,),2BC =uu u v ∠3tan 4α=2cos 2sin 2αα+=642548251625432a =254b =1325c =(A ) (B ) (C ) (D ) (7)执行下图的程序框图,如果输入的,那么输出的( )(A )3 (B )4 (C )5 (D )6 (8)在中,,BC 边上的高等于,则( ) (A )(B ) (C ) (D ) (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( ) (A ) (B ) (C )90 (D )81(10) 在封闭的直三棱柱内有一个体积为V 的球,若,,,,则V 的最大值是( )(A )4π (B )(C )6π (D )(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C的左,右顶点P 为C 上一点,且轴.过点A 的直线l 与线段交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )(B )(C )(D ) (12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个(B )16个(C )14个(D )12个b ac <<a b c <<b c a <<c a b <<46a b ==,n =ABC △π4B =13BC cos A =3101010-310-18365+54185+111ABC A B C -AB BC ⊥6AB =8BC =13AA =92π323π22221(0)x y a b a b+=>>PF x ⊥PF 131223342k m ≤12,,,k a a a L第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若满足约束条件则的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到.(15)已知为偶函数,当时,,则曲线在点处的切线方程是_______________.(16)已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若__________________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列的前n 项和,其中. (I )证明是等比数列,并求其通项公式; (II )若 ,求.,x y 1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩z x y =+sin y x x =-sin y x x =()f x 0x <()ln()3f x x x =-+()y f x =(1,3)-l 30mx y m ++=2212x y +=,A B ,A B l x ,C D AB =||CD ={}n a 1n n S a λ=+0λ≠{}n a 53132S =λ(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 参考数据:,,7≈2.646.参考公式:相关系数回归方程 中斜率和截距的最小二乘估计公式分别为:719.32ii y==∑7140.17i i i t y ==∑0.55=()()niit t y y r --=∑y a bt =+)))121()()()nii i nii tt y y b tt ==--=-∑∑),=.a y bt -)))(19)(本小题满分12分)如图,四棱锥中,平面,AD BC ∥,,,为线段上一点,,为的中点.(I )证明MN ∥平面;(II )求直线与平面所成角的正弦值.(20)(本小题满分12分)已知抛物线:的焦点为,平行于轴的两条直线分别交于两 点,交的准线于两点.(I )若在线段上,是的中点,证明AR FQ ∥;(II )若的面积是的面积的两倍,求中点的轨迹方程.P ABC -PA ⊥ABCD 3AB AD AC ===4PA BC ==M AD 2AM MD =NPC PAB AN PMN C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ PQF ∆ABF ∆AB(21)(本小题满分12分)设函数,其中,记的最大值为. (Ⅰ)求; (Ⅱ)求;(Ⅲ)证明.请考生在[22]、[23]、[24]题中任选一题作答.作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 中AB 的中点为,弦分别交于两点. (I )若,求的大小;(II )若的垂直平分线与的垂直平分线交于点,证明.()cos 2(1)(cos 1)f x a x a x =+-+0a >|()|f x A ()f x 'A |()|2f x A '≤P PC PD ,AB E F ,2PFB PCD ∠=∠PCD ∠EC FD G OG CD ⊥23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(I )写出的普通方程和的直角坐标方程;(II )设点P 在上,点Q 在上,求|PQ |的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I )当a =2时,求不等式的解集;(II )设函数当时,,求的取值范围.xOy 1C 3cos ()sin x y θθθ⎧=⎪⎨=⎪⎩为参数x 2C sin()224ρθπ+=1C 2C 1C 2C ()|2|f x x a a =-+()6f x ≤()|21|,g x x =-x ∈R ()()3f x g x +≥a参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【答案】D考点:1、不等式的解法;2、集合的交集运算. (2)【答案】C 【解析】试题分析:,故选C . 考点:1、复数的运算;2、共轭复数. (3)【答案】A 【解析】试题分析:由题意,得,所以,故选A .考点:向量夹角公式. (4)考点:1、平均数;2、统计图 (5)【答案】A 【解析】试题分析:由,得或,所以,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. (6)【答案】A44(12)(12)11i ii ii zz ==+---112222cos 11||||BA BC ABC BA BC ⋅∠===⨯u u u r u u u r u uu r u u u r 30ABC ∠=︒3tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-2161264cos 2sin 24252525αα+=+⨯=【解析】试题分析:因为,,所以,故选A . 考点:幂函数的图象与性质. (7)【答案】B考点:程序框图. (8)【答案】C 【解析】试题分析:设边上的高线为,则,所以,.由余弦定理,知,故选C . 考点:余弦定理. (9)【答案】B考点:空间几何体的三视图及表面积. (10)【答案】B 【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B . 考点:1、三棱柱的内切球;2、球的体积. (11)【答案】A422335244a b ==>=1223332554c a ==>=b a c <<BC AD 3BC AD=AC ==AB=222222cos 210AB AC BC A AB AC +-===⋅V R 32334439()3322R πππ==考点:椭圆方程与几何性质.(12)【答案】C【解析】试题分析:由题意,得必有,,则具体的排法列表如下:二、填空题:本大题共3小题,每小题5分(13)【答案】1a=81a=32考点:简单的线性规划问题. (14)【答案】 【解析】试题分析:因为,=,所以函数的图像可由函数的图像至少向右平移个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数. (15)【答案】考点:1、函数的奇偶性与解析式;2、导数的几何意义. (16)【答案】4 【解析】试题分析:因为,且圆的半径为到直线,,解得,代入直线的方程,得的倾斜角为,由平面几何知识知在梯形中,.考点:直线与圆的位置关系.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【答案】(Ⅰ);(Ⅱ). 【解析】32πsin 2sin()3y x x x π=+=+sin 2sin()3y x x x π=-=-2sin[()]33x π2π+-sin y x x =-sin y x x =32π21y x =--||AB =(0,0)30mx y m ++=3=3=3m =-l y x =+l 30︒ABDC ||||4cos30AB CD ==︒1)1(11---=n n a λλλ1λ=-考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为. (18)(本小题满分12分)【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.(Ⅱ)由及(Ⅰ)得, . 所以,关于的回归方程为:. 将2016年对应的代入回归方程得:. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 考点:线性相关与线性回归方程的求法与应用.n a n n S n nS 331.1732.9≈=y 103.02889.2)())((ˆ71271≈=---=∑∑==i i i i it t y y t tb 92.04103.0331.1ˆˆ≈⨯-≈-=t b y ay t t y10.092.0ˆ+=9=t 82.1910.092.0ˆ=⨯+=y(19)【答案】(Ⅰ)见解析;(Ⅱ).设为平面的法向量,则,即,可取,于是.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积. (20)【答案】(Ⅰ)见解析;(Ⅱ).25),,(z y x n =PMN ⎪⎩⎪⎨⎧=⋅=⋅00PM ⎪⎩⎪⎨⎧=-+=-0225042z y x z x )1,2,0(=n 2558|||||,cos |==><AN n21y x =-考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法. (21)(本小题满分12分)【答案】(Ⅰ);(Ⅱ); (Ⅲ)见解析. 【解析】试题分析:(Ⅰ)直接可求;(Ⅱ)分两种情况,结合三角函数的有界'()2sin 2(1)sin f x a x a x =---2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩()f x '1,01a a ≥<<性求出,但须注意当时还须进一步分为两种情况求解;(Ⅲ)首先由(Ⅰ)得到,然后分,三种情况证明试题解析:(Ⅰ). (Ⅱ)当时,因此,. ………4分当时,将变形为.令,则是在上的最大值,,,且当时,取得极小值,极小值为.令,解得(舍去),.考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性. 22. 【答案】(Ⅰ);(Ⅱ)见解析.A 01a <<110,155a a <≤<<|()|2|1|f x a a '≤+-1a ≥110,155a a <≤<<'()2sin 2(1)sin f x a x a x =---1a ≥'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =32A a =-01a <<()f x 2()2cos (1)cos 1f x a x a x =+--2()2(1)1g t at a t =+--A |()|g t [1,1]-(1)g a -=(1)32g a =-14a t a -=()g t 221(1)61()1488a a a a g a a a--++=--=-1114a a --<<13a <-15a>60︒考点:1、圆周角定理;2、三角形内角和定理;3、垂直平分线定理;4、四点共圆.23.【答案】(Ⅰ)的普通方程为,的直角坐标方程为;(Ⅱ).考点:1、椭圆的参数方程;2、直线的极坐标方程. 24.【答案】(Ⅰ);(Ⅱ). 【解析】试题分析:(Ⅰ)利用等价不等式,进而通过解不等式可求得;1C 2213x y +=2C 40x y +-=31(,)22{|13}x x -≤≤[2,)+∞|()|()h x a a h x a ≤⇔-≤≤(Ⅱ)根据条件可首先将问题转化求解的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于的不等式求解即可. 试题解析:(Ⅰ)当时,. 解不等式,得.因此,的解集为. ………………5分 (Ⅱ)当时,,当时等号成立,考点:1、绝对值不等式的解法;2、三角形绝对值不等式的应用.()()f x g x +a 2a =()|22|2f x x =-+|22|26x -+≤13x -≤≤()6f x ≤{|13}x x -≤≤x R ∈()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+12x=。

2016全国三卷理科数学高考真题及答案(可编辑修改word版)

2016全国三卷理科数学高考真题及答案(可编辑修改word版)

2 3 2016 年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合 S = S = {x P (x - 2)(x - 3) ≥ 0}, T = {x I x > 0} (A) [2,3] (B)(- ∞ ,则 S I ,2] U T =[3,+ ∞ ) (C) [3,+ ∞ ) (D)(0,2] U 4i [3,+ ∞ )(2)若 z=1+2i ,则=zz -1(A)1(B) -1(C) i(D)-iu u v 1 u u u v 1 (3) 已知向量 BA = ( , ) 2 2, BC = ( , ), 2 2 则∠ ABC=(A)300 (B) 450 (C) 600 (D)1200(4) 某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中 A 点表示十月的平均最高气温约为 150C ,B 点表示四月的平均最低气温约为 50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在 00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于 200C 的月份有 5 个(5) 若tan= 4,则cos 2+ 2 sin 2=(A)64254(B)48 2531(C) 1(D)16 25(6)已知 a = 23 , b = 44 , c = 253 ,则(A ) b < a < c (B ) a < b < c (C ) b < c < a (D ) c < a < b(7) 执行下图的程序框图,如果输入的 a =4,b =6,那么输出的 n =(A )3 (B )4 (C )5 (D )63x ‒ 2y ≪ 0 x + 2y ‒ 2 ≪ 0则 z=x+y 的最大值为.(8) 在△ABC 中, B =π,BC 边上的高等于 1BC ,则cos A =(A )3 10 10 43(B ) 10 10 (C )- 10 10(D )-3 10 10 (9) 如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 + 36(B ) 54 +18 (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB⊥ BC ,AB =6,BC =8,AA 1=3,则 V 的最大值是9( A ) 4π ( B )( C ) 6π2(D )323x 2 + y 2=> >(11) 已知 O 为坐标原点,F是椭圆 C : a 2b 21(a b0) 的左焦点,A ,B 分别为 C 的左,右顶点.P 为 C上一点,且 PF ⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直线 BM 经过 OE 的中点,则 C 的离心率为 1 1 2 3 (A )(B ) (C )(D )3234(12) 定义“规范 01 数列”{a n }如下:{a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k ≤ 2m , a 1 , a 2 , , a k中 0 的个数不少于 1 的个数.若 m =4,则不同的“规范 01 数列”共有 (A )18 个 (B )16 个 (C )14 个 (D )12 个二、填空题:本大题共 3 小题,每小题 5 分{x ‒ y + 1 ≥ 0(14)函数y = sin x ‒ 3cos x 的图像可由函数度得到。

2016年高考新课标Ⅲ卷理科数学 【答案加解析】

2016年高考新课标Ⅲ卷理科数学  【答案加解析】

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA =uu v,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。

2016年高考新课标3理科数学真题及答案详解

2016年高考新课标3理科数学真题及答案详解

2016年普通高等学校招生全国统一考试(新课标全国卷Ⅲ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S∩T =A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)(2)若z =1+2i ,则4i z ¯z -1= A.1 B.-1 C.i D.-i(3)已知向量−→BA =(12,22),−→BC =(32,12),则∠ABC = A.30° B.45° C.60° D.120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平 均最高气温和平均最低气温的雷达图,图中A 点表示十月的平均最高气温约为15°C ,B 点表示四月的平均最低气温约为5°C .下面叙述不正确的是A.各月的平均最低气温都在0°C 以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20°C 的月份有5个(5)若tanα=34,则cos 2 α+2sin2α=A.6425B.4825C.1D.1625(6)已知a =243,b =323,c =2513,则A.b <a <cB.a <b <cC.b <c <aD.c <a <b(7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =A.3B.4C.5D.6(8)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A = A.31010 B.1010 C.-1010 D.-31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的的是某多面体的三视图,则该多面体的表面积为A.18+36 5B.54+18 5C.90D.81(10)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A.4πB.9π2C.6πD.32π3(11)已知O 为坐标原点,F 是椭圆C : x 2 a 2+ y 2 b2=1(a >b >0)左焦点,A 、B 分别为C 的左、右顶点,P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于E ,若直线BM 经过OE 的中点,则C 的离心率为A.13B.12C.23D.34(12)定义“规范01数列”{a n }如下,{a n }共有2m 项,其中m 为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有A.18个B.16个C.14个D.12个第Ⅱ卷二、填空题:本大题共4小题,每小题5分.(13)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0x -2y≤0x +2y -2≤0,则z =x +y 的最大值为____________. (14)函数y =sin x -3cos x 的图像可由函数y =sinx +3cosx 图像至少向右平移_______个单位长度得到。

2016全国三卷理科数学高考真题及答案【精选文档】

2016全国三卷理科数学高考真题及答案【精选文档】

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA = ,31(,),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )31010 (B )1010(C )1010(D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016年高考理科数学全国卷3(含答案解析)

2016年高考理科数学全国卷3(含答案解析)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B.1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++=:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =,则||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.552.646≈.参考公式:相关系数1()()nii i tt y y r =--=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥; (Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+= (Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+. (Ⅰ)当2a=时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞.【考点】解一元二次不等式,交集 2.【答案】C【解析】易知12i z =-,故14zz -=,4ii 1zz ∴=-. 【考点】共轭复数,复数运算 3.【答案】A【解析一】32cos 11BA BC ABC BA BC ∠===⨯,30ABC ∴∠=.【解析二】可以B 点为坐标原点建立如图所示直角坐标系,易知60ABx ∠=,30CBx ∠=,30ABC ∴∠=.【考点】向量夹角的坐标运算4.【答案】D【解析】从图像中可以看出平均最高气温高于20C 的月份有七月、八月,六月为20C 左右,故最多3个. 【考点】统计图的识别 5.【答案】A【解析】22222cos 4sin cos 14tan 64cos 2sin 2cos sin 1tan 25ααααααααα+++===++. 【考点】二倍角公式,弦切互化,同角三角函数公式6.【答案】A【解析】423324a ==,233b =,1233255c ==,故c a b >>. 【考点】指数运算,幂函数性质 7.【答案】B【考点】程序框图 8.【答案】C【解析】如图所示,可设1BD AD ==,则AB =2DC =,AC ∴=知,cos A =.【考点】解三角形9.【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362354⨯⨯+⨯⨯+⨯+. 【考点】三视图,多面体的表面积 10.【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2,又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为349ππ32R =. 【考点】内接球半径的求法11.【答案】A【解析】易得ON OB aMF BF a c==+,2MF MF AF a c OE ON AO a -===,12a a c a c a c a a c --∴==++,13c e a ∴==.【考点】椭圆的性质,相似12.【答案】C【解析】011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列,树状图第Ⅱ卷二、填空题 13.【答案】32【解析】三条直线的交点分别为(2,1)--,11,2⎛⎫⎪⎝⎭,(0,1),代入目标函数可得3-,32,1,故最大值为32. 【考点】线性规划14.【答案】2π3【解析】sin 2sin 3y x x x π⎛⎫==- ⎪⎝⎭,sin 2sin 3y x x x π⎛⎫=+=+ ⎪⎝⎭,故可前者的图像可由后者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移15.【答案】210x y ++=【解析一】11()33f x x x-'=+=+-,(1)2f '∴-=,(1)2f '∴=-,故切线方程为210x y ++=.【解析二】当0x >时,()()ln 3f x f x x x =-=-,1()3f x x'∴=-,(1)2f '∴=-,故切线方程为210x y ++=.【考点】奇偶性,导数,切线方程 16.【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,AB =OA =,3OF ∴=,即3=,m ∴=,∴直线l 的倾斜角为30,3CD AE ∴===.【考点】直线和圆,弦长公式 三、解答题17.【答案】(Ⅰ)1n n S a λ=+,0λ≠,0n a ∴≠,当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=-,即1(1)n n a a λλ--=,0λ≠,0n a ≠,10λ∴-≠,即1λ≠,即11n n a a λλ-=-,(2)n ≥,{}n a ∴是等比数列,公比1q λλ=-,当1n =时,1111S a a λ=+=,即111a λ=-,1111n n a λλλ-⎛⎫∴= ⎪--⎝⎭;(Ⅱ)若53132S =,则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭--,1λ∴=-. 【考点】等比数列的证明,由n S 求通项,等比数列的性质18.【答案】(Ⅰ)由题意得123456747t ++++++==,71 1.3317i i y y ==≈∑,7()()0.99nii i itt y y t ynt yr ---===≈∑∑,因为y与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系; (Ⅱ)121()()2.890.10328()nii i ni i tt y y b t t ==--==≈-∑∑, 1.330.10340.92a y bt =-=-⨯≈,所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+,将9t =代入回归方程可得, 1.82y =,预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得223AM AD ==,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN BC ∥,122TN BC ==,又AD BC ∥,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是MN AT ∥,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB ;(Ⅱ)取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则(0,0,0)A 、(0,0,4)P 、C 、N ⎫⎪⎪⎝⎭()0,2,0M,52AN ⎛⎫∴= ⎪ ⎪⎝⎭,(0,2,4)PM =-,22PN N ⎛⎫=-⎪ ⎪⎝⎭,故平面PMN 的法向量(0,2,1)n =,4cos ,52AN n ∴<>==,∴直线AN 与平面PMN 所成角的正弦值为25.【考点】线面平行证明,线面角的计算20.【答案】(Ⅰ)由题设1,02F ⎛⎫⎪⎝⎭,设1:l y a =,2:l y b =,则0ab ≠,且2,2a A a ⎛⎫ ⎪⎝⎭,2,2b B b ⎛⎫ ⎪⎝⎭,1,2P a ⎛⎫- ⎪⎝⎭,1,2Q b ⎛⎫- ⎪⎝⎭,1,22a b R +⎛⎫- ⎪⎝⎭,记过A ,B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=,由于F 在线段AB 上,故10ab +=,记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a ab a a---=====-=+-,所以AR FQ ∥; (Ⅱ)设l 与x 轴的交点为1(,0)D x ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=,由题设可得111222a b b a x ---=,所以10x =(舍去),11x =,设满足条件的AB 的中点为(,)E x y ,当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1y x a b x =≠+-,而2a by +=,所以21(1)y x x =-≠,当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为21y x =-. 【考点】抛物线,轨迹方程21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--,令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)611488a a a a g a a a --++⎛⎫=--=- ⎪⎝⎭,令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-; ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>; 又1(1)(17)|(1)|048a a a g g a a --+⎛⎫--=> ⎪⎝⎭,所以216148a a a A g a a -++⎛⎫==⎪⎝⎭, 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩(Ⅲ)由(Ⅰ)得|()||2sin 2(1)sin |2|1|f x a x a x a a '=---≤+-,当105a <≤时,|()|1242(23)2f x a a a A '≤+≤-<-=,当115a <<时,131884a A a =++≥, 所以|()|12f x a A '≤+<,当1a ≥时,|()|31642f x a a A '≤-≤-=,所以|()|2f x A '≤. 【考点】导函数讨论单调性,不等式证明22.【答案】(Ⅰ)连结PB ,BC ,则BFD PBA BPD ∠=∠+∠,PCD PCB BCD ∠=∠+∠,因为AP BP =,所以PBA PCB ∠=∠,又BPD BCD ∠=∠,所以BFD PCD ∠=∠,又180PFD BFD ∠+∠=,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上,因此OG CD ⊥. 【考点】几何证明23.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-,当且仅当π2π()6k k Z α=+∈时,()d α,此时P 的直角坐标为31,22⎛⎫⎪⎝⎭.【考点】坐标系与参数方程24.【答案】(Ⅰ)当2a =时,()|22|2f x x =-+,解不等式|22|26x -+≤,得13x -≤≤,因此,()6f x ≤的解集为{|13}x x -≤≤;(Ⅱ)当x R ∈时,()()|2||12||212||1|f x g x x a a x x a x a a a +=-++-≥-+-+=-+,当12x =时等号成立,所以当x R ∈时,()()3f x g x +≥等价于|1|3a a -+≥①. 当1a ≤时,①等价于13a a -+≥,无解;当1a >时,①等价于13a a -+≥,解得2a ≥; 所以a 的取值范围是[2,)+∞. 【考点】不等式。

2016年新课标ⅲ高考数学理科试题和答案

2016年新课标ⅲ高考数学理科试题和答案

绝密★启用前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =-( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC=( )(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是( )(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =( )(A)3 (B)4 (C)5 (D)6(8)在ABC△中,π4B=,BC边上的高等于13BC,则cos A=()(A)31010(B)1010(C)1010-(D)31010-(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)18365+(B)54185+(C)90(D)81(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()(A)4π (B)92π(C)6π (D)323π(11)已知O为坐标原点,F是椭圆C:22221(0)x ya ba b+=>>的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A )13(B )12 (C )23 (D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

数学-2016年高考真题——全国Ⅲ卷(理)(精校解析版)

数学-2016年高考真题——全国Ⅲ卷(理)(精校解析版)

2016年普通高等学校招生全国统一考试(全国Ⅲ卷)理科数学第Ⅰ卷一、选择题本大题共12个小题;每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·全国Ⅲ,1)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T 等于( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞)D .(0,2]∪[3,+∞)2.(2016·全国Ⅲ,2)若z =1+2i ,则4i z z -1等于( )A .1B .-1C .iD .-i3.(2016·全国Ⅲ,3)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC 等于( )A .30°B .45°C .60°D .120°4.(2016·全国Ⅲ,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个5.(2016·全国Ⅲ,5)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·全国Ⅲ,6)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b7.(2016·全国Ⅲ,7)执行如图的程序框图,如果输入的a =4,b =6,那么输出的n 等于( )A .3B .4C .5D .68.(2016·全国Ⅲ,8)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A 等于( )A.31010B.1010 C .-1010 D .-310109.(2016·全国Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5C .90D .8110.(2016·全国Ⅲ,10)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π311.(2016·全国Ⅲ,11)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.3412.(2016·全国Ⅲ,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个第Ⅱ卷二、填空题13.(2016·全国Ⅲ,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.14.(2016·全国Ⅲ,14)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.15.(2016·全国Ⅲ,15)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.16.(2016·全国Ⅲ,16)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 三、解答题17.(2016·全国Ⅲ,17)(本小题满分12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.18.(2016·全国Ⅲ,18)(本小题满分12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图:注:年份代码1-7分别对应年份2008-2014(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17y i -y2=0.55,7≈2.646.参考公式:相关系数r=∑i =1nt i -t y i -y∑i =1nt i -t2∑i =1ny i -y2,回归方程y ^=a ^+b ^t 中斜率和截距最小二乘估计公式分别为b ^=∑i =1n t i -ty i -y∑i =1nt i -t2,a ^=y -b ^t .19.(2016·全国Ⅲ,19)(本小题满分12分)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.20.(2016·全国Ⅲ,20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.21.(2016·全国Ⅲ,21)(本小题满分12分)设函数f (x )=a cos 2x +(a -1)·(cos x +1),其中a >0,记|f (x )|的最大值为A . (1)求f ′(x ); (2)求A ; (3)证明|f ′(x )|≤2A .22.(2016·全国Ⅲ,22)(本小题满分10分)选修41:几何证明选讲 如图,⊙O 中AB 的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD . 23.(2016·全国Ⅲ,23)(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 24.(2016·全国Ⅲ,24)(本小题满分10分)选修45:不等式选讲 已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.答案解析1.解析 S ={x |x ≥3或x ≤2},T ={x |x >0},则S ∩T =(0,2]∪[3,+∞). 答案 D2.解析 z =1+2i ,z z =5,4iz z -1=i.答案 C3.解析 |BA →|=1,|BC →|=1, cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.答案 A4.解析 由题意知,平均最高气温高于20 ℃的有六月,七月,八月,故选D. 答案 D5.解析 tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425. 答案 A6.解析 因为a =243,b =425,由函数y =2x在R 上为增函数知b <a ;又因为a =243=423,c =2513=523,由函数y =x 23在(0,+∞)上为增函数知a <c .综上得b <a <c .故选A. 答案 A7.解析 第一次循环a =6-4=2,b =6-2=4,a =4+2=6,s =6,n =1; 第二次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =10,n =2; 第三次循环a =6-4=2,b =6-2=4,a =4+2=6,s =16,n =3;第四次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =20,n =4,满足题意,结束循环. 答案 B8.解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD=1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 C9.解析 由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5. 答案 B10.解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.答案 B11.解析 设M (-c ,m ),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎪⎫0,ama -c ,又B ,D ,M 三点共线,所以m a -c=ma +c ,a =3c ,e =13.答案 A12.解析 第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A 24个,其中110100;110010;110001,101100不符合题意,三个1都不在一起时有C 34个,共2+8+4=14(个). 答案 C13.解析 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0的可行域为以A (-2,-1),B (0,1),C ⎝⎛⎭⎫1,12为顶点的三角形内部及边界,过C ⎝⎛⎭⎫1,12时取得最大值为32. 答案 3214.解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到. 答案2π315.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=016.解析 设AB 的中点为M ,由题意知,圆的半径R =23,AB =23,所以OM =3,解得m =-33,由⎩⎪⎨⎪⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以|CD |=4. 答案 417.(1)证明 由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.18.解 (1)由折线图中数据和附注中参考数据得 t =4,∑i =17(t i -t )2=28,∑i =17y i -y2=0.55,∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17t i -ty i -y∑i =17t i -t2=2.8928≈0.103.a ^=y -b ^t ≈1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨. 19.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綉AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB . (2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC , 从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝⎛⎭⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz . 由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎫52,1,2,PM →=(0,2,-4),PN →=⎝⎛⎭⎫52,1,-2,AN →=⎝⎛⎭⎫52,1,2.设n =(x,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||A N →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成的角的正弦值为8525.20.(1)证明 由题意知,F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0, 且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -ba 2-ab =1a =-ab a =-b =b -0-12-12=k 2.所以 AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0), 则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12, S △PQF =|a -b |2.由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0),. 所以,所求轨迹方程为y 2=x -1 (x ≠1). 21.(1)解 f ′(x )=-2a sin 2x -(a -1)sin x .(2)解 当a ≥1时,|f (x )|=|a cos 2x +(a -1)(cos x +1)|≤a +2(a -1)=3a -2.因此A =3a -2. 当0<a <1时,将f (x )变形为f (x )=2a cos 2x +(a -1)·cos x -1,令g (t )=2at 2+(a -1)t -1, 则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝ ⎛⎭⎪⎫1-a 4a =-a -28a -1=-a 2+6a +18a. 令-1<1-a 4a <1,解得a <-13(舍去),a >15. (ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a .(ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0, 知g (-1)>g (1)>g ⎝ ⎛⎭⎪⎫1-a 4a . 又⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a -|g (-1)|=-a+7a 8a >0, 所以A =⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫1-a 4a =a 2+6a +18a . 综上,A =⎩⎪⎨⎪⎧ 2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′(x )|=|-2a sin 2x -(a -1)sin x |≤2a +|a -1|.当0<a ≤15时,|f ′(x )|≤1+a ≤2-4a <2(2-3a )=2A . 当15<a <1时,A =a 8+18a +34≥1, 所以|f ′(x )|≤1+a <2A .当a ≥1时,|f ′(x )|≤3a -1≤6a -4=2A .所以|f ′(x )|≤2A .22.(1)解 连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .因为AP =BP ,所以∠PBA =∠PCB ,又∠BPD =∠BCD ,所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD ,所以3∠PCD =180°,因此∠PCD =60°.(2)证明 因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .23.解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 24.解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立, 所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a的取值范围是[2,+∞).。

2016全国三卷理科数学高考真题及答案

2016全国三卷理科数学高考真题及答案

2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )(2)若z=1+2i ,则 4izz1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有 5 个(5)若tan 34,则 2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3(B)4(C)5(D)61(8)在△ABC 中,πB = ,BC 边上的高等于4 13BC ,则cos A =(A)31010(B)1010(C)10- (D)10-3 1010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC=8,AA 1=3,则V 的最大值是(A )4π(B)92 ( C )6π(D)32 3(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1(a b 0)a b的左焦点,A,B 分别为 C 的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则C 的离心率为(A )13(B)12(C)23(D)34(12)定义“规范01 数列”{a n} 如下:{a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m,a a a 1, 2, , k中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件错误!未找到引用源。

2016年高考理科数学全国卷3(含详细答案)

2016年高考理科数学全国卷3(含详细答案)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B. 1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =-的图象可由函数sin y x x =+的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()nii tt y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a的取值范围.][)3,+∞,(][)0,23,S T=+∞.【考点】解一元二次不等式,交集,故1zz-=4ii1zz∴=-.3211BA BC BA BC =⨯30.点为坐标原点建立如图所示直角坐标系,易知60ABx∠,30CBx∠,30.【考点】向量夹角的坐标运算从图像中可以看出平均最高气温高于20C的月份有七月、20C左右,数学试卷第10页(共27页)数学试卷第11页(共27页)a c a c a a --=+【解析】sin y x =者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移【答案】2x y ++【解析一】()f x '=,2AB =数学试卷第16页(共27页)数学试卷第17页(共27页) 30,CD ∴Ⅰ)1n S λ=+1n a -,0λ≠,a ,当1n =时,1S 11n λλλ-⎛⎫⎪-⎝⎭,则11S -=1-.(Ⅱ)11((ii ni tb ==-=∑∑ 1.33bt -=-0.92y a bt =+=+代入回归方程可得,y 处理量将约为1.82亿吨.【考点】相关性分析,线性回归(Ⅰ)由已知得平面PAB ;,又PA ⊥面52AN ⎛∴= ⎝,(0,2,PM =,PN N ⎛= ⎝的法向量(0,2,1)n =,4,552AN n <>=⨯AN 与平面PMN 所成角的正弦值为25【考点】线面平行证明,线面角的计算21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当数学试卷第22页(共27页)数学试卷第23页(共27页)180,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在G 就是过。

(完整)【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案),推荐文档

(完整)【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案),推荐文档

BA ( , BC , ),2016 年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷3 至 5 页.2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3. 全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合 S = S = {x | (x - 2)(x - 3) ≥ 0},T = {x | x > 0} ,则S I T =( )(A) [2,3](B)(- ∞ ,2] U [3,+ ∞)(C) [3,+ ∞ )(D)(0,2] U [3,+ ∞)(2)若 z = 1+ 2i ,则4i= ()zz -1(A)1(B) -1(C) i(D)-iu u v 1 (3) 已知向量= 3 ) , u u u v = ( 3 1则 ∠ ABC =( )2 2 2 2(A)300(B) 450(C) 600(D)1200(4) 某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中 A 点表示十月的平均最高气温约为 150C ,B 点表示四月的平均最低气温约为 50C.下面叙述不正确的是( )(A) 各月的平均最低气温都在 00C 以上5(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于 200C 的月份有 5 个(5) 若 tan= 3 4,则cos 2+2sin 2=( )(A) 6425(B)48 25(C) 1 (D)16 25421(6)已知 a = 23 , b = 45 , c = 253 ,则()(A ) b < a < c(B ) a < b < c (C ) b < c < a (D ) c < a < b(7) 执行下图的程序框图,如果输入的 a = 4∥出的 n = ( )(A )3(B )4 b = 6 ,那么输(C )5(D )6(8) 在△ABC 中, B = π,BC 边上的高等于 1BC ,则cos A = (43(A )3 1010(C )-10(B ) 1010 (D )- 3 1010(9) 如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A )18 + 36 (B ) 54 + 18 (C )90(D )81(10) 在封闭的直三棱柱 ABC - A 1B 1C 1 内有一个体积为 V 的球,若 AB ⊥ BC , AB = 6 ,105 )⎨ ⎩a 2 BC = 8 , AA 1 = 3 ,则 V 的最大值是()(A )4π(B )92(C ) 6π(D )32 3x 2 y 2 (11) 已知 O 为坐标原点,F 是椭圆 C : + b 2= 1(a > b > 0) 的左焦点,A ,B 分别为C 的左,右顶点 P 为 C 上一点,且 PF ⊥ x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直线 BM 经过 OE 的中点,则 C 的离心率为()1 (A )31 (B )22 (C )33 (D ) (D )4(12) 定义“规范 01 数列”{a n }如下:{a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意k ≤ 2m , a 1, a 2 , , a k 中 0 的个数不少于 1 的个数.若 m =4,则不同的“规范 01 数列”共有()(A )18 个(B )16 个(C )14 个(D )12 个第 II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共 3 小题,每小题 5 分 ⎧x - y +1 ≥ 0 (13) 若 x , y 满足约束条件⎪x - 2 y ≤ 0 ⎪x + 2 y - 2 ≤ 0则 z = x + y 的最大值为.(14) 函数 y = sin x - 3 cos x 的图像可由函数 y = sin x +个单位长度得到.cos x 的图像至少向右平移33 3 (15) 已知 f(x )为偶函数,当 x < 0 时, f (x ) = ln(-x ) + 3x ,则曲线 y = (1,-3) 处的切线方程是.f (x )在点(16) 已知直线l : mx + y + 3m - = 0 与圆 x 2 + y 2 = 12 交于A ,B 两点,过 A , B 分别做l 的垂线与 x 轴交于C ,D 两点,若 AB = 2 ,则| CD |= .三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分 12 分)已知数列{a n }的前 n 项和 S n = 1+a n ,其中≠ 0 .(I ) 证明{a n }是等比数列,并求其通项公式;(II ) 若 S =31 ,求.532∑ i =1nn(t - t ) (y -y)2 ∑ 2i ii =1∑ i =17( y - y )2iy a bt(18)(本小题满分 12 分)下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(I ) 由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明;(II ) 建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量.7参考数据:∑ y i = 9.32 , i =17∑t iyi= 40.17 , = 0.55 , 7≈2.646.i =1n∑(t i - t )( y i - y )参考公式:相关系数r = i =1回归方程= +中斜率和截距的最小二乘估计公式分别为:n∑(t i - t )( y i - y ) b = i =1 n∑(t i - t )2i =1a =y - bt .AD∥BC(19)(本小题满分12 分)如图,四棱锥P -ABC 中,PA ⊥平面ABCD ,,AB =AD =AC = 3 ,PA =BC = 4 ,M 为线段AD 上一点,AM = 2MD ,N 为PC 的中点.(I)证明平面PAB ;(II)求直线AN 与平面PMN 所成角的正弦值.MN∥AR ∥ FQ(20)(本小题满分 12 分)已知抛物线C : y 2 = 2x 的焦点为 F ,平行于 x 轴的两条直线1l 2, l 分别交C 于A ∥B 两点,交C 的准线于 P ∥ Q 两点.(I ) 若F 在线段 AB 上, R 是 PQ 的中点,证明 ;(II ) 若∆PQF 的面积是∆ABF 的面积的两倍,求 AB 中点的轨迹方程.(21)(本小题满分 12 分)设函数 f (x ) = a cos 2x + (a -1)(cos x +1) ,其中 a > 0 ,记| f (x ) | 的最大值为 A .(Ⅰ)求 f '(x ) ;(Ⅱ)求 A ;(Ⅲ)证明| f '(x ) |≤ 2 A .请考生在[22]、[23]、[24]题中任选一题作答.作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10 分)选修4-1:几何证明选讲如图,⊙O 中AB 的中点为P ,弦P C∥PD 分别交AB 于E∥ F 两点.(I)若∠PFB = 2∠PCD ,求∠PCD 的大小;(II)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD .223.(本小题满分 10 分)选修 4-4:坐标系与参数方程在直角坐标系 xOy 中,曲线C 1 的参数方程为⎪⎨x = 3 cos 为( 参数) ,以坐标原点为极点,以 x 轴的正半轴 ⎩ y = sin为极轴,建立极坐标系,曲线C 2 的极坐标方程为 sin(+ π) = 2.4(I ) 写出C 1 的普通方程和C 2 的直角坐标方程;(II ) 设点 P 在C 1 上,点 Q 在C 2 上,求|PQ |的最小值及此时 P 的直角坐标.24.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f (x ) =| 2x - a | +a(I)当a=2 时,求不等式f (x) ≤ 6 的解集;(II)设函数g(x) =| 2x -1|, 当x ∈R 时,f (x) +g(x) ≥ 3 ,求a 的取值范围.3 3参考答案一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.() 【答案】D考点:1、不等式的解法;2、集合的交集运算.() 【答案】C【解析】试题分析:4i = 4i= i ,故选 C .zz -1 (1+ 2i )(1- 2i ) -1考点:1、复数的运算;2、共轭复数.() 【答案】A【解析】1 ⨯ + ⨯1 试题分析:由题意,得cos ∠ABC =∠ABC = 30︒ ,故选A . 考点:向量夹角公式.() (4)BA ⋅ BC = | BA || BC | 2 2 2 2 = 1⨯1,所以 2考点:1、平均数;2、统计图32 AD 2 + DC 2() 【答案】A【解析】试题分析:由tan= 3,得sin = 3, cos = 4或sin = - 3 , cos= - 4,所以4 5 5 5 5cos 2+ 2 sin 2= 16 + 4 ⨯ 12 = 64,故选 A . 25 25 25考点:1、同角三角函数间的基本关系;2、倍角公式.() 【答案】A【解析】422122试题分析:因为 a = 23 = 43 > 45 = b , c = 253 = 53 > 43 = a ,所以b < a < c ,故选A .考点:幂函数的图象与性质.() 【答案】B考点:程序框图.() 【答案】C【解析】试题分析:设 BC 边上的高线为 AD ,则 BC = 3AD ,所以AC = = 5AD , AB = AD .由余弦定理,知AB 2 + AC 2 - BC 2 2 AD 2 + 5AD 2 - 9 A D 210cos A = = = - ,故选 C .2 A B ⋅ AC 2 ⨯ 2 AD ⨯ 5AD10 考点:余弦定理.(9) 【答案】B( )考点:空间几何体的三视图及表面积.(10)【答案】B【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值3,此时球的体积为4R3=4 3 3=9,故选2 3 3 2 2B.考点:1、三棱柱的内切球;2、球的体积.()【答案】A考点:椭圆方程与几何性质.()【答案】C【解析】试题分析:由题意,得必有a1= 0 ,a8= 1 ,则具体的排法列表如下:0 0 00 1 1 11 10 1 110 11 010 1 110 11 01 00 11 01 00 1 110 11 01 00 11 0二、填空题:本大题共3 小题,每小题5 分3()【答案】2考点:简单的线性规划问题.2π()【答案】3【解析】试题分析:因为y = sin x +cos x = 2 sin(x +π) ,3332 3 3 3 R 2 - (| AB |)2y = sin x - cos x = 2 sin(x - π) =32 s in[(x + π) - 2π] ,所以函数 y = sin x - 3 3cos x的图像可由函数y = sin x +cos x 的图像至少向右平移 2π个单位长度得到. 3考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.()【答案】 y = -2x -1考点:1、函数的奇偶性与解析式;2、导数的几何意义.()【答案】4【解析】试题分析:因为| AB |= 2 ,且圆的半径为2 ,所以圆心(0, 0) 到直线mx + y +3m - = 0 的距离为 = 3 ,则由| 3m - 3 | = 3 ,解得m 2 +1m = - 3,代入直线l 的方程,得 y = x + 2 3 ,所以直线l 的倾斜角为30︒ ,由平面 几何知识知在梯形 ABDC 中, | CD |= | AB |cos 30︒= 4 .考点:直线与圆的位置关系.三、解答题:解答应写出文字说明,证明过程或演算步骤.()【答案】(Ⅰ) a=1()n -1 ;(Ⅱ)= -1 .n1 - -1【解析】33 3 3 3∑ ii 7考点:1、数列通项a n 与前n 项和为 S n 关系;2、等比数列的定义与通项及前n 项和为 S n .(18)(本小题满分 12 分)【答案】(Ⅰ)理由见解析;(Ⅱ)1.82 亿吨.7(t - t )( y - y ) (Ⅱ)由y = 9.32 ≈ 1.331 及(Ⅰ)得b ˆ= i =1 = 2.89 ≈ 0.103 , ∑(t ii =1- t )2 28 a ˆ = y - b ˆt ≈ 1.331 - 0.103 ⨯ 4 ≈ 0.92 .7⎨5⎪ 所以, y 关于t 的回归方程为: y ˆ = 0.92 + 0.10t .将 2016 年对应的t = 9 代入回归方程得: y ˆ = 0.92 + 0.10 ⨯ 9 = 1.82 .所以预测 2016 年我国生活垃圾无害化处理量将约 1.82 亿吨.考点:线性相关与线性回归方程的求法与应用.(19)【答案】(Ⅰ)见解析;(Ⅱ)8 5 .25设 n = (x , y , z ) 为平面 PMN 的法向量,则n = (0,2,1) ,于是| cos < n , AN >|=| n ⋅ AN | 8 5.| n || AN | 25⎪n ⋅ PM = 0 ⎧2x - 4z = 0 ⎨ ,即 ⎩n ⋅ PN = 0 ⎪ 2 x + y - 2z = 0,可取考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.(20)【答案】(Ⅰ)见解析;(Ⅱ)y2 =x -1.考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.(21)(本小题满分 12 分)⎧2 - 3a , 0 < a ≤ 1⎪ 5 '⎪ a 2+ 6a +1 1 【答案】(Ⅰ) f (x ) = -2a sin 2x - (a -1) sin x ;(Ⅱ)A = ⎨ , < a < 1 ; ⎪ 8a5 ⎪ 3a - 2, a ≥ 1 ⎪ ⎩(Ⅲ)见解析.【解析】试题分析:(Ⅰ)直接可求 f '(x ) ;(Ⅱ)分 a ≥ 1,0 < a < 1 两种情况,结合三角函数的有界性求出 A ,但须注意当0 < a < 1时还须进一步分为0 < a ≤ 1 , 1 < a < 1 两种情况求解;5 5(Ⅲ)首先由(Ⅰ)得到| f '(x ) |≤ 2a + | a -1|,然后分 a ≥ 1 , 0 < a ≤ 1 , 1< a < 1 三种情况证明5 5试题解析:(Ⅰ) f ' (x ) = -2a sin 2x - (a -1) sin x .(Ⅱ)当 a ≥ 1 时,| f ' (x ) |=| a sin 2x + (a -1)(cos x +1) | ≤ a + 2(a -1) = 3a - 2 = f (0)因此,A = 3a - 2 .………4 分当0 <a < 1时,将f (x) 变形为f (x) = 2a cos2 x + (a -1) cos x -1 .令g(t) = 2at 2 + (a -1)t -1 ,则A 是| g(t) | 在[-1,1] 上的最大值,g(-1) =a ,g(1) = 3a - 2 ,且当t =1-a时,g(t) 取得极小值,极小值为4a1-a (a -1)2 a2 + 6a +1 g( ) =--1 =-.4a 8a 8a令-1<1-a<1,解得a <-1(舍去),a>1.4a 3 5考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性.22. 【答案】(Ⅰ)60︒;(Ⅱ)见解析.考点:1、圆周角定理;2、三角形内角和定理;3、垂直平分线定理;4、四点共圆.x 2 223.【答案】(Ⅰ) C 1 的普通方程为 3+ y 3 1 (Ⅱ) ( , ) . 2 2= 1, C 2 的直角坐标方程为 x + y - 4 = 0 ;考点:1、椭圆的参数方程;2、直线的极坐标方程.24.【答案】(Ⅰ){x | -1 ≤x ≤ 3} ;(Ⅱ)[2, +∞) .【解析】试题分析:(Ⅰ)利用等价不等式| h(x) |≤a ⇔-a ≤h(x) ≤a ,进而通过解不等式可求得;(Ⅱ)根据条件可首先将问题转化求解f (x)+g (x)的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于a 的不等式求解即可.试题解析:(Ⅰ)当a = 2 时,f (x) =| 2x - 2 | +2 .解不等式| 2x - 2 | +2 ≤ 6 ,得-1 ≤x ≤ 3 .因此,f (x) ≤ 6 的解集为{x | -1 ≤x ≤ 3} .................................... 5 分(Ⅱ)当x ∈R 时,f (x) +g(x) =| 2x -a | +a+ |1- 2x |≥| 2x -a +1- 2x | +a=|1-a | +a ,当x =1时等号成立,2考点:1、绝对值不等式的解法;2、三角形绝对值不等式的应用.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2016年高考理科数学全国卷3(含详细答案)

2016年高考理科数学全国卷3(含详细答案)

在2016年普通高等学校招生全国统一考试(全国新课标卷3)____--------------------答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域4.内作答.答在本试卷上无效.___答__题{}4,则cos2α+2sin2α=A.64C.1D.16_ _2.若z=1+2i,则4izz-1=4,BC边上的高等于BC,则cos A=(3.已知向量BA=(,),=(31,),则∠ABC=()--------绝密★启用前 A.30° B.45° C.60° D.120°------------------------------------ 4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低理科数学气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是()此使用地区:广西、云南、贵州--------------------注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓卷--------------------名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名__和科目.____ 3.答第Ⅰ卷时,选出每题答案后,用2B铅笔把答题卡上对应题目的答案标号涂__黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.号上证考准5.第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B铅笔在答题卡上把所选题目题号后的方框涂黑.__6.考试结束后,将本试卷和答题卡一并交回.--------------------__第Ⅰ卷______名一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符姓合题目要求的.--------------------1.设集合S={x|(x-2)(x-3)≥0},T=x x>0,则S T=()A.[2,3]B.(-∞,2][3,+∞)----平均最低气温——平均最高气温A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.若tanα=34825B.25254216.已知a=23,b=45,c=253,则A.b<a<cB.a<b<cC.b<c<aD.c<a<b7.执行如图的程序框图,如果输入的a=4,b=6,那么输出的n=()()()C.[3,+∞)D.(0,2][3,+∞)无----------------A.1B.-1C.iD.-i ()A.3B.4C.5D.68.在△ABC中,B=π13)效---132222BC数学试卷第1页(共27页)A.310B.101010数学试卷第2页(共27页)参考数据: ∑ y = 9.32 , ∑ t y = 40.17 ,- y )2 = 0.55 , 7 ≈ 2.646 .∑ ⎪ x + 2 y - 2≤0, ∑ (ty - y )- t)(,∑ (t - t )2- y)2∑∑ (t - t )( y - y )∑ (t - t )2在 13. 若 x , y 满足约束条件 ⎨ x - 2 y ≤0, 则 z = x + y 的最大值为______. 32,求 λ .( ) x 3C. 14 个D. 12 个第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22~24 题为选考题,考生根据要求作答.二、填空题:本题共 4 小题,每小题 5 分.⎧ x - y + 1≥0,⎪ ⎩14. 函 数 y = sin x - 3 cos x 的 图 象 可 由 函 数 y = sin x + 3cos x 的 图 象 至 少 向 右 平 移______个单位长度得到.15. 已 知 f ( x ) 为 偶 函 数 ,当 x < 0 时 , f ( x )= l n - x + ,则 曲 线 y = f ( x ) 在 点 (1,-3) 处的切线方程式是______.16. 已 知 直 线 l :mx + y + 3m - 3 = 0 与 圆 x 2 + y 2 = 12 交 于 A , B 两 点 ,过 A , B 分 别 作 l的垂线与 x 轴交于 C , D 两点,若 |AB | = 2 3 ,则 |CD | = ______.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分)已知数列{a } 前 n 项和 S = 1 + λ a ,其中 λ ≠ 0 .nnn(Ⅰ)证明{a } 是等比数列,并求其通项公式;n31 (Ⅱ)若 S =518.(本小题满分 12 分)下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码 1~7 分别对应年份 2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明; (Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量.数学试卷第 4 页(共 27 页)附注:777i i iii =1 i =1 i =1ni i 参考公式:相关系数 r = i =1n n iii =1 i =1回归方程 y = a + bt 中斜率和截距的最小二乘估计公式分别为b =n ii i =1 ,a = y - bt . ni i =119.(本小题满分 12 分)如图,四棱锥 P - ABCD 中, PA ⊥ 底面 ABCD , AD ∥ B C , AB = AD = AC = 3 , P A = BC = 4 , M 为线段 AD 上一点, AM = 2MD , N 为 PC 的中点. (Ⅰ)证明: MN ∥ 平面 PAB ;(Ⅱ)求直线 AN 与平面 PMN 所成角的正弦值.20.(本小题满分 12 分)已知抛物线 C : y 2 = 2x 的焦点为 F ,平行于 x 轴的两条直线 l , l 分别交 C 于 A , B 两点,1 2交 C 的准线于 P ,Q 两点.(Ⅰ)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR ∥FQ ;(Ⅱ)若 △PQF 的面积是 △ A BF 的面积的两倍,求 AB 中点的轨迹方程.21.(本小题满分 12 分)设函数 f ( x ) = α cos2 x + (α - 1)(cos x + 1) ,其中 α > 0 ,记 |f ( x )| 的最大值为 A . (Ⅰ)求 f '( x ) ;(Ⅱ)求 A ;数学试卷第 5 页(共 27 页)(Ⅲ)证明: f '( x ) ≤2 A .请考生在第 2223、24 题中任选一题作答,作答时用 2B 铅笔在答题卡上把所选题目题号后的方框涂黑如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4—1:几何证明选讲如图, O 中 AB 的中点为 P ,弦 PC ,PD 分别交 AB 于 E , F 两点.(Ⅰ)若 ∠PFB = 2∠PCD ,求 ∠PCD 的大小;(Ⅱ)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G ,证明: OG ⊥ CD .23.(本小题满分 10 分)选修 4—4:坐标系与参数方程( α 为 参 数 ), 以1坐 标 原 点 为 极 点 ,以 x 轴 的 正 半 轴 为 极 轴 ,建 立 极 坐 标 系 ,曲 线 C 的 极 坐2标 方 程 为 ρ s i n θ + π2 .2(Ⅰ)写出 C 的普通方程和 C 的直角坐标方程;1 2(Ⅱ)设点 P 在 C 上,点 Q 在 C 上,求 | PQ | 的最小值及此时 P 的直角坐标.1 224.(本小题满分 10 分)选修 4—5:不等式选讲已知函数 f ( x ) =| 2 x - a | +a .(Ⅰ)当 a = 2 时,求不等式 f ( x )≤6 的解集;(Ⅱ)设函数 g ( x ) =| 2 x - 1| .当 x ∈ R 时, f ( x ) + g ( x )≥3 ,求 a 的取值范围.数学试卷第 6 页(共 27 页)22016 年普通高等学校招生全国统一考试(全国新课标卷 3)理科数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】易得 S = (-∞,2][3, + ∞ ),∴ ST = (0,2][3,+ ∞ ).【考点】解一元二次不等式,交集2.【答案】C【解析】易知 z = 1 - 2i ,故 zz - 1 = 4 ,∴【考点】共轭复数,复数运算3.【答案】A4i z z - 1= i .3【解析一】 cos ∠ABC = BA BC = 2 = 3 ,∴∠ ABC = 30 .BA BC 1⨯1 2【解析二】可以 B 点为坐标原点建立如图所示直角坐标系,易知∠ABx = 60 , ∠CBx = 30 ,∴∠ A BC = 30 .【考点】向量夹角的坐标运算4.【答案】D【解析】从图像中可以看出平均最高气温高于 20 C 的月份有七月、八月,六月为 20 C 左右,故最多 3 个.【考点】统计图的识别5.【答案】A【解析】 cos 2 α + 2sin 2α = cos2 α + 4sin α cos α 1 + 4 tan α 64 = = .cos 2 α + sin 2 α 1 + tan 2 α 25【考点】二倍角公式,弦切互化,同角三角函数公式6.【答案】A【解析】 a = 2 4 = 4 2 , b = 32 , c = 251= 53 ,故 c > a > b .【考点】指数运算,幂函数性质7.【答案】B2 2 ⨯ 5 =- 如图所示,则由切线长定理可知,内接圆的半径为 2,又 AA =3 < 2 ⨯ 2 ,所以内接球的半径为 ,即V 的2MF MF AF a - c 1 a a - c a - c= = = = OE 2ON AO a 2 a + c a a + c b 6 4646sn0 61 102 163 204【考点】程序框图8.【答案】C【 解 析 】 如 图 所 示 , 可 设 BD = AD = 1 , 则 AB =2 , DC = 2 , ∴ AC = 5 , 由 余 弦 定 理 知 ,cos A = 2 + 5 - 9 10 10.【考点】解三角形9.【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为 2 ⨯ 3 ⨯ 3 + 2 ⨯ 3 ⨯ 6 + 2 ⨯ 3 ⨯ 9 + 36 = 54 + 18 5 .【考点】三视图,多面体的表面积10.【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,314 最大值为 πR 3 = 39π 2.【考点】内接球半径的求法11.【答案】A【解析】易得 ON OB a c 1 = = ,,∴ = ,∴e = = . MF BF a + c a 3【考点】椭圆的性质,相似12.【答案】C【解析】⎪ ⎪ ⎪ ⎧0 → 111 ⎪ ⎪0 ⎨1⎪ ⎧0 → 11 ⎪ ⎪ ⎪⎩ ⎪⎩ ⎩1 → 01 ⎪ ⎪ ⎪0 ⎨1⎧0 → 11 ⎪ ⎪ ⎪1 → 0 ⎧0 → 11 ⎪ ⎪ ⎪ ⎪ ⎩ ⎩ ⎪ ⎪ ⎪0 ⎨1⎧0 → 11 1 → 0 ⎨ ⎪⎩ ⎩1 → 01 ⎪ ⎪1 → 0 ⎧0 → 11⎨【解析】三条直线的交点分别为 (-2,- 1), 1, ⎪ , (0,1) ,代入目标函数可得 -3 , ,1,故最大值为 .⎪1⎪⎨ ⎪ ⎩ ⎩⎩ y = sin x - 3 cos x = 2sin x - ⎪ , y = sin x + 3 cos x = 2sin x + ⎪ ,故可前者的图像可由后π ⎫ 3 ⎭ + 3 = + 3 ,∴ f '(-1) = 2 ,∴ f '(1) = -2 ,故切线方程为 2 x + y + 1 = 0 . ∴∴⎧ ⎧ ⎧0 → 1111 ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎨1⎨⎪ ⎪⎪0 ⎨ ⎧ ⎧0 → 111 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎨1 → 01 0 ⎨ ⎪ ⎪ ⎩1 → 01 ⎪ ⎧ ⎧0 → 111 ⎪ ⎪ ⎪ ⎪ ⎨ ⎪⎪ ⎪⎪⎪ ⎩1 → 01【考点】数列,树状图第Ⅱ卷二、填空题 13.【答案】32⎛ 1 ⎫ 3 3 ⎝ 2 ⎭ 2 2【考点】线性规划14.【答案】2π3【解析】⎛ ⎛ π ⎫ ⎝ ⎝ 3 ⎭者向右平移 2π 3个单位长度得到.【考点】三角恒等变换,图像平移15.【答案】 2 x + y + 1 = 0【解析一】 f '( x ) =-1 1-x x【解析二】当 x > 0 时,f ( x ) = f (- x ) = ln x - 3x , f '( x ) = 1 x- 3 , f '(1) = -2 ,故切线方程为 2 x + y + 1 = 0 .【考点】奇偶性,导数,切线方程16.【答案】3【解析】如图所示,作 AE ⊥ BD 于 E ,作 OF ⊥ AB 于 F , AB = 2 3 , OA = 2 3 , ∴ OF = 3 ,即,∴ 直线 l 的倾斜角为 30 ,∴ CD = AE = 2 3 ⨯ = 3 . 即 (λ - 1)a = λa , λ ≠ 0 ,a ≠ 0 ,∴ λ - 1 ≠ 0 ,即 λ ≠ 1 ,即,(n ≥ 2) ,∴{a } 是等比数列,λ a ( 11 ⎛λ ⎫n -1 λ - 1 ⎭ ,当 n = 1 时, S = 1 + λ a = a ,即 a = ,∴ a = 1 - λ 1 - λ ⎝ 1 1 1 ⎪ 32 ⎢1 - ⎪ ⎥ ⎛ λ ⎫5 31 ,∴ λ = -1 . = 1 - ⎪ ⎣ ⎦ 1 + 2 + 3 + 4 + 5 + 6 + 7∑ y∑ (t- t )( y- y) ∑ (t- t)2 ∑( y -y )2∑ t y- nt y∑ (t- t)2 ∑( y-y )228 ⨯ 0.55≈ 0.99 ,因为 y 与 t 的相关系数∑ (t- t )(y - y ) ∑ (t- t )2(3m - 3m 2 + 1 = 3 ,∴ m = -3 33 2【考点】直线和圆,弦长公式 三、解答题17.【答案】Ⅰ) S = 1 + λ a , ≠ 0 ,∴ a ≠ 0 ,当 n ≥ 2 时, = S - S = 1 + λa - 1 - λa= λa - λa,n n n n n n -1n n -1 nn -1aλn n n -1 n aλ - 1nn -1公比 q = λλ - 11 n ;(Ⅱ)若 S = 31 5 ,则 S = 5 1 ⎡ ⎛ λ ⎫5 ⎤1 - λ ⎢ ⎝ λ - 1 ⎭ ⎥ 1 - λλ - 1= ⎝ λ - 1 ⎭ 32【考点】等比数列的证明,由 S 求通项,等比数列的性质n18.【答案】(Ⅰ)由题意得 t =r =7 i =1 7 7i =1i ii ii =1=7 7 i =1 ni =1 i ii ii =1= 40.17 - 7 ⨯ 4 ⨯1.33近似为 0.99,说明 y 与 t 的线性相关程度相当高,从而可以用线性回归方程来拟合 y 与 t 的关系;(Ⅱ) b= ni =1i ini=2.8928≈ 0.103 , a = y - bt = 1.33 - 0.103 ⨯ 4 ≈ 0.92 ,所以 y 关于 t 的线性回归 i =1方程为 y = a + bt = 0.92 + 0.10t ,将 t = 9 代入回归方程可得, y = 1.82 ,预测 2016 年我国生活垃圾无害化处理量将约为 1.82 亿吨.【考点】相关性分析,线性回归19.【答案】 Ⅰ)由已知得 AM = 2AD = 2 ,取 BP 的中点 T ,连接 A T ,TN ,由 N 为 PC 中点知 T N ∥BC ,31TN = BC = 2 ,又 AD ∥ B C ,故 TN 平行且等于 AM ,四边形 AMNT 为平行四边形,于是 MN ∥ A T ,因2为 A T ⊂ 平面 PAB , MN ⊄ 平面 PAB ,所以 MN ∥ 平面 PAB ;(Ⅱ)取 BC 中点 E ,连接 AE ,则易知 AE ⊥ AD ,又 PA ⊥ 面 ABCD ,故可以 A 为坐标原点,以 AE 为N ,1,2 ⎪ (0,2,0 ),∴ AN = ⎛20.【答案】 Ⅰ)由题设 F ,0 ⎪ ,设 l : y = a ,l : y = b ,则 ab ≠ 0 ,且 A , a ⎪ ,B , b ⎪ ,P ⎛ - , a ⎫⎪ , ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ Q - , b ⎪ , R - , ⎪ ,记过 A , B 两点的直线为 l ,则 l 的方程为 2 x - (a + b ) y + ab = 0 ,由于 F 在线1 + a2 a 2 - ab a a=,由题设可得2 2 2 2 b - a x - =,所以 x = 0 (舍去), x = 1 ,设满足条件的 AB 的中点为 E ( x , y ) ,当 AB 与 x 轴 1可得 2= ( x ≠ 1) ,而 = y ,所以 y 2 = x - 1(x ≠ 1) ,当 AB 与 x 轴垂 21.【答案】(Ⅰ) f ( x ) = -2a sin 2 x - (a - 1)sin x ;Mx 轴,以 AD 为 y 轴,以 AP 为 z 轴建立空间直角坐标系,则 A (0,0,0) 、 P (0,0,4) 、 C ( 5,2,0) 、⎛ 5 ⎫ ⎝ 2 ⎭5 ⎫ ⎛ 5 ⎫2 ,1,2⎪ , PM = (0,2, -4) , PN = N 2 ,1,-2 ⎪ ,故平面 PMN 的法向量 n = (0,2,1) , ⎝ ⎭ ⎝ ⎭∴cos < AN ,n >=4= 8 525 ,5 ⨯52∴ 直线 AN 与平面 PMN 所成角的正弦值为8 5 25.【考点】线面平行证明,线面角的计算⎛ 1 ⎫ ⎛ a 2 ⎫ ⎛ b 2 ⎫ 1(1 2⎛ 1 ⎫⎛ 1 a + b ⎫ ⎝ 2 ⎭⎝ 2 2 ⎭段 AB 上,故1 + ab = 0 ,记 AR 的斜率为 k ,FQ 的斜率为 k ,则 k = 1 21所以 AR ∥FQ ;a -b a - b 1 -ab= = = = -b = k ,2(Ⅱ)设 l 与 x 轴的交点为 D ( x ,0) ,则 S 1 ∆ABF = 1 1 1 a - bb - a FD = b - a x - , S 11 1 a - b2 2 2 1 1不垂直时,由 kAB= kDEy a + ba +b x - 1 2直时, E 与 D 重合,所以,所求轨迹方程为 y 2 = x - 1 .【考点】抛物线,轨迹方程2 (a 1) 1 g ⎪ =- - 1 = - ,令 -1 < < 1,解得 a < - (舍去) a > .①当 0 < a ≤ 时,g (t ) 在 (-1,1)内无极值点,| g (-1)|= a ,| g (1)|= 2 - 3a ,| g (-1)|<| g (1)| ,所以 A = 2 - 3a ;②当 < a < 1 时,由 g (-1) - g (1) = 2(1- a ) > 0 ,知 g (-1) > g (1)> g ( ) ;8a 8a 又 g ⎪ - | g (-1)|= ⎪ => 0 ,所以 A = g 2 - 3a ,0 < a ≤ 5 综上, A =⎨ ⎪ a 2 + 6a + 1 1 8a 5 (1- a )(1+ 7a ) 8a (C 0 < a < 1 时,将 f ( x ) 变形为 f ( x ) = 2a cos 2 x + (a - 1)cos x - 1,令 gt () =at 2+ -t -,则 A 是 | g (t ) |在 [-1,1]上的最大值, g (- 1) = a , g (1) = 3a - 2 ,且当 t =1 - a 4a时, g (t ) 取得极小值,极小值为⎛ 1 - a ⎫ (a - 1)2 a 2 + 6a + 1 1 - a 1 1 ⎝ 4a ⎭ 4a 3 5151 1 - a5 4a⎛ 1 - a ⎫ ⎛ 1 - a ⎫ a 2 + 6a + 1 ⎝ 4a ⎭ ⎝ 4a ⎭8a ⎧1 ⎪ ⎪, < a < 1⎪⎪ 3a - 2, a ≥ 1 ⎪ ⎩(Ⅲ)由(Ⅰ)得 | f '( x ) |=| -2a sin 2 x - (a - 1)sin x |≤ 2a + | a - 1| ,,当 0 < a ≤ 1 5 1 a 1 3时, | f '( x ) |≤ 1 + a ≤ 2 - 4a < 2(2 - 3a ) = 2 A ,当 < a < 1 时, A = + + ≥ 1 ,5 8 8a 4所以 | f '( x ) |≤ 1 + a < 2 A ,当 a ≥ 1 时, | f '( x ) |≤ 3a - 1 ≤ 6a - 4 = 2 A ,所以 | f '( x ) |≤ 2 A .【考点】导函数讨论单调性,不等式证明22.【答案】 Ⅰ)连结 P B , BC ,则 ∠BFD =∠ PBA +∠ BPD ,∠PCD = ∠PCB + ∠BCD ,因为 AP = BP , 所 以 ∠P B A = ∠ P , 又 ∠B P D = ∠ B C , 所 以 ∠B F D = ∠ P C , 又 ∠PFD + ∠BFD = 180 ,∠PFB = 2∠PCD ,所以 3∠PCD = 180 ,因此 ∠PCD = 60 ;(Ⅱ)因为 ∠PCD = ∠BFD ,所以 ∠PCD + ∠EFD = 180 ,由此知 C , D , F , E 四点共圆,其圆心既在CE 的垂直平分线上,又在 DF 的垂直平分线上,故 G 就是过 C ,D ,F ,E 四点的圆的圆心,所以 G 在 CD 的垂直平分线上,因此 O G ⊥ CD . 【考点】几何证明23.【答案】(Ⅰ) C 的普通方程为 + y 2 = 1 , C 的直角坐标方程为 x + y - 4 = 0 ; 3 2 = 2 | sin(α + (k ∈ Z ) 时, d (α ) 取得最小值,最小值为 2 ,此时 P 的直角坐标为 , ⎪ .x 2 12(Ⅱ)由题意,可设点 P 的直角坐标为 ( 3cos α,sin α ) ,因为 C 是直线,所以 | PQ | 的最小值,即为 P 到 C2 2的 距 离 d (α ) 的 最 小 值 , d (α ) = | 3 cos α + sin α - 4 | π 3 ) - 2| , 当 且 仅 当α = 2k π + π 6 ⎛ 3 1 ⎫ ⎝ 2 2 ⎭【考点】坐标系与参数方程24.【答案】(Ⅰ)当 a = 2 时, f ( x ) =| 2 x - 2 | +2 ,解不等式| 2 x - 2 | +2 ≤ 6 ,得 -1 ≤ x ≤ 3 ,因此, f ( x ) ≤ 6的解集为{x | -1 ≤ x ≤ 3} ; (Ⅱ)当 x ∈ R 时, f ( x ) + g ( x ) =| 2 x - a | +a + |1 - 2 x |≥| 2 x - a +1 - 2 x | +a =|1 - a | +a ,当 x =所以当 x ∈ R 时, f ( x ) + g ( x ) ≥ 3 等价于 |1 - a | +a ≥ 3 ①. 当 a ≤ 1 时,①等价于1 - a + a ≥ 3 ,无解; 当 a > 1 时,①等价于 a - 1 + a ≥ 3 ,解得 a ≥ 2 ; 所以 a 的取值范围是[2, +∞) .【考点】不等式 1 2 时等号成立,。

2016年高考全国Ⅲ理科数学试题及答案(word解析版)

2016年高考全国Ⅲ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅲ,理1,5分】设集合 ,则( )()(){}{}|230,|0S x x x T x x =--≥=>S T =(A ) (B ) (C )(D )[]2,3(][),23,-∞+∞ [)3,+∞(][)0,23,+∞ 【答案】D【解析】由解得或,,所以,故选()()230x x --≥3x ≥2x ≤{}23S x x ∴=≤≥或{}023S T x x x =<≤≥ 或D .【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若,则( )i 12z =+4i1zz =-(A )1 (B ) (C ) (D )1-i i -【答案】C【解析】,故选C .4i 4ii (12i)(12i)11zz ==+---【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式合并同类项,复数的乘法与多i 项式的乘法相类似,只是在结果中把换成.复数除法可类比实数运算的分母有理化.复数加、减2i 1-法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量,,则( )1(2BA =u u v 1)2BC =u u u v ABC ∠=(A ) (B ) (C ) (D )30︒45︒60︒120︒【答案】A【解析】由题意,得,所以,故选A .cos BA BC ABC BA BC⋅∠=== 30ABC ∠=︒【点评】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值a b ·cos a b a b θ或θa b 范围:;(2)由向量的数量积的性质有,,因此,0180θ︒≤≤︒|a ·cos a ba bθ=·0a b a b ⇔⊥ 或利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为A ,点表示四月的平均最低气温约为.下面叙述不正确的是( )15C ︒B 5C ︒(A )各月的平均最低气温都在以上 (B )七月的平均温差比一月的平均温差大 0C ︒(C )三月和十一月的平均最高气温基本相同(D )平均气温高于的月份有5个20C ︒【答案】D【解析】由图可知均在虚线框内,所以各月的平均最低气温都在以上,A 正确;由图0C ︒0C ︒可在七月的平均温差大于,而一月的平均温差小于,所以七月的平均7.5C ︒7.5C ︒温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,5C ︒C 正确;由图可知平均最高气温高于的月份有3个或2个,所以不正确,故选D .20C ︒【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.(5)【2016年全国Ⅲ,理5,5分】若,则()3tan4α=2cos2sin2αα+=(A)(B)(C)1 (D)642548251625【答案】A【解析】由,得或,所以,3tan4α=34sin,cos55αα==34sin,cos55αα=-=-2161264cos2sin24252525αα+=+⨯=故选A.【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.(6)【2016年全国Ⅲ,理6,5分】已知,,,则()432a=254b=1325c=(A)(B)(C)(D)b a c<<a b c<<b c a<<c a b<<【答案】A【解析】因为,,所以,故选A.422335244a b==>=1223332554c a==>=b a c<<【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的,那么输出的46a b==或()n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】第一循环,得;第二循环,得;2,4,6,6,1a b a s n=====2,6,4,10,2a b a s n=-====第三循环,得;第四循环,得2,4,6,16,3a b a s n=====;2,6,4,2016,4a b a s n=-===>=退出循环,输出,故选B.4n=【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在中,,边上的高等于,则 ( )ABCDπ4B=BC13BC cos A=(A(B(C)(D)--【答案】C【解析】设边上的高线为,则,所以,.由余弦定理,BC AD3BC AD=AC==AB=知,故选C.222cos2AB AC BCAAB AC+-===⋅【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)(B)(C)90 (D)8118+54+【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积B.2362332354S=⨯⨯+⨯⨯+⨯⨯=+【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱内有一个体积为的球,若,111ABC A B C -V AB BC ⊥,,,则的最大值是( )6AB =8BC =13AA =V (A ) (B ) (C ) (D )4π92π6π323π【答案】B【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半V R 径取得最大值,此时球的体积为,故选B .32334439(3322R πππ==【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知为坐标原点,是椭圆的左焦点,分O F 2222:1(0)x y C a b a b+=>>,A B 别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于C P C PF x ⊥A l PF M y 点.若直线经过的中点,则的离心率为( )E BM OE C (A ) (B ) (C ) (D )13122334【答案】A【解析】由题意设直线的方程为,分别令与得点,,由l ()y k x a =+x c =-0x =()FM k a c =-OE ka=~OBE ∆,得,即,整理得,所以椭圆离心率为,故选A .CBM ∆12OE OB FM BC=()2ka ak a c a c=-+13c a =1e 3=【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立,a c e 的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.,,a b c ba e e (12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”如下:共有项,其中项为0,项为{}n a {}n a 2m m m 1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有(2k m ≤12,,,k a a a 4m =)(A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有,,则具体的排法列表如下:,故选C .10a =81a =011101101111001101011001110100110101100101010101【点评】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为 必考题,每个试题考生都必须作答。第(22)题~第(24)题 未选考题,考生根据要求作答。 二、填空题:本大题共3小题,每小题5分
(13) (14) (15) (16)4
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
的最大值为A. (Ⅰ)求f'(x); (Ⅱ)求A; (Ⅲ)证明
≤2A.
请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题 卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计 分。 22.(本小题满分10分)选修4-1:几何证明选讲 如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点. (I)若∠PFB=2∠PCD,求∠PCD的大小; (II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD.
(13)若x,y满足约束条件
则z=x+y的最大值为_____________. (14)函数
的图像可由函数
的图像至少向右平移_____________个单位长度得到。 (15)已知f(x)为偶函数,当
时,
,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。 (16)已知直线
解:(Ⅰ)由题意得,故,,. 由,得,即.由,得,所以. 因此是首项为,公比为的等比数列,于是. (Ⅱ)由(Ⅰ)得,由得,即, 解得. (18)(本小题满分12分) 解:(Ⅰ)由折线图这数据和附注中参考数据得 ,,, , . 因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用 线性回归模型拟合与的关系. (Ⅱ)由及(Ⅰ)得, . 所以,关于的回归方程为:. 将2016年对应的代入回归方程得:. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. (19)(本小题满分12分) 解:(Ⅰ)由已知得,取的中点,连接,由为中点知,. 又,故平行且等于,四边形为平行四边形,于是. 因为平面,平面,所以平面. (Ⅱ)取的中点,连结,由得,从而,且. 以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系, 由题意知, ,,,, ,,. 设为平面的法向量,则,即,可取, 于是.
23.(本小题满分10分)选修4-4:坐标系与参数方程 解:(Ⅰ)的普通方程为,的直角坐标方程为. ……5分 (Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值, 即为到的距离的最小值, . ………………8分 当且仅当时,取得最小值,最小值为,此时的直角坐标为. ………………10分 24.(本小题满分10分)选修4-5:不等式选讲 解:(Ⅰ)当时,.
轴交于点E.若直线BM经过OE的中点,则C的离心率为
(A)
(B)
(C)
(D)
(12)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项
为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数
(D)12个
二、填空题:本大题共3小题,每小题5分
(A) (B) (C)90 (D)81
(10)
在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若
ABBC,AB=6,BC=8,AA1=3,则V的最大值是
(A)4π
(B)
(C)6π
(D)
(11)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,
右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y
与圆
交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若
,则
__________________. 三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知数列
的前n项和 , ,其中 0 (I)证明 是等比数列,并求其通项公式 (II)若 ,求
(18)(本小题满分12分) 下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折 线图
【12】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个 数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数
列有: 0,0,0,0,1,1,1,1; 0,0,0,1,0,1,1,1; 0,0,0,1, 1,0,1,1; 0,0,0,1,1,1,0,1; 0,0,1,0,0,1,1,1; 0,0,1,0,1,0,1,1; 0,0,1,0,1,1,0,1; 0,0,1,1, 0,1,0,1; 0,0,1,1,0,0,1,1; 0,1,0,0,0,1,1,1; 0,1,0,0,1,0,1,1; 0,1,0,0,1,1,0,1; 0,1,0,1, 0,0,1,1; 0,1,0,1,0,1,0,1.共14个. 故选:C.
又,所以. 综上,. ………9分 (Ⅲ)由(Ⅰ)得. 当时,. 当时,,所以. 当时,,所以. 请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答 题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题 计分。 22.(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)连结,则. 因为,所以,又,所以. 又,所以, 因此. (Ⅱ)因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又 在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线 上,因此.
23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy中,曲线的参数方程为,以坐标原点为极点,以x轴的 正半轴为极轴,,建立极坐标系,曲线的极坐标方程为 . (I)写出的普通方程和的直角坐标方程; (II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.
24.(本小题满分10分)选修4-5:不等式选讲 已知函数 (I)当a=2时,求不等式的解集; (II)设函数当时,f(x)+g(x)≥3,求a的取值范围.
(20)解:由题设.设,则,且 . 记过两点的直线为,则的方程为. .....3分 (Ⅰ)由于在线段上,故. 记的斜率为,的斜率为,则 . 所以. ......5分 (Ⅱ)设与轴的交点为, 则. 由题设可得,所以(舍去),. 设满足条件的的中点为. 当与轴不垂直时,由可得. 而,所以. 当与轴垂直时,与重合.所以,所求轨迹方程为. ....12分 (21)(本小题满分12分) 解:(Ⅰ). (Ⅱ)当时, 因此,. ………4分 当时,将变形为. 令,则是在上的最大值,,,且当时,取得极小值,极小值为. 令,解得(舍去),. (ⅰ)当时,在内无极值点,,,,所以. (ⅱ)当时,由,知.
2016年普通高等学校招生全国统一考试
理科数学
1. 选择题:本大题共12小题,每小题5分,在每小题给出
的四个选项中,只有一项是符合题目要求的.
(1)设集合S= ,则ST=
(A) [2,3]
(B)(- ,2] [3,+)
(C) [3,+)
(D)(0,2] [3,+)
(2)若z=1+2i,则
(A)1
(B) -1
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数 加以说明 (II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活 垃圾无害化处理量。
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥地面ABCD, AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一 点,AM=2MD,N为PC的中点. (I)证明MN∥平面PAB; (II)求直线AN与平面PMN所成角的正弦值.
绝密★启封并使用完毕前
试题类型:新课标Ⅲ
2016年普通高等学校招生全国统一考

理科数学正式答案
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的 四个选项中,只有一项是符合题目要求的。
(1)D (2)C (3)A (4)D (5)A (6)A (7)B (8)C (9)B (10)B (11)A (12)C 【11】
(20)(本小题满分12分) 已知抛物线C: 的焦点为F,平行于x轴的两条直线分别交C于A,B两 点,交C的准线于P,Q两点. (I)若F在线段AB上,R是PQ的中点,证明AR∥FQ; (II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. (21)(本小题满分12分)设函数f(x)=acos2x+(a-1)(cosx+1), 其中a>0,记
(5)若 ,则
(A)
(B)
(C) 1
(D)
(6)已知,,,则
(A) (B)(C)(D)
(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=
(A)3 (B)4 (C)5 (D)6
(8)在中,,BC边上的高等于,则 (A) (B) (C) (D)
(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三 视图,则该多面体的表面积为
解不等式,得.
因此,的解集为.
………………5分
(Ⅱ)当时,

当时等号成立,
所以当时,等价于. ① ……7分
当时,①等价于,无解.
当时,①等价于,解得.
所以的取值范围是. ………………10分
(C) i
(D)-i
(3)已知向量 , 则ABC=
(A)300
(B) 450
(C) 600
(D)1200
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均
最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温
约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的

(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个
相关文档
最新文档