锻压生产特点及工艺简介
锻造成型工艺介绍
* 再结晶:
当加热温度T再: T再=0.4T熔 原子获得更多热能,开始的某些碎晶或杂质为核心 构成新晶粒,因为是通过形核和晶核长大方式进行 的,故称再结晶。
再结晶后清除了全部加工硬化。
再结晶后晶格类型不变,只改变晶粒外形。
上升, 而塑性、韧 性下降。 * 原因:滑移面附近的 晶粒碎晶块, 晶格扭曲畸变, 增大滑移阻力, 使滑移难以 进行。
● 3、金属的回复与再结晶 * 回复:
冷作硬化是一种不稳定的现象,具有自发恢复到稳定 状态的倾向。室温下不易实现。当提高温度时,原子 获得热能,热运动加剧,当加热温度T回(用K氏温标)
●加工硬化的利用、消除
*利用:冷加工后使材料强度↑硬度↑。如冷拉
钢,不能热处理强化的金属材料。
*消除:再结晶退火(P29)650—750℃
● 热变形对金属组织和性能的影响 冷变形和热变形 * 冷变形
在再结晶温度以下的变形; 冷变形后金属强度、硬度较高,低粗糙度值。但 变形程度不宜过大,否则易裂。 * 热变形 再结晶温度以上变形。 变形具有强化作用,再结晶具有强化消除作用。在热变 形时无加工硬化痕迹。 金属压力加工大多属热变形,具有再结晶组织。
模膛 飞边槽
锤头
上模
分模面,parting plane 下模
模垫
⑵ 制坯模膛 * i) 拔长模膛 增加某一部分长度。 ii)滚压模膛 减小某部分横截面积,以增大另一部分横截面积,坯料长度基本
不变。 切断金属。
此外还有成型模镗,镦粗台, 击扁面等制坯模镗。
在设计和制造零件时,应使最大正应力的方向于纤维 方向重合,最大切应力的方向于纤维方向垂直。尽量 使纤维组织不被切断。
锻造工艺及产品介绍
锻造成形的优势
1、 金属锻压件可以完成普通冲压件做不到的壁厚不一致产品,它可 以避免激光焊接、冲压铆合螺柱等工序的发生
锻造成形的优势
2、相对于金属压铸产品的锻造件表面质量好,且我们通常会选择塑性比较好的 铝合金材料来做锻压产品, 它可以进行表面的抛光、喷砂、拉丝、阳极等表面处 理工艺
锻造成形的优势
连续式超声波清洗机
单体式超声波清洗机
锻造件结构设计原则
锻造件形状设计主要考虑的因素:
1.工艺性:重点要考虑金属流动性,特征直角处采用圆角过渡,减少成型 工序和中间的退火次数,将锻造压力减到最小为标准; 2.材料利用率及减少切削成本:减少切削加工部位及余量,降低原料损耗; 3.品质:品质和精度容易控制和保证; 4.模具结构:模具结构根据产品特征排列成平衡方式,避免金属流动性造 成模具损坏和特征偏心。
3、增加产品的金属质感,还可以对电子辐射起到屏蔽作用,这些都是 塑料件无法具有的特点。
目前新开发的手机外壳的趋势就是往金属方向发展
锻造工艺介绍
下料
清洗
退火
沾油
成型
切边/ 冲孔
检验
包装
锻造工
成型一(热锻)
冲孔
清洗
分切
成型二
退火
锻造工艺介绍
下料:
C2680 -H铜棒 下料后
清洗后
锻造工艺介绍
退火:
退火产品
锻造工艺介绍
成形二:
500T-油压机
成型模
锻造工艺介绍
分切:
冲床
冲孔模
分切前
分切后
锻造工艺介绍
结论:
热压锻造工艺之所以能够在锻件精化上发挥作用,主要原因有: (1)锻造过程接近材料的真实塑性变形,锻造过程不考虑温降影响,将复杂问题简单化, 即将材料变形本构模型简单化,有利于锻件变形过程流动规律和组织性能演变的控制; (2)热压锻造可以减少变形死区的产生,从而减少机械加工余量,起到精化锻件的作用; (如图1) (3)热压锻造大幅度减小了机床吨位,提高模具寿命以较少的变形工步成形具有复杂形状 的锻件(如图2)
流行锻压基本工艺及设备简介
3~4工程
3~4工程 4.热处理
5.后处理
5. 表面处理
Ⅰ.概述
匠心制造 . 诚信天下
a.自由锻造
自由锻造是利用冲击力或后力使金属在上下平面各个方向变形, 不受任何限制而获得形状及尺寸和一定机械性能的加工方法。 (精度要求不高)
b.精密锻造
精密锻造是利用精密模具通 锻压机使材料产生塑性 变形而达到 产品形状及尺寸的一种加工方法。(精度高)--手机手表应用广泛
内外径精度
偏芯 脱炭层 表面粗造度 金属组织
冷锻造
±0.1~±0.25 ±0.02 ~±0.2 0.02~0.15 <0.1 <0.8Ra (6S)
微细
温锻造
±0.1~±0.4 ±0.1 ~±0.2 0.1~0.4
<0.2 <2.5Ra (10S)
微细
热锻造
±1~±2
±0.5 ~±1 0.7~1.0
Ⅰ.概述
匠心制造 . 诚信天下
锻压分为开式锻压和闭式锻压;又分为冷锻,热锻,温锻。又分为自由锻 和精密模锻。
名称
简图
说明
冷锻压是在低于金属再结晶温度下进行的锻压,通常所说的冷锻
压多专指在常温下的锻压,而将在高于常温、但又不超过再结晶
冷锻
温度下的锻压称为温锻压。温锻压的精度较高,表面较光洁而变
形抗力不大。
Ⅰ.概述
5.锻压工艺辅助工序有哪些?
a.不锈钢产品有退火 热处理工艺 b.铝合金有固溶/时效等热处理工艺 c.铜 钛产品有热压 加热炉 热处理工艺 d.皮膜表面处理工艺 e.表面抛光处理工艺
匠心制造 . 诚信天下
锻压成型的特点
匠心制造 . 诚信天下
(1) 改善金属的组织,提高金属的力学性能 与物理性能;
锻造工艺的工艺特点
锻造工艺的工艺特点
锻造工艺是通过对金属材料进行加热、锤击、压制等操作,使其在一定条件下产生塑性变形从而形成所需形态的工艺。
以下是锻造工艺的特点:
1. 塑性较好:锻造工艺是通过对金属材料进行加热,使其变得更加柔软、易塑性变形,因此适合于制造一些比较复杂的形状。
2. 结构均匀:由于锻造工艺的加工过程比较均匀,因此所制作的零部件或产品具有结构均匀的特点。
3. 制造范围广:锻造工艺适用于制造各种尺寸、各种材质的零部件和产品。
4. 生产效率低:与其他加工工艺相比,锻造工艺的生产效率相对比较低。
5. 制品精度较高:锻造工艺制造的零部件或产品具有较高的精度,通常可以达到毫米级或亚毫米级的精度。
6. 设备成本高:锻造工艺通常需要投入较高的设备成本,包括锤击机、压力机、冲床等设备。
7. 制造周期长:由于锻造工艺需要对材料加热、制造过程复杂,在工艺特点上相对于其他加工工艺,制造周期比较长。
综上所述,锻造工艺是一种适用范围广、加工制度和结构均匀的工艺,但由于生产效率低、设备成本高等原因,使得锻造工艺在实际应用中需要仔细考虑。
锻压技术和热加工工艺
锻压技术和热加工工艺一、介绍锻压技术和热加工工艺的概念及作用1.1 锻压技术的定义与特点锻压技术是一种利用锻压设备对金属材料进行塑性变形和加工的工艺技术。
通过对金属材料施加压力,使其在受力的作用下发生塑性变形,从而得到所需的形状和尺寸。
锻压技术具有高效率、高精度、高质量等特点,广泛应用于航空航天、汽车制造、机械制造等领域。
1.2 热加工工艺的定义与特点热加工工艺是指通过加热金属材料,使其达到一定温度范围内时,进行塑性变形和加工的工艺技术。
在材料加热的过程中,其塑性明显增强,可以更容易地改变形状和尺寸。
热加工工艺具有改善机械性能、提高加工效率、改变材料组织等优点,被广泛应用于冶金、能源、建筑等行业。
二、锻压技术的分类和应用2.1 锻压技术的分类2.1.1 自由锻造自由锻造是指只利用锻锤、压力机等装置对金属进行锻造,没有采用任何模具。
这种锻造方法适用于小批量、多品种的生产,成本较低,但生产出的产品尺寸较难控制。
2.1.2 模锻模锻是指利用模具对金属进行锻造,可以更精确地控制产品的尺寸和形状。
模锻一般分为预锻和精锻两个阶段,通过连续的锻造过程,得到更加精细的金属产品。
2.1.3 异型锻造异型锻造是指利用特殊形状的模具对金属进行锻造,以得到特殊形状的产品。
这种锻造方法常用于制造复杂的零部件,如齿轮、曲轴等。
2.2 锻压技术的应用2.2.1 航空航天领域航空航天领域对于材料的强度和耐久性有着极高的要求。
锻压技术可以对钛合金、铝合金等金属材料进行强度增强和改善结构,以提高飞机、航天器等的性能和安全性。
2.2.2 汽车制造领域汽车制造领域对于车身零部件的轻量化、强度提升等有着较高需求。
锻压技术可以对汽车车身梁、车轮等关键部件进行精确锻造,以满足汽车的安全性、舒适性和耐久性要求。
2.2.3 机械制造领域机械制造领域对于零部件的尺寸精度和表面质量有着较高要求。
锻压技术可以改善金属材料的力学性能和组织结构,提高产品的质量和可靠性。
锻压工艺讲解
连皮 图1 图2 图3
第3页
2)锻压工艺: 模具预热——模具预热是为了使始锻锻料温和终锻温度温降小,保证锻料温度始终在 高塑性小变形抗力下成形;目前我们使用的是模具预热工具是煤油喷枪。但我们真正在 实施的不多!下面讲到锻造温度范围时会说到保证锻料温度的重要性。 锻料加热——锻料加热主要有火焰加热、电加热二种,电加热又有:电阻炉加热、接 触电加热、盐浴炉加热、磁感应加热。我司使用的是磁感应加热,它的优点是:加热速 度快、锻料表面氧化少、规范稳定便于机械化操作,缺点是设备投资大,耗电、规格单 一。(中频电加热:坯料直径为20—150mm、批量生产、适用模锻、挤压、轧锻,单位 电耗0.4—0.55KW.h.kg); 锻模结构——我司目前普遍在使用的是锤上开闭式模(我们诸暨叫镗式模),锤上开、 闭式模是锤上开式模锻与锤上闭式模的混合使用的一种结合模,冲压时变形金属的流动 不完全受模腔限制但又受模具闭式结构的限制的一种模具,是锤上闭式模内进行局部有 限的开式模锻。目前我只在我们公司内观见。详见图4、图5示: 图4描述模具冲压的三个步骤:中频加热——放料——冲压——脱模——冷却——;从冲压 成形过程看到:上模在锻下时,接触到锻料时,先镦粗并同时向模腔内压入,当此压力大于 上顶弹簧的顶力时,此开式模组合被压入闭式模中(此三步在短时间内完成)。在压入中锻 料继续压入模腔和挤入分模面内,这段成形过程中锻料受锻压力不大,当压到底板时,锻料 才以开式模的形式受压成形,而分模面挤入的飞边受闭式模套的限制受阻;……。
•是下料的坯料斜使放置时不正,冲压有切料的现象?
•是加热温度未控制到最适合的范围内? •是回料再加热次数多导致晶粒结构变形致使开裂? •是回冲导致开裂? •是冲压放料位置未很好地受限制? •是焊接加热火焰位置不按要求,应力加大导致? •是中频炉推料杆不平稳,一下推出的第二个料温度不正确? •是振光的时间不够? •是锻压引起的应力未采取退火等措施完全消除,在机加工后得到释放形成开裂? •是加脱模油未受控致使油皱开裂? •是切边模刃口不锋利导致撕裂?
锻压生产特点及工艺简介
A
9
三、锻造比
锻造比是锻造时变形程度的一种表示方法。通常用变形前后的截面比、长度比 或高度比来表示。
锻造比对锻件的锻透程度和力学性能有很大影响。当锻造比达到2时,随着金 属内部组织的致密化,锻件纵向和横向的力学性能均有显著提高;当锻造比为2-5 时,由于流线化的加强,力学性能出现各向异性,纵向性能虽仍略提高,但横向 性能开始下降,锻造比超过5后,因金属组织的致密度和晶粒细化度均已达到最大 值,纵向性能不再提高,横向性能却急剧下降。因此,选择适当的锻造比相当重 要。一般,碳素结构钢取2-3,合金结构钢取3-4。对于某些高合金工具钢和特殊 性能的合金钢,为促进合金碳化物分布的均匀化,击碎钢中的碳化物,常采用较 大的锻造比,如高速钢取5-12,不绣钢取4-6。
A
11
(二)变形条件
1.变形温度 变形温度低,金属的塑性差、变形抗力大,不但锻压困难,而且容 易开裂。提高金属变形时的温度,可使原子动能增加,原子间的结合力消弱,使 塑性提高,变形抗力减小。 锻造温度范围是指锻件由始锻温度到终锻温度的间隔。锻造温度范围的确定以合 金状态图为依据。 2.变形速度 变形速度指单位时间内的变形程度,变形速度低时,金属的回复和 再结晶能够充分进行,塑性高、变形抗力小;随变形速度的增大,回复和再结晶 不能及时消除冷变形强化,使金属塑性下降,变形抗力增加,锻造性能变差。常 用的锻压设备不可能超过临界变形速度。
一般说来,铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能 保证金属纤维组织的连续性, 使锻件的纤维组织与锻件外形保持一致,金属流线 完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、 温挤压等工艺生产的锻件,都是铸件所无法比拟的。
A不同的温度区域进行的锻造,针对锻件质量和锻造工艺要求的不同, 可分为冷锻、温锻、热锻三个成型温度区域。
锻压工艺介绍
锻压工艺介绍
锻压工艺是指通过利用压力将金属或非金属材料加工成所需形状的一种工艺。
这种工艺在现代制造业中应用广泛,特别是在汽车、机械、航空航天等领域。
本文将从锻压工艺的原理、分类、设备和应用等方面进行介绍。
一、锻压工艺的原理
锻压工艺是通过施加压力,使金属或非金属材料产生塑性变形,从而实现所需形状的加工工艺。
其原理可以分为两种:一种是利用压力将材料压制到所需形状;另一种是利用压力将材料挤压到所需形状。
二、锻压工艺的分类
锻压工艺可以根据施加压力的方式进行分类。
一般来说,锻压工艺可以分为以下几种:
1.冷锻:在常温下进行的锻造,适用于生产大量小件,如螺钉、螺栓等。
2.热锻:在高温下进行的锻造,适用于生产大型零件,如轴、齿轮、锻轮等。
3.温度锻造:在介于冷锻和热锻之间的温度下进行的锻造,适用于
生产中等规模的零件,如法兰、板、带等。
三、锻压工艺的设备
常用的锻压设备有压力机、锻压机、冲压机等。
其中,压力机是最简单的设备,一般用于小型零件的生产;锻压机则是较为常用的设备,适用于各种规模的零件生产;冲压机则是专门用于生产大批量小件的设备。
四、锻压工艺的应用
锻压工艺在现代制造业中应用广泛,特别是在汽车、机械、航空航天等领域。
在汽车制造中,锻造技术可以用于制造轴承、齿轮、弹簧等零件;在机械制造中,锻造技术可以用于制造锻轮、齿轮、轴等零件;在航空航天领域,锻造技术可以用于制造飞机发动机零件、飞行器结构零件等。
锻压工艺是一种非常重要的加工工艺,具有广泛的应用前景。
通过锻压工艺,可以实现对各种材料的加工和成型,从而满足各种不同领域的生产需求。
锻压工艺介绍
锻压工艺介绍
锻压工艺是金属材料成型的主要方法之一,它通过在恰当的温度和压力下将金属材料塑性变形,来获得所需的形状和尺寸。
下面是锻压工艺的简单介绍。
一、锻压的定义
锻压是指将金属材料置于模具之间,施加压力,使其在塑性变形时,逐渐排出空气,并根据模具的形状获得所需的工件形状和尺寸的金属加工工艺。
二、锻压的分类
1. 按照运动方式分:冲击式锻压和连续式锻压。
2. 按照材料温度分:冷锻和热锻。
3. 按照压力分:锤击式锻压和压力式锻压(如液压锻压、机械压力锻压等)。
三、锻压的工艺流程
1. 原材料切割或预成型
2. 加热,使材料温度达到锻造要求
3. 送入锻压机中进行锻造
4. 锻压完成后,对工件进行进一步加工(如裁剪、加工等)
四、锻压的优点
1. 提高金属材料的塑性,能制造出形状复杂、尺寸精确的零部件。
2. 增强金属材料的韧性和抗拉强度,并改善其加工硬度和机械性能。
3. 可以提高金属材料的利用率,减少废料和能源的消耗。
4. 锻造过程中一般无需使用润滑剂,不会污染环境。
五、锻压过程中需要注意的问题
1. 锻造温度需要控制好,过高会使金属材料软化而无法保持所需形状;过低则容易导致不良的流变工艺。
2. 模具的设计和制造需要精确,以确保获得所需的工件形状和尺寸。
3. 锻压时需要注意安全,必须保证锻压机的运转稳定、操作规范,避免事故的发生。
以上是对锻压工艺的简单介绍,希望能对您有所帮助。
锻造工艺及产品介绍
材质
不锈钢 铝
不锈钢 铝
不锈钢 铝
不锈钢 铝
不锈钢 铝
不锈钢 铝
不锈钢 铝
不锈钢 铝
锻压尺寸精确度分析表
厚度公差 (MM)
±0.04 ±0.04 ±0.05 ±0.05 ±0.03 ±0.03 ±0.04 ±0.04 ±0.03 ±0.03 ±0.04 ±0.04 ±0.04 ±0.04 ±0.05 ±0.05
清洗后
锻造工艺介绍
退火:
退火产品
锻造工艺介绍
成形二:
500T-油压机
成型模
锻造工艺介绍
分切:
冲床
冲孔模
分切前
分切后
锻造工艺介绍
结论:
热压锻造工艺之所以能够在锻件精化上发挥作用,主要原因有: (1)锻造过程接近材料的真实塑性变形,锻造过程不考虑温降影响,将复杂问题简单化, 即将材料变形本构模型简单化,有利于锻件变形过程流动规律和组织性能演变的控制; (2)热压锻造可以减少变形死区的产生,从而减少机械加工余量,起到精化锻件的作用; (如图1) (3)热压锻造大幅度减小了机床吨位,提高模具寿命以较少的变形工步成形具有复杂形状 的锻件(如图2)
表面处理性能
抛光、PVD后表面金属感高,不会出 抛光、PVD后,会随机出现气
现气孔,适合高要求的外观件
孔等不良,不适合做外观件。
锻造成形设备
1、锻造成型设备:
锻造冲床
油压机
冲床
锻造成形设备
2、锻造成型设备:
肘节式锻床
锻造成形设备
3、热处理设备:
高频加热炉
隧道式退火炉
锻造成形设备(辅助设备)
4、清洗设备:
锻造工艺
• 锻造工艺的特点与应用 • 锻造与铸造的区别 • 锻造与铸造的比较 • 锻造设备介绍 • 锻造结构设计原则 • 锻造基本知识 • 锻造技术的发展趋势 • 锻造产品运用领域介绍
锻压生产
锻造是一种借助工具或模具在冲击或压力作用下,对金属坯料施加外力,使其产生塑性变形,改变尺寸、形状及性能,用以制造机械零件或零件毛坯的成形加工方法,锻造又称作锻压。
锻造具有细化晶粒、致密组织,并可具有连贯的锻造流线,从而可以改善金属的力学性能。
此外,锻造还具有生产率高,节省材料的优点。
因此锻造在金属热加工中占有重要的地位。
本章主要介绍自由锻、模锻及冲压等热加工的基础知识和成形方法。
3.1概述3.1.1锻压生产的特点锻压加工与其它加工方法比较,具有较高的生产效率;可消除零件或毛坯的内部缺陷;锻件的形状、尺寸稳定性好,并具有较高的综合力学性能;锻件的最大优势是韧性好、纤维组织合理、锻件间性能变化小;锻件的内部质量与其加工历史有关,且不会被任何一种金属加工工艺超过。
图3.1.1示意地表示出了铸造、锻造、机械加工三种金属加工方法所得到的零件低倍宏观流线。
图3.1.1三种金属加工方法所得零件低倍宏观流线但是锻压生产也存在以下缺点:不能直接锻制成形状较复杂的零件;锻件的尺寸精度不够高;锻压生产所需的重型的机器设备和复杂的工模具,对于厂房基础要求较高,初次投资费用高。
3.1.2锻压生产的适用范围锻压生产根据使用工具和生产工艺的不同而分为自由锻、模锻和特种锻造。
锻造工艺在锻件生产中起着重大作用。
工艺流程不同,得到的锻件质量有很大的差别,使用的设备类型、吨位也相去甚远。
锻件的应用范围很广,几乎所有运动的重大受力构件都是由锻压成形的。
锻压在机器制造业中有着不可替代的作用,一个国家的锻造水平,可反映出这个国家机器制造业的水平。
随着科学技术的发展,工业化程度的日益提高,需求锻件的数量逐年增长。
据预测,飞机上采用的锻压(包括板料成形)零件将占85%,汽车将占60~70%,农机、拖拉机将占70%。
3.1.3锻压生产的发展趋势锻压生产虽然生产效率高,锻件综合性能高,节约原材料;但其生产周期较长,成本较高,处于不利的竞争地位。
锻压生产要跟上当代科学技术的发展,需要不断改进技术、采用新工艺和新技术,进一步提高锻件的性能指标;同时缩短生产周期、降低成本。
锻压新技术简介
由于普通冲裁得到的冲压件尺寸精度低、表面质量差、断面微带斜度 且光亮带宽度小,当冲压件质量和精度要求较高时,应采用精密冲裁及半 精密冲裁或整修等工艺方法。
精密冲裁条件的形成主 要是依靠V形压边环、极小的 冲裁间隙、凹凸模刃口略带 小圆角和反压力顶杆等。材 料的塑性越好,精密冲裁效 果也越好。
图7-49 螺旋斜轧
四、超塑性成形
超塑性成形是指利用金属在特定条件下具有的超塑性来进行塑性变形 的工艺,目前常用的超塑性成形材料主要是锌铝合金、铝基合金、钛合金 及高温合金。
(一)超塑性成形工艺的应用
1.超塑性板料拉深
如图7-50所示,采用锌铝合金等超塑性材料,在法兰盘部位加热,并在 外围施加油压,一次能拉出很深的杯形件。
(3)可获得均匀细小的晶粒组织,使零件具有均匀一致的力学性能。
五、高速高能成形
高速高能成形有多种加工形式,主要包括爆炸成形、放电成形、电磁 成形和高速锻造成形等,其共同特征就是在很短的时间内将化学能、电能 和电磁能或机械能等传递给被加工的金属材料,使之迅速成形。该技术具 有成形速度快、加工精度高和适用范围广等优点。
辊锻轧制是通过装有圆弧形模块的一对旋转轧辊,使坯料受压变形的 生产方法,它是将轧制工艺应用到锻造生产中的一种新工艺。
图7-47 辊锻轧制
辊锻轧制主要用于生产以下三类锻件。
(1)扁断面的长杆件,如扳手、活动扳手、链环等。 (2)带有不变形头部且横截面积沿长度方向递减的锻件。 (3)连杆成形辊锻件。国内已有不少工厂采用辊锻轧制工艺锻制连 杆,生产效率高,工艺过程简单,但还需用其他锻压设备进行修整。
锻压生产特点和工艺简介
(二)变形条件
1.变形温度 变形温度低,金属的塑性差、变形抗力大,不但锻压困难,而且容 易开裂。提高金属变形时的温度,可使原子动能增加,原子间的结合力消弱,使 塑性提高,变形抗力减小。 锻造温度范围是指锻件由始锻温度到终锻温度的间隔。锻造温度范围的确定以合 金状态图为依据。 2.变形速度 变形速度指单位时间内的变形程度,变形速度低时,金属的回复和 再结晶能够充分进行,塑性高、变形抗力小;随变形速度的增大,回复和再结晶 不能及时消除冷变形强化,使金属塑性下降,变形抗力增加,锻造性能变差。常 用的锻压设备不可能超过临界变形速度。
锤上模锻使用的锻模是由带燕尾的上、下模组成,分别用镶条固定在锤头和 模座上。上、下模接触时,其接触面上所形成的空间为模膛。具有一个模膛的锻 模称为单模膛模锻,具有两个以上模膛的锻模称为多模膛模锻。
多模膛模锻时,按其模膛的结构和功用可分为制坯模膛和模锻模膛两类。 1. 制坯模膛 用以初步改变毛坯形状、合理分配金属,以适应锻件横截面积和 形状的要求,使金属能更好地充满模锻模膛的工序称为制坯工序。如下图所示:
5.弯曲类锻件 包括各种具有弯曲轴线的锻件,如吊钩、弯杆、曲柄、轴瓦盖 等,基本工序是拔长、弯曲。
6.复杂形状锻件 包括阀体、叉杆、十字轴等,锻造难度大,应根据锻件形状 特点,采用适当工序组合锻造。
三、自由锻零件结构工艺性
1、零件结构应尽可能简单、对称、平直; 2、应避免零件上的锥形、楔形结构;如图:
(三)选择变形工序
通常,自由锻件的成形过程是由一系列变形工序组合而成的,工序的选择主 要是根据锻件的形状和工序的特点来确定。一般可将锻件分为六大类:
1.轴杆类锻件 包括各种圆形截面实心轴,如传动轴、轧辊、立柱、拉杆等, 还有矩形方形、工字形截面的杆件如摇杆、杠杆、推杆、连杆等,锻造轴杆件的 基本工序是拔长,但对于截面尺寸相差大的铸件,为满足锻造比的要求,则需采 取镦粗一拔长工序。
简述锻压特点
简述锻压特点锻压是一种常见的金属加工工艺,其特点是通过施加压力使金属材料产生形变,从而改变其形状和性能。
锻压工艺包括冷锻和热锻两种,其中冷锻是在室温下进行,而热锻是在高温下进行。
下面将从锻压的特点、优势和应用领域等方面进行详细描述。
锻压的特点主要包括以下几点:1.高强度:通过锻压可以使金属内部晶粒重新排列,消除缺陷,从而提高材料的强度和硬度。
2.精密度高:锻压可以使金属材料在较小的变形区域内产生较大的变形,因此可以实现对工件尺寸和形状的精确控制。
3.耐磨性好:通过锻压可以改善金属材料的表面质量和耐磨性,延长工件的使用寿命。
4.节约材料:锻压可以使金属材料在变形过程中得到有效利用,减少材料的浪费。
5.能耗低:相比其他加工方法,锻压的能耗较低,符合节能减排的要求。
锻压的优势主要体现在以下几个方面:1.提高材料性能:通过锻压可以改善金属材料的组织结构,提高其强度、硬度和耐磨性等性能。
2.节约成本:锻压可以降低生产成本,提高生产效率,从而提高企业的竞争力。
3.保护环境:锻压过程中不需要使用化学物质,不会产生废气、废水和废渣,对环境友好。
4.提高产品质量:锻压可以减少产品的内部缺陷,提高产品的质量稳定性和可靠性。
锻压在航空航天、汽车制造、机械加工、军工等领域有着广泛的应用。
在航空航天领域,锻压可以制造高强度、高硬度的航空零部件,提高飞行器的安全性和可靠性;在汽车制造领域,锻压可以制造车轮、车架等零部件,提高汽车的性能和舒适性;在机械加工领域,锻压可以制造各种机械零部件,提高设备的工作效率和稳定性;在军工领域,锻压可以制造各种军用装备,提高国防实力和安全保障能力。
锻压是一种重要的金属加工工艺,具有高强度、精密度高、耐磨性好、节约材料、能耗低等特点,其优势包括提高材料性能、节约成本、保护环境、提高产品质量等。
锻压在航空航天、汽车制造、机械加工、军工等领域有着广泛的应用前景,对促进工业发展和提高国防实力具有重要意义。
第五章 锻压新工艺简介
第五章 锻压新工艺简介
1. 精密模锻 高质量、 精密模锻是在普通模锻设备上直接锻出高质量 精密模锻是在普通模锻设备上直接锻出高质量、高精度的复杂形 状锻件或零件的工艺方法。 锻件或零件的工艺方法。 精密模锻件尺寸精度高,表面粗糙度好, 精密模锻件尺寸精度高,表面粗糙度好,而且锻造流线比分布 更 合理,力学性能和抗应力腐蚀能力高,因此, 合理,力学性能和抗应力腐蚀能力高,因此,不必再切削加工即可 直接装配使用。 直接装配使用。 严格。 但精密模锻对工艺过程的要求非常严格 但精密模锻对工艺过程的要求非常严格。 2 .精密冲裁 精密冲裁 精密冲裁是在普通冲裁的基础上发展起来的一种冲裁工艺。精冲 精密冲裁是在普通冲裁的基础上发展起来的一种冲裁工艺。 件断面平直、光亮、外形平整、尺寸精度高, 件断面平直、光亮、外形平整、尺寸精度高,因此不需要进行任何 加工即可直接装配使用。 加工即可直接装配使用。 精冲可在专用精冲压力机 专用精冲压力机或在普通压力机上使用带齿圈的精冲模 精冲可在专用精冲压力机或在普通压力机上使用带齿圈的精冲模 来实现。 来实现。 精冲的工作原理如图5-1所示 所示。 精冲的工作原理如图 所示。
8. 高能率成形 高能率成形是利用炸药或电装置在极短的时间内释 放出化学能、电能、电磁能等, 放出化学能、电能、电磁能等,通过空气或水等传压 介质产生的高压冲击波使板坯迅速变形和贴模而获得 制件的成形方法。 制件的成形方法。 常用的高能率成形方法有爆炸成形、电液成形、 常用的高能率成形方法有爆炸成形、电液成形、电 磁成形等。它们的共同特点是模具简单、零件精度高、 磁成形等。它们的共同特点是模具简单、零件精度高、 表面质量好,能加工塑性差的难成形材料, 表面质量好,能加工塑性差的难成形材料,生产周期 短、成本低。 成本低。
锻压的基础知识
5.1 锻压基础知识
锻压是指对坯料施加外力,使其产生塑性变形,改变 形状、尺寸பைடு நூலகம்改善性能,获得型材、棒材、板材、线 材或锻压件等的加工方法。
• (1)锻造安全技术
• (2)冲压安全技术 冲压操作貌似简单, 但危险性很大,稍一疏忽,就会发生人身 事故。
1.锻压的特点 (1)改善金属内部组织,提高力学性能 (2)生产率较高 (3)节省金属材料锻压加工的不足是锻件(锻造毛 坯)尺寸精度不高,难以直接锻制外形和内形复杂的 零件且设备费用较高。
• 2.锻压的分类及应用
•
自由锻造
•
锻造 模型锻造
• 锻压
胎模锻造
•
板料冲压
锻压生产示意图
• 3.锻压的安全技术
锻压(金属工艺)
4)切断模膛 其作用是切断金属。单件锻造时,用它从坯 料上切下锻件或从锻件上切下钳口,多件锻造时,用它来分 离成单个件。
(二)模锻工艺规程的制订 模锻生产的工艺规程包括制订锻件图、计算坯料尺寸、 确定模锻工步、选择设备及安排修整工序等。 1、制订模锻锻件图 模锻锻件图是制造和检验终锻模膛的依据。这是以零件图 为基础,考虑了分模面的选择、加工总余量、公差、余块、模 锻斜度和圆角半径等绘制的。 (1)分模面的选择 选择分模面位置最基本的原则是:应选在锻件具有最大水平投 影尺寸的位置上,最好为锻件中部的一个平面,并使锻件上所 加余块最少,上、下模膛深度最浅且尽可能基本一致。
m坯=m锻+坯--坯料重量; m锻--锻件重量; m烧--加热时坯料表面氧化烧损的重量
与所用加热设备类型等因素有关, 可参考相关资料; m芯--冲孔时的芯料重量;
m切--锻造中被切掉的金属重量。
坯料尺寸 根据计算出的坯料重量即可计算杯料的体积,最后依 据选择的坯料截面尺寸确定其长度。
三、锻造比
锻造比是锻造时金属变形程度的一种表示方法。
拔长时的锻造比为 Y拔=S0/S=L/L0
镦粗时的锻造比为
Y镦=H0/H=S/S0
一般情况下,增加锻造比,对改善金属的组织和性能是有 利的。但是锻造比太大是无益的。
第二节
自由锻
自由锻是只用简单的通用性工具,或在锻造设备的上、 下砧间直接使坯料变形而获得所需的几何形状及内部质 量锻件的方法。
5) 模锻 利用模具使金属坯料在模膛内受冲击力或压力作用,产 生塑性变形而获得锻件的加工方法。 6) 板料冲压 用冲模使板料经分离或成形得到制件的加工方法。 在上述的六种金属塑性加工方法中,轧制、挤压和拉拔主要用 于生产型材、板材、线材、带材等;自由锻、模锻和板料冲压总 称锻压,主要用于生产毛坯或零件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、几种锻造结构图
第二节 金属的锻造性能
一、金属的塑性变形概述 金属塑性变形的实质,对于单晶体是由于金属原子某晶面两侧受切应力作用
产生相对滑移,或晶体的部分晶格相对于某晶面沿一定方向发生切变,即滑移理 论和孪生理论。
二、热锻、冷锻、温锻、等温锻
从金属学的观点划分锻压加工的界限为再结晶温度。 1.热锻 在金属再结晶温度以上进行的锻造工艺称为热锻。在变形过程中冷变形 强化和再结晶同时存在,属于动态再结晶。 2.冷锻 在室温下进行的锻造工艺称为冷锻。冷锻可以避免金属加热出现的缺陷, 获得较高的精度和表面质量,并能提高工件的强度和硬度。但冷锻变形抗力大, 需用较大吨位的设备,多次变形时需增加再结晶退火和其它辅助工序。目前冷锻 主要局限于低碳钢、有色金属及其合金的薄件及小件加工。 3.温锻 在高于室温和低于再结晶温度范围内进行的锻造工艺称为温锻。与热锻 相比,坯料氧化脱碳少,有利于提高工件的精度和表面质量;与冷锻相比,变形 抗力减小、塑性增加,一般不需要预先退火、表面处理和工序间退火。温锻适用 于变形抗力大、冷变形强化敏感的高碳钢、中高合金钢、轴承钢、不锈钢等。 4.等温锻 在锻造全过程中,温度保持恒定不变的锻造方法称为等温锻。
冲压:有时也称板材成形, 但略有区别。所谓板材成型是指用板材、薄壁管、 薄型材等作为原材料进行 塑性加工的成形方法统称为板材成形,此时,厚板厚 方向的变形一般不着重考虑
4、锻件与铸件相比的特点
金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法 热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒 较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等 压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
(一)绘制锻件图 锻件图是根据零件图绘制的。自由锻件的锻件图是在零件图的基础上考虑了加
工余量、锻造公差、工艺余块等之后绘制的图。模锻件的锻件图还应考虑分模面 的选择、模锻斜度和圆角半径等。 锻件图的绘制方法如下:
1)锻件的形状用粗实线,同时用假想线(双点划线)描绘出零件的形状。 2)锻件的尺寸和公差标注在尺寸线的上面,零件的尺寸和公差用括号标注在 尺寸线的下面或侧面。 3)图上无法标注的技术要求,如锻造温度范围、锻造比、氧化缺陷、脱碳层 深度等以技术条件方式用文字说明。
第三节 几种常见的锻造工艺
自由锻 我们把只用简单的通用性工具,或在锻造设备的上、下砧之间直接使坯料变 形而获得我们所需的几何形状及内部质量的锻件,这种方法称为自由锻。 一、自由锻设备 根据对坯料作用力的性质不同,自由锻设备可分为产生冲击力的锻锤和产生静压 力的压力机两大类。
二、自由锻工艺规程的制订
锤上模锻使用的锻模是由带燕尾的上、下模组成,分别用镶条固定在锤头和模 座上。上、下模接触时,其接触面上所形成的空间为模膛。具有一个模膛的锻模 称为单模膛模锻,具有两个以上模膛的锻模称为多模膛模锻。
多模膛模锻时,按其模膛的结构和功用可分为制坯模膛和模锻模膛两类。 1. 制坯模膛 用以初步改变毛坯形状、合理分配金属,以适应锻件横截面积和形 状的要求,使金属能更好地充满模锻模膛的工序称为制坯工序。如下图所示:
三、自由锻零件结构工艺性
3、应避免圆柱面与圆柱面、圆柱面与棱柱面相交;
三、自由锻零件结构工艺性
4、零件上不允许有加强筋;
三、自由锻零件结构工艺性
5、对横截面尺寸相差很大或形状复杂的零件,应尽可能分别对其进行锻造,然后 用螺纹连接。 如下图:螺纹连接
模锻
模型锻造的定义:利用模具使毛坯变形而获得锻件的锻造方法称为模锻。 模型锻造的特点:与自由锻相比,模锻具有锻件精度高、流线组织合理、 力 学性能高等优点,而且生产率高,金属消耗少,并能锻出自由锻难以成形的复杂 锻件。受设备吨位的限,模锻件不能太大,一般重量不超过 150kg。 模型锻造的分类:按模具类型模锻可分为开式模锻(有飞边模锻)、闭 式模 锻(无飞边模锻)和多向模锻等;按设备类型模锻可分为锤上模锻、胎模锻、压 力机上模锻等。
5.弯曲类锻件 包括各种具有弯曲轴线的锻件,如吊钩、弯杆、曲柄、轴瓦盖 等,基本工序是拔长、弯曲。
6.复杂形状锻件 包括阀体、叉杆、十字轴等,锻造难度大,应根据锻件形状 特点,采用适当工序组合锻造。
三、自由锻零件结构工艺性
1、零件结构应尽可能简单、对称、平直; 2、应避免零件上的锥形、楔形结构;如图:
K-钢种因数,可查阅相关资料。
2.查表法 (模锻锤吨位亦可查阅相关资料)
(二)模锻及锻模模膛 要求模具在高温下具有足够的强度、韧性、硬度和耐磨性,良好的导热性、 抗热疲劳性、回火稳定性和抗氧化性。尺寸较大的模具还应具有高的淬透性和较 小的变形。常用5CrNiMo、5CrMnMo钢等热锻模具材料制作锻模。
(二)计算坯料的重量和尺寸
1.坯料重量 坯料的重量为锻件的重量与锻造时各种金属损耗的重量之和,可按 下式进行计算:
m坯=m锻+m烧+m芯+m切 式中m坯--坯料重量; m锻--锻件重量; m烧--加热时坯料表面氧化烧损的重量。与所用加热设备类型等因素有关,可参 考相关资料; m芯m切 --冲孔时的芯料重量; m切 --锻造中被切掉的金属重量。 2.坯料尺寸 根据计算出的坯料重量即可计算杯料的体积,最后依据选择的坯料 截面尺寸确定其长度。
(二)变形条件
1.变形温度 变形温度低,金属的塑性差、变形抗力大,不但锻压困难,而且容 易开裂。提高金属变形时的温度,可使原子动能增加,原子间的结合力消弱,使 塑性提高,变形抗力减小。 锻造温度范围是指锻件由始锻温度到终锻温度的间隔。锻造温度范围的确定以合 金状态图为依据。 2.变形速度 变形速度指单位时间内的变形程度,变形速度低时,金属的回复和 再结晶能够充分进行,塑性高、变形抗力小;随变形速度的增大,回复和再结晶 不能及时消除冷变形强化,使金属塑性下降,变形抗力增加,锻造性能变差。常 用的锻压设备不可能超过临界变形速度。
锻造比越大,锻造流线越明显;锻造流线的稳定性很高,不能用热处理方法 消除,只有经过锻压使金属变形,才能改变其方向和形状。
四、金属的锻造性能
金属的锻造性能是指金属经受锻压加工时成形的难易程度的工艺性能。其优劣 常用塑性和变形抗力综合衡量。塑性高、变形抗力小则锻造性能好。它决定于金 属的本质和变形条件。 (一)金属的本质 1.化学成分 纯金属一般具有良好的锻造性能。碳钢随碳的质量分数的增加,锻 造性能逐渐变差。合金元素的加入会劣化锻造性能 2.金属组织 纯金属及固溶体锻造性能好,而碳化物的锻造性能差。铸态柱状晶 组织和粗晶结构不如细小而又均匀晶粒结构的金属锻造性能好。
一.锤上模锻
(一)模锻锤 锤上模锻所用设备主要是蒸汽-空气模锻锤,模锻锤的吨位为1t-16t。选择模锻
锤的锻造能力有经验类比法和查表法。 1.经验类比法 模锻锤吨位可用公式:G=(3.5-6.3)KA
式中:G-模锻锤吨位(kg);
A-锻件总变形面积,包括锻件投影面积、冲孔连皮面积及飞边面积(cm2);
五、金属的塑性变形规律
1.体积不变条件 由于塑性变形时金属密度的变化很小,所以可认为变形前后的体积相等。此假设 称为体积不变条件。 2.最小阻力定律 最小阻力定律是描述塑性变形流动规律的一种理论,如果物体在变形过程中其质 点有向各种方向移动的可能性时,则物体各质点将向着阻力最小的方向移动。一 般,金属内某一质点流动阻力最小的方向是通过该质点向金属变形部分的周边所 作的法线方向。
2.空心类锻件 包括各种圆环、齿圈、轴承环和各种圆筒、缸体、空心轴等, 锻造空心件的基本工序有镦粗、冲孔、马杠扩孔、芯棒拔长等。
3.饼块类锻件 包括各种圆盘、叶轮、齿轮、模块等,其特点是横向尺寸大于 高度尺寸,或者二者相近。锻造基本工序是镦粗,其中带孔的件需冲孔。
4.曲轴类锻件 包括单拐和多拐的各种曲轴,目前锻造曲轴的工艺有自由锻、 模锻、全流线挤压锻等。其中自由锻的力学性能差,加工余量大,只在单件或小 批生产中应用。其基本工序有拔长、错移和扭转。
锻压生产特点及工艺简介
金属加工厂 技术工程部特加课
第一节:锻造的概述
1、锻压定义 锻压是对金屬坯料施加外力,使其产生塑性变形、改变尺寸、形 状和性
能,用以制造机械零件、工件或毛坯的成形加工方法,属于压力加工的范畴。
2、锻压工艺的特点
a、塑性变形是压力加工的基础,凡具有一定塑性的金属如钢及大多数有色金 属,均可进行压力加工。
b、金属经过锻造加工后能改善其组织结构和力学性能。 c、但由于锻压件是在固态成形,金属的流动受到限制。因此,对于形状复杂、 尤其是内腔形状复杂的零件,从制造工艺上锻件不及铸件容易实现。 d、锻件的成本及材料利用率较高。
3、锻造与冲压的区别
锻造:对金属坯料(不含板材)施加外力,使其产生塑性变形、改变尺寸、形 状及改善性能,用以制造机械零件、工件、工具或毛坯的成形加工方法。
2. 模锻模膛 模锻模膛又可分为预锻膛和终锻模膛。
(三)选择变形工序
通常,自由锻件的成形过程是由一系列变形工序组合而成的,工序的选择主 要是根据锻件的形状和工序的特点来确定。一般可将锻件分为六大类:
1.轴杆类锻件 包括各种圆形截面实心轴,如传动轴、轧辊、立柱、拉杆等, 还有矩形方形、工字形截面的杆件如摇杆、杠杆、推杆、连杆等,锻造轴杆件的 基本工序是拔长,但对于截面尺寸相差大的铸件,为满足锻造比的要求,则需采 取镦粗一拔长工序。
一般说来,铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能 保证金属纤维组织的连续性, 使锻件的纤维组织与锻件外形保持一致,金属流线 完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、 温挤压等工艺生产的锻件,都是铸件所无法比拟的。
5、锻造的种类
a、根据在不同的温度区域进行的锻造,针对锻件质量和锻造工艺要求的不同, 可分为冷锻、温锻、热锻三变形程度的一种表示方法。通常用变形前后的截面比、长度比 或高度比来表示。