2.5Gb 和3.125Gb 速率级CMOS 限幅放大器

2.5Gb 和3.125Gb 速率级CMOS 限幅放大器
2.5Gb 和3.125Gb 速率级CMOS 限幅放大器

2.5Gb/s和

3.125Gb/s速率级CMOS限幅放大器*

胡艳,王志功**,冯军,陶蕤

(东南大学射频与光电集成电路研究所,南京市四牌楼2号,210096)

摘要:本文采用TSMC 0.35μm CMOS工艺实现了可用于SONET/SDH 2.5Gb/s和3.125Gb/s 速率级光纤通信系统的限幅放大器。通过在芯片测试其输入动态范围超过40dB,输出摆幅为400mVp-p,功耗250mW,含信号丢失检测功能,可以满足商用化光纤通信系统的使用标准。

关键字:光纤通信,限幅放大器,CMOS工艺,SONET/SDH

Design of CMOS Limiting Amplifier for SDH 2.5Gb/s and

3.125Gb/s Systems

HU Yan, WANG Zhi-gong, FENG Jun, TAO Rui (Institute of RF- & OE-IC’s, Southeast University, Nanjing 210018,China) Abstract: In this paper, a limiting amplifier was realized in TSMC 0.35μm CMOS technology for the use of SDH 2.5 Gb/s and 3.125 Gb/s systems. Evaluated via on-wafer testing, this limiting amplifier offers an input dynamic range of more than 40dB, provides a constant output 400mVp-p and includes a module of loss detection. Therefore, this limiting amplifier can meet the requirement of optical communication system.

Key words: optical communication; limiting amplifier; CMOS technology; SONET/SDH

1引言

随着人们对信息服务的种类和质量要求的不断提高,同步光纤网/同步数字序列(SONET/SDH)应运而生并不断发展。光纤通信具有很多其它通信方式不可比拟的优点,例如:成本低,可靠性高,通信容量大等。目前2.5Gb/s的系统已得到普遍应用。

在光纤通信系统中,限幅放大器(LA)具有广泛的应用:首先,可用于含无源滤波器的时钟恢复电路中,以抑制由于输入信号码型不同而引起的时钟信号的幅度变化;其次,可用于光接收机的主放大器;第三,可用作数据和时钟处理电路的输入输出缓冲部分。目前主要采用GaAs或双极性硅工艺生产[1]。

CMOS工艺虽不具有GaAs或双极性硅工艺的速度优势,但随着CMOS工艺的不断发展,CMOS工艺已经达到比较高的速率。根据仿真结果0.35μm、0.25μm和0.18μm 工艺的特征频率分别为13.5GHz、18.6GHz 和49GHz。因此采用CMOS工艺设计高速的限幅放大器具有良好的前景。

2结构和电路设计

我们所设计的系统框图如图1所示。它由输入缓冲、主放大单元、输出缓冲、直流反馈

图1 限幅放大器系统框图

补偿回路和一个信号丢失检测模块组成。基本核心单元电路采用全差分结构,适合实现高速率和提高抗噪声能力。

通常,限幅放大器的核心单元电路由单级放大器级联而成,其基本放大单元如图2所示。基本差分对构成了放大器电路中的主放大器通道。在每级基本放大单元之间插入源极跟随器,一方面起电平位移的作用;另一方面由于其输入、输出电容传输特性可降低基本放大单元的容性负载,有效的扩展带宽。

限幅放大电路中的输入、输出缓冲主要用以实现输入阻抗匹配和电平位移,消除信号因反射而造成的损耗,其电路结构如图3、4所示。

信号丢失检测模块的主要功能是当限幅放大器输入信号过小,导致后续判决电路无法判决或出错的情况下,

由限幅放大器给出一个告警的信号。其电路由三个部分组成:整流电路、比较电路和驱动电路。由于前置放大器的输出一般是mV级的电压信号,为了降低设计难度,提高电路的可靠性,整流电路对经限幅放大器放大的输出大信号进行整流,而不是直接对mV级小信号直接进行处理。比较电路是一个双端转单端的放大器,对两端的输入电压信号进行比较。经过整流滤波电路后的直流信号如果等于片外固定电压,即表明输入信号幅度足够高,不会造成信号丢失;如果低于片外固定偏压,就会出现信号丢失的情况,输出告警。

图2 基本放大单元电路

图3 输入缓冲电路

图4 输出缓冲电路

整流电路比较电路驱动电路

图5 信号丢失检测电路

片外固定偏压主要通过电阻分压获得,可根据实际的最小检测丢失信号,调节其中一个可变电阻值来进行调整。驱动电路主要是由三级反相器组成,尺寸逐渐增大,增强驱动能力,可驱动片外的报警发光二极管。

3版图设计

此限幅放大器利用美国南加州大学MOSIS工程提供的0.35μm的单阱、双多晶硅和三层金属的CMOS工艺实现。其版图如图6所示,芯片面积为0.79×0.95mm2。

图6 限幅放大器版图

4芯片和测试结果

芯片测试在东南大学射频与光电集成研究所进行,利用本所的高速探针台进行在芯片测试,测试设备包括:日本ADV ANTEST 公司的12.5Gb/s脉冲图码发生器/误码检测仪,具有示波、眼图/摸板和时域反射分析三种功能的86100A系列数字通信分析仪和ADV ANTEST R6142可编程DC电压/电流源,输入输出采用PGSGSGP的高频探针。在标准5V电源下,直流电流为50mA, 对应直流功耗250mW。对于限幅放大器,我们不关心小信号增益特性。我们直接测试它在不同工作速率,不同输入信号幅度条件下限幅放大器的工作情况。图7和图8分别给出了输入信号速率2.5Gb/s和3.125Gb/s,输入电平分别为8mVp-p和1Vp-p的输出信号眼图,其单端输出电压摆幅为200mVp-p。图9给出了此限幅放大器在5Gb/s数据速率下,其单端输出眼图。

测试结果表明,此0.35μm CMOS限幅放大器可以很好的工作在SONET/SDH 2.5Gb/s和3.125Gb/s速率上。

(a)

(b)

图7 输入2.5Gb/s 8mVp-p(a)和1Vp-p(b)时限幅放大器单端输出眼图

(a)

(b)

图8 输入3.125Gb/s 8mVp-p(a)和1Vp-p(b)时限幅放大器单端输出眼图

图9 5Gb/s限幅放大器输出眼图

5结论

本文采用标准的5V 0.35μm CMOS工艺实现了具有实用价值的光纤通信用限幅放大器,其输入动态范围超过40dB, 50?输出负载上的单端输出摆幅为200mVp-p,功耗250mW,具有信号丢失检测功能,可良好的应用于SONET/SDH 2.5Gb/s和3.125Gb/s速率级光纤通信系统中。

参考文献:

[1]Zhi-Gong Wang, Manfred Berroth et al

“17GHz-Bandwidth 17dB-Gain 0.3μm

HEMT Low-Power Limiting Amplifier”

1995 Symposium on VLSI Circuits

Digest of Technical Papers, pp. 97-98 [2]Behzad Razavi. “Design of Analog

CMOS Integrated Circuits,” McGraw-

Hill Higher Education, 2000

[3]Yuriy M. Greshishchev, “A 60-dB Gain,

55-dB Dynamic Range, 10-Gb/s Broad-

Band SiGe HBT Limiting Amplifier,”

IEEE Jounal of Solid State Circuits, V ol.

34, No. 12, DEC., 1999, pp. 1914-1920. [4]Rui Tao, Zhigong Wang, Tingting Xie

etc., “CMOS Limiting Amplifier for SDH

STM-16 Optical Receiver,” Electronics

Letters, Feb. 2001, V ol. 37, No. 4, pp.

236-237.

[5]Jun Feng, Huan Wang, Yan Hu etc., “IP

Cores of High-Speed Integrated Circuits

for Optical Fiber Communication─The

Limiting Amplifier and Data Decision Circuit,” Second Joint Symposium on Opto- and Microelectronic Devices and Circuits, March 10-16, 2002, Stuttgart, Germany, pp. 169-172.

模电课程设计-OTL音频功率放大器

模拟电子技术课程设计报告设计课题:OTL音频功率放大器 专业班级:电子信息工程专业0701班学生姓名: 指导教师: 设计时间:2009-6-25

目录 引言 (3) 一.设计任务与要求 (3) 1.1 设计任务 (3) 1.2 设计要求 (3) 二. OTL音频功放满足的具体性能指标 (3) 三.方案设计与论证 (3) 四.原理图元器件清单及原理简述 (4) 4.1 总原理图 (4) 4.2 元器件清单 (4) 4.3 电路原理简述 (4) 五.安装与调试 (5) 5.1 元件的安装 (5) 5.2 元件的调试 (5) 六.性能测试与分析 (6) 6.1 波形测试 (6) 6.2 主要参数的测试与计算 (6) 七. 个人心得体会 (7) 八.参考文献 (7)

题目OTL音频功率放大器 设计者蔡白洁张振山 指导教师李艳萍 引言 OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。 它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1 设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2 OTL音频功放满足的具体性能指标 1.设音频信号为vi=10mV, 频率f=1KHz。 2.额定输出功率Po≥2W。 3.负载阻抗RL=8Ω。 4.失真度γ≤3%。 3 方案设计与论证 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功率放大器。其中,二极管T1构成前置放大级,对输入信号进行倒相放大,二极管T2,T3的参数一致,互补对称,且均为共集电极接法,保证了输出电阻低,负载能力强的优点,作用是对输入的信号进行功率放大。 在明确了电路接线的基础上,在电路板上进行仿真模拟,并按照课本上相关的知识对该功放的主要参数计算。电路在12V的直流电压下工作,在负载为8Ω

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

运算放大器_参数详解

运算放大器参数详解 技术2010-12-19 22:05:36 阅读80 评论0 字号:大中小订阅 运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。 历史 直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。 第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。 原理 运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:

音频功率放大器课程设计

本电路设计采用前置放大电路和音频功率放大电路相结合的放大模式,前者采用TL072对电压进行放大,后者采用性能优良的TDA2616对电压和电流放大,给音响放大器的负载(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能的小,效率尽可能的高。在前置放大和功放之间加上一个滑动变阻,就保证了音量可调,在滑动变阻器之前再加上一足够大电阻,这样保证了信号不失真。除此之外,加上相应的旁路电容又使得电路具有杂音小,有电源退偶,无自激等优点。根据实例电路图和已经给定的原件参数,使用multisim11软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 关键词: TL072 TDA2616 性能优良音量可调杂音小 目录 1 设计任务和要求 (2) 1.1设计任务 (2) 1.2设计要求 (2) 2 系统设计 (3) 2.1系统要求 (3) 2.2方案设计 (3) 2.3系统工作原理 (4) 3 单元电路设计 (6) 3.1前置放大电路 (6) 3.1.1电路结构及工作原理 (6) 3.1.2元器件的选择及参数确定 (9) 3.1.3 前级放大电路仿真 (10) 3.2后级放大部分 (10) 3.2.1电路结构及工作原理 (12) 3.2.2电路仿真 (13) 3.2.3元器件的选择及参数确定 (15) 3.3音源选择电路 (15) 3.3.1电路结构及工作原理 (15) 3.3.2电路仿真 (16) 3.3.3元器件的选择及参数确定 (16) 3.4电源 (17) 4系统仿真 (20) 5 电路安装、调试与测试 (21) 5.1电路安装 (21) 5.2电路调试 (23) 5.3系统功能及性能测试 (23)

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

同相放大器结构原理

同相放大器结构原理 运放电路被当作运算放大器应用时,必须工作于闭环状态——将OUT 端输出电压引回IN-端构成负反馈通路,如果OUT端与IN-端直接短接,即将输出电压信号全部地引回至反相输入端,则放大器将失掉电压放大能力,处于电压跟随器的工作状态。 1、电路跟随器 图1 电压跟随器的电路形式之一 以图1中的a电路为例,以输入、输入的原始状态对地电压为0V为静态工作点,分析电压跟随器电路的工作原理。 当放大器同相输入端由原始状态跃升为1V输入信号电压时,因输入端IN+> IN-,Q1开始导通,使输出端向+15V靠近;因输出端反馈信号全部馈回IN-反相输入端的缘故,由放大器脾性可知,至IN-端电压也为1V,两输入端电压相等时,电路进入平衡状态;当IN+端输入负电压信号时,此时因IN-> IN+,Q2导通,使输出电压向-15V靠近,直至两输入端电压相等时,电路进行平衡状态。由此

推知,当IN+端输入电源范围以内的电压信号,其输出端也必然输出相应的相等的输出电压。 由电压跟随器电路,可以找到该电路的两个基本特点: (1)、闭环状态下,当电路达到平衡状态后(实际上,电路的控制速度非常之快,当我们下笔测量时,调整过程已经结束),两输入端电压相等,即其电压差为0V; (2)、针对电压跟随器这个“特型电路”,其三端——两个输入端和输出端电压——是完全相等的。若有不等,即电路是坏掉的。 上述(1)即教科书中说到的“虚短”概念,适用于一切由运放构成的放大器电路。 那么既然输入、输出电压是完全相等的(即无电压放大作用),添加该级放大器岂不是无用的?答案是否定的。电压跟随器是一个阻抗变换器,变输入高阻为低阻输出,提高带载能力,置身于前、后级电路之间,起到隔离和缓冲作用。如MCU信号输出端口输出2V电压信号时,因拉电流能力约1mA左右,无法直接驱动发光二极管,接入电压跟随器后,同样的电压幅度,则具备了驱动发光二极管的能力。 图2 电压跟随器的电路形式之一

5.6集成运放的频率响应

5.6 集成运放的频率响应和频率补偿频率响应频率补偿

一、集成运放的频率响应 很大 或gs C C ''π低频特性很好 内部必须接补偿电容上限频率很低 -20dB/十倍频 -40dB/十倍频-900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 -60dB/十倍频

时 c f f 0f = f 0 时极间电容引起的附加相移为±1800 -900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 f c :单位增益带宽此时差模增益下降为0dB 电路将产生自激振荡

二、集成运放的频率补偿 频率补偿: 采用一定的手段改变集成运放的频率响应破坏可能产生自激振荡的条件 使电路稳定工作 dB A f f od 0lg 200<= 时,即使0 180 ->=?时,附加相位移或当c f f

-900-1800 00 f O f φ dB A od /lg 20 f 0 f c m G m ?0 lg 20f f od m A G == c f f m =-=? ?0 180为幅值裕度 m G 为相位裕度 m ?0 45 10≥-≤m m dB G ?,一般要求

1. 滞后补偿 滞后补偿:加入补偿电路后, 使运放的幅频特性在大于0dB的频率范围内 只存在一个拐点, 相当于一个RC回路的频率响应 ≥450的要求, 达到φ m 保证电路的稳定性 优点:简单易行 缺点:使频带变窄

什么是压缩限幅器

功放与音箱的功率配置 在专业扩声领域里,音响器材的配置是十分考究的,其中功放与音箱的配置是最重要的,虽然,一些音箱生品使用说明中向用户推荐了所配功放的具体牌号或型号,但还是有局限性,因为用户经常面对诸多型号的功放,无从下手。 功放与音箱的配置所涉及的方面很多,例如功放牌号、功率管类型的选择及低灵敏度音箱应配置哪种功放等。功放与音箱的具体配置,一般来说与设计人员的经验、爱好、听音习惯等因素有关,很难找到一个统一的标准。有时我们会遇到一些用户或设计人员为了节省开支常给音箱配置较小功率的功放,有些用户又为了所谓的“功率储备充足”给音箱配置很大功率的功放。显然,这样做都是不合适的。重要的是,这样配置会给设备造成损坏。在功放与音箱配置中,功放功率的确是关键,也就是说,功放功率的确定原则应该是统一的。 大家都知道,在进行厅堂声学设计后,需要根据一系列计算确定音箱功率,然后再由音箱功率确定功放功率,但是究竟两者功率如何选配才能达到最佳匹配呢? 首先,在人耳听域的20Hz~20kHz内,真正集中大量能量的音乐信号一般在中、低、频段,而高频段能量仅相当于中、低频段能量的1/10。所以,一般音箱高音损失的功率比低音喇叭低得多,以求高低音平衡;而功放好比一个电流调制器,它的输入音频信号的控制下,输出大小不同的电流给音箱,使之发生大小不同的声音,在一定阻抗条件下,要想让标称功率为200W的功放达到400W或几倍的输出其实很容易,只是功放的失真(THD)将会大大地增加,这种失真主要产生在中、低频信号中的高频谐波,其失真越大,高频谐波能量就越大,而这些高频失真信号都将随高频音乐信号一同进入高音头,这就是为什么小功率功放推大音箱会发生烧高音头的原因。而在不少人的概念里,只要功放功率大,就有可能烧音箱。虽然有些功放没有失真指示,但由于设备配置已经先天不足,失真有可能在使用中时有发生,这时失真指示已失去意义。况且,由于使用者的经验和素质的限制,功放的失真往往容易被忽略。 其次,功放与音箱的功率配置与目标响度以及所使用场合也有一定的关系。在一定目标响度下,应该让音乐信号的动态在每件器材上都能得到充分的保证,如果功放功率太大,其增益设置很小时,响度已达到要求,但这时功放的增益就限制了信号的动态范围。所以,功放功率不能太大;否则,既然浪费开支,又会带来响度和音乐动态无法兼顾以及音箱负荷过重的麻烦。根据以往经验,一般语言、音乐扩音场所和大动态的迪厅等场所是有区别的。有一般扩音场所信号起伏小,不需要功放长时间或很快提供很大电流给音箱,所以功放功率应该比要求强劲有力的大动态扩音场所的功率要小;另外,所谓的“功率储备”也应该针对音箱而言,值得注意的是,功放的选定必须由音箱决定,不应该有“功率储备”的概念去配置功放。换句话说,在一定的目标响度下,音箱可以比设计值大一些,以备不同用途,而功放的功率应该严格由音箱决定,没有太大的灵活性。 总之,功放与音箱功率配置的具体标准应该是:在一定阻抗条件下,功放功率应大于音箱功率,但不能太大。在一般应用场所功放的不失真率应是音箱额定功率

模电课程设计-功率放大器设计

《电子技术Ⅱ课程设计》 报告 姓名雷锋 学号 52305105121520 院系自动控制与机械工程学院 班级核电一班 指导教师王老师黄老师 2014年 6月

目录 一、设计的目的 (1) 二、设计任务和要求 (1) 三、课程设计内容 (1) 1. Multisim仿真软件的学习 (1) 四、基础性电路的Multisim仿真 (2) 1.题目一:半导体器件的Multisim仿真 (2) 2.题目二:单管放大电路的Multisim仿真 (7) 3.题目三:差分放大电路的Multisim仿真 (11) 4.题目四:两级反馈放大电路的Multisim仿真 (14) 5.题目五:集成运算放大电路的Multisim仿真 (21) 6.题目六:波形发生电路的Multisim仿真 (23) 五.综合性能电路的设计和仿真 (26) 1.题目二:功率放大器的设计 (26) 六、总结 (29) 七、参考文献 (29)

一、设计的目的 该课程设计是在完成《电子技术2》的理论教学实践,掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养综合知识应用能力和实践能力,为今后从事本专业相关工程技术打下基础。 二、设计任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成基础性的电路设计和仿真及综合性电路设计和仿真。 要求: 1、巩固和加深对《电子课程2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真 结果。 三、课程设计内容 1. Multisim仿真软件的学习 Multisim7是一个优秀的电工技术仿真软件,既可以完成电路设计和版图绘制,也可以创建工作平台进行仿真实验。Multisim7软件功能完善,操作界面友好,分析数据准确,易学易用,灵活简便,因此,在教学、科研和工程技术等领域得到广泛地应用。

低噪声前置放大器电路的设计方法

低噪声前置放大器电路的设计方法 收藏此信息打印该信息添加:不详来源:未知 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PD A设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 运算放大器需要什么样的供电电压?

这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。增益带宽的问题是否更令人忧虑? 是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。事实上,体现音频器件性能的重要技术参数如低总谐波失真(TH D)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。 图1,建议选用的放大器 深入了解噪声 在设计低噪声前置放大器之前,工程师必须仔细审视源自放大器的噪声,一般来说,运算放大器的噪声主要来自四个方面: 热噪声(Johnson):由于电导体内电流的电子能量不规则波动产生的具有宽带特性的热噪声,其电压均方根值的正方与带宽、电导体电阻及绝对温度有直接的关系。对于电阻及晶体

OCL功率放大器的设计报告解析

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生姓名:郭二珍 学生学号: 07 系别:电气学院 专业:自动化 届别: 2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL 功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。 (3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。 因此,本设计可采用甲乙类互补电路。

2、内容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P ≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ o 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。 因此,需要设计两部分,即驱动级和功率输出级。

仪用放大器的应用电路设计

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________ 实验名称:仪用放大器的应用电路设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习并了解仪用放大器与运算放大器的性能区别。 2.掌握仪用放大器的电路结构及设计方法。 3.掌握仪用放大器的测试方法。 4.学习仪用放大器在电子设计中的应用。 二、实验内容和原理 1. 仪用放大器 仪用放大器是一种精密差动电压放大电路。 在实际的生产生活中,实际的信号获取单元经常需要面对强噪声背景下的微弱信号,这些强噪声将以共模的形式进入测量单元。虽然运放具有共模抑制比,但信号电压和共模电压一起被传送到输出端,将降低放大器的有效输出范围。 2.基本差动放大器与带输入缓冲的差动放大器 基本差动放大器:带输入缓冲的差动放大器: 3.标准的三运放构成的仪用放大器 造成差动放大器误差的两个主要因素为:运算放大器的参数和电阻器匹配的精确度。 若在输入运算放大器周围增加匹配电阻,把增益设臵放在前端实现,就构成了仪用放大器。 仪用放大器的传输函数为:

运放A1、A2 为同相差分输入方式。同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,来提高共模抑制比。 4.单片仪用放大器 5.双孔梁应变式传感器 力传感器单元是这个实验的传感器,为信号输入部分。它内部含有由4个全桥电路。

2.5Gb 和3.125Gb 速率级CMOS 限幅放大器

2.5Gb/s和 3.125Gb/s速率级CMOS限幅放大器* 胡艳,王志功**,冯军,陶蕤 (东南大学射频与光电集成电路研究所,南京市四牌楼2号,210096) 摘要:本文采用TSMC 0.35μm CMOS工艺实现了可用于SONET/SDH 2.5Gb/s和3.125Gb/s 速率级光纤通信系统的限幅放大器。通过在芯片测试其输入动态范围超过40dB,输出摆幅为400mVp-p,功耗250mW,含信号丢失检测功能,可以满足商用化光纤通信系统的使用标准。 关键字:光纤通信,限幅放大器,CMOS工艺,SONET/SDH Design of CMOS Limiting Amplifier for SDH 2.5Gb/s and 3.125Gb/s Systems HU Yan, WANG Zhi-gong, FENG Jun, TAO Rui (Institute of RF- & OE-IC’s, Southeast University, Nanjing 210018,China) Abstract: In this paper, a limiting amplifier was realized in TSMC 0.35μm CMOS technology for the use of SDH 2.5 Gb/s and 3.125 Gb/s systems. Evaluated via on-wafer testing, this limiting amplifier offers an input dynamic range of more than 40dB, provides a constant output 400mVp-p and includes a module of loss detection. Therefore, this limiting amplifier can meet the requirement of optical communication system. Key words: optical communication; limiting amplifier; CMOS technology; SONET/SDH 1引言 随着人们对信息服务的种类和质量要求的不断提高,同步光纤网/同步数字序列(SONET/SDH)应运而生并不断发展。光纤通信具有很多其它通信方式不可比拟的优点,例如:成本低,可靠性高,通信容量大等。目前2.5Gb/s的系统已得到普遍应用。 在光纤通信系统中,限幅放大器(LA)具有广泛的应用:首先,可用于含无源滤波器的时钟恢复电路中,以抑制由于输入信号码型不同而引起的时钟信号的幅度变化;其次,可用于光接收机的主放大器;第三,可用作数据和时钟处理电路的输入输出缓冲部分。目前主要采用GaAs或双极性硅工艺生产[1]。 CMOS工艺虽不具有GaAs或双极性硅工艺的速度优势,但随着CMOS工艺的不断发展,CMOS工艺已经达到比较高的速率。根据仿真结果0.35μm、0.25μm和0.18μm 工艺的特征频率分别为13.5GHz、18.6GHz 和49GHz。因此采用CMOS工艺设计高速的限幅放大器具有良好的前景。

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

同相比例放大器的原理与检测方法

同相比例放大器的原理与检测方法 集成运算放大器按其技术指标可分为通用型、高速型、高阻型、低功耗型、大功率型、高精度型等;按其内部电路可分为双极型(由晶体管组成)和单极型(由场效应管组成);按每一集成片中运算放大器的数目可分为单运放、双运放和四运放。 通常是根据实际要求来选用运算放大器。如测量放大器的输入信号微弱,它的第一级应选用高输入电阻、高共模抑制比、高开环电压放大倍数、低失调电压及低温度漂移的运算放大器。选好后,根据管脚图和符号图联结外部电路,包括电源、外接偏置电阻、消震电路及凋零电路等。 1、同相放大器的几种电路形式和特点 图1 同相放大电路、电压跟随器电路 上图a电路为同相放大器的典型电路形式。输入信号进入放大器的同相端,输出信号与输入信号同相位,电路的电压放大倍数=1+R2/R3,放大量大小取决于R2与R3的比值。R1的选取值为R2/R3的并联值(若忽略两输入端微弱偏置电流不一致对放大精度的影响和取同值电阻的方便性,实际电路中,也可以使R1=R3)。该电路当R2短接或R3开路时,输出信号与输入信号的相位一致且大小相等,因而a电路可进一步“进化”为b、c电路。 b、c为电压跟随器电路,输出电压完全跟踪于输入电路的幅度与相位,故电压放大倍数为1,虽无电压放大倍数,但有一定的电流输出能力。电路起到了阻抗变换作用,提升电路的带负载能力,将一个高阻抗信号源转换成为一个低阻抗信号源。减弱信号输入回路高阻抗和输出回路低阻抗的相互影响,又起到对输入、输入回路的隔离和缓冲作用。只要求输出正极性信号时,也可以采用单电源供电。 a、b、c等电路,也在故障检测电路中,被用于模拟信号的放大、基准电压信号的处理等。

放大器极零点与频率响应

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

限幅器的作用

什么是限幅器 微波限幅器是一种自控衰减器, 是一种功率调制器件。当信号输入功率较小时无衰减通过,当输入功率增大到超过某一值时,衰减会迅速增大,这一功率值称为门限电平,输入功率超过门限电平后,输出功率不再增加。实际工作中,限幅器基本上都是为整机需要而专门设计的。常用于微波扫频信号源或相位检测系统中,使输出信号幅度保持稳定。功率限幅器设计用于通信、遥感、雷达系统和高频仪器领域电子元件的输入保护。它针对不同的工作频率、需承受的微波功率、微波脉冲宽度、占空比等要求进行设计.微波限幅器通常用在接收机的放大器或混频器的前面保护它们,免受强信号的影响而烧毁。在扫频仪或测相系统中可使输出幅度保持恒定。限幅器一般由输入端口和输出端口上的隔直流电容器和集成式二极管限幅器电路组成。集成电路包含着透过50欧姆传输线并联的平面掺杂阻挡层(PDB)或Schottky二极管。限幅器在低输入电平时有很低的插入损耗和线性特性,可提供对瞬态或短时间过载的保护。它们有很低的插入损耗和回波损耗,可为您的设备提供安全保护,避免因过大射频功率、直流电压瞬变或静电放电(ESD)导致损坏。 微波限幅器主要参数定义 1.限幅电平:限幅器开始限幅时的功率值。 2.插入损耗:输入电平低于门限电平时输入信号损耗,一般在-10dBm 下测试。 3.承受功率:能承受的最大输入功率(脉冲功率,脉冲平均功率,连续波功率)。 4.恢复时间:以输入脉冲终止开始,到限幅器损耗比插入损耗大3dB为止的时间。

限幅器原理是什么? 理想限幅器是一个无记忆的非线性电路。理想限幅器应具有放大和限幅的双重功能,且要求其放大量为无穷大、限幅是瞬时的。通常限幅器是由非线性限幅器件和一个带通滤波器组成,调频波通过它时,首先由非线性器件将其超过限幅电平E的那部分幅度切去,然后经带通滤波器滤出其基波分量,以使输出电压的频率仍和输入的频率一致。实际设计中,我们采用在一个近似中频带宽的限幅器中加入适量的正反馈,就能够明显地改善它的削弱比,起到几级无正反馈但其它结构相同的限幅器的作用。 限幅器常用在接收设备的前级,对超过门限的大功率输入信号限幅,起到保护后级敏感电路和器件的作用。限幅器的峰值输入功率是在脉冲调制占空比为1%(脉宽10μS,6GHz 以下;脉宽1μS,6GHz 以上)的条件下测试的结果。插损和驻波比是在输入连续波功率-10dBm的条件下测试的结果。 压缩/限幅器的调整及应用 人类的听感动态范围能承受的最大响度和能感受的最安静声音响度的范围可达100万:1(即106倍)听感的动态范围达120dB。扩声系统声音重放的动态范围由于受电子设备的限制,远比人耳的动态范围小很多。最低声音的响受系统中不相关噪声的限制,使小的声音信号淹没在噪声中而无法听到;最大声音的响度受信号削波的限制,使音乐信号中的特大峰值被“砍头”(削波),不仅

音响放大器课程设计与制作模电课程设计

课程设计任务书学生姓名:专业班级: 指导教师:工作单位:信息工程学院 题目: 音响放大器设计与制作 初始条件:集成芯片LM324三块,LM386一块,瓷片电容,电解电容,电位器若干,4Ω/扬声器一个。 要求完成的主要任务: (1)技术指标如下: a.输出功率:; b.负载阻抗:4欧姆; c.频率响应:fL~fH=50Hz~20KHz; d.输入阻抗:>20K欧姆; e.整机电压增益: >50dB; (2)电路要求有独立的前置放大级(放大话筒信号)。 (3)电路要求有独立的功率放大级。 时间安排: 2016年1月10日查资料 2016年1月11,12日设计电路 2016年1月13日仿真 2016年1月14日,15日实物调试 2016年1月16日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要......................................................... ABSTRACT ...................................................... 1电路方案的比较与论证........................................ 音响放大器的总设计........................................... 放大电路的比较与论证........................................ 音频功率放大电路的比较与论证................................ 2核心元器件介绍............................................... LM324的介绍................................................. LM386的介绍................................................. 3电路设计 .................................................... 直流稳压电源电路的设计...................................... 话音放大器.................................................. 混合前置放大器.............................................. 音调控制器.................................................. 功率放大电路的设计.......................................... 总电路图 (18) 4用MULTISIM进行仿真.......................................... 话放与混放性能测试.......................................... 单独功放性能测试 (20)

相关文档
最新文档