(完整版)高中数学必修二-空间几何体知识点,推荐文档
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体
一、空间几何体结构
1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那
么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共
边互相平行,由这些面围成的图形叫做棱柱。(图如下)
底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。
侧面:棱柱中除底面的各个面.
侧棱:相邻侧面的公共边叫做棱柱的侧棱。
顶点:侧面与底面的公共顶点叫做棱柱的顶点。
棱柱的表示:用表示底面的各顶点的字母表示。如:六棱柱表示为ABCDEF- A’B’C’D’E’F’
3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公
共定点,由这些面所围成的多面体叫做棱锥. (图如下)
底面:棱锥中的多边形面叫做棱锥的底面或底。
侧面:有公共顶点的各个三角形面叫做棱锥的侧面
顶点:各个侧面的公共顶点叫做棱锥的顶点。
侧棱:相邻侧面的公共边叫做棱锥的侧棱。
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥---
4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱的轴:旋转轴叫做圆柱的轴。
圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。
圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。
圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示.如:圆柱O’O
注:棱柱与圆柱统称为柱体
5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴,
两余边旋转形成的面所围成的旋转体叫做圆锥。
轴:作为旋转轴的直角边叫做圆锥的轴。
底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。
侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
顶点:作为旋转轴的直角边与斜边的交点
母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
圆锥可以用它的轴来表示。如:圆锥SO
注:棱锥与圆锥统称为锥体
6.棱台和圆台的结构特征
(1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.
下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。
侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。
侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。
顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。
棱台的表示:用表示底面的各顶点的字母表示。如:棱台ABCD-A’B’C’D’
底面是三角形,四边形,五边形----的棱台分别叫三棱台,四棱台,五棱台---
(2)圆台的结构特征:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.
圆台的轴,底面,侧面,母线与圆锥相似
注:棱台与圆台统称为台体。
7.球的结构特征:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。
球心:半圆的圆心叫做球的球心。
半径:半圆的半径叫做球的半径。
直径:半圆的直径叫做球的直径。
球的表示:用球心字母表示。如:球O
注意:1.多面体: 若干个平面多边形围成的几何体
2.旋转体: 由一个平面绕它所在平面内的一条定直线旋转所形成的封闭几何体
二、空间几何体的三视图和直观图
1.空间几何体的三视图:
定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右);俯视图(从上向下)。
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽带;侧视图反映了物体的高度和宽带。
球的三视图都是圆;长方体的三视图都是矩形。
2.空间几何体的直观图——斜二测画法
(1)在已知图形中取互相垂直的x轴和y轴,两轴相较于点O。画直观图时,把它们画成对应的x’轴和y’轴,两轴交于点O’,且使 (2)已知图形中平行于x轴或y轴的线段,在直观图中分别画呈平行于x’轴或y’轴的线段。 (3) 已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度 为原来的一半。 (4) z 轴方向的长度不变 三、空间几何体的表面积和体积 1. 表面积 圆柱: S = 2πr 2 + 2πrl = 2πr (r + l )(r 是底面半径,l 是母线长) 圆锥: S = πr 2 + πrl = πr (r + l ) 圆台: S = π(r'2 +r 2 + r'l + rl ) (r ,r ,分别表示上下两底面的半径) 2. 体积 柱体(棱柱): V = Sh (S 为低面面积,h 为高) 1 圆锥(棱锥): V = Sh 3 圆台(棱台): V = 1 (S'+ 3 3. 球表面积: S = 4πR 2 球体积: V = 4 πR 3 3 S'S + S ) ⨯h (S’、S 分别为上、下地面面积) “” “” At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!