解三角形应用题(2)含答案

合集下载

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。

2021年高考数学解答题专项练习《解三角形》(含答案)

2021年高考数学解答题专项练习《解三角形》(含答案)

2021年高考数学解答题专项练习《解三角形》1.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=4,C=2B.(1)求cosB的值;(2)求的值.2.设△ABC的内角A,B,C所对边的长分别是a,b,c,.(1)求角B的值;(2)若b=2,△ABC的面积为,求a,c.3.已知a,b,c分别是△ABC三个内角A,B,C的对边,acosC+csinA=b+c.(1)求A;(2)若a=,b+c=3,求b,c。

4.设△ABC的内角A,B,C所对边的长分别是a,b,c.已知B=150°.(1)若a=c,b=2,求△ABC的面积;(2)若sinA+sinC=,求C.5.设△ABC的内角A,B,C所对边的长分别是a,b,c,已知.(1)求A;(2)若,证明:△ABC是直角三角形.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,满足ab+a2=c2.(1)求证:C=2A;(2)若△ABC的面积为a2sin2B,求角C的大小.(1)求角C的大小;(2)若,且△ABC的面积为,求a+b的值.8.设△ABC的内角A,B,C所对边的长分别是a,b,c,且.(1)求角A的大小;(2)若b+c=5,且ΔABC的面积为,求a的值;(3)若,求b+c的范围.9.在△ABC中,.(1)求∠B的大小;(2)求的最大值.(1)求角B(2)求cosA+cosB+cosC的取值范围.11.在△ABC中,sin2A-sin2B-sin2C=sinBsinC.(1)求A;(2)若BC=3,求△ABC周长的最大值.12.在设△ABC的内角A,B,C所对边的长分别是a,b,c,已知.(1)求角B的大小;(2)若,求△ABC的周长的取值范围.13.设△ABC的内角A,B,C所对边的长分别是a,b,c,且满足:.(1)求角A的值;(2)若且b≥a,求的取值范围.14.设△ABC的内角A,B,C所对边的长分别是a,b,c,且a=8,ccosAcosB=2asinCcosB-ccosC。

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

专题解三角形大题(含答案)

专题解三角形大题(含答案)

解三角形专题1.在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+a=c.(1)求B的大小;(2)若c=,a+b=2,求△ABC的面积.2.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-a)sin B+a sin A=c sin C,且c=2.(Ⅰ)求角C的度数;(Ⅱ)求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。

余生,无需3.已知在△ABC中,,a=13,c=15.(Ⅰ)求sin C;(Ⅱ)若△ABC是钝角三角形,求△ABC的面积.4.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求角C;(2)若c=2,求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。

余生,无需5.如图,在四边形ABCD中,∠D=2∠B,且AD=2,CD=6,cos B=.(1)求△ACD的面积;(2)若BC=6,求AB的长.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.高三几何每日一题(5 )答案靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。

余生,无需1.【答案】解:(1)∵b cos A+a=c,∴由正弦定理可得sin B cos A+sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin A=sin A cos B,∵sin A ≠0,∴cos B=,∵B∈(0,π),∴B=.(2)∵B=,c=,∴由余弦定理可得cos B==,整理可得a2-b2+3=3a ,又a+b=2,解得a=b=1,∴S△ABC=ac sin B==.2.【答案】解:(Ⅰ)由正弦定理得(b-a)b+a2=c2,即a2+b2-c2=ab由余弦定理得,∵C∈(0,π),∴.(Ⅱ)由面积公式,由a2+b2-c2=ab,得到ab+4=a2+b2,由不等式a2+b2≥2ab,得到ab +4≥2ab,∴ab≤4,从而,当且仅当a =b=2时取等号.所以△ABC面积的最大值为,3.【答案】解:(Ⅰ)在△ABC中根据正弦定理得,即,∴,(Ⅱ)因为a2=b2+c2-2bc cos A,所以.解得b=8或b=7.当b=7时,所以C为钝角,所以△ABC的面积,当b=8时,.此时C为锐角,不满足题意,所以△ABC的面积.4.【答案】解:(1)△ABC中,2cos C(a cos B+b cos A)=c,由正弦定理可得:2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sinC=sin C,又0<C<π,sin C≠0,∴cos C=,求得C=;(2)由c=2,C=,利用余弦定理可得:4=c2=a2+b2-2ab cos C≥2ab-ab=ab,靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。

新初中数学三角形基础测试题含答案解析(2)

新初中数学三角形基础测试题含答案解析(2)

新初中数学三角形基础测试题含答案解析(2)一、选择题1.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若8ab ,大正方形的边长为5,则小正方形的边长为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】由题意可知:中间小正方形的边长为a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴根据4×12ab+(a﹣b)2=52=25,得4×4+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3(舍负),故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【答案】B【分析】根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.4.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.5.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是()A.60 B.48 C.24 D.96【答案】D【解析】【分析】由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=6,∴AO=22100368AB OB-=-=,∴AC=16,BD=12,∴菱形面积=12162⨯=96,故选:D.【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.6.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.B.C.D.【答案】C【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、72+242=252,152+202≠242,(7+15)2+202≠252,故A不正确;B、72+242=252,152+202≠242,故B不正确;C、72+242=252,152+202=252,故C正确;D、72+202≠252,242+152≠252,故D不正确,故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.7.如图,在ABC ∆中,AB 的垂直平分线交BC 于D ,AC 的中垂线交BC 于E ,20DAE ∠=o ,则BAC ∠的度数为( )A .70oB .80oC .90oD .100o【答案】D【解析】【分析】 根据线段垂直平分线的性质得到DA=DB,EA=EC,在由等边对等角,根据三角形内角和定理求解.【详解】如图所示:∵DM 是线段AB 的垂直平分线,∴DA=DB,B DAB ∠=∠ ,同理可得:C EAC ∠=∠ ,∵ 20DAE ∠=o ,180B DAB C EAC DAE ︒∠+∠+∠+∠+∠=,∴80DAB EAC ︒∠+∠=∴100BAC ︒∠=故选:D【点睛】本题考查了线段的垂直平分线和三角形的内角和定理,解题的关键是掌握线段垂直平分线上的点到线段两端的距离相等.8.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是高,BE 平分∠ABC 交CD 于点E ,EF ∥AC 交AB 于点F ,交BC 于点G .在结论:(1) EFD ∠=BCD ∠;(2) AD CD =;(3)CG EG =;(4) BF BC =中,一定成立的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD ;只有△ABC 是等腰直角三角形时AD=CD ,CG=EG ;利用“角角边”证明△BCE 和△BFE 全等,然后根据全等三角形对应边相等可得BF=BC .【详解】∵EF ∥AC ,∠BCA=90°,∴∠CGE=∠BCA=90°,∴∠BCD+∠CEG=90°,又∵CD 是高,∴∠EFD+∠FED=90°,∵∠CEG=∠FED (对顶角相等),∴∠EFD=∠BCD ,故(1)正确;只有∠A=45°,即△ABC 是等腰直角三角形时,AD=CD ,CG=EG 而立,故(2)(3)不一定成立,错误;∵BE 平分∠ABC ,∴∠EBC=∠EBF ,在△BCE 和△BFE 中,EFD BCD EBC EBF BE BE ∠∠∠∠⎧⎪⎨⎪⎩===,∴△BCE ≌△BFE (AAS ),∴BF=BC ,故(4)正确,综上所述,正确的有(1)(4)共2个.故选:B .【点睛】本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.9.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .4【答案】A【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1=13.故选A.考点: 1.旋转;2.勾股定理.10.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )A .32B .33C .3D .6【答案】D【解析】【分析】 过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.【详解】过C 作CD ⊥直线a ,∴∠ADC =90°.∵∠1=45°,∠BAC =105°,∴∠DAC =30°.∵CD =3,∴AC =2CD =6.故选D .【点睛】本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.11.如图,在ABC V 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .已知CDE △的面积比CDB △的面积小4,则ADE V 的面积为( )A .4B .3C .2D .1【答案】A【解析】【分析】 由作图步骤可知直线MN 为线段AB 的垂直平分线,根据三角形中线的性质可得S △CDA =S △CDB ,根据△CDE 的面积比△CDB 的面积小4即可得答案.【详解】由作图步骤可知直线MN 为线段AB 的垂直平分线,∴CD 为AB 边中线,∴S △CDA =S △CDB ,∵△CDE 的面积比△CDB 的面积小4,∴S △ADE =S △CDA -S △CDE =S △CDB -S △CDE =4.故选:A .【点睛】本题考查尺规作图——垂直平分线的画法及三角形中线的性质,三角形的中线,把三角形分成两个面积相等的三角形;熟练掌握三角形中线的性质是解题关键.12.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠ADC =∠GCD ;③CA 平分∠BCG ;④∠DFB =12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.13.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A .4B .5C .6D .7【答案】B【解析】 试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP .此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =45°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =45°,∴BC =BC ′=4,根据勾股定理可得DC ′=22'BC BD +=2234+=5.故选B .14.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,在ABC ∆中,AB AC =,分别是以点A ,点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ∠=︒,则DBC ∠=( )A .40︒B .30︒C .20︒D .10︒【答案】B【解析】【分析】 根据题意,DE 是AB 的垂直平分线,则AD=BD ,40ABD A ==︒∠∠,又AB=AC ,则∠ABC=70°,即可求出DBC ∠.【详解】解:根据题意可知,DE 是线段AB 的垂直平分线,∴AD=BD ,∴40ABD A ==︒∠∠,∵AB AC =,∴1(18040)702ABC ∠=⨯︒-︒=︒, ∴704030DBC ∠=︒-︒=︒;故选:B.【点睛】 本题考查了垂直平分线的性质,等腰三角形的性质,以及三角形的内角和,解题的关键是熟练掌握所学的性质,正确求出DBC ∠的度数.16.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )A .2B .2.5C .3D 5【答案】B【解析】【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.【详解】解:∵5AB AC ==,AE 平分BAC ∠,∴AE ⊥BC ,又∵点D 为AB 的中点, ∴1 2.52DE AB ==, 故选:B .【点睛】 本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.17.如图,经过直线AB 外一点C 作这条直线的垂线,作法如下:(1)任意取一点K ,使点K 和点C 在AB 的两旁.(2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和E .(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F . (4)作直线CF .则直线CF 就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定...是等腰三角形的为( )A.△CDF B.△CDK C.△CDE D.△DEF【答案】A【解析】【分析】根据作图过程和等腰三角形的定义进行分析即可.【详解】由作图过程可得:CD=CD,DF=EF,CD=CK所以,是等腰三角形的有△CDK,△CDE,△DEF;△CDF不一定是等腰三角形.故选:A【点睛】考核知识点:等腰三角形.理解等腰三角形的定义是关键.18.△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE、CD交于点F,则共有等腰三角形( )A.7个B.8个C.9个D.10个【答案】B【解析】∵等腰三角形有两个角相等,∴只要能判断出有两个角相等就行了,将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形,只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个. 故选:B.点睛:本题考查了等腰三角形的判定与性质、三角形内角和定理以及三角形外角的性质,此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.19.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO=CO=12AC ;③△ABD ≌△CBD , 其中正确的结论有( )A .0个B .1个C .2个D .3个【答案】D【解析】 试题解析:在△ABD 与△CBD 中,{AD CDAB BC DB DB===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.20.(11·十堰)如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。

(必考题)高中数学必修五第二章《解三角形》测试题(含答案解析)(2)

(必考题)高中数学必修五第二章《解三角形》测试题(含答案解析)(2)

一、选择题1.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .62.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣ B .()3,+∞C .()2,+∞D .[)2,+∞3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B -=,且2b ac =,则a cb+ 的值为( ) A .22B .2C .2D .48.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为3a ,则c bb c+的最大值是( ) A .8B .6C .32D .49.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,30,10B AC =︒=,D 是AB 边上的一点,25CD =,若ACD ∠为锐角,ACD ∆的面积为20,则BC =( ) A .25B .35C .45D .65 11.在ABC 中,若2a =,23b =,30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒12.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .223a <<二、填空题13.在ABC 中,已知1AC =,A ∠的平分线交BC 于D ,且1AD =,2BD =,则ABC 的面积为_________.14.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.15.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________16.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.17.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.19.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.如图,在ABC 中,6AB =,3cos 4B =,点D 在BC 边上,4=AD ,ADB ∠为锐角.(1)若62AC =DC 的长度; (2)若2BAD DAC ∠=∠,求sin C 的值.22.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若32b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 23.在ABC 中,内角A 、B 、C 对应的边长分别为a b c 、、,且,,a b c 满足5cos 44cos 5sin sin cos a B b cB A BC -=+.(1)求cos A ;(2)若3a =,求b c +的最大值.24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为232+S .25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b A B <⇔<,应选答案A .5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c +2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 226bc A a a =⨯,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C先利用面积公式计算出sin ACD ∠,计算出cos ACD ∠,运用余弦定理计算出AD ,利用正弦定理计算出sin A ,在ABC ∆中运用正弦定理求解出BC . 【详解】解:由ACD ∆的面积公式可知,11sin 1025sin 2022ACAD ACD ACD ∠=∠=,可得sin ACD∠=,ACD ∠为锐角,可得cos ACD ∠==在ACD ∆中,21002021025805AD =+-=,即有AD =由sin sin AD CDACD A =∠可得sin sin CD ACD A AD ∠=,由sin sin AC BCB A=可知sin sin 2AC A BC B ===.故选C . 【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.11.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC中,由正弦定理可得sin sin a bA B=, 即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【分析】直接利用正弦定理计算得到答案.根据正弦定理:sin sin 2a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.二、填空题13.【分析】设将利用三角形面积公式表示出来可得在中利用余弦定理可得解得即可求出进而可得的值再利用三角形面积公式即可求解【详解】因为平分所以设则因为设所以所以因为所以即在中所以可得解得:所以所以所以故答案【分析】设12BAD CAD BAC θ∠=∠=∠=,AB x =,将BAD CAD ABC S S S +=△△△利用三角形面积公式表示出来,可得1cos 2x xθ+=,在ABD △中,利用余弦定理可得212cos 2x xθ+-=,解得2x =,即可求出cos θ,sin θ,进而可得sin BAC ∠的值,再利用三角形面积公式即可求解. 【详解】因为AD 平分BAC ∠,所以12BAD CAD BAC ∠=∠=∠, 设BAD θ∠=,则CAD θ∠=,2BAC θ∠=, 因为BAD CAD ABC S S S +=△△△,设AB x =, 所以111sin sin sin 2222x x θθθ+=, 所以,sin sin 2sin cos x x θθθθ+=, 因为sin 0θ≠,所以12cos x x θ+=,即1cos 2x xθ+=, 在ABD △中,212cos 2x x θ+-=,所以21122x x x x-+=, 可得220x x --=,解得:2x =,所以3cos cos 4BAD θ∠==,所以sin BAD ∠==,3sin 2sin cos 24BAC θθ∠===,所以1sin 28ABC S AC AB BAC =⋅∠=,【点睛】 关键点点睛:本题解题的关键是将BAD CAD ABC S S S +=△△△用面积公式表示出来可得边角之间的关系,再结合余弦定理即求出边和角即可求面积.14.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值.【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BD CBD BCD=∠∠, 所以()3sin sin 60x x θθ=-,所以()13sin sin 60sin 2θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.15.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值.【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =.设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BC B A =∠∠,即32sin(3)sin παα=-, 整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=,结合sin 0α≠得222(2cos 12cos )3αα-+=, 即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==. 再由ABC 得:2sin sin 2AB αα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B=,根据正弦定理:sin sinb cB C=,∴=c,根据余弦定理:2222cosa b c bc A=+-,又222a b=,故可联立方程:222222cos2ca b c bc Aa b⎧=⎪=+-⎨⎪=⎩,解得:cos A=..【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB∠与BAC∠,求出ABC∠的度数,根据sin ACB∠,sin ABC∠,以及AC的长,利用正弦定理即可求出AB的长.【详解】解:在ABC∆中,50AC m=,45ACB∠=︒,105CAB∠=︒,即30ABC∠=︒,则由正弦定理sin sinAB ACACB ABC=∠∠,得:50sin21sin2AC ACBABABC∠===∠.故答案为:.【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.18.【分析】由题意利用正弦定理边化角求得∠B的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力解析:3-【分析】由题意利用正弦定理边化角,求得∠B的值,然后结合数量积的定义求解AB BC⋅的值即可.【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭ 故答案为3-【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.19.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A C A B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解.【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b a ab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=,由正弦定理可得,22sin sin sin sin C A A B -=,即1cos21cos2cos2cos2sin sin 222C A A C A B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠;sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =,则3B A C A ππ=--=-, 因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩, ∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】 本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=.所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)7;(2 【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值.【详解】(1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==, ∴5BD =或4BD =.当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去; 当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意. ∴5BD =. 在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==, ∴12BC =或3BC =-(舍).∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅,∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ=由3cos 4B =知:sin B =,∴()()sin sin 3sin 3sin cos3cos sin3C B B B B πθθθθ=--=+=+法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠.∴()sin sin sin cos cos sin C BDA BDA BDA θθθ=∠-=∠-∠=【点睛】关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可.22.(1)π4A =;(2)a =3AD =. 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD .【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos A C A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos A A A+=∴cos 2A =0πA <<,∴π4A =. (2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==,又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴3AD =. 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.23.(1)45-;(2 【分析】 (1)利用正弦定理边化角,结合两角和的正弦公式、余弦公式,化简整理,即可求得答案.(2)由(1)可得4cos 5A =-,根据余弦定理,可得25()92bc b c ⎡⎤=+-⎣⎦,根据基本不等式,即可求得b c +的最大值.【详解】(1)由题意得5cos cos 4cos 4cos 5sin sin a C B b C c B c A B -=+, 正弦定理边化角得:5sin cos cos 4sin cos 4sin cos 5sin sin sin A C B B C C B C A B -=+,所以5sin (cos cos sin sin )4(sin cos sin cos )A C B C B C B B C -=+,所以5sin cos()4sin()A B C B C +=+,又A B C π++=,所以sin()sin()sin ,cos()cos()cos B C A A B C A A ππ+=-=+=-=-,所以5sin cos 4sin A A A -=,又因为(0,)A π∈,所以sin 0A ≠, 所以4cos 5A =-. (2)由(1)可得4cos 5A =-, 由余弦定理得2222()294cos 225b c a b c bc A bc bc +-+--===-, 所以25()92bc b c ⎡⎤=+-⎣⎦, 由基本不等式可得22b c bc +⎛⎫≤ ⎪⎝⎭,所以225()922b c b c +⎛⎫⎡⎤+-≤ ⎪⎣⎦⎝⎭,解得b c +≤ 当且仅当b c =时等号成立,所以b c +【点睛】解题的关键是熟练掌握正余弦定理、基本不等式等知识,并灵活应用,考查计算化简的能力,属中档题.24.(1)证明见解析;(2)2. 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B += 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C B A C A C A c A c所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=. 解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c +=因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin B =.所以1sin 2sin 2===ABC S ac B B 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。

解直角三角形经典题型应用题

解直角三角形经典题型应用题

解直角三角形经典题型应用题1. 一个田径运动员越过一根高度为2米的木板,如果他离地面的水平距离是3米,那么他的起跳点距离木板底部的高度是多少?解:设起跳点距离木板底部的高度为x,则根据勾股定理,得到:$x^2 + 3^2 = 2^2$化简得:$x^2 = 2^2 - 3^2 = -5$由于x是高度,因此应该为正数。

但是由于方程无解,因此无法解出起跳点距离木板底部的高度。

这个结果告诉我们,如果要跨越一个木板,距离不能太远,否则就无法起跳!2. 一个人看到一个高楼,测得距离为50米,角度为30度,那么这个高楼的高度是多少?解:设高楼的高度为h,根据三角函数,得到:$tan(30) = \frac{h}{50}$化简得:$h = 50\times tan(30) = 50 \times \frac{1}{\sqrt{3}} \approx28.87$因此,这个高楼的高度约为28.87米。

3. 一个人站在一座桥上,看到一条河流在他的正下方流过,测得桥与河面的垂直距离为20米,角度为45度,那么河宽是多少?解:设河宽为w,根据三角函数,得到:$tan(45) = \frac{w}{20}$化简得:$w = 20\times tan(45) = 20$因此,河宽为20米。

4. 在一个矩形田地中,角A的顶点和角B的底点均在田地边界上,角A的角度为30度,角B的角度为60度,且田地的长宽比为3:2,那么田地的面积是多少?解:假设田地的长为3x,宽为2x,则田地的面积为6x²。

又根据三角函数,得到:$tan(30) = \frac{3x}{y}$$tan(60) = \frac{2x}{y}$化简得:$x = y\times tan(30) = y\cdot\frac{1}{\sqrt{3}}$ $x = y\times tan(60) = y\cdot\sqrt{3}$解得:$y = 6\sqrt{3}$因此,田地的面积为6x² = 1080平方米。

高考数学 大题精做02 解三角形(含解析)文 新人教A版

高考数学 大题精做02 解三角形(含解析)文 新人教A版

精做02 三角形1.已知ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且3sin cos 20bA aB a --=. (1)求角B 的大小; (2)若7b =,ABC △的面积为32,求a ,c 的值. 【答案】(1)2π3B =;(2)1,2,a c =⎧⎨=⎩或2,1.a c =⎧⎨=⎩.(2)∵2221sin ,22cos ,ABCS ac B b a c ac B ⎧=⎪⎨⎪=+-⎩△∴2212π3sin ,2322π2cos 7,3ac a c ac ⎧=⎪⎪⎨⎪+-=⎪⎩即222,5,ac a c =⎧⎨+=⎩ ∴1,2,a c =⎧⎨=⎩或2,1.a c =⎧⎨=⎩2.已知顶点在单位圆上的△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+.(1)求角A 的大小;(2)若224b c +=,求△ABC 的面积. 【答案】(1)60︒;(2)3. 【解析】(1)由222b c a bc +=+得222b c a bc +-=,则2221cos 22b c a A bc +-==,∴113sin 1sin 60224△==⨯⨯︒=ABC S bc A . 3.已知△ABC 的三个内角,,A B C 所对的边分别为,,a b c ,且25sin sin cos 3a A Bb A a +=. (1)求b a; (2)若22285c a b =+,求角C 的大小. 【答案】(1)53;(2)23π.【解析】(1)由正弦定理,得225sin sin sin cos sin 3A B B A A +=,即225sin (sin cos )sin 3B A A A +=,故5sin sin 3B A =,所以53b a =.(2)设5(0)b t t =>,则3a t =, 于是222222889254955c a b t t t =+=+⋅=,即7c t =. 由余弦定理得222222925491cos 22352a b c t t t C ab t t +-+-===-⋅⋅, 所以23π=C . 4.如图,在ABC △中,15sin 4C =,且ππ,22C AB <<=,3sin sin BAC AB B ∠=⋅.(1)求ABC △的面积;(2)已知D 在线段BC 上,且BAD CAD ∠=∠,求sin ADB ∠的值. 【答案】(1)31516;(2)78.∴32b =,故ABC △的面积11315315sin 1222S ab C ==⨯⨯⨯=. (2)依题意,2227cos 28b c a BAC bc +-∠==, 又2cos 12sin BAC DAC ∠=-∠, 所以1sin 4DAC ∠=, 故()1115157sin sin 44448ADB DAC C ⎛⎫∠=∠+∠=⨯-+⨯= ⎪⎝⎭. 5.在△ABC 中,,,a b c 分别为内角,,A B C 所对的边,且满足2cos 23=-a C b c . (1)求A 的大小;(2)现给出三个条件:①2a =; ②45B =o ;③3c b =.试从中选出两个可以确定△ABC 的条件,写出你的选择并以此为依据求△ABC 的面积(只需写出一个方案即可,写多种方案以第一种方案记分). 【答案】(1)6π;(2)见解析.(2)方案一:选择①②. 由正弦定理sin sin a b A B =,得sin 22sin a Bb A==()26sin sin sin cos cos sin C A B A B A B +∴=+=+=. 1126sin 22231224ABC S ab C +∴==⨯⨯⨯=+△.方案二:选择①③.由余弦定理得2222cos b c bc A a +-=,则222334b b b +-=,解得2,23b c ==, 故111sin 2233222ABC S bc A ==⨯⨯⨯=△. 说明:若选择②③,由3c b =得6sin 3sin 12C B ==>,显然不成立,则这样的三角形不存在.6.如图,在四边形ABCD 中,ACB ∠与∠D互补,,31cos =∠ACB AD AB BC AC 4,32===.(1)求AB 的长; (2)求ACD ∠sin . 【答案】(1)4;(2)69.由正弦定理知sin sin AC ADD ACD =Ð,即ACD∠=sin 132232,解得96sin =∠ACD . 7.已知,,a b c 分别是ABC △内角,,A B C 的对边,2sin 2sin sin B A C =. (1)若a b =,求cos ;B (2)若90B =o ,且2,a =求ABC △的面积.【答案】(1)14(2)1.【解析】(1)由题设及正弦定理得22b ac =, 又a b =,所以2,2b c a c ==,由余弦定理可得2221cos 24a cb B ac +-==. (2)由(1)知22b ac =.因为B =90°,所以由勾股定理得222a cb +=.故222a c ac +=,得2c a ==. 所以ABC △的面积为1.【名师点睛】解三角形问题的主要工具就是正弦定理、余弦定理,在解题过程中要注意边角关系的转化,根据题目需要合理选择变形方向,本题主要考查利用正、余弦定理解三角形以及三角形面积的计算,是基础题.8.在△ABC 中,内角,,A B C 所对的边长分别为,,a b c ,且满足22(cos )2ac b A b a -=-. (1)求角B 的大小;(2)若BD 为AC 边上的中线,1129cos ,72A BD ==,求△ABC 的面积. 【答案】(1)3π;(2)103.在△ABC 中,由正弦定理得sin sin c bC B=, 由已知得43sin A =,∵AE BC =,∴22129c a a c =++⋅ ③. 由已知得,43sin 7BAC ∠=,则53sin sin()C A B =+=,由正弦定理得sin 5sin 8c ACB a BAC ∠==∠ ④. 由③④解得5,8c a ==, 故1sin 1032△=⋅⋅∠=ABC S c a ABC . 9. ABC △中,D 是BC 上的点,AD 平分BAC ∠,△ABD 面积是△ADC 面积的2倍. (1)求sin sin BC∠∠;(2)若1AD =,22DC =,求BD 和AC 的长. 【答案】(1)12;(2)2BD =1AC =. 【解析】(1)1sin 2△=⋅∠ABD S AB AD BAD ,1sin 2△=⋅∠ADC S AC AD CAD ,因为2△△=ABD ADC S S ,BAD CAD ∠=∠, 所以2AB AC =. 由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(2)因为::△△=ABD ADC S S BD DC , 所以2BD =.在△ABD 和△ADC 中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.故222222326AB AC AD BD DC +=++=. 由(1)知2AB AC =, 所以1AC =.10.(2016·四川卷文)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cCb B a A sin cos cos =+. (1)证明:sin A sin B =sin C ; (2)若bc a c b 56222=-+,求tan B . 【答案】(1)详见解析;(2)4. 【解析】(1)根据正弦定理,可设(0)sin sin sin a b ck k A B C===>,所以sin A 241cos 5A -=. 由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B , 故tan B =sin cos BB=4. 【名师点睛】本题考查正弦定理、余弦定理等基础知识,考查学生的分析问题的能力和计算能力.在解三角形时,凡是遇到等式中有边又有角,可用正弦定理进行边角互化,一种是化为三角函数问题,一种是化为代数式的变形问题.在角的变化过程中注意三角形的内角和为180︒这个定理,否则难以得出结论.。

高三复习:三角函数模型及解三角形应用举例(含解析答案)

高三复习:三角函数模型及解三角形应用举例(含解析答案)

§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?题型二测量角度问题例2如图,在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.题型三利用三角函数模型求最值例3如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中y>x>0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少?变式如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面间的距离为h.(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒后到达OB,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.2.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 3.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.4.8三角函数模型及解三角形应用举例作业1.如图为一半径是3m的水轮,水轮的圆心O距离水面2m.已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间x(s)满足函数关系y=A sin(ωx+φ)+2(ω>0,A>0),则ω=________,A=________.2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.3.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在点C处测得塔顶A的仰角为60°,求塔高AB.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°,距离为10nmile的C处,并测得渔船正沿方位角为105°的方向,以10nmile/h的速度向某小岛B靠拢,我海军舰艇立即以103nmile/h的速度前去营救,求舰艇的航向和靠近渔船所需的时间.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示); (2)当t 最小时,C 点应设计在AB 的什么位置?6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? (1)答案 30+30 3解析 在△P AB 中,∠P AB =30°,∠APB =15°,AB =60,sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=22×32-22×12=6-24,由正弦定理得PB sin30°=ABsin15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin45°=30(6+2)×22=(30+303)m.(2)解 ①在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1040m.②假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.③由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在⎣⎡⎦⎤125043,62514(单位:m/min)范围内. 题型二 测量角度问题例2 如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.思维点拨 设缉私船t 小时后在D 处追上走私船,确定出三角形,先利用余弦定理求出BC ,再利用正弦定理求出时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t (海里),BD =10t (海里),在△ABC 中,由余弦定理,有 BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =(3-1)2+22-2(3-1)·2·cos120°=6. ∴BC =6(海里).又∵BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin120°103t =12.∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴D =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15(分钟). ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟. 思维升华 测量角度问题的一般步骤(1)在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离; (2)用正弦定理或余弦定理解三角形;(3)将解得的结果转化为实际问题的解.题型三 利用三角函数模型求最值例3 如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中y >x >0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少? 思维点拨 由题图可得:x =cos θ,y =sin θ.列出面积函数后,利用三角函数性质求解,注意θ的范围. 解 (1)设S 为十字形的面积,则S =2xy -x 2=2sin θcos θ-cos 2θ (π4<θ<π2);(2)S =2sin θcos θ-cos 2θ=sin2θ-12cos2θ-12=52sin(2θ-φ)-12,其中tan φ=12, 当sin(2θ-φ)=1,即2θ-φ=π2时,S 最大.所以,当θ=π4+φ2(tan φ=12)时,S 最大,最大值为5-12.思维升华 三角函数作为一类特殊的函数,可利用其本身的值域来求函数的最值.变式 如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h . (1)求h 与θ间关系的函数解析式; (2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的平面直角坐标系,则以Ox为始边,OB 为终边的角为θ-π2,故点B 的坐标为(4.8cos(θ-π2),4.8sin(θ-π2)), ∴h =5.6+4.8sin ⎝⎛⎭⎫θ-π2. (2)点A 在圆上转动的角速度是π30弧度/秒,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin ⎝⎛⎭⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4米.由sin ⎝⎛⎭⎫π30t -π2=1,得π30t -π2=π2,∴t =30秒, ∴缆车到达最高点时,用的最少时间为30秒.课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.答案 π2解析 ∵S =1-12×1×sin α-12×1×cos α-12(1-cos α)(1-sin α)=12-12sin αcos α =12-14sin2α. ∴当α=π2时,S 取到最大值.3.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 答案 3或2 3解析 如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°, 由余弦定理得(3)2=x 2+32-2x ·3·cos30°,整理,得x 2-33x +6=0,解得x =3或2 3.4.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.答案 2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos120°=2800,所以BC =207. 由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos30°-sin ∠ACB sin30°=2114.4.8 三角函数模型及解三角形应用举例作业1.如图为一半径是3m 的水轮,水轮的圆心O 距离水面2m .已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2(ω>0,A >0),则ω=________,A =________.答案 2π153 解析 每分钟转4圈,每圈所需时间T =604=15. 又T =2πω=15,∴ω=2π15,A =3. 2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.答案 203米、4033米 解析 如图,依题意有甲楼的高度为AB =20·tan60°=203(米),又CM=DB =20(米),∠CAM =60°,所以AM =CM ·1tan60°=2033(米),故乙楼的高度为CD =203-2033=4033(米). 3.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30m ,并在点C 处测得塔顶A 的仰角为60°,求塔高AB .解 在△BCD 中,∠CBD =180°-15°-30°=135°,由正弦定理,得BC sin ∠BDC =CD sin ∠CBD,所以BC =30sin30°sin135°=15 2 (m). 在Rt △ABC 中,AB =BC ·tan ∠ACB =152tan60°=15 6 (m).所以塔高AB 为156m.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离为10nmile 的C 处,并测得渔船正沿方位角为105°的方向,以10nmile/h 的速度向某小岛B 靠拢,我海军舰艇立即以103nmile/h 的速度前去营救,求舰艇的航向和靠近渔船所需的时间.解 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t .在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC ·cos120°,可得:(103t )2=102+(10t )2-2×10×10t cos120°.整理得:2t 2-t -1=0,解得t =1或t =-12(舍去). 所以舰艇需1小时靠近渔船,此时AB =103,BC =10. 在△ABC 中,由正弦定理得:BC sin ∠CAB =AB sin120°, 所以sin ∠CAB =BC ·sin120°AB =10×32103=12. 所以∠CAB =30°.所以舰艇航行的方位角为75°.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示);(2)当t 最小时,C 点应设计在AB 的什么位置?解 (1)在△BCD 中,∵∠BCD =θ,∠B =π3,BD =l , ∴BC =l sin (2π3-θ)sin θ,CD =3l 2sin θ, ∴AC =AB -BC =l -l sin (2π3-θ)sin θ, 则t =AC 3v +CD v =l 3v -l sin (2π3-θ)3v sin θ+3l 2v sin θ(π3<θ<2π3). (2)t =l 6v (1-3cos θsin θ)+3l 2v sin θ=l 6v +3l 6v ·3-cos θsin θ. 令m (θ)=3-cos θsin θ,θ∈(π3,2π3),则m ′(θ)=1-3cos θsin 2θ. 令m ′(θ)=0,得cos θ=13,设cos θ0=13,θ0∈(π3,2π3), 则θ∈(π3,θ0)时,m ′(θ)<0;当θ∈(θ0,2π3)时,m ′(θ)>0,∴当cos θ=13时,m (θ)取得最小值22,此时BC =6+48l . 故当BC =6+48l 时货物运行时间最短. 6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.规范解答解 (1)设相遇时小艇的航行距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[4分] 故当t =13时,S min =103,v =10313=30 3.[6分] 即小艇以303海里/小时的速度航行,相遇小艇的航行距离最小.[7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t2.[9分] ∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.[10分] 又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.[12分] 此时,在△OAB 中,有OA =OB =AB =20.故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]。

解直角三角形的应用题(经典体例)

解直角三角形的应用题(经典体例)

BS ABDC A 解直角三角形的应用题(经典体例)1、如图,在山顶上有一电视塔,为了测量山高,在地面上引一条基线EDC ,在M 处用测角仪测得塔顶的仰角为45º,在N 处测得山顶的仰角为30º,仪器高为1.5米,CD=50米,又已知电视塔高为250米,求山高BE (结果保留根号)2、如图,某国侦察机B飞抵我国近海搞侦察活动,我战斗机A奋起拦截,地面雷达C测得:当两机处在同一方向,且在同一高度时,它们的仰角分别为∠DCA=16°,∠DCB=15°,它们与雷达的距离分别为AC=80千米,BC=81千米,求此时两机距离是多少千米?(精确到0.01千米)sin150.26,cos150.97,tan150.27,sin160.28,cos160.96,tan160.29︒≈︒≈︒≈︒≈︒≈︒≈3、A城气象台测得台风中心在A城正西方向300千米的B处,以每小时千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)如果A城受到台风影响,那么受影响有多长时间?4、如图,已知灯塔S周围15海里范围内有暗礁,一艘轮船以每小时20海里速度向正北方向航行,在A处测得灯塔S在轮船北偏东30°的方向上,1小时后轮船航行到B处,在B处测得灯塔S在船北偏东75°的方向上.(1) 求灯塔S与B的距离;(2) 如果轮船不改变航向,继续向正北航行有无触礁危险?为什么?A B E D C MNF E D C B A 604530D E F C BA EF D C B A 5、浦东机场沿东海岸的拦水坝,拟将背水坡的坝顶加宽2米,坡度由原来的1∶2改成1∶2.5,已知坝高6米,坝长100米. (1) 求加宽部分横断AFEB的面积;(2) 完成这一工程需要多少方材料?6、如图,有一段防洪大堤,其横断面为梯形ABCD,AB∥DC,斜坡AD的坡度为1∶1.2,斜坡BC的坡度为1∶0.8,大堤顶宽DC为6米,为了增强抗洪能力,现将大堤加高,加高部分的横断面为梯形DCEF,EF∥DC,点E、F分别在AD、BC的延长线上.当新大堤顶宽EF为3.8米时,大堤加高了多少米?7、如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着坡角为30°的山坡前进1000米到达D处,在D处测得山顶B的仰角为60°,求山的高度.8、如图,公路L与正北方向的夹角为60°,甲乙两校分别位于公路边的A、B两点处,在甲校的正东方向千米的C处有一雕塑,乙校在该雕塑的北偏东α的方向上,已知tan α=,求甲乙两校的距离.。

沪科版数学九年级上册23.2解直角三角形及其应用同步练习(含答案)

沪科版数学九年级上册23.2解直角三角形及其应用同步练习(含答案)

23.2 解直角三角形及其应用一、选择题(共4题)1.如图,已知一商场自动扶梯的长为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tan θ的值等于().A. B. C. D.2.如图,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD =145°,BD=500 m,∠D=55°,要A,C,E成一直线,那么开挖点E离点D的距离是().A.500sin 55° m B.500cos 55° mC.500tan 55° m D.3.等腰三角形的两条边长分别是4 cm、9 cm,则等腰三角形的底角的余弦值是( )A. B. C. D.4.如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物CD的高度为( )A.aB.atanαC.a(sinα-cosα)D.a(tanβ-tanα)二、填空题(共5题)5.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6 m,则斜坡上相邻两树间的坡面距离是__________ m.6.如图,小明在操场上距离旗杆18 m的C处,用测角仪测得旗杆AB的顶端A的仰角为30°,已知测角仪CD的高为1.4 m,那么旗杆AB的高为________ m.(保留三位有效数字)7.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高度(如图),他测得CB=10米,∠ACB=50°,请你帮他算出树高AB,约为________________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)三、计算与解答题(共4题)8. 如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程(计算过程和结果均不取近似值).9.如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6 km,仰角是43°.1 s后,火箭到达B点,此时测得BC的距离是6.13 km,仰角为45.54°,解答下列问题:(1)火箭到达B点时距离发射点有多远(精确到0.01 km)?(2)火箭从A点到B点的平均速度是多少(精确到0.1 km/s)?10.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1 m)11.关于三角函数有如下的公式:sin(α+β)=sin αcos β+cos αsin β,①cos(α+β)=cos αcos β-sin αsin β,②tan(α+β)=(1-tan α·tan β≠0).③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如tan 105°=tan(45°+60°)==-(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α为60°,底端C点的俯角β为75°,此时直升飞机与建筑物CD的水平距离BC为42米,求建筑物CD的高.参考答案1.A2.解析:∵∠E=180°-55°-35°=90°,∴DE=BD·cos D=500cos 55°(m).答案:B3.解析:根据构成三角形的条件,该等腰三角形的三边长为9、9、4,∴其底角的余弦值为.答案:C4.解析:过D点作AB的垂线交AB于E点,在Rt△ADE中,∠ADE=α,DE=a,∴AE=a·tanα.在Rt△ABC中,∠ACB=β,BC=a,∴AB=a·tanβ.∴CD=AB-AE=a·tanβ-a·tanα.答案:D5.6.解析:AE=DE·tan 30°=18×≈10.4(m),EB=1.4 m,∴AB=AE+BE=10.4+1.4=11.8(m).答案:11.87.解析:AB=BC·tanC=12(米).答案:128.解:由已知,可得∠ACB=30°.在Rt△ABC中,∠ACB=30°,AB=500.∵tan∠ACB=,∴BC==.因此该军舰行驶的路程为米.9.解:(1)在Rt△OCB中,sin 45.54°=,OB=6.13×sin 45.54°≈4.38(km),答:火箭到达B点时距发射点约4.38 km.(2)在Rt△OCA中,sin 43°=,∴OA=6×sin 43°≈4.09(km),v=(OB-OA)÷t=(4.38-4.09)÷1≈0.3(km/s).答:火箭从A点到B点的平均速度约为0.3 km/s.10.解:小亮的说法正确.在△ABD中,∠ABD=90°,∠BAD=18°,BA=10,∴tan∠BAD=.∴BD=10×tan 18°.∴CD=BD―BC=10×tan 18°-0.5.在△ABD中,∠CDE=90°-∠BAD=72°,∵CE⊥ED,∴sin∠CDE=.∴CE=sin∠CDE×CD=sin 72°×(10×tan 18°-0.5)≈2.6(m).答:CE为2.6 m,即限高为2.6 m.11.解:过点D作DE⊥AB于E,依题意,在Rt△ADE中,∠ADE=∠α=60°,AE=ED·tan 60°=BC·tan 60°=.在Rt△ACB中,∠ACB=∠β=75°,AB=BC·tan 75°.∵tan 75°=tan(45°+30°)==,∴AB=42×(2+)=84+ ,CD=BE=AB-AE=84+ =84(米).答:建筑物CD的高为84米.。

解三角形专题练(2):求值问题(Word含答案)

解三角形专题练(2):求值问题(Word含答案)

解三角形专题练(2):求值问题(大题)一、强化训练1.(2021·新高考1)记ABC ∆是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.2.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .3.(2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .4.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin Bsin C;(2)若∠BAC =60°,求∠B .5.(2014·全国卷Ⅱ)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.6.在△ABC 中,23BAC π∠=,D 是BC 上一点,AD ⊥AC 且AD=1. (1)若3AB =,求BC ; (2)求21AB AC+.7.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,△ABC 的面积为S ,设向量⎪⎭⎫ ⎝⎛--=1,22b a m ,⎪⎭⎫ ⎝⎛--=234,3c S n ,且m n ⊥. (1)求角A ;(2)求sin()6a C b cπ++的值.8.如图,在平面四边形ABCD 中,45DCB ∠=︒,DB ⊥AD ,CD=2.(1)若25BD =,求△BDC 的面积; (2)若5cos 5ADC ∠=-,2159AD =,求角A 的大小.9.已知在四边形ABCD 中,BC ⊥CD ,BC AC 3=,32π=∠ABC . (1)求ACB ∠的值;(2)若3BC =,13AD =,求BD 的长.10.平面凸四边形ABCD 中,90BAD BCD ∠=∠=︒,AD=3,AB=4.(1)若45ABC ∠=︒,求CD ; (2)若25BC =,求AC .11.如图,在平面四边形ABCD 中,AD=1,CD=2,7AC =.(1)求cos CAD ∠的值; (2)若7cos 14BAD ∠=-,21sin 6CBA ∠=,求BC 的长.12.已知四边形ABCD 中,AB ⊥AD ,6BDC π∠=,AD=2,DC=4.(1)若5cos 3ABD ∠=,求BD ,BC ; (2)若C ADC ∠=∠,求sin CBD ∠.13.如图,在四边形ABCD 中,对角线AC ,BD 交于点P ,sin sin PA BAC PC ACB ⋅∠=⋅∠(1)求证:sin sin ABD CBD ∠=∠;(2)若120BAD ∠=︒,60BCD ∠=︒,BC=3CD=3,求AB .14.在平面四边形ABCD 中,,2,23ABC DAC ACB ADC ππ∠=∠=∠∠=.(1)若,36ACB BC π∠==,求BD ;(2)若3DC AB =,求cos ACB ∠.15.(2021•福建宁德三模) 在△ABC 中,2=AB ,5=AC , 45=B .(1)求△ABC 的面积;(2)在边BC 上取一点D ,使得54cos =∠ADB ,求DAC ∠tan .16.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足(2)cos cos a c B b C -=, (1)求角B 的大小; (2)若△ABC 的面积为334且3b =,求a+c 的值.17.(2021•安徽淮北二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =b cos C ﹣c cos B . (1)求证:△ABC 是直角三角形;(2)若32=+CA CB ,且AB =2,求△ABC 的面积.18. (2019·湖南衡阳第三次联考)如图,在平面四边形ABCD 中,0<∠DAB <2π,AD =2,AB =3,△ABD 的面积为332,AB ⊥BC .(1)求sin ∠ABD 的值; (2)若∠BCD =32π,求BC 的长.19.已知在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,3b sin C =c cos B +c.(1) 求角B 的大小;(2) 若b 2=ac ,求1tan A +1tan C 的值.答案与解析:1.【解析】:(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C cABC b=∠, 所以acBD b=,又2b ac =,所以BD b =,得证. (2)由题意知:2,,33b b BD b AD DC ===, 所以22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅, 因为ADB CDB π∠=-∠,所以2222221310994233b bc a b b --=,整理得2221123b a c +=, 又2b ac =,所以42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=; 综上,7cos 12ABC ∠=. 2.[解]:(1)因为(sin B -sin C )2=sin 2 A -sin B sin C , 所以sin 2 B +sin 2 C -2sin B sin C =sin 2 A -sin B sin C , 所以由正弦定理得:b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12, 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由2a +b =2c ,及正弦定理得2sin A +sin(120°-C )=2sin C , 即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 由于0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. 3.[解]:(1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB.由题设知,5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°,所以cos ∠ADB =1-225=235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2·BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25. 所以BC =5.4.[解]:(1)由正弦定理,得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD .因为AD 平分∠BAC ,BD =2DC ,所以sin B sin C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B . 由(1)知2sin B =sin C ,所以tan B =33, 所以∠B =30°.5.[解]:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .② 由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =60sin 23212121⋅⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯=2 3. 6.【解析】:(1)因AD ⊥AC 且AD=1,所以在△ACD 中,22221CD AD AC AC =+=+,① 因为23BAC π∠=,AD ⊥AC ,所以6BAD π∠=, 在△ABD 中,由余弦定理可得2232cos 31231162BD AB AD AB AD π=+-⋅⋅=+-⨯⨯⨯=, 在△ABC 中,由余弦定理可得22222cos 3BC AB AC AB AC π=+-⋅⋅, 即2221(1)323332CD AC AC AC AC +=++⋅⋅=++,② 由①②可得3AC =,CD=2,所以BC=BD+CD=1+2=3,所以BC=3; (2)因为23BAC π∠=,所以3B C π=-, 在△ABC 中,由正弦定理可得sin sin sin()3AB AC ACC B C π==-,在Rt ADC ∆中,1cos tan tan sin AD CAC C C C ===,所以cos sin sin()sin()33AC C AB c C C ππ=⋅=--,所以2sin()21sin 3cos cos C C AB ACC C π-+=+==所以21AB AC+7.【解析】:(1)根据题意,向量⎪⎭⎫ ⎝⎛--=1,22b a m,⎪⎭⎫ ⎝⎛-=4,3S n , 若m n ⊥,则2222223()(43)3()40m n a b S c b c a S ⋅=----=+--=,222)2sin b c a bc A +-=sin A A =, 故tan A 3A π=;(2)根据题意,由(1)的结论,3A π=,则23BC π+=,则有23B C π=-, 则213sin sin sin()sin sin sin sin )3sin()3226B C CC C C C CC C C C ππ+=-+++++, 所以sin()sin sin())16626sin sin 2)6a C A C Cb cB CC ππππ+⋅++===+++,故sin()162a Cbc π+=+.8.【解析】:(1)因为BD =sin sin sin BD CD BCBCD CBDBDC==∠∠∠,45DCB ∠=︒,可得sin CBD∠=, 由余弦定理可得222cos 2BC CD BD DCB BC CD +-∠==⋅,可得BC = 所以11sin 24222BDC S BC CD BCD ∆=⨯⨯⨯∠=⨯⨯=.(2)因为DB ⊥AD ,所以90ADB ∠=︒,5cos cos()sin 25ADC BDC BDC π∠=+∠=-∠=-,即5sin 5BDC ∠=, 因为2sin 1BDC cos BDC ∠=-∠,且BDC ∠为锐角,所以25cos 5BDC ∠=, 故sin sin[()]sin()DBC BCD BDC BCD BDC π∠=-∠+∠=∠+∠sin cos cos sin BCD BDC BCD BDC =∠∠+∠∠ 可得310sin 10DBC ∠=, 在△BCD 中,由正弦定理sin sin CD BD DBC DCB =∠∠,可得23102102BD=,可得253BD =, 因为tan 3BDA AD==, 又A 为锐角,所以60A =︒.9.【解析】:(1)在△ABC 中,由正弦定理可得2sin sin3AC BCBAC π=∠,3AC BC =,可得1sin 2BAC∠=,因为BAC ∠为锐角,所以6BAC π∠=,因此6ACB ABC BAC ππ∠=-∠-∠=; (2)因为BC ⊥CD ,所以2BCD π∴∠=,3ACD π∴∠=. 设x CD =,在△ACD 中,由余弦定理得2222cos3ADAC CD AC CD π=+-⋅⋅,即()2221133232x x =+-⨯⨯⨯⇒2340x x --=,因为0>x ,解得4x =. 因此,()22223419BD BC CD =+=+=.10.【解析】:(1)连接BD ,Rt △BAD 中,AB=4,AD=3,90BAD ∠=︒,45ABC ∠=︒, 所以3sin 5ABD ∠=,4cos 5ABD ∠=, 所以2432sin sin(45)()25510DBC ABD ∠=︒-∠=⨯-=, Rt △BCD 中,225102CD =⨯=; (2)连接AC ,由(1)知,BD=5,3sin 5ABD ∠=,4cos 5ABD ∠=,Rt △BCD中,由BC =BD=5,得CD =,所以sin CBD ∠=,cos CBD ∠所以43cos cos()55ABC ABD CBD ∠=∠+∠==, △ABC中,由余弦定理得,2222cos 16202420AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯=,所以AC =11.【解析】:AD=1,CD=2,AC (1)在△ADC 中,由余弦定理,得CDAC CD AD AC CAD ⋅-+=∠2cos 222.所以cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,因为772cos =∠CAD ,147cos -=∠BAD , 所以721sin =∠CAD ,14213sin =∠BAD ,所以23sin =α, 在△ABC 中,由正弦定理,sin sin BC ACCBAα=∠,解得:BC=3. 即BC 的长为3.12.【解析】:(1)在Rt △ABD中,由于cos ABD ∠=,所以2sin 3ABD ∠==, 故3sin ADBD ABD==∠,在△BDC中,利用余弦定理:2222cos 25BC BD CD BD DC BDC =+-⋅⋅∠=-,故BC =(2)设CBD x ∠=,由于C ADC ∠=∠,由6BDC π∠=,所以56C x π∠=-,6ABD x π∠=-, 在Rt △ABD 中,由于AD=2,所以2sin sin()6AD BD ABD x π==∠-,在△BDC 中,由正弦定理:sin sin BD CDC CBD =∠∠⇒45sin sin()6BD x x π=-, 所以245sin sin()sin()66xx x ππ=--,所以24sin 2sin 10x x --=,由于sin 0x >,得:sin xsin CBD ∠.13.【解析】:(1)证明:在△PAB 中,由正弦定理得sin sin PA PBABD BAC=∠∠,即sin sin PA BAC PB ABD ⋅∠=⋅∠, 同理,△PBC 中有sin sin PC ACB PB CBD ⋅∠=⋅∠,又sin sin PA BAC PC ACB ⋅∠=⋅∠,所以sin sin PB ABD PB CBD ⋅∠=⋅∠, 可得:sin sin ABD CBD ∠=∠,得证.(2)因为120BAD ∠=︒,60BCD ∠=︒,BC=3CD=3,在△BCD中,由余弦定理得BD ===, 由正弦定理得sin sin CD BDCBD BCD=∠∠,所以1sin sin CD BCD CBD BD ⋅∠∠===,在△ABD中,由正弦定理得sin 1sin BD ABDAD BAD⋅∠===∠, 由余弦定理得222cos 2AB AD BD BAD AB AD +-∠=⋅,即217122AB AB +-=-,解得AB=2.14.【解析】:(1)如右图,,2,23ABC DAC ACB ADC ππ∠=∠=∠∠=,,6ACB BC π∠==可得3DAC π∠=,在Rt △ABC 中,tan16AB BC π==,2cos6BC AC π==,可得△DAC 为边长为2的等边三角形,在△ABD 中,23DAB π∠=, 可得72121241cos 222=⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅⋅-+=DAB AD AB AD AB BD ;(2)如右图,设AB x =,则DC ,ACB α∠=,则2DAC α∠=, 在Rt △ABC 中,sin sin AB xAC αα==, 在△ACD 中,由正弦定理可得sin sin 2AC CDADC α=∠, 即ααααcos sin 232sin 323sin x x x ==⋅⇒3cos 4α=,即3cos 4ACB ∠=.15.【解析】:法一:(1)由余弦定理得B BC AB BC AB AC cos 2222⋅⋅-+=,由题设知,45cos 22252⋅⨯-+=BC BC ,所以0322=--BC BC ,又0>BC ,所以BC=3, 所以23223221sin 21=⨯⨯⨯=⋅⋅=∆B BC AB ABC S (2)在△ABC 中,由正弦定理得BACC AB sin sin =,所以515222sin sin =⋅==AC B AB C , 又AB<AC ,所以40π<<C ,所以21tan =C , 在△ABD 中,54cos =∠ADB ,所以43tan =∠ADB , 因为C ADB DAC ∠-∠=∠,所以()112214312143tan tan 1tan tan tan tan =⨯+-=∠⋅∠+∠-∠=∠-∠=∠C ADB C ADB C ADB DAC 法二: (1)同解法一.(2)在△ABC 中,由正弦定理得BACBAC n BC sin si =∠,所以101035223sin sin =⨯=⋅=∠AC B BC BAC , 因为AC AB <,4π=B ,所以40π<<C ,所以2π>∠BAC所以3tan -=∠BAC , 在△ABD 中,因为54cos =∠ADB ,所以43tan =∠ADB 在△ABD 中,()ADB B BAD ∠+∠-=∠π,所以()74311431tan tan 1tan tan tan tan -=⨯-+-=∠⋅∠-∠+∠-=∠+∠-=∠ADB B ADB B ADB B BAD , 因为BAD BAC DAC ∠-∠=∠, 所以()112tan tan 1tan tan tan tan =∠⋅∠+∠-∠=∠-∠=∠BAD BAC BAD BAC BAD BAC DAC .16.【解析】:(1)由A B C π++=,即C B A π+=-,所以sin()sin()sin C B A A π∴+=-=, 将(2)cos cos a c B b C -=,利用正弦定理化简得:(2sin sin )cos sin cos A C B B C -=, 所以2sin cos sin cos sin cos sin()sin A B C B B C C B A ∴=+=+=, 在△ABC 中,0A π<<,sin 0A >,所以1cos 2B ∴=,又0B π<<,则3B π=(2)所以△ABC,sin sin 3B π==,所以1sin 2S ac B ∴===,所以ac=3,又b =,1cos cos 32B π==, 所以由余弦定理2222cos b a c ac B =+-得:2222()3()93a c ac a c ac a c +-=+-=+-=, 所以2()12a c ∴+=,则a c +=. 17.【解析】:(1)证明:由正弦定理知,CcB b A a sin sin sin ==, 因为a =b cosC ﹣c cos B ,所以sin A =sin B cos C ﹣sin C cos B , 即sin B cos C +cos B sin C =sin B cos C ﹣sin C cos B ,所以cos B sin C =0, 因为B ,C ∈(0,π),所以cos B =0,即2π=B ,故△ABC 是直角三角形.(2)解:()BA CB BA CB CB CA CB +=++=+2,32=+1242=⋅+==+BA CB CB , 因为2π=B ,AB =2,所以1222=+2=,所以△ABC 的面积2222121=⨯⨯=⋅=BC AB S . 18.【解】:(1)因为△ABD 的面积S =12AD ×AB sin ∠DAB =12×2×3sin ∠DAB =332,所以sin ∠DAB =32.又0<∠DAB <π2,所以∠DAB =π3,所以cos ∠DAB =cos π3=12. 由余弦定理得BD =AD 2+AB 2-2AD ·AB cos ∠DAB =7, 由正弦定理得sin ∠ABD =AD sin ∠DAB BD =217.(2)因为AB ⊥BC ,所以∠ABC =π2, sin ∠DBC =sin ⎪⎭⎫⎝⎛∠-ABD 2π=cos ∠ABD =1-sin 2∠ABD =277. 在△BCD 中,由正弦定理CD sin ∠DBC =BDsin ∠DCB 可得CD =BD sin ∠DBC sin ∠DCB =433.由余弦定理DC 2+BC 2-2DC ·BC cos ∠DCB =BD 2,可得3BC 2+43BC -5=0, 解得BC =33或BC =-533(舍去). 故BC 的长为33.19.【解】:(1) 由正弦定理得3sin B sin C =cos B sin C +sin C , 在△ABC 中,因为sin C>0,所以3sin B -cos B =1,所以216sin =⎪⎭⎫⎝⎛-πB . 因为0<B<π,所以-π6<B -π6<5π6,所以B -π6=π6,B =π3.(2) 因为b 2=ac ,所以由正弦定理可得sin 2B =sin A sin C ,1tan A +1tan C =cos A sin A +cos C sin C =cos A sin C +sin A cos C sin A sin C =sin (A +C )sin A sin C =sin Bsin A sin C , 所以1tan A +1tan C =sin B sin 2B =1sin B =132=233.。

(压轴题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)(2)

(压轴题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)(2)

一、选择题1.在ABC 中,2sin 22C a b a-=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形D .直角三角形2.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B C .3 D .3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且c =3C π=,则a =( )A .1B C .1 D4.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c △ABC 的面积Scos A ,则a =( )A .1B .C .D .5.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 16.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( )A .63B .3C .3D .137.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知a =cos sin b A B =,则A =( )A .12πB .6πC .4πD .3π 8.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若3013C c a =︒==,,,则ABC ∆的面积为A .3 B .3 C .34D .329.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭10.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan 7C =52cos 8A =,32b =ABC 的面积为( ) A .37B 37C 37D 37二、填空题13.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.14.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若223a b bc -=,sin 23C B =,则A =____.15.甲船正离开岛A 沿北偏西10︒的方向以每小时1海里的速度航行,乙船在岛A 处南偏西50︒的B 处,且AB 的距离为2海里,若乙船要用2小时追上甲船,则乙船速度大小为每小时________海里.16.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且a x =,3b =,60B =,若ABC ∆有两解,则x 的取值范围是__________.17.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.18.在ABC 中,60,12,183ABCA b S=︒==,则sin sin sin a b cA B C____________.19.如图,要计算某湖泊岸边两景点B 与C 的距离,由于受地形的限制,需要在岸上选取A 和D 两点,现测得5km AB =,7km AD =,60ABD ∠=︒,15CBD ∠=︒,120BCD ∠=︒,则两景点B 与C 的距离为________km.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,5b c =,sin 1c A =.点D 是AC的中点,BD AB ⊥,求c 和ABC ∠. 22.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 23.在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 2b c +=,______,求A 和C .注:若选择多个条件作答,按第一个解答计分.24.在ABC 中,,,a b c 分别是角,,A B C 的对边.若2,cos b c C -==,再从条件①与②中选择一个作为已知条件,完成以下问题: (1)求,b c 的值;(2)求角A 的值及ABC 的面积.条件①:cos cos a B b A +=;条件②:2cos 2b C a =-. 25.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.26.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若a =4b c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式、正弦定理可得出sin sin cos B A C =,利用两角和的正弦公式可得出cos sin 0A C =,求出A 的值,即可得出结论.【详解】21cos sin 222C C a b a--==,cos b a C ∴=,由正弦定理可得sin sin cos B A C =, 所以,()sin cos sin sin cos cos sin A C A C A C A C =+=+,则cos sin 0A C =,0C π<<,则sin 0C >,cos 0A ∴=,0A π<<,2A π∴=,因此,ABC 为直角三角形.故选:D. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.B解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴3sin3a π==.②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.A解析:A由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cos A =25,运用余弦定理可求得边a . 【详解】因为b =2,c =5,S =5cos A =12bc sin A =5sin A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A =25. 所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×25=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()22sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,32AB =3BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos 3BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性7.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,1cos A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=,由正弦定理有sin sin a b A B=, 又a =即1sin cos A A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.8.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,,由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去). ∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.10.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.B解析:B 【分析】结合同角三角函数的基本关系可求出14sin 4C =,2cos 4C =,14sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】 因为sin tan 7cos C C C ==,且22sin cos 1C C +=,解得14sin C =,2cos C =, 又52cos A =,所以214sin 1cos A A =-=,故37sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=. 因为sin sin a bA B =,32b =,故sin 2sin b A a B==, 故111437sin 2322242ABC S ab C =⨯=⨯⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.二、填空题13.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角 解析:6【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=,∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的,可得6x x=,解得x =BC,. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.14.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解 解析:6π【分析】由sinC B =,根据正弦定理“边化角”,可得c =,根据余弦定理2222cos a b c bc A=+-,结合已知联立方程组,即可求得角A .【详解】sin C B =根据正弦定理:sin sin b cB C= ∴可得c =根据余弦定理:2222cos ab c bc A =+- 由已知可得:22a b-=故可联立方程:222222cos c a b c bc A a b ⎧=⎪=+-⎨⎪-=⎩解得:cos 2A =. 由0A π<<∴6A π=故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.15.【分析】由题意画出示意图三角形(假设在处追上)然后设乙船速度为由此表示出的长度求出的长度在借助于余弦定理求出的长则速度可求【详解】解:由题意设乙船的速度为且在处乙船与甲船相遇做出图形如右:所以由题意 解析:3【分析】由题意画出示意图三角形ABC (假设在C 处追上),然后设乙船速度为x ,由此表示出BC 的长度,求出AC 的长度,在借助于余弦定理求出BC 的长,则速度可求. 【详解】解:由题意,设乙船的速度为x ,且在C 处乙船与甲船相遇, 做出图形如右:所以1801050120BAC ∠=︒-︒-︒=︒.由题意知2AB =,122AC =⨯=,2BC x =,120BAC ∠=︒.在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-∠. 即2444222cos12012x =+-⨯⨯︒=, 所以23x =,3x =/小时). 3 【点睛】本题考查解三角形的应用举例问题,根据题意建立合适的解三角形模型,运用正余弦定理构造方程求解,属于中档题.16.【分析】利用正弦定理得到再根据有两解得到计算得到答案【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理有两解意在考查学生的计算能力 解析:(3,23)【分析】利用正弦定理得到sin 23A =,再根据ABC ∆有两解得到sin sin 123B A <=<,计算得到答案.【详解】由正弦定理得:sinsin sin sin a b x A A B A =⇒== 若ABC ∆有两解:sin sin 13B A x <=<⇒<<故答案为(3, 【点睛】本题考查了正弦定理,ABC ∆有两解,意在考查学生的计算能力.17.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值. 【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BDCBD BCD=∠∠,所以()3sin sin 60x x θθ=-,所以()13sin sin 60cos sin 22θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.18.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.19.【分析】在中根据由余弦定理解得然后在中利用正弦定理求解【详解】在中因为由余弦定理得整理得解得或(舍去)在中因为所以由正弦定理得:所以故答案为:【点睛】本题主要考查余弦定理和正弦定理的应用还考查了运算【分析】在ABD △中,根据5km AB =,7km AD =,60ABD ∠=︒,由余弦定理解得8BD =,然后在BCD △中,利用正弦定理sin sin BD BCBCD BDC=∠∠求解.【详解】在ABD △中,因为5km AB =,7km AD =,60ABD ∠=︒, 由余弦定理得2222cos AD AB BD AB BD ABD =+-⋅⋅∠, 整理得249255BD BD =+-, 解得8BD =或3BD =-(舍去),在BCD △中,因为15CBD ∠=︒,120BCD ∠=︒, 所以45BDC ∠=︒, 由正弦定理得: sin sin BD BCBCD BDC=∠∠,所以sin 45sin120BD BC ⋅︒==︒.故答案为:3【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 452CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.c =34ABC π∠=. 【分析】由勾股定理求出BD ,再由sin BDA AD=,sin 1cA =,b =求出c =5b =,再由余弦定理求出a ,最后由正弦定理求出ABC ∠. 【详解】解:在直角三角形ABD 中,22222224b c BD AD AB c ⎛⎫=-=-= ⎪⎝⎭,所以2c BD =.所以5sin BD A AD ==. 又因为sin 1c A =,所以5c =由5b c =得,5b =.因为5sin A =,0,2A π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin A A =-=. 在ABC 中,由余弦定理,得22255(5)255105a =+-⨯⨯⨯= 由正弦定理,得sin sin a b A ABC =∠,即510sin 5ABC =∠2sin ABC ∠=. 又因为,2ABC ππ⎛⎫∠∈ ⎪⎝⎭,所以34ABC π∠=. 【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c 和ABC ∠.22.B =30°,90C =,3b =23c =.【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可. 【详解】 由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒, 由正弦定理sin sin sin b c aB C A==, ∴sin 3sin 303sin sin 60a B b A ︒===︒sin 3sin 9023sin sin 60a C c A ︒===︒23.选择见解析;3A π=,512C π=. 【分析】若选择条件①,先由正弦定理和余弦定理求出角A ,再利用正弦定理化简22a b c +=,把23B C π=-代入,化简求值即可;若选择条件②,利用正弦定理和二倍角公式解出sin2A的值,进而得出角A ; 若选择条件③,由正弦定理结合两角和与差的正弦公式可求出tan A ,进而得出角A 和C .【详解】(1)选择条件①,由()22sin sin sin sin sin B C A B C -=-及正弦定理知,()22b c a bc -=-,整理得,222b c a bc +-=;由余弦定理可得,2221cos 222b c a bc A bc bc +-===;又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=(2)选择条件②,因为A B C π++=,所以222B C Aπ+=-; 由sinsin 2B C b a B +=得,cos sin 2Ab a B =由正弦定理知,sin cos sin sin 2sin cos sin 222A A AB A B B ==; 又sin 0B >,sin02A >,可得1sin 22A =;又因为()0,A π∈,所以,26A π=,故3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=. (3)选择条件③,由sin cos 6a B b A π⎛⎫=-⎪⎝⎭及正弦定理知, sin sin sin cos 6A B B A π⎛⎫=- ⎪⎝⎭又sin 0B >,从而1sin cos sin 62A A A A π⎛⎫=-=+ ⎪⎝⎭,解得tan A =又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. 【点睛】方法点睛:本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,解三角形问题中可以应用正余弦定理的题型有: 1.已知一边和两角;2.已知两边和其中一边的对角;3.已知两边和它们所夹的角;4.已知三边.24.(1)6,4b c ==; (2)3A π=,S =【分析】(1)选用条件①:由正弦定理求得a =2b c -=,即可求解;选用条件②:由正弦定理求得cos 14B =,得出sin 14B =,再由cos 7C =,求得得sin C =(2)由余弦定理求得A 的值,结合面积公式,即可求解. 【详解】(1)选用条件①:因为cos cos 14a Bb A ac +=,由正弦定理得sin cos sin cos sin A B B A C +=,可得sin sin C C =,又因为(0,)C π∈,所以sin 0C ≠,可得a =又由cos C =,由余弦定理得2222a b c ab +-=, 将2b c -=代入上式,解得6,4b c ==.选用条件②:因为2cos 27b C a =-,由正弦定理得2sin cos 2sin 7B C A C =-2sin()7B C C =+-2(sin cos cos sin )B C B C C =+即2cos sin sin 07B C C -=,又因为(0,)C π∈,所以sin 0C ≠,可得cos B =,则sin B =,又由cos C =,可得221sin 1cos C C由正弦定理sin sin b cB C =,得sin 3sin 2b Bc C ==, 又由2b c -=,可得6,4b c ==.(2)由余弦定理得2221cos 22b c a A bc +-==, 因为0A π<<,所以3A π=.所以ABC 的面积为11sin 64222S bc A ==⨯⨯⨯= 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 25.(1)23π;(2)1. 【分析】(1)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小;(2)由题意结合(1)的结论和三角函数的性质可得sin sin B C +的最大值.【详解】(1)由己知,根据正弦定理得()()2222a b c b c b c =+++ 即222a b c bc =++由余弦定理得2222cos a b c bc A =+- 故1cos 2A =-,所以23A π=. (2)由(1)得:1sin sin sin sin sin sin 3223B C B B B B B ππ⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭故当6B π=时,sin sin B C +取得最大值1.【点睛】方法点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.26.(1)23π;(2 【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解.【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=,整理得sin cos sin cos 2sin cos 0A C C A B A ++=,即:()sin 2sin cos 0A C B A ++=,所以sin 2sin cos 0B B A +=,∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=.(2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-,∴4bc =,∴ABC 的面积为112sin 4sin 223S bc A π==⨯⨯= 【点评】 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.。

中考专题训练(解直角三角形应用题)—解析版

中考专题训练(解直角三角形应用题)—解析版

答:这两座建筑物顶端 C 、 D 间的距离为 20 39m .
【解答】解:过点 C 作 CD ⊥ AB 于点 D ,由题意得: BCD = 30 ,设 BC = x ,则:
在 RtBCD 中, BD = BC sin 30 = 1 x , CD = BC cos 30 = 3 x ;
2
2
AD = 30 + 1 x , 2
则 AD = AE + EB = 20 3 + 20 = 20( 3 + 1)(m) ,
在 RtADC 中, A = 30 , DC = AD = (10 + 10 3)m .
2 答:塔高 CD 为 (10 + 10 3)m .
测得屋檐 E 点的仰角为 60 ,房屋的顶层横梁 EF = 12m , EF / /CB , AB 交 EF 于点 G (点 C , D , B 在同一
∴tan30°= x , x+6
解得 x≈8.22, 根据题意可知: DM=MH=MN+NH, ∵ MN=AC=10, 则 DM=10+8.22=18.22, ∴ CD=DM+MC=DM+EF=18.22+1.6=19.82≈19.8(m). 答:建筑物 CD 的高度约为 19.8m.
9.(2020·四川眉山)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为 20 米的发射塔 AB ,如 图所示,在山脚平地上的 D 处测得塔底 B 的仰角为 30 ,向小山前进 80 米到达点 E 处,测得塔顶 A 的仰角为 60 ,求小山 BC 的高度.
AD2 + CD2 = AC 2 ,即: (30 + 1 x)2 + ( 3 x)2 = 702 ,

九年级数学下册 28.2.2 应用举例 第2课时 与方向角、坡度有关的解直角三角形应用题练习 (新版)新人教版

九年级数学下册 28.2.2 应用举例 第2课时 与方向角、坡度有关的解直角三角形应用题练习 (新版)新人教版

第2课时与方向角、坡度有关的解直角三角形应用题01 基础题知识点1 利用方向角解直角三角形1.(石家庄校级模拟)如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里,那么该船继续航行多少海里可使渔船到达离灯塔距离最近的位置( )A.50 3 B.40 C.30 D.202.(新疆内高班)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( ) A.253海里B.252海里C.50海里D.25海里3.(珠海中考)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间.(结果精确到0.1小时)(参考数据:2≈1.41,3≈1.73,6≈2.45)知识点2 利用坡度解直角三角形4.(聊城中考)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1∶3,则AB的长为( )A.12米B.43米C.53米D.63米5.四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300 m,250 m,200 m,200 m;滑板与地面所成的角度分别为30°,45°,45°,60°,则关于四个滑梯的高度正确说法()A.A的最高B.B的最高C.C的最高D.D的最高6.(巴中中考)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:2≈1.414,3≈1.732)02 中档题7.(南京中考)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km/h和36 km/h.经过0.1 h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°.此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)8.(遵义中考)如图,一楼房AB后有一假山,其坡度为i=1∶3,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)03综合题9.(营口中考)如图,我国南海某海域A 处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C 处,同时捕鱼船低速航行到A 点的正北1.5海里D 处,渔政船航行到点C 处时测得点D 在南偏东53°方向上.(1)求C 、D 两点的距离;(2)渔政船决定再次调整航向前去救援,若两次航速不变,并且在点E 处相会合,求∠ECD 的正弦值.(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)参考答案1.A 2.D3.(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°.∵AM=180海里,∴MD=AM cos45°=902(海里).答:渔船从A到B的航行过程中与小岛M之间的最小距离是902海里.(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°.∵MD=902海里,∴MB=MDcos30°=606(海里).∴606÷20=36≈3×2.45=7.35≈7.4(小时).答:渔船从B到达小岛M的航行时间约为7.4小时.4.A 5.B6.作BE⊥AD,CF⊥AD,垂足分别为点E、F,则四边形BCFE是矩形.由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1∶2.5,在Rt△ABE中,BE=20米,BEAE=12.5,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=CFtan D=203米.∴AD=AE+EF+FD=50+6+203≈90.6(米).答:坝底AD的长度约为90.6米.7.设B处距离码头O为x km.在Rt △CAO 中,∠CAO =45°,∵tan ∠CAO =CO AO, ∴CO =AO·tan ∠CAO =(45×0.1+x)·tan 45°=4.5+x.在Rt △DBO 中,∠DBO =58°,∵tan ∠DBO =DO BO, ∴DO =BO·tan ∠DBO =x·tan 58°.∵DC =DO -CO ,∴36×0.1=x·tan 58°-(4.5+x).∴x =36×0.1+4.5tan 58°-1≈36×0.1+4.51.60-1=13.5. 因此,B 处距离码头O 大约13.5 km .8.过点E 作EF⊥BC 的延长线于F ,EH ⊥AB 于点H ,在Rt △CEF 中,∵i =EF CF =13=tan ∠ECF ,∴∠ECF =30°. ∴EF =12CE =10米,CF =103米. ∴BH =EF =10米,HE =BF =BC +CF =(25+103)米. 在Rt △AHE 中,∵∠HAE =45°,∴AH =HE =(25+103)米.∴AB =AH +HB =(35+103)米.答:楼房AB 的高为(35+103)米. 9.(1)过点C 作CG⊥AB 交AB 于点G ,过点D 作DF 垂直CG 于点F ,BC =30×12=15(海里), CG =BC sin 30°=7.5海里,FG =AD =1.5海里,CF =7.5-1.5=6(海里),CD =6cos 53°=10海里. (2)设t 小时后,两船在E 处会合,则ED =3t ,CE =30t. 过点E 作EH⊥CD 交CD 于点H.∵CG ∥AE ,∴∠GCD =∠CDE,HE =ED sin 53°=12t 5,CE =30t.在Rt △CEH 中,sin ∠ECD =125t 30t =225.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形应用题(2)
1.如图,已知测速站P 到公路L 的距离PO 为40米,一辆汽车在公路L 上行驶,测得此车从点A 行驶到点B 所用的时间为2秒,并测得∠APO=600,∠BPO=300,计算此车从A 到B 的平均速度为每秒多少米(结果保留四个有效数字),并判断此车是否超过了每秒22米的限制速度。

2.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离。

(结果保留根号,参考数据:(42615sin -=︒,4
2615cos +=︒,3215tan -=︒,3215cot +=︒)。

3.城市规划期间,欲拆除一电线杆AB (如图)已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度i=2:1,坝高CF 为2米.在坝顶C 处测得杆顶A 的仰角为30,D 、E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心、以AB 为半径的圆形区域为危险区域).(732.13≈,41
4.12≈)
B A A L O P B
4.台湾“华航”客机失事后,祖国大陆海上搜救中心立即通知位于A、B两处的上海救捞人局所属专业救助轮“华意”轮、“沪救12”轮前往出事地点协助搜索。

接到通知后,“华意”轮测得出事地点C在A的南偏东60°、“沪救12”轮测得出事地点C在B的南偏东30°。

已知B在A 的正东方向,且相距100浬,分别求出两艘船到达出事地点C
C
可从30°升到80°.求起重机起吊的最大高度(吊钩本身的长度和所挂重物
的高度忽略不计)和当起重机位置不变时使用的最大水平距离(精确到0.1米,
sin80°=0.9848,cos80°=0.1736,
6.如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时.接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均受到影响.
(1)问:B处是否会受到台风的影响?请说明理由.
(2)为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据: 2 ≈1.4, 3 ≈1.7)
解三角形应用题(2)答案:
1.v=23.09﹥22
2.AB=(1500 3 +1500)米
3.AB=5 3 +2﹤12 ∴不需要
4.BC=100 AC=100 3
5.最大高度为35.5+21=5
6.5米最远距离为18 3 ≈31.2米6.⑴BD=160﹤200 ∴会受到⑵AE=160 3 -120
∴t=(160 3 -120)÷40≈3.8小时。

相关文档
最新文档