Multisim仿真教程
multisim仿真教程
Multisim软件简介二极管电路基本功放差分放大器电路负反馈放大器集成运算放大器信号运算处理电路互补对称(OCL)功率放大器信号产生与转换电路可调三端集成直流稳压电源电路13.1 Multisim用户界面和基本操作在此处插入图片说明13.1.1 Multisim用户界面在许多EDA仿真软件中,Multisim软件具有友好的界面,强大的功能,易于学习和使用,受到电气设计和开发人员的青睐。
Multisim是一种虚拟仿真软件,用于通过软件方法对电子元器件进行虚拟设计和电路测试。
Multisim来自交互式图像技术(IIT)的基于Windows的仿真工具,以前称为EWB。
1988年,IIT公司推出了用于电子电路仿真和设计的EDA工具软件,电子工作台(EWB),它以其直观的界面,便捷的操作,强大的分析功能以及易于学习和使用而迅速普及和使用。
IIT在1996年推出了EWB5.0版本。
ewb5之后。
在X版本和EWB6.0版本中,IIT 将EWB更改为Multisim(多功能模拟软件)。
IIT被美国国家仪器公司Ni收购后,其软件更名为Ni Multisim。
第9版之后,Multisim 经历了多个版本的升级,包括Multisim2001,Multisim7,Multisim8,Multisim9,Multisim10等。
增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以Multisim10为例介绍其基本操作。
图13.1-1显示了Multisim10的用户界面,包括菜单栏,标准工具栏,主工具栏,虚拟仪器工具栏,组件工具栏,仿真按钮,状态栏,电路图编辑区域等。
图13.1-1 Multisim10用户界面菜单栏类似于Windows应用程序,如图13.1-2所示。
图13.1-2 Multisim菜单栏其中,选项菜单下的全局首选项和工作表属性可用于个性化界面设置。
Multisim10提供了两组电气元件符号标准:ANSI:美国国家标准协会,美国标准,默认为标准,本章采用默认设置;丁:德国国家标准协会,欧洲标准,与中国符号标准一致。
模拟电路_Multisim软件仿真教程
第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,本章节讲解使用Multisim进行模拟电路仿真的基本方法。
目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。
Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。
Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。
IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。
1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。
IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以Multisim10为例介绍其基本操作。
图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。
multisim仿真教程计数器译码器数码管驱动显示电路
将对话框中Node name改成与数码管相对应 的符号A。其他与逻辑分析仪的输入端的连 线都以此法行之,点击仿真开关或按F5键进 行仿真,计数器的输出和数码管的波形时序 关系则立即直观的被显示在“Logic Analyzer—XLA1”的面板窗口中。见图 12.7.2。
图12.7.3 Node对话框
由输出端QB和QD经逻辑组合电路接至计数器 (LOAD)端,构建计数进位阻塞电路。在设 计时可根据需要,由相应的输出端构建组合 逻辑电路,从而实现不同进制的计数器。
图12.7.1 计数器、译码器、数码管驱动显示电路
从虚ห้องสมุดไป่ตู้仪器中取逻辑分析仪XLA1,其上有1~F 共16个输入端,1~4端分别于计数器的四个数 据输出端QA~QD相连,第5~11端 分别与数码 管的七段A~G相连,第12端接CLK脉冲输入端。 用鼠标双击逻辑分析仪,将出现逻辑分析仪面 板窗口如图12.7.2所示。
图12.7.2 时钟脉冲、输入、输出波形时序关系图
改变逻辑分析仪Clock区(Clock/Div)的个 数,从“1”调到“32”。在图12.7.2的左侧 显示的号码为原理图的节点号码,其并不能表 示出计数器输出端和数码管的段位字母,显示 不用鼠标左键双击与逻辑分析仪“1”号输入端 连接的图线,出现如图12.7.3所示对话框。直 观,所以要对原理图进行编辑。
Multisim电子电路仿真教程(朱彩莲)-第3章
3.1 Multisim 2001仿真元件库 3.2 虚拟仪器的使用
第3章 Multisim仿真元件库与虚拟仪器 3.1 Multisim 2001仿真元件库
3.1.1 电源库 点击电源库(sources)图标
第3章 Multisim仿真元件库与虚拟仪器 图3-11 受控单脉冲参数设置
第3章 Multisim仿真元件库与虚拟仪器 29.多项式电压源(Polynomial Source) 该电压源的输出电压是一个取决于多个输入信号电压的受
控电压源,有V1、V2、V3三个电压输入端,一个电压输出端, 输出电压与输入电压直接的函数关系为
VOUT A BV1 CV2 DV3 EV12 FV1V2 GV1V3 HV22 IV2V3 JV32 KV1V2V3
打开其属性框,可在Value页中设置A、B、C、……的值。
第3章 Multisim仿真元件库与虚拟仪器
30.非线性相关电源(Nonlinear Dependent Source) 该电源的输出可以是电压也可以是电流,输出是三个输入 电压和两个输入电流的函数,函数关系可以在其属性框中设置, 如图3-12所示。
第3章 Multisim仿真元件库与虚拟仪器
25.分段线性电压源(Piecewise Linear Voltage Source)
分段线性电压源即PWL信号源,通过设置不同的时间及电 压值,可控制输出电压的波形。其参数设置框如图3-9所示。
第3章 Multisim仿真元件库与虚拟仪器 图3-9 PWL信号源参数设置
动,也没有考虑温度系数。 4.虚拟电容(Capacitor Virtual) 与虚拟电阻类似,参数值可通过属性框进行设置,还可考
Multisim仿真教程剖析
例1. 求下图所示电路的节点电压U1.U2。
50
二 求戴维宁等效电路
基本操作: 1. 利用数字万用表测量电路端口的开路电压和短路电流 2. 求解出该二端网络的等效电阻 3. 绘制戴维宁等效模型
例2 求下图所示电路的戴维宁等效电路。
51
Req=16/6.333≈3Ω
添加输入/输出节点
函数信号 发生器
1kHz 0.4V
a 0.22μ C
b Vca
R 1k
c
荧光屏
Y1
Y2
双踪示波器
45
(一) 建立电路文件 (二) 从元器件库中调有所需的元器件 (三) 电路连接及导线调整 (四)为电路增加文本 (五)示波器的连接 (六)电路仿真
46
47
基于Multisim的电路分析
1 电阻电路分析
13
设置元件的识别、参数值 与属性、节点序号、引脚 名称和原理图文本等文字 的属性设置
14
设置显示窗口 图纸格式
设置窗口图纸的大小
选择窗口图纸的 缩放比例
15
设置导线的宽度 设置导线的自动 连接方式
16
选择文件自动保存功能 并设定保存时间间隔
设置存取文件路径 设置数字电路的 仿真方式
选择PCB的接地方式
设置分析类型 设置显示状态 设置电压幅值
设置标号
设置故障
2.直流电压源
20
3.交流电压源
设置最大值 设置有效值
设置频率 设置初相位
21
4.时钟电压源
实质上是一个频率、占空比及幅度皆可调的方波发生器
22
5.受控源
1)VCVS
23
2)VCCS
24
3)CCVS
multisim仿真教程正弦波脉宽调制SPWM逆变电路业界精制
技术教育
1
如果将每一等份的正弦曲线与横轴所包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
技术教育
2
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。
3. 双极性PWM控制方式
技术教育
15
图11.8.2的单相桥式逆变电路采用双极性PWM 控制方式的波形如图11.8.4所示。在双极性方
式中ur的半个周期内,三角波载波是在正、负
两个方向变化的,所得到的PWM波形也是在两
11.8.1正弦脉宽调制(SPWM)逆变电路工作原理
1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形,
并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
技术教育
8
如负载电流较大,那么直到使VT4再一次导通之 前,VD3一直持续导通。如负载电流较快地衰减 到零,在VT4再一次导通之前,负载电压也一直
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
技术教育
9
multisim仿真教程二阶带通滤波器
图三.六.三二阶有源带通滤波器ACAnalysis仿真分析结果
AOQ 1SO Q0 S02
AOQ 1S0
( S )2 1 S 1
O QO
三.六.二
式三.六.二为二阶带通滤波器传递函数的典型
表达式其中ω0为中心角频率
三.六.二二阶有源带通滤波器特性分析
一个二阶有源带通滤波器电路如图三.六.一所 示启动仿真点击波特图仪可以看见二阶有源带 通滤波器的幅频特性如图三.六.二所示
利用ACAnalysis交流分析可以分析二阶有源带 通滤波器电路的频率特性如图三.六.三所示分 析方法参考三.三.二一阶有源低通滤波器的 ACAnalysis交流分析分析步骤
改变信号源的信号频率利用示波器也可以观察 到不同频率的信号通过带通滤波器的情况
图三.六.一二阶有源带通滤波器电路
图三.六.二二阶有源带通滤波器的幅频特性
三.六二阶有源带通滤波器
令
AOR 1C2R3 1 C 1R3 1 C2A R U11 C F2R2 1 C
Q
R 1R 2 R 1R 2R 3C 1C 2
R 1R 2(C 1C 2)C 1R 3R 2R 1(1A U)F
则有
A(S) S2
MULTISIM电路仿真软件的使用操作教程
MULTISIM电路仿真软件的使用操作教程Multisim是一款功能强大的电路仿真软件,可以帮助用户进行电路设计、分析和仿真。
在本教程中,我们将介绍Multisim的基本使用操作,让您可以快速上手并开始进行电路仿真。
1.创建新电路首先,在打开Multisim软件后,点击“File”菜单,并选择“New”来创建一个新的电路文件。
您可以选择使用自定义的模板或者从已有的电路模板中选择其中一个。
2.添加元件在新建的电路文件中,您可以通过点击“Place”菜单来添加不同种类的元件。
通过选择合适的元件,您可以构建您需要的电路。
您可以添加电源、电阻、电容、电感、晶体管等元件。
3.连接元件在添加完元件后,您需要连接这些元件以构建完整的电路。
通过点击“Connect”工具或者直接拖拽连接线将元件连接起来。
4.设置元件参数5.运行仿真完成电路的搭建后,您可以点击“Run”按钮来开始进行仿真。
Multisim会模拟电路的运行情况,并显示出电路中各元件的电流、电压等参数。
6.分析仿真结果在进行仿真后,您可以查看仿真结果并进行分析。
您可以查看波形图、数据表格等来了解电路的运行情况,以便进行进一步的优化和改进。
7.保存电路文件在完成电路设计后,您可以点击“File”菜单并选择“Save As”来保存电路文件。
您可以选择保存为不同格式的文件,以便将电路文件与他人分享或者备份。
8.导出报告如果您需要将电路设计的结果进行报告或者分享给他人,您可以点击“Tools”菜单并选择“Export”来导出报告或者数据表格。
9.调整仿真设置在进行仿真前,您可以点击“Options”菜单来调整仿真的参数,例如仿真时间、采样率等。
这可以帮助您更好地分析电路的性能。
10.学习资源Multisim提供了大量的学习资源,包括用户手册、视频教程、示例项目等。
您可以通过点击“Help”菜单来访问这些资源,以帮助您更好地使用Multisim进行电路仿真。
通过以上教程,您可以快速上手Multisim软件,并开始进行电路设计和仿真。
multisim仿真教程单相半波可控整流电路
元器件的选取和放置
步骤一
步骤三
选择合适的二极管,确保其额定电流 和电压符合电路要求。
将选取的元件放置在电路图上,注意 元件间的连接关系和布局。
步骤二
根据需要选择适当的电阻和电容元件, 调整其阻值或电容值以满足电路参数。
电路的连接与检查
步骤一
根据电路原理图,将各个元件按 照正确的连接方式进行连接。
步骤二
检查连接是否正确,确保没有出现 短路或断路现象。
步骤三
对电路进行静态检查,确保没有逻 辑错误或元件参数不匹配的问题。
仿真设置与运行
01
步骤一
打开仿真设置对话框,选择合适 的仿真参数,如仿真时间范围、 采样率等。
步骤二
02
03
步骤三
运行仿真,观察电路的行为和输 出波形。
根据仿真结果,对电路进行调整 和优化,以达到预期的性能指标。
06 结论与展望
本教程的主要内容总结
介绍了单相半波可控整流电路的基本原理和工作方式。 探讨了不同控制角下整流电路的输出电压和电流波形。
通过Multisim软件对单相半波可控整流电路进行了仿真 和分析。
分析了整流电路的效率、功率因数等性能指标。
可控整流电路的应用前景
可控整流电路在电力电子、电机 控制、新能源等领域具有广泛的
用于模拟晶体管元 件,有不同的类型 和参数可选。
04
单相半波可控整流电路的 Multisim仿真
电路图的创建
步骤一
打开Multisim软件,新建 一个电路图文件。
步骤二
从元件库中选取需要的元 件,如二极管、电阻、电 容等。
步骤三
将选取的元件放置在电路 图上,并按照单相半波可 控整流电路的电路图布局。
multisim仿真教程混频器电路
03
混频器电路设计
电路设计流程
确定设计目标
明确混频器的性能指标,如输入频率、输出 频率、增益等。
选择合适的元件
根据设计目标,选择合适的电阻、电容、电 感等元件。
电路原理图设计
根据混频器的工作原理,使用Multisim软件 绘制电路原理图。
参数设置与优化
根据元件规格和性能指标,设置元件参数并 进行优化。
元件பைடு நூலகம்择与参数设置
元件选择
根据设计需求选择合适的电阻、电容、电感等元件, 确保元件的精度和稳定性。
参数设置
根据元件规格和电路性能要求,设置元件参数,如电 阻值、电容值、电感值等。
参数优化
通过调整元件参数,优化电路性能,提高混频器的性 能指标。
电路仿真与调试
电路仿真
使用Multisim软件进行电路仿真,模拟电路的 实际工作情况。
用于绘制电路图,可随意缩放和平 移。
03
02
元件库
提供各种电路元件,方便用户选择 和放置。
仿真面板
提供仿真参数设置和仿真运行控制。
04
元件库与虚拟仪器
元件库
包含各种电子元件,如电阻、电容、电感、 晶体管等。
虚拟仪器
可设置元件的参数和属性,模拟实际元件的 行为。
元件属性
提供各种测量仪器,如示波器、信号发生器 、频谱分析仪等。
干扰与欺骗
电子战系统中的干扰机使用混频器生成干扰信号,对敌方通 信和雷达系统进行干扰和欺骗。混频器在此过程中起到关键 作用,能够生成具有特定频率和功率的干扰信号,有效降低 敌方系统的性能。
06
总结与展望
混频器电路的重要性和发展趋势
混频器电路在通信、雷达、电子对抗等领域具有广泛应用,是现代电子系统中的 重要组成部分。随着技术的发展,混频器电路的性能要求不断提高,具有更高的 频率、更低的噪声、更小的体积和更低的功耗等发展趋势。
模拟电路Multisim软件仿真教程
第13章 Multisim模拟电路仿真本章Multisim10电路仿真软件,本章节讲解使用Multisim进行模拟电路仿真的基本方法。
目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。
Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。
Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。
IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。
1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。
IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim 经历了多个版本的升级,已经有Multisim2001、 Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以Multisim10为例介绍其基本操作。
图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。
Multisim仿真实用教程讲义
1.3.3 Multisim仪器仪表栏
波特图仪(Bode Plotter) 利用波特图仪可以方便地测量和显示电路的频率响应,波特图
仪适合于分析滤波电路或电路的频率特性,特别易于观察截止频率。 需要连接两路信号,一路是电路输入信号,另一路是电路输出信号, 需要在电路的输入端接交流信号。 波特图仪控制面板分为Magnitude(幅值)或Phase(相位)的 选择、Horizontal(横轴)设置、Vertical(纵轴)设置、显示 方式的其他控制信号,面板中的F指的是终值,I指的是初值。在波 特图仪的面板上,可以直接设置横轴和纵轴的坐标及其参数。
以上这些操作可以在菜单栏File子菜单下选择命令, 也可以应用快捷键或工具栏的图标进行快捷操作。
菜单
1.1.3 元器件基本操作 常用的元器件编辑功能有: 90 Clockwise--顺时针旋转90 90 CounterCW--逆时针旋转90 Flip Horizontal--水平翻转 Flip Vertical--垂直翻转 Component Properties--元件属性等。
两个连接端口是Ready and Triger
1.3.3 Multisim仪器仪表栏
逻辑转换器(Logic Converter)
Multisim提供了一种虚拟仪器:逻辑转换器。实际中没有这 种仪器,逻辑转换器可以在逻辑电路、真值表和逻辑表达式之间进 行转换。有8路信号输入端,1路信号输出端。
6种转换功能依次是:逻辑电路转换为真值表、真值表转换为 逻辑表达式、真值表转换为最简逻辑表达式、逻辑表达式转换为真 值表、逻辑表达式转换为逻辑电路、逻辑表达式转换为与非门电路。
菜单
1.1.5 图纸标题栏编辑 单击Place / Title Block命令,在打开对话框的查找范围 处指向Multisim / Titleblocks目录,在该目录下选择一 个*.tb7图纸标题栏文件,放在电路工作区。用鼠标指向文 字块,单击鼠标右键,在弹出的菜单中选择Properties命令, 或者双击title block进行编辑。
multisim电子电路仿真教程第4章
第4章 Multisim基本分析方法
2.交流分析举例
【例4-2】 对图4-11所示电路进行交流分析。
图4-11 串联谐振电路
第4章 Multisim基本分析方法
首先按图4-11在电路窗口中构建电路,元件参数如图中
所示。选取分析菜单中的AC Analysis...选项,在出现的对话 框中的Frequency Parameters页设置Start Frequency为1 Hz, Stop Frequency为10 GHz,Sweep Type选择Decade,Number of points per decade设置为10,Vertical scale选择Linear;在 Output variables页选定分析节点3;在Miscellaneous Options 页More Options区Title for栏输入“交流分析”。点击 Simulate按钮开始仿真分析。完成分析后,出现Analysis Graphs窗口,显示电路的幅频特性曲线和相频特性曲线,如 图4-12所示。
第4章 Multisim基本分析方法
图4-10 交流分析Frequency Parameters页
第4章 Multisim基本分析方法
1.Frequency Parameters页
Frequency Parameters页各部分功能介绍如下: > > Start frequency:设置分析起始频率。 Stop frequency(FSTOP):设置分析终止频率。
第4章 Multisim基本分析方法
图4-5 More Options区
第4章 Multisim基本分析方法
2.Miscellaneous Options页
Miscellaneous Options页如图4-6所示,其主要功能是 设定分析参数,一般采取默认值。如果要自行设定,则先选 中某个分析选项,再选中Use this custom analysis options选项,在其右边出现一个栏位,可在该栏内指定新 的参数。如果要恢复程序预设置值,按Reset option to default按钮即可。
multisim仿真电路设计
multisim仿真电路设计
Multisim是一款集成电路设计和仿真软件,可以用于设计和验证电路的性能。
以下是一个简单的示例来说明如何在Multisim中设计和仿真电路。
1. 打开Multisim软件,并创建一个新的电路设计。
可以从工具栏中选择“新电路设计”或使用快捷键Ctrl+N。
2. 在设计窗口中,选择所需的元件和工具来设计电路。
例如,在工具栏中选择“元件”按钮,并选择电阻、电容和电感等元件。
3. 将所选元件拖放到设计窗口中,并使用线连接它们以形成电路。
可以使用工具栏上的线条工具或按下L键来连接元件。
4. 对于每个元件,可以通过双击元件来修改其值。
例如,对于电容,可以设置其电容值。
5. 设计完毕后,可以通过点击“仿真”按钮来验证电路的性能。
也可以选择“仿真”菜单中的“运行”选项,或使用快捷键F5。
6. 在仿真结果窗口中,可以查看电路的电压波形、电流波形、输入输出特性等。
也可以使用Multisim的仪表模拟工具来测量电路参数和性能。
通过这些步骤,您可以在Multisim中设计和仿真电路。
Multisim还提供了其他高级功能,如噪声分析、优化、印刷电路板设计等,以帮助工程师更好地设计和验证复杂电路。
最详细最好地Multisim仿真教程
第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进展模拟电路仿真的根本方法。
目录1. Multisim软件入门2. 二极管电路3.根本放大电路4.差分放大电路5. 负反应放大电路6.集成运放信号运算和处理电路7.互补对称〔OCL〕功率放大电路8.信号产生和转换电路9.可调式三端集成直流稳压电源电路13.1 Multisim用户界面与根本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。
Multisim用软件方法虚拟电子元器件与仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。
Multisim来源于加拿大图像交互技术公司〔Interactive Image Technologies,简称IIT公司〕推出的以Windows为根底的仿真工具,原名EWB。
IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench〔电子工作台,简称EWB〕,以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。
1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进展了较大变动,名称改为Multisim〔多功能仿真软件〕。
IIT后被美国国家仪器〔NI,National Instruments〕公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以Multisim10为例介绍其根本操作。
图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成局部。
multisim仿真教程
Multisim是一个非常简单易懂的电路仿真软件,使用它可以完成数字电路、模拟电路等的仿真。
对于初学者来说,Multisim也非常容易理解和使用。
因此,今天,我将分享如何使用Multisim进行简单电路实验的经验。
工具/原材料
Multisim软件
计算机
方法/步骤
首先,运行我们的Multisim软件
如何使用Multisim进行简单电路仿真
我们需要从原产品目录中选择电路图
如何使用Multisim进行简单电路仿真
元件库的分类从左到右依次是“电源”、“基本元件”(开关、电阻、电容和电感)、二极管、晶体管、模拟电路元件、TTL和CMOS。
你可以根据你的电路需要选择它们
如何使用Multisim进行简单电路仿真
绘制电路图后,可以单击工具栏中的“运行”按钮来运行模拟
如何使用Multisim进行简单电路仿真
在操作过程中,我们可以点击开关来控制开关的开关
如何使用Multisim进行简单电路仿真
当我们想完成模拟实验时,只需点击停止按钮
如何使用Multisim进行简单电路仿真
此外,如果您的电路需要通用仪表、示波器和其他测量仪器,您可以从右侧的测量工具栏中进行选择。
如何使用Multisim进行简单电路仿真
要保存仿真电路图时,可以单击“文件”菜单并选择“保存”项。
如何使用Multisim进行简单电路仿真
九
然后,只需选择要保存的路径并单击“确定”按钮。
如何使用Multisim进行简单电路仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
τ RC 6.2ms
工程上认为经过4τ~5 τ,暂态过程结束,故 仿真的时间取0~0.05s
3. 结果显示
见example8_2_1.msm
例 2 已知R=1Ω,L=1H,对比分析在电压源作用下RL 串联电路的电感电流的阶跃响应和冲激响应。
关键:
恰当地选择和设置激励源 1. 观察阶跃响应
晶体管库(Transistors Components) 模拟元件库(Analog Components) TTL元件库(TTL) CMOS元件库(CMOS) 其他数字元件库(Misc Digital Components) 混合芯片库(Mixed Components) 指示器件库(Indicators Components) 其他器件库(Misc Components) 控制器件库(Control Components) 射频器件库(RF Components)
瞬态分析(Transient Analysis)
设置初始条件 设置分析时间
设置计算步长
例 1 观察下图所示RC电路的零输入响应uc(t), 已知 uc(0+)=10V。
关键:
1. 设置电容元的初值 2. 设置分析时间
1. 设置电容元的初值
1)所选用的电容为现实电容
2)所选用的电容为虚拟电容
2. 设置分析时间
元件工具栏
电源库 基本元件库 二极管库 晶体管库 模拟元件库 TTL元件库 其他数字元件库 混合芯片库 指示部件库 其他部件库 控制部件库 射频器件库 机电类元件库
COMS元件库
仪器仪表工具栏
从左到右分别是:数字万用表、函数发生器、示 波器、波特图仪、字信号发生器、逻辑分析仪、 瓦特表、逻辑转换仪、失真分析仪、网络分析 仪、频谱分析仪 注:电压表和电流表在指示器件库,而不是仪器 库中选择
现实元件
虚拟元件
1、电阻
电阻模型分类栏
电阻浏览器
“General”页:元件的一般性 资料,包括元件的名称、制造 商、创建时间、制作者。
“Symbol”页:元件的符号。 “Model”页:元件的模型, 提供电路仿真时所需要的参数。 “Footprint”页:元件封装,提供 给印制电路板设计的原件外形。 “Electronic Parameters”页: 元件的电气参数,包括元件在 实际使用中应该考虑的参数指标。 “User Fields”页:用户使用信息。
② 时基控制(Time base)
● X轴刻度(s/div):控制示波屏上的横轴,即X轴刻度 (时间/每格) ● X轴偏移(X position):控制信号在X轴的偏移位置 ● 显示方式: Y /T :幅度 / 时间 ,横坐标轴为时间轴,纵坐标轴 为信号幅度 Add:A、B通道幅值相加 B /A :B电压(纵坐标) / A电压 (横坐标) A /B :A 电压 / B电压
波特图仪(Bode Plotter)
字信号发生器(Word Generator) 逻辑分析仪(Logic Analyzer)
逻辑转换仪(Logic Converter)
失真分析仪(Distortion Analyzer)
频谱分析仪(Spectrum Analyzer)
网络分析仪(Network Analyzer)
机电类器件库(Elector-Mechanical Components)
一、电源库
电源库中共有30个电源器件,分别是:
● 接地端 ● 数字接地端 ● VCC电压源 ● VDD数字电压源 ● 直流电压源 ● 直流电流源 ● 正弦交流电压源 ● 正弦交流电流源 ● 时钟电压源 ● 调幅信号源 ● 调频电压源 ● 调频电流源 ● FSK信号源 ● 电压控制正弦波电压源 ● 电压控制方波电压源 ● 电压控制三角波电压源 ● 电压控制电压源 ● 电压控制电流源 ● 电流控制电压源 ● 电流控制电流源 ● 电流控制电压源 ● 电流控制电流源 ● 脉冲电压源 ● 脉冲电流源图 ● 指数电压源 ● 指数电流源 ● 分段线性电压源 ● 分段线性电流源 ● 压控分段电压源 ● 受控单脉冲 ● 多项式电源 ● 非线性相关电源
一、数字万用表
二、函数信号发生器
三、瓦特表
四、示波器
X SC1 G A B T
A、B两通道,G是接地端,T为触发端
① 测量数据显示区
在示波器显示区有两个可以任意移动的游标,游标所 处的位置和所测量的信号幅度值在该区域中显示。其中:
●“T1”、“T2”分别表示两个游标的位置,即信号出 现的时间; ●“VA1”、“VB1”和“VA2”、“VB2”分别表示两 个游标所测得的A通道和B通道信号在测量位置具有的 幅值。
例1. 求下图所示电路的节点电压1、U2。
见example8_1_1.msm
二 求戴维宁等效电路
基本操作: 1. 利用数字万用表测量电路端口的开路电压和短路电流 2. 求解出该二端网络的等效电阻 3. 绘制戴维宁等效模型 例2 求下图所示电路的戴维宁等效电路。
Req=16/6.333≈3Ω
添加输入/输出节点
1、接地端
利用Multisim创建电路时必须接“地”
设置分析类型
设置显示状态 设置标号 设置电压幅值
设置故障
2、直流电压源
3、交流电压源
设置最大值
设置有效值
设置频率
设置初相位
4、时钟电压源
实质上是一个频率、占空比及幅度皆可调的方波发生器
5、受控源
1)VCVS
2)VCCS
3)CCVS
4)CCCS
计算机辅助电路分析
——Multisim仿真
重庆大学电工电子实验教学示范中心
Multisim 基础
Electronics Workbench (EWB)是加拿大IIT公
司于八十年代末、九十年代初推出的用于电路仿真与 设计的EDA软件,又称为“虚拟电子工作台”。
IIT公司从EWB6.0版本开始,将专用于电路仿真与 设计模块更名为MultiSim,大大增强了软件的仿真 测试和分析功能,大大扩充了元件库中的仿真元件数 量,使仿真设计更精确、可靠。
设定控制键
三、指示器件库
● 电压表 ● 探测器 ● 十六进制显示器 ● 蜂鸣器 ● 电流表 ● 灯泡 ● 条形光柱
设置内阻 电路类型选择
3
Multisim 仪器仪表库
数字万用表(Multimeter) 函数信号发生器(Function Generator)
瓦特表(Wattmeter)
示波器(Oscilloscope)
Multisim意为“万能仿真 ”
一、主要功能
直流工作点分析 交流分析 暂态分析 傅立叶分析 噪声分析 失真分析 直流扫描 灵敏度分析 参数扫描 温度扫描 零-极点分析 传输函数分析 最坏情况分析 ……
二、主要特点
仿真的手段切合实际,选用的元器件和测量仪器与实
际情况非常接近;并且界面可视、直观。 绘制电路图所需的元器件、仪器、仪表以图标形式出 现,选取方便,并可扩充元件库。 可以对电路中的元器件设置故障,如开路、短路和不
编辑电阻元件
2、虚拟电阻
3、电位器
设定控制键
设置调节幅度
4、开关
“CURRENT_CONTROLLED SWITCH”(电流控开关) “SPDT”(单刀双掷开关) “SPST”(单刀单掷开关) “TD_SWI”(时间延迟开关) “VOLTAGE_CONTROLLED SWITCH”(电压控开关)
基本操作: 选用“直流工作点分析(DC Operating Point Analysis)”
(1)Output variables:主要作用是选择所要分析的节点电压、 电源和电感支路电流。
(2)Miscellaneous Options:用于设置与仿真相关的其它选项。
(3)Summary:对分析设置的汇总。
设置显示窗口 图纸格式
设置窗口图纸的大小
选择窗口图纸的 缩放比例
设置导线的宽度
设置导线的自动 连接方式
选择文件自动保存功能 并设定保存时间间隔
设置存取文件路径 设置数字电路的 仿真方式
选择PCB的接地方式
电源库(Sources) 基本元件库(Basic)
Multisim 元件库
二极管库(Diodes Components)
4
电路图绘制
例. 在Multisim中绘制如下电路图,并用示波器观察电容 电压波形的变化。
(一) 建立电路文件 (二) 从元器件库中调有所需的元器件 (三) 电路连接及导线调整 (四)为电路增加文本 (五)示波器的连接
(六)电路仿真
基于Multisim的电路分析
1 电阻电路分析
一. 测量节点电压
二、基本元件库
● 电阻 ● 电容 ● 电解电容 ● 电感 ● 电位器 ● 可变电容 ● 可变电感 ● 开关 ● 变压器 ● 磁芯 ● 连接器 ● 半导体电阻 ● 封装电阻 ● SMT电容 ● SMT电感 ● 虚拟电阻 ● 虚拟电容 ● 上拉电容 ● 虚拟电感 ● 虚拟电位器 ● 虚拟可变电容 ● 虚拟可变电感 ● 继电器 ● 非线性变压器 ● 无芯线圈 ● 插座 ● 半导体电容 ● SMT电阻 ● SMT电解电容
同程度的漏电等,针对不同故障观察电路的各种状态, 从而加深对电路原理的理解。
二、主要特点
在进行仿真的同时,它还可以存储测试点的 所有数据、测试仪器的工作状态、显示波形 和具体数据,列出所有被仿真电路的元器件 清单等。 有多种输入输出接口,与SPICE软件兼容, 可相互转换。Multisim产生的电路文件还 可以直接输出至常见的Protel、 Tango、 Orcad等印制电路板排版软件。
VHDL:VHSIC Hardware Description Language VHSIC:Very High Speed Integrated Circuit