九年级中考数学一轮复习一元一次方程测试题
中考数学专题复习一元一次方程(含解析)
中考备考专题复习:一元一次方程一、单选题1、(2016•大连)方程2x+3=7的解是()A、x=5B、x=4C、x=3.5D、x=22、(2016•梧州)一元一次方程3x﹣3=0的解是()A、x=1B、x=﹣1C、x=D、x=03、若关于x的方程(k-1)x2+x-1=0是一元一次方程.则k=( )A、0B、1C、2D、34、(2016•泰安)当1≤x≤4时.mx﹣4<0.则m的取值范围是()A、m>1B、m<1C、m>4D、m<45、已知方程2x-3=+x的解满足|x|-1=0.则m的值是()A、-6B、-12C、-6与-12D、任何数6、若2(a+3)的值与4互为相反数.则a的值为()A、﹣1B、﹣C、﹣5D、7、下列各式中.是方程的个数为()(1)-3-3=-7 (2)3x-5=2x+1 (3)2x+6(4)x-y=0 (5)a+b>3 (6)a2+a-6=0A、1个B、2个C、3个D、4个8、如果等式ax=b成立.则下列等式恒成立的是().A、abx=abB、x=C、b-ax=a-bD、b+ax=b+b9、已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) . 则a-b的值为().A、-1B、0C、1D、210、在如图的2016年6月份的月历表中.任意框出表中竖列上三个相邻的数.这三个数的和不可能是()A、27B、51C、69D、7211、互联网“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为200元.按标价的五折销售.仍可获利20元.则这件商品的进价为()A、120元B、100元C、80元D、60元12、某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3.二楼售出与未售出的座位数比为3:2.且此场音乐会一、二楼未售出的座位数相等.则此场音乐会售出与未售出的座位数比为何?()A、2:1B、7:5C、17:12D、24:1713、某车间有26名工人.每人每天可以生产800个螺钉或1000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉.则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x14、8月份是新学期开学准备季.东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后.超出部分按50%收费.在百惠书店购买学习用品或工具书累计花费50元后.超出部分按60%收费.郝爱同学准备买价值300元的学习用品和工具书.她在哪家书店消费更优惠()A、东风B、百惠C、两家一样D、不能确定15、在解方程时.方程两边同时乘以6.去分母后.正确的是()A、2x﹣1+6x=3(3x+1)B、2(x﹣1)+6x=3(3x+1)C、2(x﹣1)+x=3(3x+1)D、(x﹣1)+x=3(x+1)二、填空题16、已知方程(a-2)x|a|-1=1是一元一次方程.则a=________.x=________ .17、如果关于x的方程x2﹣3x+k=0有两个相等的实数根.那么实数k的值是________.18、一件服装的标价为300元.打八折销售后可获利60元.则该件服装的成本价是________元.19、为了改善办学条件.学校购置了笔记本电脑和台式电脑共100台.已知笔记本电脑的台数比台式电脑的台数的还少5台.则购置的笔记本电脑有________台.20、书店举行购书优惠活动:①一次性购书不超过100元.不享受打折优惠.②一次性购书超过100元但不超过200元一律打九折.③一次性购书200元一律打七折.小丽在这次活动中.两次购书总共付款229.4元.第二次购书原价是第一次购书原价的3倍.那么小丽这两次购书原价的总和是________元.三、计算题21、先化简:÷ + .再求当x+1与x+6互为相反数时代数式的值.四、解答题22、在红城中学举行的“我爱祖国”征文活动中.七年级和八年级共收到征文118篇.且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇.求七年级收到的征文有多少篇?23、世界读书日.某书店举办“书香”图书展.已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元.《汉语成语大词典》按标价的50%出售.《中华上下五千年》按标价的60%出售.小明花80元买了这两本书.求这两本书的标价各多少元.五、综合题24、在纪念中国抗日战争胜利70周年之际.某公司决定组织员工观看抗日战争题材的影片.门票有甲乙两种.甲种票比乙种票每张贵6元.买甲种票10张.乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元.那么最多可购买多少张甲种票?25、如图是一根可伸缩的鱼竿.鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩.完全收缩后.鱼竿长度即为第1节套管的长度(如图1所示):使用时.可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm.第2节套管长46cm.以此类推.每一节套管均比前一节套管少4cm.完全拉伸时.为了使相邻两节套管连接并固定.每相邻两节套管间均有相同长度的重叠.设其长度为xcm.(1)请直接写出第5节套管的长度.(2)当这根鱼竿完全拉伸时.其长度为311cm.求x的值.26、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进.拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率.(2)若该市某社区今年准备新建一养老中心.其中规划建造三类养老专用房间共100间.这三类养老专用房间分别为单人间(1个养老床位).双人间(2个养老床位).三人间(3个养老床位).因实际需要.单人间房间数在10至30之间(包括10和30).且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个.求t的值.答案解析部分一、单选题1、【答案】 D【考点】一元一次方程的解【解析】【解答】解:2x+3=7. 移项合并得:2x=4.解得:x=2.故选D【分析】方程移项合并.把x系数化为1.即可求出解.此题考查了一元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.2、【答案】 A【考点】一元一次方程的解【解析】【解答】解:3x﹣3=0.3x=3.x=1.故选:A.【分析】直接移项.再两边同时除以3即可.此题主要考查了一元一次方程的解.关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3、【答案】B【考点】一元一次方程的定义【解析】【解答】根据题意得:k-1=0.解得:k=1.故答案是:B.【分析】只含有一个未知数(元).并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a.b是常数且a≠0).高于一次的项系数是0.据此可得出关于k的方程.继而可求出k的值.4、【答案】 B【考点】一元一次方程的解【解析】【解答】解:设y=mx﹣4.由题意得.当x=1时.y<0.即m﹣4<0.解得m<4.当x=4时.y<0.即4m﹣4<0.解得.m<1.则m的取值范围是m<1.故选:B.【分析】设y=mx﹣4.根据题意列出一元一次不等式.解不等式即可.本题考查的是含字母系数的一元一次不等式的解法.正确利用函数思想、数形结合思想是解题的关键.5、【答案】 C【考点】一元一次方程的解.含绝对值符号的一元一次方程【解析】【解答】∵|x|-1=0∴x=±1当x=1时.把x=1代入方程2x-3=+x2-3=+1∴m=-6.当x=-1时.把x=-1代入方程2x-3=+x-2-3=-1∴m=-12∴m的值是-6与-12.【分析】根据方程的解满足|x|-1=0就可得到x=±1.即±1是方程的解.把x=±1分别代入方程2x-3= m 3 +x就得到关于m的方程.从而求出m的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法.在以后的学习中.常用此法求函数解析式.6、【答案】C【考点】相反数.解一元一次方程【解析】【解答】解:∵2(a+3)的值与4互为相反数.∴2(a+3)+4=0.∴a=﹣5.故选C【分析】先根据相反数的意义列出方程.解方程即可.此题是解一元一次方程.主要考查了相反数的意义.一元一次方程的解法.掌握相反数的意义是解本题的关键.7、【答案】C【考点】一元一次方程的定义.二元一次方程的定义.一元二次方程的定义【解析】【解答】根据方程的定义依次分析即可。
一元一次方程热点题型专项练--2023年中考数学一轮复习
一元一次方程一、单选题1.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4 2.若2x =是关于x 的一元一次方程3ax b -=的解,则421a b -+的值是( ) A .7 B .8 C .7- D .8- 3.关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .54.下列说法中,正确的是( )A .若ac bc =,则a b =B .若22a b =,则a b =C .若a b c c =,则a b =D .若163x -=,则2x = 5.若关于x ,y 的多项式23237654x y mxy y xy -++化简后不含二次项,则m =( ) A .17 B .67 C .67- D .06.若代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,则有( ) A .1m = B .1m =- C .12m = D .1 2m =- 7.在四个数1,2,3,4中,是方程|x ﹣5|=2的解的是( )A .1B .2C .3D .48.下面是一个被墨水污染过的方程:23x x -=-,答案显示此方程的解是1x =,被墨水遮盖的是一个常数,则这个常数是( )A .2B .-2C .12-D .129.已知k 为非负整数,且关于x 的方程()33x kx -=的解为正整数,则k 的所有可能取值为( )A .2,0B .4,6C .4,6,12D .2,0,610.已知1x =是方程122()3-=-x x a 的解,那么关于y 的方程(4)24+=+a y ay a 的解是( ).A .y =1B .y =-1C .y =0D .方程无解11.若m 、n 是有理数,关于x 的方程3m (2x ﹣1)﹣n =3(2﹣n )x 有至少两个不同的解,则另一个关于x 的方程(m +n )x +3=4x +m 的解的情况是( )A .有至少两个不同的解B .有无限多个解C .只有一个解D .无解12.若关于x 的方程()()20192017620191k x x --=-+的解是整数,则整数k 的取值个数是( )A .5B .3C .6D .213.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .237230x xB .327230x xC .233072x xD .323072x x14.我国“DF -41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF -41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x 分钟能打击到目标,可以得到方程( )A .263406012000x ⨯⨯=B .2634012000x ⨯=C .26340120001000x ⨯=D .2634060120001000x ⨯⨯= 15.为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .17 二、填空题16.关于x 的方程220x bx a ++=(a 、b 为实数且0a ≠),a 恰好是该方程的根,则a b +的值为_______.17.若 x =3 是关于 x 的一元一次方程 mx - n =3 的解,则代数式 10 - 3m + n 的值是___.18.已知2x ﹣3y ﹣5=0,则9y ﹣6x +16=________.19.如果212m ab -与23m ab +-是同类项,那么m 等于______.20.已知关于x 的方程32()mx x m +=-的解满足230x --=,则m 的值是____________. 21.已知关于x 的方程22()mx m x +=-的解满足1102x --=,则m 的值是_________. 22.已知关于x 的方程21132--=-x x a 的解为10x =-,则a 的值为______;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为x =______. 23.当a 取整数________时,关于x 的方程411633x ax ---=有正整数解.24.若关于x的方程234k x-=与方程1302x-=的解相同,则k的值为____________.25.当m取___ 时,关于x的方程mx+m=2x无解.三、解答题26.小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?27.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.28.小王看到两个超市的促销信息如图所示.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物标价198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?29.丹尼斯经销甲、乙两种商品,甲种商品每件售价60元,利润20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为;(2)丹尼斯同时购进甲、乙两种商品共50件,总进价为2100元,求购进甲种商品多少件?(3)在“春节”期间,该商场对所有商品进行如下的优患促销话动:按上述优惠条件,若小丽一次性购买乙种商品实际付款504元,求小丽购买商品的原价是多少?参考答案:1.C2.A解:将x =2代入ax -b =3中,得2a -b =3,∴421a b -+=2(2a -b )+1=231⨯+=7,3.C 方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,4.C解:A 、若ac =bc ,当c ≠0,则a =b ,故此选项错误; B 、若22a b =,则a b =±,故此选项错误;C 、若a b c c=,则a b =,故此选项正确; D 、若163x -=,则18x =-,故此选项错误; 5.B解:∴23237654x y mxy y xy -++ =()23236754x y m xy y +-+, ∴不含二次项,∴6﹣7m =0,解得m =67.6.C解:()()226251x y mx y -+-+-=226251x y mx y ---++=()21267m x y --+∴代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,∴120m -= 解得:12m =7.C当x -5≥0,则原式方程可变为:x -5=2,解得:x=7,当x -5<0,则原式方程可变为:x -5=-2,解得:x=3,8.A解:设这个常数为a ,则把1x =代入方程,得:2131a ⨯-=-,解得:2a =,9.A解:方程去括号得:3x −9=kx ,移项合并得:(3−k )x =9,解得:x =93k -, 由x 为正整数,k 为非负整数,得到k =2,0,10.C解:∴1x =是方程122()3-=-x x a 的解, ∴122(1)3a -=-, 解得1a =,将1a =代入(4)24+=+a y ay a 得:424y y +=+,解得0y =.11.D解:解方程3m (2x ﹣1)﹣n =3(2﹣n )x可得:(6m +3n ﹣6)x =3m +n∴有至少两个不同的解,∴6m +3n ﹣6=3m +n =0,即m =﹣2,n =6,把m =﹣2,n =6代入(m +n )x +3=4x +m 中得:4x +3=4x +m , ∴方程(m +n )x +3=4x +m 无解.12.C解:()()20192017620191k x x --=-+,(2019)2017620192019k x x --=--,(2019)2019620192017k x x -+=-+,4kx =, 解得:4x k=, ∴方程的解是整数,k 也是整数,∴k 可以为-4或-2或-1或1或2或4,共有6个数,故C 正确.13.D14.D解:因为1分钟60=秒,1公里1000=米, 所以可列方程为2634060120001000x ⨯⨯=, 15.B解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,16.-2解:由题意可得(0)x a a =≠,把x a =代入原方程可得:220a ab a ++=,等式左右两边同时除以a ,可得:20a b ++=, 即2a b +=-,故答案为:2-.17.7解:把x =3代入关于 x 的一元一次方程 mx - n =3得 3m - n =3-3m +n =-310 - 3m + n =10-3=7故答案为:7.18.1解:∴2x ﹣3y ﹣5=0,∴2x ﹣3y =5,∴9y ﹣6x +16=﹣3(2x ﹣3y )+16=﹣3×5+16=1,故答案为:1.19.320.5或-1解:230x --=,23x -=,23x -=±,解得:x =5-1或。
中考数学总复习《一元一次方程》专项测试卷-附带参考答案
中考数学总复习《一元一次方程》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.某人驾驶一艘小船在甲、乙两个码头之间航行,顺水航行需6h,逆水航行比顺水航行多用2h.若水流速度是2km/h,则这艘小船在静水中的平均速度是( ) A.14km/h B.15km/h C.16km/h D.17km/h2.已知关于x的方程∣5x−4∣+a=0无解,∣4x−3∣+b=0有两个解∣3x−2∣+c= 0只有一个解,则化简∣a−c∣+∣c−b∣−∣a−b∣的结果是( )A.2a B.2b C.2c D.03.已知七(1)班有学生48名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少10,并且这两个小组都不参加的人数比这两个小组都参加的人数的14多1,则同时参加这两个小组的人数是( )A.20B.16C.12D.84.下列四个等式中,是一元一次方程的是( )A.3x+2y=6B.2x+1=3xC.x2−2x−3=1D.2x=45.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是( ) A.3(x+2)=2x−9B.3(x−2)=2x+9C.x3+2=x−92D.x3−2=x+926.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地,两车同时出发,截止到它们都到达终点的过程中,两车第四次相距200km时,行驶的时间是( )A.283h B.445h C.285h D.4h7.一个长方形的长比宽多9米,周长是54米,若设长方形的宽为x米,依题意,所列方程正确的是( )A.x+(x+9)=54B.x+(x−9)=54C.x+(x−9)=12×54D.x+(x+9)=12×548.把方程2x−y=3改写成用含x的式子表示y的形式,正确的是( )A.y=2x−3B.y=3−2xC.y=−2x−3D.y=x+32二、填空题(共5题,共15分)9.若方程−x2k−3+5=0是关于x的一元一次方程,则k=.10.如图,为了测一个玻璃瓶的容积,小丽将一袋240毫升的牛奶倒入瓶中,测得牛奶高度为8厘米,再将瓶子倒放,测得空余部分高度为2厘米,小丽计算得到玻璃瓶的容积应该是毫升.11.一个袋子里有若干个球,其中红球占38,后来又往袋子里放12个红球,这时红球占总数的12,则袋子中原来共有球个.12.一列火车现在以120千米/时的速度从A地前往B地,原来的速度是现在速度的23,现在全程所用时间比原来少用4小时,则A,B两地的全程为千米.13.小红在某月日历的一个竖列上圈了三个数,这三个数的和恰好是33,则这三个数中最大的一个是.三、解答题(共3题,共45分)14.某冷饮店用200元购进A,B两种水果共20kg,进价分别为7元/kg和12元/kg.(1) 这两种水果各购进多少千克?(2) 该冷饮店将所购进的水果全部混合制成50杯果汁,要使售完后所获利润不低于进货款的50%,则每杯果汁的售价至少为多少元?15.在某体育用品商店,购买30根跳绳和60个毽子共需720元,购买10根跳绳和50个毽子共需360元.(1) 跳绳、毽子的单价各是多少元?(2) 该店在儿童节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?16.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?参考答案1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】D8. 【答案】A9. 【答案】 210. 【答案】 30011. 【答案】 4812. 【答案】 96013. 【答案】 1814. 【答案】(1) 设 A 种水果购进了 x kg ,则 B 种水果购进了 (20−x)kg ,根据题意,得7x +12(20−x)=200,解得x =8.所以20−x =12.答:购进 A 种水果 8 kg ,B 种水果 12 kg .(2) 设每杯果汁的售价为 y 元,根据题意,得50y −200≥200×50%,解得y ≥6.答;每杯果汁的售价至少为 6 元.15. 【答案】(1) 设跳绳的单价为 x 元,毽子的单价为 y 元根据题意,得{30x +60y =720,10x +50y =360,解得{x =16,y =4.(2) 设该店的商品按原价的 a 折销售,可得(100×16+100×4)×a10=1800,解得a=9.答:该店的商品按原价的9折销售.16. 【答案】设该店有x间客房则7x+7=9x−9解得x=8.7x+7=7×8+7=63.答:该店有客房8间,房客63人.。
中考数学《一元一次方程》专题练习(附带答案)
中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。
中考数学总复习《一元一次方程》专项测试题-附参考答案
中考数学总复习《一元一次方程》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.过去时全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为( )A.12x(x−1)=380B.x(x−1)=380C.2x(x−1)=380D.x(x+1)=3802.若关于x的方程2x+a−4=0的解是x=−2,则a的值等于( )A.−8B.0C.2D.83.如果x=2是方程12x+a=−1的解,那么a的值是( )A.−2B.2C.0D.−64.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场5.解方程x−16=3−2x−14,去分母时,方程两边乘各分母的最小公倍数( )A.10B.12C.24D.66.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )A.96里B.48里C.24里D.12里7.如图,用火柴棍分别拼成一排三角形组成的图形和一排正方形组成的图形,如果搭建三角形和正方形一共用了2020根火柴,且三角形的个数比正方形的个数多4个,则搭建三角形的个数是( )A.402B.406C.410D.4208.一元一次方程x−2=0的解是( )A.x=2B.x=−2C.x=0D.x=1二、填空题(共5题,共15分)9.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.10.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y−12y=12−■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y=−53,于是,他很快知道了这个常数,他补出的这个常数是.11.若x=−2是方程m(x+3)−3m−x=6的解,则m的值为.12.关于x的一元一次方程x2022−1=2022x+m的解为x=−2019,则关于y的方程3−y2022−1=2022(3−y)+m的解为.13.−113的倒数的相反数是。
中考数学一轮复习《一元一次方程》练习题(含答案)
中考数学一轮复习《一元一次方程》练习题(含答案)一、单选题1.下列方程中解是2x =的方程是( )A .360x +=B .240x -+=C .122x =D .240x += 2.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .33.已知a =b ,根据等式的性质,错误的是( )A .22a b +=+B .ac bc =C .a b c c =D .2211a b c c =++ 4.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1 B .2 C .3 D .1或35.下列命题中是真命题的是( )A .同位角相等,两直线平行B .钝角三角形的两个锐角互余C .若实数a ,b 满足a 2=b 2,则a =bD .若实数a ,b 满足a <0,b >0,则ab >06.某车间原计划用15小时生产一批零件,实际每小时多生产了10件,用了13小时不但完成了任务,而且还多生产了80件,设原计划每小时生产x 个零件,那么下列方程正确的是( )A .11(10)801513x x =++B .11(10)801513x x +=+ C .1513(10)80x x =++D .13(10)1580x x +=+ 7.若a b =,下列变形错误的是( )A .11a b +=+B .a m b m -=-C .22a b =D .23a b = 8.《孙子算经》中记载:今有百鹿入城,家取一鹿,不尽,又三家共鹿适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设有x 户人家,可列方程为( )A .3100x x +=B .3100x x -=C .1003x x -=D .1003x x += 9.已知点P 的坐标为()2,3x x +,点M 的坐标为()1,2x x -,PM 平行于y 轴,则P 点的坐标为( )A .()2,2-B .()6,6C .()2,2-D .()6,6--10.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个11.如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .212.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元二、填空题13.已知等式285x y -+=,则32x y -+=______.14.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是___ 1621x -5x 的值为 _____.17.若()235k y k x -=-+是一次函数,则k =_________.18.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.19.对于实数a ,b ,定义运算“※”如下:a ※b =a 2﹣ab ,例如,5※3=52﹣5×3=10.若(1)x +※(4)10x -=,则x 的值为_____.20.一个装有红豆和黄豆共计200颗的瓶子,现将瓶中豆子充分摇匀,再从瓶中取出80颗豆子时,发现其中有20颗红豆,根据实验估计该瓶装有红豆大约_________颗.三、解答题21.解方程:(1)2﹣3x =5﹣2x ;(2)3(3x ﹣2)=4(1+x ).22.解下列方程:(1)4385-=+x x ; (2)7531132y y --=-.23.一个正数a 的两个不相等的平方根分别是21b -和4b +.(1)求b 的值;(2)求a b +的立方根.24.我们规定一种运算=-a b ad cb c d,如232534245=⨯-⨯=-,再如14224-=-+-x x .按照这种运算规定,解答下列各题:(1)计算3245--=___________;(2)若22235-=-x x,求x 的值;(3)若88123332--+-mx x与51--n x的值始终相等,求m,n的值.25.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y,B y与x之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A卡,他计算了一下,若是B卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?26.接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m 的值.27.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:进货价(元/个)20 15 销售价(元/个)28 20(1)第一次小冬550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?28.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示)参考答案1.B2.D3.C4.C5.A6.D7.D8.D9.A10.D11.B12.B13.614.-515.100元16.317.-318.﹣1或﹣519.120.5021.(1)2﹣3x =5﹣2x2352x x -=-3x -=解得3x =-(2)3(3x ﹣2)=4(1+x )9644x x -=+9446x x -=+510x =2x =22.(1)解:4385-=+x x4835-=+x x48x -=2x =-.(2)解:7531132y y --=- ()()2756331y y -=--1410693y y -=-+1096314y y -+=+-5y -=-5y =.23.(1)解:一个正数a 的两个不相等的平方根分别是21b -和4b +,21(4)0b b +∴-=+,解得1b .(2)解:由(1)已得:1b, []22(21)2(1)19a b ∴=-=⨯--=,9(1)8a b +=+-=∴,a b ∴+的立方根2=.24.(1)解:根据题意354(2)73245---⨯⨯-=-=-, 故答案为:7-(2)解:根据题意22235-=-x x, 转化为2(5)3(2)2x x ⨯--⨯-=, 解方程,得12x =-. (3)解:88123833(81)(2)243732332mx x mx x mx x --+=----+=--+-; 515(1)()5x n x n n x -=---=--;根据题意24375mx x x n --+=-恒成立,即(243)75m x x n --+=-,2435m --=,7n -=, 解得,13m =-,7n =-. 25.(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元)∵A B y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元),∴小明实际话费是350元.26.(1)解:设3月平均每天有x 人前往乙接种点接种加强针,则3月平均每天有(1+20%)x 人前往甲接种点接种加强针,依题意得:(1+20%)x +x =440,解得:x =200,∴(1+20%)x =(1+20%)×200=240.答:3月平均每天有240人前往甲接种点接种加强针,有200人前往乙接种点接种加强针;(2)解:依题意得:(240-10m )m +200×(1+30%)m =2250,整理得:m 2-50m +225=0,解得:m 1=5,m 2=45.当m =5时,240-10m =240-10×5=190>0,符合题意;当m =45时,240-10m =240-10×45=-210<0,不符合题意,舍去.答:m 的值为5.27.(1)解:设A 款玩偶购进x 个,B 款玩偶购进(30)x -个,由题意,得2015(30)550x x +-=,解得:20x .302010-=(个).答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进(30)a -个,获利y 元,由题意,得(2820)(2015)(30)3150y a a a =-+--=+. A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.1(30)2a a ∴-, 10a ∴,3150y a =+.30k ∴=>,y ∴随a 的增大而增大.10a ∴=时,180y =最大元.B ∴款玩偶为:301020-=(个).答:按照A 款玩偶购进10个、B 款玩偶购进20个的方案进货才能获得最大利润,最大利润是180元.28.(1)由题意可得:点M 到点N 的距离为a , 当N 在M 左侧时,则N 表示的数为1a -, 当N 在M 右侧时,则N 表示的数为1a +, 故答案为1a -或1a +;(2)①由题意可得:点A 表示的数为14t +,点B 表示的数为4t + 当点A 在B 的左侧时,即144t t +<+,解得1t <, ∵[]2d AB =,∴()4142t t +-+=,解得13t = 当点A 在B 的右侧时,即144t t +>+,解得1t >, ∵[]2d AB =,∴()1442t t +-+=,解得2t = 综上,53t =或13t =时,[]2d AB =; 故答案为:53或13; ②由题意可得:点A 表示的数为14t +,点B 表示的数为b t + 当点B 在点A 的左侧或重合时,此时1b ≤,随着t 的增大,A 与B 之间的距离越来越大, ∵03t ≤≤时,即3t =时,[]143(3)10d AB b b =+⨯-+=-, ∵b 不超过5,∴105b -≥当点B 在点A 的右侧时,此时1b >,在AB 、不重合的情况下,A B 、之间的距离越来越小,[]d AB 最大为初始状态,即0=t 时,[]1d AB b =-,∵b 不超过5,∴14b -≤在AB 、可以重合的情况下,14t b t +=+,13b t =+,b 的最大值为10,又数b 不超过5, ∴,A B 不重合,综上, []d AB 最大值是10b -.。
中考数学复习之一元一次方程综合应用训练题(20大题)
中考数学复习之一元一次方程综合应用训练题(20大题)1.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.2.如图,已知数轴上点A表示的数为﹣60,点B表示的数为20,甲在A点,乙在B点,甲的速度是每秒5个单位,乙的速度是每秒3个单位,小狗的速度是每秒20个单位.(1)点A与点B之间的距离是.(2)若甲、乙两人同时同向(向右)而行,几秒钟甲追上乙?(3)若甲、乙两人同时相向而行,在C点相遇,求点C表示的数并在数轴上表示出来?(4)若小狗随甲同时同地向右出发,当小狗碰到乙时,乙才开始出发,乙和小狗同时向甲方向前进,当小狗再次碰到甲时又向乙方向跑,碰到乙的时候再向甲方向跑,就这样一直跑下去,直到甲、乙两人相遇为止,问这只小狗一共跑了多少路程?3.已知:A,B在数轴上对应的数分别用a,b表示,且(a+4)2+|b﹣12|=0.(1)数轴上点A表示的数是,点B表示的数是.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,当C点在数轴上且满足AC=3BC时,求C点对应的数.(3)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动,当P运动到B点时,再立即以同样速度返回,运动到A点停止;点P从点A出发时,另一动点Q从原点O出发,以1个单位长度/秒速度向B运动,运动到B点停止.设点Q运动时间为t秒.当t为何值时,点P与点Q之间的距离为2个单位长度.4.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?5.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA 上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设P A=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?6.2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?7.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)8.利用方程解决下面问题:相传有个人不讲究说话艺术常引起误会,一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的三个人也都告辞走了,聪明的你能知道开始来了几位客人吗?9.列方程或方程组解应用题:中国2010年上海世博会第三期预售平日门票分为普通票和优惠票,其中普通票每张150元人民币,优惠票每张90元人民币.某日一售票点共售出1000张门票,总收入12.6万元人民币.那么,这一售票点当天售出的普通票和优惠票各多少张?注:优惠票的适用对象包括残疾人士、老年人(1950年12月31日前出生的)、学生、身高超过1.20米的儿童、现役军人.10.十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:税级现行征税方法草案征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x≤5005%0x≤15005%0 2500<x≤200010%251500<x≤450010%32000<x≤500015%1254500<x≤900020%45000<x≤2000020%3759000<x≤3500025%975520000<x≤4000025%137535000<x≤5500030%2725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?11.某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?12.某学校为改善办学条件,计划购置至少40台电脑,现有甲,乙两家公司供选择:甲公司的电脑标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠;乙公司的电脑标价也是每台2000元,购买40台以上(含40台),则一次性返回10000元给学校.(1)假如你是学校负责人,在电脑品牌,质量,售后服务等完全相同的前提下,你如何选择?请说明理由;(2)甲公司发现乙公司与他竞争(但甲公司不知乙公司的销售方案),便主动与该校联系,提出新的销售方案;标价为每台2000元,购买40台以上(含40台),则按标价的九折优惠,在40台的基础上,每增加15台,便赠送一台.问:该学校计划购买120台(包括赠送),至少需要多少元?13.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x 对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.14.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.15.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km /h ,人步行的速度是5km /h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.16.某电信局现有600部已申请装机的电话尚待装机,此外每天有新申请装机的电话也待装机.假定每天新申请装机的电话部数相同,每个电话装机小组每天安装电话的部数也相同,若安排3个装机小组去安装电话,则30天可将待装电话装机完毕;若安排5个装机小组去安装电话,则恰好10天可将待装电话装机完毕.(1)求每天新申请装机的电话部数及每个电话装机小组每天安装电话部数.(2)如果要在5天内将待装电话装机完毕,那么电信局至少需按排几个电话装机小组同时装机?17.据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知A 站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H 站的里程数: 车站名ABC D E F G H各站至H 站的里程 数(单位:千米)1500 1130 910 622 402 219 72 0 例如,要确定从B 站至E 站火车票价,其票价为180×(1130−402)1500=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元);(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的(要求写出解答过程).18.某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.19.阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表: 顾客乘车路程(单位:千米) 1 1.5 2.5 3.5 需支付的金额(单位:元) “5.1”前4.4 “5.1”后4(2)小方从家里坐出租车到A 地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A 地路程大约 .(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.20.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a (元) 200≤a <400 400≤a <500 500≤a <700 700≤a <900 … 获奖券金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元). 购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价. 试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?。
中考数学一轮复习专题训练:一元一次方程(附答案)
2020 年中考数学一轮复习专题训练:一元一次方程一.选择题(共 8 小题)1.以下四个式子中,是方程的是()A .3+2=5B .x= 1C. 2x﹣ 3< 022 D. a +2ab+b2.若对于 x 的方程 2x﹣( 2a﹣1) x+3=0 的解是 x=3,则 a=()A .1B .0C. 2D. 33.解是 x=2 的方程是()A .2( x﹣ 1)= 6B .C.D.4.以下等式变形正确的选项是()A .若﹣ 3x= 5,则 x=﹣B .若,则2x+3(x﹣1)=1C.若 5x﹣ 6=2x+8,则 5x+2x= 8+6D .若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 15.在解方程 3x+5=﹣ 2x﹣ 1 的过程中,移项正确的选项是()A .3x﹣ 2x=﹣ 1+5B.﹣ 3x﹣ 2x= 5﹣ 1C. 3x+2x=﹣ 1﹣ 5D.﹣ 3x﹣ 2x=﹣ 1﹣ 56.解方程: 2﹣=﹣,去分母得()A .2﹣ 2 (2x﹣ 4)=﹣( x﹣ 7)B. 12﹣ 2 ( 2x﹣ 4)=﹣ x﹣7C. 2﹣( 2x﹣4)=﹣( x﹣ 7)D. 12﹣ 2 ( 2x﹣ 4)=﹣( x﹣ 7)7.有以下结论:①若 a+b+c= 0,则 abc≠ 0;②若 a( x﹣ 1)= b( x﹣ 1)有独一的解,则a≠b;③若 b=2a,则对于 x 的方程 ax+b= 0( a≠ 0)的解为 x=﹣;④若 a+b+c= 1,且 a≠ 0,则 x= 1 必定是方程 ax+b+c= 1 的解;此中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个8.若对于x 的方程 |2x﹣3|+m= 0 无解, |3x﹣ 4|+n= 0 只有一个解, |4x﹣ 5|+k= 0 有两个解,A .m >n > kB .n > k > mC . k > m > nD . m > k > n二.填空题(共8 小题)9.比 a 的 3 倍大 5 的数等于 a 的 4 倍用等式表示为. 10.已知等式 5x m+2m =.+3= 0 是对于 x 的一元一次方程,则11.在 ① 2x ﹣ 1; ② 2x+1= 3x ; ③ |π﹣ 3|= π﹣ 3 ; ④ t+1 = 3 中,等式有,方程有.(填入式子的序号)12.已知 x =5 是方程 ax ﹣ 8= 20+a 的解,则 a = .13.小强在解方程时,不当心把一个数字用墨水污染成了x =1﹣ ,他翻阅了答案知道这个方程的解为 x = 1,于是他判断●应当是.14.已知代数式 与 互为相反数,则 x 的值是 .15.已知方程的解也是方程 |3x ﹣ 2|= b 的解,则b = .16.已知 x ﹣3y = 3,则 7+6y ﹣ 2x =.三.解答题(共 6 小题)17.解方程:( 1) 3x ﹣ 9= 6x ﹣1;( 2) x ﹣= 1﹣.18.若方程 3(x+1 )= 2+x 的解与对于 x 的方程 = 2( x+3)的解互为倒数,求 k 的值.19.已知对于 x 的方程( m+5) x|m|﹣4+18= 0 是一元一次方程.试求:( 1)m 的值;( 2)代数式 的值.20.依据题意设未知数,并列出方程(不用求解).( 1)有两个工程队,甲队人数30 名,乙队人数10 名,问如何调整两队的人数,才能使甲队的人数是乙队人数的7 倍.( 2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,假如比原计划多租1 条船,那么正好每条船坐 6 人;假如比原计划少租 1 条船,那么正好每条船坐9 人.问这个班共有多少名同学?21.我们规定:若对于 x 的一元一次方程ax= b 的解为 b+a,则称该方程为“和解方程” .比如:方程 2x=﹣ 4 的解为 x=﹣ 2,而﹣ 2=﹣ 4+2,则方程 2x=﹣ 4 为“和解方程”.请依据上述规定解答以下问题:( 1)已知对于x 的一元一次方程3x= m 是“和解方程” ,求 m 的值;( 2)已知对于x 的一元一次方程﹣2x= mn+n 是“和解方程” ,而且它的解是x=n,求 m,n 的值.22.先阅读以下解题过程,而后解答问题(1)、( 2)、( 3).例:解绝对值方程:|2x|= 1.解:议论:①当 x≥ 0 时,原方程可化为2x= 1,它的解是x=.②当 x<0 时,原方程可化为﹣2x= 1,它的解是x=﹣.∴原方程的解为x=和﹣.问题( 1):依例题的解法,方程|的解是;问题( 2):试试解绝对值方程:2|x﹣2|= 6;问题( 3):在理解绝对值方程解法的基础上,解方程:|x﹣ 2|+|x﹣ 1|= 5.参照答案一.选择题(共8 小题)1.【解答】解:A、不是方程,由于不含有未知数,故本选项错误;B、是方程, x 是未知数,式子又是等式,故本选项正确;C、不是方程,由于它是不等式而非等式,故本选项错误;D、不是方程,由于它不是等式,故本选项错误;应选: B.2.【解答】解:把x=3 代入方程获得:6﹣ 3( 2a﹣ 1) +3= 0解得: a= 2.应选: C.3.【解答】解:将x=2 分别代入题目中的四个选项得:A、 2( x﹣ 1)= 2( 2﹣ 1)= 2≠ 6,因此, A 错误;B.= +1=2= X=2,因此, B 正确;C.==,因此,C错误;D .==≠1﹣x=1﹣2=﹣1,因此D错误;应选: B.4.【解答】解: A、若﹣ 3x=5,则 x=﹣,错误,故本选项不切合题意;B、若,则2x+3(x﹣1)=6,错误,故本选项不切合题意;C、若 5x﹣ 6=2x+8,则 5x﹣ 2x= 8+6,错误,故本选项不切合题意;D 、若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 1,正确,故本选项切合题意;应选: D.5.【解答】解:方程3x+5=﹣ 2x﹣ 1 移项得: 3x+2 x=﹣ 1﹣ 5.应选: C.6.【解答】解:去分母得:12﹣2( 2x﹣ 4)=﹣( x﹣ 7),应选: D.7.【解答】解:① 错误,当a=0, b= 1, c=﹣ 1 时, a+b+c=0+1 ﹣ 1=0,可是 abc= 0;②正确,方程整理得:( a﹣ b) x= a﹣b,③ 错误,由 a ≠ 0, b = 2a ,方程解得: x =﹣ =﹣ 2;④ 正确,把 x = 1,a+b+c = 1 代入方程左侧得: a+b+c = 1,右侧= 1,故若 a+b+c = 1,且 a ≠ 0,则 x = 1 必定是方程 ax+b+c = 1 的解,应选: C .8.【解答】解: ( 1)∵ |2x ﹣ 3|+m = 0 无解,∴ m > 0.( 2)∵ |3x ﹣ 4|+n = 0 有一个解,∴ n = 0.( 3)∵ |4x ﹣ 5|+k = 0 有两个解,∴ k < 0.∴ m > n > k .应选: A .二.填空题(共 8 小题)9.【解答】解:依据题意得: 3a+5 = 4a .故答案为: 3a+5= 4.10.【解答】解:由于 5x m+2+3= 0 是对于 x 的一元一次方程,因此 m+2= 1,解得 m =﹣ 1.故填:﹣ 1.11.【解答】解:等式有 ②③④ ,方程有 ②④ .故答案为: ②③④ ,②④ .12.【解答】解:把 x = 5 代入方程 ax ﹣ 8= 20+a得: 5a ﹣ 8= 20+a ,解得: a = 7.故答案为: 7.13.【解答】解:●用 a 表示,把 x = 1 代入方程得 1= 1﹣,解得: a = 1.故答案是: 1.514.【解答】解:∵代数式与x﹣3 互为相反数,∴﹣=x﹣3,解得 x=.故答案为:.15.【解答】解:2(x﹣ 2)= 20﹣ 5( x+3),2x﹣ 4=20﹣ 5x﹣ 15,7x= 9,解得: x=.把 x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得: b=.故答案为:.16.【解答】解:x﹣ 3y= 3,方程两边都乘以﹣2,得6y﹣ 2x=﹣ 6,方程两边都加7,得7+6y﹣ 2x=﹣ 6+7= 1,故答案为: 1.三.解答题(共 6 小题)17.【解答】解:( 1)移项归并得:3x=﹣ 8,解得: x=﹣;(2)去分母得: 4x﹣ x+1=4﹣ 6+2x,移项归并得: x=﹣ 3.18.【解答】解:解3( x+1)= 2+x,得 x=﹣,∵双方程的解互为倒数,∴将 x=﹣ 2 代入=2(x+3)得=2,解得 k=0.19.【解答】解:( 1)由题意得,|m|﹣ 4= 1, m+5≠ 0,解得, m= 5;(2)当 m=5 时,原方程化为 10x+18 =0,解得, x=﹣,∴==﹣.20.【解答】解:(1)设从乙队调x 人去甲队,则乙队此刻有10﹣ x 人,甲队有30+x 人,由题意得30+x= 7( 10﹣ x);(2)设这个班共有 x 名同学,由题意得﹣1= +1.21.【解答】解:( 1)∵方程3x= m 是和解方程,∴= m+3,解得: m=﹣.(2)∵对于 x 的一元一次方程﹣ 2x= mn+n 是“和解方程” ,而且它的解是 x= n,∴﹣ 2n= mn+n,且 mn+n﹣2= n,解得 m=﹣ 3, n=﹣.22.【解答】解:( 1) |x|= 2,①当 x≥0 时,原方程可化为x= 2,它的解是x= 4;②当 x<0 时,原方程可化为﹣x=2,它的解是x=﹣ 4;∴原方程的解为x= 4 和﹣ 4,故答案为: x= 4 和﹣ 4.(2) 2|x﹣ 2|= 6,①当 x﹣ 2≥ 0 时,原方程可化为2(x﹣ 2)= 6,它的解是x= 5;②当 x﹣ 2< 0 时,原方程可化为﹣2(x﹣ 2)= 6,它的解是x=﹣ 1;∴原方程的解为x= 5 和﹣ 1.( 3) |x﹣ 2|+|x﹣ 1|= 5,①当 x﹣ 2≥ 0,即 x≥ 2 时,原方程可化为x﹣ 2+x﹣ 1= 5,它的解是x= 4;②当 x﹣ 1≤ 0,即 x≤ 1 时,原方程可化为2﹣ x+1﹣ x= 5,它的解是x=﹣ 1;③当 1< x< 2 时,原方程可化为2﹣x+x﹣ 1= 5,此时方程无解;∴原方程的解为x= 4 和﹣ 1.。
中考数学专题复习题:一元一次方程的解法
中考数学专题复习题:一元一次方程的解法一、单项选择题(共8小题)1.已知关于x 的方程()21x m x −=−的解为2x =−,则m 的值等于( )A .2B .2−C .4D .4−3.当4x =时,式子5()10x b +−与4bx +的值相等,则b 的值为( )A .-6B .-7C .6D .7 1=解析:方程两边都乘6,得3(1)12(2)x x +−=−,①去括号,得33122x x +−=−,②移项,得32231x x −=−−+,③合并同类项,得4x =−.④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④5.已知3y =是关于y 的方程6ay =−的解,那么关于x 的方程4()(6)x a a x −=−−的解一定是( )2”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .12x =−B .8x =−C .8x =D .12x =1(12)26x x =++有非正整数解,则符合条件的所有整数k 的和为( )A .-5B .-4C .-2D .0二、填空题(共4小题)9.若a ==10.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为________.11.已知关于x 的方程122023x x m +−=的解是22x =,那么关于y 的一元一次方程116(23)52023y y m −−−=+的解是y =________. 2256x x −=,则x =________.三、解答题(共2小题)13.观察下列两个等式:22121133−=⨯⨯−,33222155−=⨯⨯−.给出定义如下:我们称使等式21a b ab −=−成立的一对有理数a ,b 为“同心有理数对”,记为(,)a b .如:数对21,3⎛⎫ ⎪⎝⎭,32,5⎛⎫ ⎪⎝⎭都是“同心有理数对”.根据上述材料,解答下列问题: (1)数对(2,1)−,43,7⎛⎫ ⎪⎝⎭中,是“同心有理数对”的是________; (2)若(,3)a 是“同心有理数对”,求a 的值;(3)若(,)m n 是“同心有理数对”,则(,)n m −−是否为“同心有理数对”?请说明理由.14.解方程:(1)()832y y −+=3435x +=−. b ad d =−。
中考数学-一元一次方程专题练习(含答案)
中考数学-一元一次方程专题练习(含答案)一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=22.已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.十二边形C.十边形D.九边形3.太平洋服装超市某种服装的标价为120元,元旦期间以九折降价出售,仍获利20%,该服装的进货价为()A.80元B.85元C.90元D.95元4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元B.160元C.192元D.200元5.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A.5(x﹣2)+3x=14B.5(x+2)+3x=14C.5x+3(x+2)=14D.5x+3(x﹣2)=146.下列式子中,是一元一次方程的有()A.x+5=2xB.x2﹣8=x2+7C.5x﹣3D.x﹣y=47.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若= ,则a=bD.若x=y,则8.文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A.不赚不赔B.亏8元C.盈利3元D.亏损3元9.若关于y的方程2m+y=1与3y﹣3=2y﹣1的解相同,则m的值为()A.2B. -C. -2D.010.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()A.330元B.210元C.180元D.150元11.已知关于x的方程1 + 3(3-4x) = 2(4x-3) ,若4x-3 = a,则a等于()A.-1B.C.D. -12.已知x=2是关于x的方程3x+a=0的一个解,则a的值是( )A.– 6B.–3C.– 4D.–513.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.+=-B.-=+C.-=-D.+10=-514.x=1是方程3x—m+1=0的解,则m的值是()A.-4B.4C.2D.-215.方程3x+6=0的解的相反数是()A.2B.-2C.3D.-3二、填空题16.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=________.17.若是关于的方程的解,则________;18.某商品货物进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,保证利润为5%,则该店应降价________元出售.19.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:________.20.已知方程(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程.则a的值为________三、解答题21.已知:如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=24°,求∠ABC的度数.22.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.23.毕业在即,九年级(一)班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念.其中送给老师的留念册的单价比给同学的单价多8元.请问这两种不同留念册的单价分别为多少元?四、计算题24.解方程(1)2(x+8)=3(x﹣1)(2)4x+3(2x﹣3)=12﹣(x+4)(3)x﹣6= x(4)3x+ =3﹣.25.解方程:(1)0.5x+0.6=6﹣1.3x26.(2)1+=.答案解析部分一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=2【答案】D【考点】一元一次方程的定义【解析】【解答】A.分母中含有字母,是分式方程,A不符合题意;B.方程中含有两个未知数,是二元一次方程,B不符合题意;C.方程中未知数的最高次数为2,是一元二次方程,C不符合题意;D.方程中含有一个未知数,且未知数的最高次数为1,是一元一次方程,D符合题意;故答案为:D.【分析】根据一元一次方程定义:指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
广东省2024年九年级中考数学一轮复习:一元一次方程 模拟练习(含解析)
2024年广东省九年级数学中考一轮复习:一元一次方程模拟练习一、单选题1.(2023·广东清远·二模)方程的解是,则a等于()A.B.0C.3D.22.下列等式变形中,不正确的是()A.若,则B.若,则C.若,则D.若,则3.(2023·广东清远·二模)下列方程中,解是的方程是()A.B.C.D.4.若方程和方程的解相同,则()A.1B.2C.D.5.(2023·广东广州·一模)如图,用若干根相同的小木棒拼成图形,拼第一个图形需要3根小木棒,拼第二个图形需要5根小木棒,拼第3个图形需要7根小木棒……若按照这样的方法拼成的第n个图形需要2023根小木棒,则( )A.1010B.1011C.1012D.10136.已知代数式比多,则的值为()A.B.C.D.7.(2023·广东汕头·一模)某车间有84名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知1个大齿轮和2个小齿轮配成一套.为使每天加工的大、小齿轮刚好配套,设每天加工大齿轮的有x人,则下面所列方程正确的是()A.B.C.D.8.(2023·广东肇庆·三模)用黑色和白色的正方形的卡片按照如图所示的规律拼图案,即从第2个图案开始,每个图案都比前一个图案多3个黑色正方形.若第n个图案中黑色正方形的个数为55,则n的值为()A.17B.18C.19D.209.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为天,则可列出正确的方程为( )A.B.C.D.10.(2023·广东阳江·三模)放学后,小万到学习用品店购买笔记本和中性笔,共花费元,已知笔记本的单价是元,中性笔的单价是元,小万购买中性笔的数量再多两支就是笔记本的两倍,设小万购买笔记本的数量为,则可列方程为( )A.B.C.D.11.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清醑酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒,醑酒各几斗?如果设清酒斗,那么可列方程为( )A.B.C.D.12.(2023·浙江杭州·二模)某公司本月信誉评分为96分,比上个月的信誉评分提高了.设该公司上个月的信誉评分为x.则()A.B.C.D.二、填空题13.(若是方程的解,则m的值为.14.(2023·广东佛山·二模)当时,代数式的值与代数式的值相等.15.方程2x﹣1=3的解是.16.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.按下面的程序计算,若开始输入的x值为正数,最后输出的结果为53,请写出符合条件的所有x的值.18.(2023·广东江门·一模)在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求的和中,“…”代表按此规律无限个数相加不断求和.我们可设.则有,即,解得,故.类似地,请你计算:.(直接填计算结果即可)19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则该商品每件的进价为元.20.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住人,那么有人无房可住;如果每间客房住人,那么就空出一间房.则该店有客房间.21.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设城中有x户人家,则可以列得方程为.22.(2023·广东清远·三模)小华和小兰两家相距2400米,他们相约到两家之间的剧院看戏,两人同时从家出发匀速前行,出发15分钟后,小华发现忘带门票,立即以原来速度的倍返回家中,取完东西后仍以返回时的速度去见小兰;而小兰在出发30分钟时到达剧院,等待10分钟后未见小华,于是仍以原来的速度,从剧院出发前往小华家,途中两人相遇.假设小华掉头、取票时间均忽略不计.两人之间的距离y (米)与小华出发时间x(分钟)之间的关系如图所示,则当两人相遇时,小兰距离剧院有米.三、解答题23.(2023·广东广州·一模)解一元一次方程:24.南昌的雾霾引起了小张对环保问题的重视.一次旅游小张思考了一个问题.从某地到南昌,若乘火车需要小时,若乘汽车需要小时.这两种交通工具平均每小时二氧化碳的排放量之和为千克,火车全程二氧化碳的排放总量比汽车的多千克,分别求火车和汽车平均每小时二氧化碳的排放量.25.根据小王在两个超市看到的商品促销信息解决下列问题:(1)当一次性购物标价总额是400元时,甲、乙两超市实付款分别是多少?(2)当一次性购物标价总额是多少时,甲、乙两超市实付款一样?26.某校在开展“健康中国”读书征文评比活动中,对优秀征文予以评奖,并颁发奖品,奖品有甲、乙、丙三种类型.已知个丙种奖品的价格是个甲种奖品价格的倍,个乙种奖品的价格比个甲种奖品的价格多元.用元分别去购买甲、乙、丙三种奖品,购买到甲和丙两种奖品的总数量是乙种奖品数量的倍.(1)求个甲、乙、丙三种奖品的价格分别是多少元?(2)该校计划:购买甲、乙、丙三种奖品共个,其中购买甲种奖品的数量是丙种奖品的倍,且甲种奖品的数量不少于乙、丙两种奖品的数量之和.求该校完成购买计划最多要花费多少元?27.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?参考答案:1.C【分析】本题考查了一元一次方程的解的定义,把代入方程,得到一个关于a的一元一次方程是关键.【详解】解:把代入方程得:,解得:,故选:C.2.B【分析】根据等式的性质逐个判断即可.【详解】解:A.∵,∴,故本选项不符合题意;B.∵,,∴,故本选项符合题意;C.∵,∴,故本选项不符合题意;D.∵,∴,故本选项不符合题意;故选:B.【点睛】本题考查了等式的性质:等式性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.掌握不等式的性质是解题的关键.3.D【分析】求出每个一元一次方程的解即可做出判断.【详解】解:A.,解得,故选项不符合题意;B.,解得,故选项不符合题意;C.,解得,故选项不符合题意;D.,解得,故选项符合题意.故选:D.【点睛】此题考查了一元一次方程的解,熟练掌握一元一次方程的解法并正确求解是解题的关键.4.D【分析】先求出的解,再代入到得到关于a的一元一次方程,即可求解.【详解】解:解得,将代入,得,解得.故选D.【点睛】本题考查解一元一次方程与一元一次方程的解,正确理解一元一次方程的解是解题的关键.5.B【分析】探索遵循的规律是,建立方程计算即可.【详解】根据题意,遵循的基本规律是第n个图形需要根小木棒,∴,解得,故选B.【点睛】本题考查了整式的加减中规律探索,一元一次方程的解法,熟练掌握探索规律,灵活解方程是解题的关键.6.B【分析】利用解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为,进行计算即可解答.【详解】解:由题意得:,,,,,,故选:B.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.7.A【分析】本题考查了一元一次方程的应用,设加工大齿轮的有x人,则加工小齿轮的有人,根据1个大齿轮和2个小齿轮配成一套,列出方程即可.【详解】解:设加工大齿轮的有x人,则加工小齿轮的有人,根据题意得:.故选:A.8.C【分析】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.观察图形可知,第1个图形共有1个黑色正方形;第2个图形共有个黑色正方形;第3个图形共有个黑色正方形;第4个图形共有个黑色正方形;…;由此得出第n个图形共有个黑色正方形,即可求出n的值.【详解】解:∵第1个图形共有1个黑色正方形;第2个图形共有个黑色正方形;第3个图形共有个黑色正方形;第4个图形共有个黑色正方形;…;第n个图形共有个黑色正方形,若第n个图案中黑色正方形的个数为55,则,解得:.故选:C.9.B【分析】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为天,快马送到所需时间为天,再利用速度路程时间,结合快马的速度是慢马的2倍,即可得出关于的分式方程,此题得解.【详解】解:规定时间为天,慢马送到所需时间为天,快马送到所需时间为天,又快马的速度是慢马的2倍,两地间的路程为900里,.故选:B.10.B【分析】本题考查了一元一次方程的应用;设小万购买笔记本的数量为,则小万购买中性笔的数量为支,根据题意列出方程,即可求解.【详解】解:设小万购买笔记本的数量为,则可列方程为,故选:B.11.A【分析】设清酒有斗,则醑酒有斗,然后根据一共有30斗谷子列出方程即可.【详解】解:设清酒有斗,由题意得,,故选:A.【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.12.C【分析】设该公司上个月的信誉评分为x.则本月的信誉评分可表示为,再建立方程即可.【详解】解:设该公司上个月的信誉评分为x.则;故选C【点睛】本题考查的是一元一次方程的应用,理解题意,确定相等关系是解本题的关键.13.2【分析】将代入方程中即可.【详解】解:将代入方程中,则,解得:,故答案为:2.【点睛】本题考查方程的解,能够熟练掌握方程解的概念是解决本题的关键.14.【分析】由题意可得:,求解即可.【详解】解:由题意可得:,解得,故答案为:.【点睛】此题考查了一元一次方程的求解,解题的关键是理解题意,正确列出方程.15.x=2.【分析】根据一元一次方程的解法即可得.【详解】2x﹣1=3,移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故答案为:x=2.【点睛】本题考查了一元一次方程的解法,基本步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)把系数化为1.16.4【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【详解】∵4※x=4+x=20,∴x=4.故答案为:4.【点睛】本题考查了解一元一次方程,依照新运算的定义找出关于x的一元一次方程是解题的关键.17.1或5或17【分析】根据输出结果,由运算顺序,列一元一次方程求出结果.【详解】解:根据题意得:,解得,.根据题意得:,解得,.根据题意得:,解得,.故答案为:1或5或17.【点睛】本题考查有理数的混合运算,掌握用方程的思想解决此题,转化为一元一次方程解决此题是关键.18.【分析】设,仿照例题进行求解.【详解】设,则,,解得,,故答案为:.【点睛】本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.19.240【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】解:设这种商品每件的进价为x元,根据题意得:x(1+10%)=330×0.8解得:x=240.故答案为240.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.20.【分析】设该店有x间客房,根据两种入住方式的总人数相同建立方程,然后求解即可.【详解】设该店有x间客房由题意得:解得故答案为:8.【点睛】本题考查了一元一次方程的实际应用,理解题意,正确建立方程是解题关键.21.x+x=100【分析】设城中有x户人家,根据“今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完”,即可得出关于x的一元一次方程,此题得解.【详解】设城中有x户人家,依题意,得:x+x=100.故答案为:x+x=100.【点睛】本题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.120【分析】本题考查了一次函数的应用,解题关键是读懂函数图象;先求出小兰和小华的速度,再根据函数图象求出小华后来的速度和再次出发后两人相遇的时间,由此即可得出答案.【详解】解:由题意得,小华从发现没带门票到返回家中拿到票所用时间为10分钟,当小华拿到门票时,小兰用25分钟走了(米),小兰的速度:(米分),小兰家与剧院的距离为(米),小华家与剧院的距离为(米);又他们从家出发15分钟后,两人相距1200米,,即,解得,(米分),小华后来的速度为(米分);设小华再次从家出发到两人相遇所用时间为分,则,解得,,两人相遇时,小兰与剧院的距离为(米).故答案为:120.23.【分析】去括号、移项并合并同类项、系数化为1即可求解.【详解】解:去括号得:,移项、合并同类项得:,系数化为1得:,即方程的解为:.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤并正确解答是关键.24.火车平均每小时的二氧化碳排放量为千克,则汽车平均每小时排放量为13千克.【分析】设火车平均每小时的二氧化碳排放量为x千克,则汽车平均每小时排放量为(70﹣x)千克,根据火车全程二氧化碳的排放总量比汽车的多54千克即可得出关于x的一元一次方程,解之即可得出结论.【详解】设火车平均每小时的二氧化碳排放量为x千克,则汽车平均每小时排放量为(70﹣x)千克,根据题意得:3x﹣9(70﹣x)=54解得:x=57,∴70﹣x=70﹣57=13.答:火车平均每小时的二氧化碳排放量为千克,则汽车平均每小时排放量为13千克.【点睛】本题考查了一元一次方程的应用,根据数量关系总排放量=平均每小时的排放量×排放时间结合两种交通工具总排放量之间的关系列出关于x的一元一次方程是解题的关键.25.(1)甲超市付款340元,乙超市付款360元(2)1000元【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是400元时,甲超市实付款=购物标价×0.85,乙超市实付款=400×0.9,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可.【详解】(1)解:当一次性购物标价总额是400元时,甲超市实付款为元,乙超市实付款为元.(2)解:由题意可知:当一次性购物标价总额不超过500元时,乙超市实付款一定比甲超市多.当一次性购物标价总额超过500元时,设一次性购物标价总额为x元时,甲、乙两超市实付款一样,由题意可得:,解得:,答:当一次性购物标价总额为1000元时,甲、乙两超市实付款一样.【点睛】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.26.(1)个甲、乙、丙三种奖品的价格分别是元、元、元;(2)该校完成购买计划最多要花费元【分析】(1)设个甲种奖品的价格为元,则个丙种奖品的价格为元,个乙种奖品的价格为元,根据“用元分别去购买甲、乙、丙三种奖品,购买到甲和丙两种奖品的总数量是乙种奖品数量的倍”列方程并解答;(2)设购买丙种奖品个,则购买甲种奖品个,购买乙种奖品个,根据“购买甲种奖品的数量不少于乙、丙两种奖品的数量之和”列不等式并解不等式,设该校购买奖品的费用为元,根据题意列出关系式:,并根据这一次函数的性质即可求解.【详解】解:(1)设个甲种奖品的价格为元,则个丙种奖品的价格为元,个乙种奖品的价格为元,依题意,得:解得:,经检验,是原方程的解,且符合题意,,,故:个甲、乙、丙三种奖品的价格分别是元、元、元;(2)设购买丙种奖品个,则购买甲种奖品个,购买乙种奖品个,由题意有:,,设该校购买奖品的费用为元,则,随的增大而减小,时,取最大值,且.故:该校完成购买计划最多要花费元.【点睛】本题考查一元一次不等式和一元二次方程的应用,解决本题的关键是正确解读题意题意,找到符合题意的关系式及所求量的等量关系.27.(1)购进甲商品40件,乙商品60件;(2)进货方案有三种①甲48件,乙52件,②甲49件乙51件③甲50件乙50件;(3)购买甲商品10件,乙商品8件或者9件【分析】1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x 的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可【详解】(1)设:购进甲商品x件,购进乙商品(100-x)件.由已知得15x+35(100-x)=2700解得x=40答:购进甲商品40件,乙商品60件.(2)设:购进甲商品x件,购进乙商品(100-x)件.利润W=5x+10(100-x)根据题意可得5x+10(100-x)≤760和x≤50;解得48≤x≤50,∴进货方案有三种①甲48件,乙52件,②甲49件,乙51件③甲50件,乙50件(3)第一天:没有打折,故购买甲种商品:200÷20=10(件)第二天:打折,打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)答:购买甲商品10件,乙商品8件或者9件.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.。
九年级中考数学复习《一元一次方程》专项练习题-附带答案
九年级中考数学复习《一元一次方程》专项练习题-附带答案一、单选题1.已知|x ﹣1|=3,则x 的值为( ) A .x =4B .x =2或x =﹣4C .x =4或x = -2D .x =﹣32.根据下列条件,能列出方程−13x=6的是( ) A .x 的13是6 B .x 的相反数的3倍是6 C .x 的相反数的13是6D .13与x 的差是63.下列运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a+c =b ﹣c B .如果a 2=3a ,那么a =3 C .如果a =b ,那么 ac =bcD .如果 ac =bc ,那么a =b4.已知关于x 的方程 3x =x +a 的解与 x+12=x +14的解相同,则a 的值为( )A .1B .−1C .2D .−25.小明在体育器材店中,按标价的八折购买了一双跑步钉鞋,比按标价购买节省了40元,则这双跑步钉鞋的实际售价为( ) A .160元B .180元C .200元D .220元6.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为( ) A .(a+ b)元 B .(a + b)元 C .(b+a)元D .(b+a)元7.一项工程,甲单独做需10天完成,乙单独完成需6天完成.现由甲先做2天,乙再加入合做,完成这项工程需多少天?若设完成这项工程共需x 天,依题意可得方程( ) A .x10+x6=1 B .x+210+x−26=1C .x10+x−26=1D .2x +x−210+x−26=18.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?( ) A .140元B .150元C .160元D .200元二、填空题9.已知关于x的方程:x−2−ax6=x3−1有非负整数解,则整数a的所有可能的值之和为.10.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是元.11.若关于x的方程(k+2)x2+4kx﹣5k=0是一元一次方程,则k= ,方程的解x= .12.把一批图书分给同学,若每人分3本,则剩下20本,若每人分4本,则还差25本.问有多少同学?若设有x名同学,则可列方程.13.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降低后再让利40元销售,仍可获利10%(相对于进价),则x=元三、解答题14.解方程(1)8x−4=6x−8;(2)x+12−2=x−34.15.2022年春节来临之际,各大商场都进行了促销活动.某商场将某品牌的电视机按进价提高60%作为标价,然后以“九折酬宾,再返现金200元”的优惠进行促销,结果该品牌电视机每台仍可获利460元.求该品牌电视机每台的进价.16.某同学解方程x+12=2−x4+3的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得2(x+1)=(2−x)+3.(第一步)去括号,得2x+2=2−x+3.(第二步)移项,得2x+x=2−2+3.(第三步)合并同类项,得3x=3.(第四步)系数化为1,得x=1.(第五步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.17.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.18.当涂大青山有较为丰富的毛竹资源,某企业已收购毛竹110吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加工1.5吨,每吨可获利5000元,由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售、为此研究了两种方案:(1)方案一:将收购毛竹全部粗加工后销售,则可获利元;方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.(2)是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.参考答案1.C2.C3.D4.A5.A6.A7.C8.B9.−1910.5011.﹣2;5412.3x+20=4x-2513.70014.(1)解:2x=−4x=−2(2)解:2(x+1)−8=x−32x+2−8=x−3x=3 15.解:设该品牌电视机每台的进价为x元.根据题意,得(1+60%)x×0.9−200−x=460.解得x=1500.答:该品牌电视机每台的进价为1500元.16.(1)一;漏乘不含分母的项(2)解:去分母,得2(x+1)=(2-x)+12去括号,得2x+2=2-x+12移项,得2x+x=2-2+12合并同类项,得3x=12系数化为1,得x=4.17.(1)解:设这个公司要加工x件新产品,由题意得:x16﹣x24=20解得:x=960(件)答:这个公司要加工960件新产品=60天,需要费用为:60×(5+80)=5100元;②由巨星(2)解:①由红星厂单独加工:需要耗时为96016=40天,需要费用为:40×(120+5)=5000元;厂单独加工:需要耗时为96024=24天,需要费用为:24×(80+120+5)=4920元.③由两场厂共同加工:需要耗时为96024+16所以,由两厂合作同时完成时,既省钱,又省时间18.(1)110000;231500(2)解:由已知分析存在第三种方案.设粗加工x天,则精加工(30-x)天,依题意得:8x+1.5×(30-x)=110解得:x=10,30-x=20所以销售后所获利润为:1000×10×8+5000×20×1.5=230000(元)。
中考数学一轮单元复习03 一元一次方程-人教版初中九年级全册数学试题
一元一次方程一、选择题1.下列各式中,方程有()①2+1=1+2;②4-x=1;③y2-1=-3y+1;④x-2.A.1个 B.2个 C.3个 D.4个2.若方程(m-1)x m2+1-(m+1)x-2=0是一元二次方程,则m的值为 ( )A.0B.±3.下列说法中,正确的个数是( )①若mx=my,则mx-my=0;②若mx=my,则x=y;③若mx=my,则mx+my=2my;④若x=y,则mx=my.4.下列变形中,正确的是( )﹣6=7,则5x﹣7=﹣6 ﹣13x=1,则x=﹣3C.若x-12=1,则x﹣﹣3x=5,则x=-355.已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是( )6.下列方程中,以-2为解的方程是( )A.3x-2=2xB.4x-1=2x+3C.5x-3=6x-2D.3x+1=2x-17.解方程有下列四步,其中发生错误的一步是( )A.去分母,得2(x+1)-x-1=4B.去括号,得2x+2-x-1=4C.移项,得2x-x=4-2+1D.合并同类项,得x=38.小马虎在做作业时,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)-●=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,那么这个被污染的常数是( )9.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在六一儿童节举行文具优惠售买活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )×0.8x+2×0.9(60+x)=87×0.8x+2×0.9(60-x) =87××0.8(60+x)=87××0.8(60-x)=8710.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()二、填空题11.若a-5=b-5,则a=b,这是根据.12.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为.13.方程x+2=7的解为.14.当x=________时.代数式5x﹣7与4x+9的值互为相反数.15.甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为.16.一艘轮船航行于A,B两个码头之间,顺水航行需3小时,逆水航行需5小时.已知水流速度为4千米/时,则两码头之间的距离为千米.三、计算题17.解方程:4x-3(12-x)=6x-2(8-x);18.解方程:3x(7-x)=18-x(3x-15);19.解方程:20.解方程:=.四、解答题21.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?22.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户月用水量在规定吨数以下的收费标准相同,超过规定吨数以上的部分收费标准相同,以下是小明家1~5月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20 t,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水多少吨?参考答案1.答案为:B2.D3.答案为:C4.答案为:B5.答案为:A;6.D7.答案为:A;8.答案为:B;9.答案为:B.10.B11.答案为:等式的性质1.12.答案为:1.13.答案为:x=5.14.答案为:﹣2/9;15.答案为:2x﹣5=(x+5)+1.16.答案为:60;17.答案为:x=-20.18.解:去括号,得21x-3x2=18-3x2+15x.移项、合并同类项,得6x=18,解得x=3.19.解:整理,得,去分母,得6(4x+9)﹣10(3+2x)=15(x﹣5),去括号,得24x+54﹣30﹣20x=15x﹣75,移项,得24x﹣20x﹣15x=﹣75﹣54+30,合并,得﹣11x=﹣99,系数化为1,得x=9.20.答案为:x=-3.4.21.解: 设A服装的成本为x元.根据题意,得30%x+20%(500-x)=130.解得x=300,∴ 500-x=200.答:A,B两件服装的成本分别为300元、200元.22.解:。
2021年九年级数学中考一轮复习 一元一次方程 同步测试卷
2021年九年级数学中考一轮复习一元一次方程同步测试卷一、选择题(本大题共9小题,共27分)1.下列方程中,解是x=−1的方程是().A. 7x+6=−xB. 6=8+2xC. 5x+2=7x+8D. x+5=−62.下列方程中,是一元一次方程的是()A. x2−4x=3B. 3x−1=x2C. x+2y=1D. xy−3=53.下列运用等式的性质,变形不正确的是()A. 若x=y,则x+5=y+5B. 若a=b,则ac=bcC. 若x=y,则xa =yaD. 若ac=bc(c≠0),则a=b4.若x=2是关于x的方程2x+3m−1=0的解,则m的值是()A. −1B. 0C. 1D. 125.某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,则该商店卖出这种商品的盈亏情况是().A. 不亏不赚B. 亏4元C. 赚6元D. 亏24元6.一家商店将某型号空调先按进价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果被工商部门发现有欺诈行为,为此按每台所得利润的10倍处以2700元的罚款,则每台空调进价为()A. 1350元B. 2250元C. 2000元D. 3150元7.已知某数x,若比它的25大1的数是3,则可列出方程()A. 25x+1=3 B. 52x+1=3 C. 25x−1=3 D. 52x−1=38.一项工程,甲单独做10天完成,乙单独做15天完成,若甲先做5天,再由甲、乙合做,完成全部工程的23,共需要的天数是()A. 5天B. 6天C. 7天D. 8天9.已知a=b,则下列等式不成立的是()A. a+1=b+1B. 1−a=1−bC. 3a=3bD. 2−3a=3b−2第1页,共5页二、填空题(本大题共9小题,共27分)10.方程|2x−3|=4的解为______.11.已知(|m|−1)x2−(m+1)x+8=0是关于x的一元一次方程,求m=__________.12.2022年冬奥会将在北京召开,某场馆建设由甲、乙两个工程队完成,甲单独做要30个月完成,乙单独做要60个月完成,则甲、乙两队合作________个月完成这项工程.13.已知方程(a+2)x2+5x b−3−2是关于x的一元一次方程,则a+b=________。
中考数学专题训练 一元一次方程-人教版初中九年级全册数学试题
一元一次方程一、 选择题(本题共8小题,每小题4分,共32分)1.“x 比它的12多4”的数量关系中,正确的是 ( ) A.142x x -= B.142x x += C.142x x -= D.142x += 2.下列方程中,是一元一次方程的是( ) A. 33372x x +=- B. 213x -= C.11323x y += D. 2302x = 3.下列方程的解为0的是 ( ) A. 2321x x +=+ B. 152x x = C.1452x x ++= D. 1104x += 4. 已知5x =-是方程3ax x a -=-的解,则a 的值是( ) A.2- B.2 C.12 D. 12- 5. 解方程2134134x x ---=时,去分母正确的是( ) A. ()4219121x x ---= B. ()8433412x x ---=C .()4219121x x --+= D. ()8433412x x -+-=6. 若13a +与233a +互为相反数,则a 的值是( ) A. 43B. 2C.2-D. 0 7. 小明今年12岁,他爷爷60岁,经过几年以后,爷爷的年龄是小明的4倍( )A.2B.48.甲、乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙?若设x 秒后甲追上乙,列出的方程应为( ) x =6.5 B. 7(xx C.7(xx D. 7x =6.5(x +2)二、填空题(本题共8小题,每小题4分,共32分)0.251x =的解是 .10.“x 的3倍与7的差等于12”可列方为 .()5550x x x -----=⎡⎤⎣⎦,则x =.2x =-是方程342x x a +=-的解,则1a a -= . 13.若 6x --与 17互为倒数,则x = . 14.一次买10斤鸡蛋打八折比打九折少花5元,则这10斤鸡蛋的原价是元.15.已知方程384x x a +=-的解满足20x -=,则a = . 16. 日历中同一竖列相邻三个数的和为63,则这三个数分别为_____,______ ,______.三、解答题(本题共2小题,共36分)17. 解下列一元一次方程:(本题共6小题,每小题4分,共24分)(1)321x +=; (2)22133x x -=-;(3)530.70.544x x -=+; (4)1071453x x x +=--;(5)()()23321x x -=-; (6)313242y y y --=+.18. 列方程解应用题(本题共2小题,每小题6分,共12分)(1) 五四前夕,上级团委发给某校团委电影票240X ,校团委决定初一、初二、初三三个年级按2:5:3的比例分配电影票. 问每个年级各能分到电影票多少X ?(2)某篮球队参加篮球赛,胜一场得2分,负一场得0分,平一场得1分,该队一共赛12场,未负一场,总得20分,问该队胜了几场?参考答案一、选择题:二、填空题:9.4x =; 10.3712x -=; 11.5; 12. 0; 13.13-; ; 15.1132-; 16. 14,21,28.三、解答题:17. (1)1x =-; (2)13x =; (3)125x =; (4)12x =; (5)34x =-; (6)8y =.18. (1)设初一、初二、初三年级的票数分别为2x ,5x ,3x ,根据题意,得 253240x x x ++=,解方程得x =24.答:初一年级能分48X ,初二年级能分120X ,初三年级能分72X.(2)设胜x 场,2(12)20x x +-=,解得8x =.答:胜8场.。
2024年九年级数学中考复习一元一次方程及其应用综合题
2024年九年级数学中考复习一元一次方程及其应用综合题一、选择题(本大题共10道小题)1. (2023·株洲)方程x 2-1=2的解是( ) A.x =2 B.x =3 C.x =5 D.x =62. (2022七上·龙湖)下列方程中,是一元一次方程的是( )A.x+(4-x)=0B.x+1=0C.x+y =1D.y1+x =0 3. (2023·温州中考)解方程-2(2x +1)=x,以下去括号正确的是( )A.-4x +1=-xB.-4x +2=-xC.-4x -1=xD.-4x -2=x4. (2022·河北廊坊)已知2a=3b,且a ≠0,则b a =( ) A.23 B.32 C.-23 D.-325. (2023·贵州贵阳)如果△+2=1,那么“△”所表示的数是( )A.-3B.-2C.-1D.06. (2022·贵州铜仁)下列等式变形中,不正确的是( )A.若a=b,则a+5=b+5B.若a=b,则33a b =C.若23a b =,则3a=2bD.若|a|=|b|,则a=b7. (2023·牡丹江中考)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )A.不盈不亏B.盈利20元C.盈利10元D.亏损20元8. (2023湖南长沙模拟)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A.2×1000(26﹣x)=800x;B.1000(13﹣x)=800x;C.1000(26﹣x)=2×800x;D.1000(26﹣x)=800x9. (2023•龙沙区一模)甲乙丙三人做一项工作,三人每天的工作效率分别为a 、b 、c,若甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,下列结论正确的是( )A.甲的工作效率最高B.丙的工作效率最高C.c=3aD.b:c=3:210. (2022七上·东莞)下列说法中,不正确的个数是( )①若a+b =0,则有a,b 互为相反数,且ba =-1;②若|a|>|b|,则有(a+b)(a-b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c <0,abc >0,则|abc |abc |ac |ac |bc |bc |ab |ab -+-的结果有三个;⑤方程ax+b =0(a,b 为常数)是关于x 的一元一次方程.A.1个B.2个C.3个D.4个二、填空题(本大题共8道小题)11. (2022七上·温州)若|△-3|=1,则“△”所表示的数为 .12. (2023·贵州铜仁·中考真题)方程2x+10=0的解是_____.13. (2023•株洲)关于x 的方程3x ﹣8=x 的解为x = .14. (2023•衢州)一元一次方程2x+1=3的解是x = .15. (2023·重庆中考B 卷)方程2(x -3)=6的解是____.16. (2023·临沂模拟)若方程2x +1=-1的解是关于x 的方程1-2a(x +2)=3的解,则a的值为____.17. (2023•牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.18. (2023·大连)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 .三、解答题(本大题共6道小题)19. (2023秋•西丰县期末)已知关于x的方程2(x-1)=3m-1与3x-2=-4的解相同,求m的值.20. (2023秋•蓬江区校级月考)已知关于x的方程3x﹣6(x)=4x和1有相同的解,求这个解.21. (2023秋•南岗区校级月考)已知x=-2是关于x的方程-3x=-mx+4的解,求:(m2-19m+17)99的值.22. (2022·河北邯郸·三模)老师写出一个整式(ax2+bx-4)-(3x2+2x)(其中a、b为常数,且表示为系数),然后让同学给a、b赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为2x2-3x-4.则甲同学给出a、b的值分别是a =,b=;(2)乙同学给出了a=2,b=-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x的取值无关,请直接写出丙同学的计算结果.23. (2023秋•新疆期末)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?24. (2023秋•金昌期末)学校购买一批教学仪器,由某班学生搬进实验室,若每人搬8箱,还余16箱,若每人搬9箱,还缺少32箱,这个班有多少名学生?这批教学仪器共有多少箱?。
2022年春北师大版九年级数学中考一轮复习《求解一元一次方程》综合练习(附答案)
2022年春北师大版九年级数学中考一轮复习《求解一元一次方程》综合练习(附答案)一、解一元一次方程1.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化;2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号;3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c,使方程逐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。
综合练习一.选择题1.下列方程中,是一元一次方程的是()A.x+1=0B.x+2y=5C.=1D.x2+1=x【分析】直接利用一元一次方程的定义进而分析得出答案.【解答】解:A、x+1=0,是一元一次方程,故此选项正确;B、x+2y=5,是二元一次方程,故此选项错误;C、=1,是分式方程,故此选项错误;D、x2+1=x,是一元二次方程,故此选项错误;故选:A.2.下列方程中,其解为﹣1的方程是()A.2x﹣1=4x+3B.3x=x+3C.D.2(x﹣3)=3【分析】分别求出各项中方程的解,即可作出判断.【解答】解:A、方程2x﹣1=4x+3,移项合并得:﹣2x=4,∴x=﹣2,不合题意;B、方程3x=x+3,解得:x=,不合题意;C、方程=﹣,移项合并得:x=﹣1,符合题意;D、方程2(x﹣3)=3,去括号,移项合并得:2x=9,解得:x=4.5,不合题意,故选:C.3.下列方程求解正确的是()A.3x﹣5x=﹣1的解是x=﹣B.2x﹣x=﹣2﹣3的解是x=1C.﹣x﹣x=3的解是x=﹣D.6x﹣3x=﹣2的解是x=﹣【分析】每个选项中的一元一次方程,先合并同类项再求解方程即可.【解答】解:A.3x﹣5x=﹣1,合并同类项得,﹣2x=﹣1,解得x=,故A不正确;B.2x﹣x=﹣2﹣3,合并同类项,得x=﹣5,故B不正确;C.﹣x﹣x=3,合并同类项得,﹣x=3,解得x=﹣,故C正确;D.6x﹣3x=﹣2,合并同类项得,3x=﹣2,解得x=﹣,故D不正确;故选:C.4.若关于x的一元一次方程k﹣2x﹣4=0的解是x=﹣3,则k的值是()A.﹣2B.2C.6D.10【分析】把x=﹣3代入方程得出k+6﹣4=0,再求出k即可.【解答】解:∵关于x的一元一次方程k﹣2x﹣4=0的解是x=﹣3,∴k+6﹣4=0,∴k=﹣2,故选:A.5.已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,则x的值是()A.x=1B.C.D.x=﹣1【分析】根据行列式,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:由题意,得2×5x﹣4(1﹣x)=18,解得x=,故选:C.6.下列方程的变形中,正确的是()A.由2x+1=x得2x﹣x=1B.由3x=2得x=C.由得x=D.由﹣得﹣x+1=6【分析】根据等式的基本性质分别计算各选项即可.【解答】解:A.移项得2x﹣x=﹣1,故该选项错误,不符合题意;B.系数化为1得x=,故该选项错误,不符合题意;C.系数化为1得x=÷,即x=,故该选项正确,符合题意;D.去分母得:﹣(x+1)=6,故该选项错误,不符合题意.故选:C.7.若关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,则m的值是()A.或B.C.D.﹣或【分析】解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.【解答】解:因为方程|x﹣|=1,所以x﹣=±1,解得x=或x=﹣,因为关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,所以解方程x+2=2(m﹣x)得,m=,当x=时,m=,当x=﹣时,m=.所以m的值为:或.故选:A.8.关于x的一元一次方程mx+3=2(m﹣x)的解满足,则m的值是()A.5B.C.5或D.2或0【分析】先解可得x=1或x=0;在将所求的解代入方程mx+3=2(m﹣x)即可求m.【解答】解:化简可得,x﹣=或x﹣=﹣,解得x=1或x=0,∵x是方程mx+3=2(m﹣x)的解,∴m+3=2(m﹣1)或3=2m,∴m=5或m=,故选:C.9.关于x的方程kx=2x+6与2x﹣1=3的解相同,则k的值为()A.3B.4C.5D.6【分析】求出第二个方程的解,代入第一个方程计算即可求出k的值.【解答】解:方程2x﹣1=3,解得:x=2,把x=2代入kx=2x+6得:2k=10,解得:k=5,故选:C.10.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±2【分析】根据一元一次方程的定义,求出a的值即可.【解答】解:∵方程(a+3)x|a|﹣2+6=0是关于x的一元一次方程,∴,解得a=3.故选:A.二.填空题11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则|2x|=1.【分析】根据一元一次方程的定义可得:|a|﹣1=1,且a﹣2≠0,再解即可得到a的值,再把a的值代入方程(a﹣2)x|a|﹣1﹣2=0,解出x的值,进而可得答案.【解答】解:由题意得:|a|﹣1=1,且a﹣2≠0,解得:a=﹣2,﹣4x﹣2=0,解得:x=﹣,|2x|=1.故答案为:1.12.已知关于x的一元一次方程的解为x=8,则关于y的一元一次方程:的解为y=9.【分析】比较两个方程可知y﹣1=x,再根据x=8,推的y﹣1=8,解出y.【解答】解:∵,,∴y﹣1=x,∵x=8,∴y﹣1=8,解得y=9.故答案为:9.13.已知x=1是关于x的方程(2m﹣6)x﹣2=0的解,则m=4.【分析】把x=1代入(2m﹣6)x﹣2=0,求出m的值.【解答】解:把x=1代入(2m﹣6)x﹣2=0,得2m﹣6﹣2=0,2m=6+2,解得m=4.故答案为:4.14.若2x+3与﹣x﹣5互为相反数,则x的值为2.【分析】根据相反数的定义:互为相反数的两数之和为0可列方程,解答即可.【解答】解:∵代数式2x+3与﹣x﹣5的值互为相反数.∴2x+3+(﹣x﹣5)=0,2x+3﹣x﹣5=0,2x﹣x=5﹣3,解得:x=2.故答案为:2.15.已知方程2x﹣4=6x+a的解满足|2x+3|=0,则a=2.【分析】解出方程|2x+3|=0的解,再将所得的解x=﹣代入方程2x﹣4=6x+a即可求a 的值.【解答】解:解|2x+3|=0可得x=﹣,由题可知x=﹣是方程2x﹣4=6x+a的解,∴2×(﹣)﹣4=6×(﹣)+a,∴a=2,故答案为2.16.已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=10.【分析】直接解方程得出x的值,进而得出m的值.【解答】解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.17.已知2x m﹣1+3=0是一元一次方程,则m=2.【分析】根据一元一次方程的定义得出m﹣1=1,求出m即可.【解答】解:∵2x m﹣1+3=0是一元一次方程,∴m﹣1=1,解得:m=2,故答案为:2.三.解答题18.若方程3x|n﹣2|﹣3﹣3x2+2x﹣2=0是关于x的一元一次方程,求n2﹣n+1的值.【分析】根据一元一次方程的定义,即可得到n的值,再代入代数式进行计算即可.【解答】解:∵方程3x|n﹣2|﹣3﹣3x2+2x﹣2=0是关于x的一元一次方程,∴3x|n﹣2|﹣3与﹣3x2互为相反数,∴|n﹣2|﹣3=2,n﹣2=±5,n=7或n=﹣3.当n=7时,n2﹣n+1=49﹣7+1=43;当n=﹣3时,n2﹣n+1=9+3+1=13.故n2﹣n+1的值为13或43.19.已知关于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2,求m的值.【分析】首先去括号,移项、合并同类项可得x的值;根据(1)中x的值可得方程2(x+1)﹣m=﹣的解为x=3+2=5,然后把x的值代入可得关于m的方程,再解即可.【解答】解:(1)首先去括号,移项、合并同类项可得x的值:5(x﹣1)﹣1=4(x﹣1)+1,5x﹣5﹣1=4x﹣4+1,5x﹣4x=﹣4+1+1+5,x=3;(2)根据(1)中x的值可得方程:2(x+1)﹣m=﹣的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣得:2(5+1)﹣m=﹣,12﹣m=﹣,m=22.20.已知方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,求a的值.【分析】先求出第二个方程的解,根据相反数得出第一个方程的解是x=﹣2a,把x=﹣2a代入第一个方程,再求出a即可.【解答】解:解方程x﹣2a=0得:x=2a,∵方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,∴3(﹣2a)+2a﹣1=0,解得:a=﹣.21.解下列方程:(1)4x﹣4=6﹣x;(2)﹣=1.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【解答】解:(1)移项,可得:4x+x=6+4,合并同类项,可得:5x=10,系数化为1,可得:x=2.(2)去分母,可得:3(x﹣1)﹣2(4x﹣2)=6,去括号,可得:3x﹣3﹣8x+4=6,移项,可得:3x﹣8x=6+3﹣4,合并同类项,可得:﹣5x=5,系数化为1,可得:x=﹣1.22.解方程:(1);(2)|2x+3|=8.【分析】(1)按解含分母的一元一次方程的解法求解即可;(2)分别对2x+3>0、2x+3<0进行讨论得一元一次方程,求解即可.【解答】解:(1)去分母,得3(4x﹣3)﹣15=5(7x﹣2),去括号,得12x﹣9﹣15=35x﹣10,移项,得12x﹣35x=﹣10+9+15,合并同类项,得﹣23x=14,系数化为1,得.(2)当2x+3>0时,2x+3=8,解得x=;当2x+3<0时,2x+3=﹣8,解得x=﹣.∴原方程的解为:或.23.我们把解相同的两个方程称为同解方程.例如:方程:2x=6与方程4x=12的解都为x =3,所以它们为同解方程.(1)若方程2x﹣3=11与关于x的方程4x+5=3k是同解方程,求k的值;(2)若关于x的方程x﹣2(x﹣m)=4和﹣=1是同解方程,求m的值.【分析】(1)先求出方程2x﹣3=11的值,再把x的值代入方程4x+5=3k中,然后进行计算即可得出k的值;(2)根据方程x﹣2(x﹣m)=4和﹣=1是同解方程,用含m的式子表示x,即可求m的值.【解答】解:(1)∵方程2x﹣3=11与关于x的方程4x+5=3k是同解方程,∴2x﹣3=11,解得x=7,把x=7代入方程4x+5=3k,解得k=11,∴k的值为11;(2)∵x﹣2(x﹣m)=4,∴x=2m﹣4,∵方程x﹣2(x﹣m)=4和﹣=1是同解方程,∴﹣=1,∴3(3m﹣4)﹣2(2m﹣4)=6,∴m=2.24.若(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,求m2﹣2m+2022的值.【分析】只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.【解答】解:∵(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,∴m﹣4≠0且2|m|﹣7=1,解得:m=﹣4,∴原式=16+8+2022=2036.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程测试题
一、耐心填一填!
1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14
)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______
4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a
2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123
-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2
+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.
二、慧眼识真!
1. 1、下列各题中正确的是( )
A. 由347-=x x 移项得347=-x x
B. 由2
31312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x x
D. 由7)1(2+=+x x 移项、合并同类项得x =5
2、方程2-2x 4x 7312
--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7
C 、24-4(2x -4)=-(x -7)
D 、12-4x +4=-x +7
3、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
这批宿舍的间数为____。
A、20
B、15
C、10
D、12
4、某商品的进价是110元,售价是132元,则此商品的利润率是____。
A、15%
B、20%
C、25%
D、10%
5、某商场上月的营业额是 a万元,本月比上月增长15%,那么本月的营业额是____。
A、15%a万元;
B、a(1+15%)万元;
C、15%(1+a)万元;
D、(1+15%)万元。
6、甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是___。
A、10岁
B、15岁
C、20岁
D、30岁
7、一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为___。
A、3cm,5cm
B、3.5cm,4.5cm
C、4cm,6cm
D、10cm,6cm
8、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费),超过3km以后,每增加1km,加收2.4元(不足1km按1km计)。
某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是___。
A、11
B、8
C、7
D、5
9、一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了___道题。
A、17
B、18
C、19
D、20
10、某商店有2个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这笔买卖中,这家商店___。
A不赔不赚B、赚了10元C赔了10元D赚了8元
11、小刚问妈妈的年龄,妈妈笑着说:“我们两人的年龄和为52岁,我的年龄是你的年龄的2倍多7,你能用学过的知识求出我们的年龄吗?”小刚想了一会儿,得出的正确结果是__。
A、14岁和38岁
B、15岁和37岁
C、16岁和36岁
D、16岁和39岁
12、一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()
A、16
B、25
C、34
D、61
三.解下列方程:
1、
14126110312-+=---x x x 2、8(3x -1)-9(5x -11)-2(2x -7)=30
3、
2(x+1)5(x+1)=136
- 4、4x 1.55x 0.8 1.2x 0.50.20.1----=
四、列方程解应用题
1、某种商品因换季准备打折出售.如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,这种商品的定价是多少?
2、一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.
3、用白铁皮做罐头盒,每张铁皮可制盒身16个,或盒底43个,一个盒身与两个盒底配成一套罐头盒。
现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头
盒?
4.某人将2 000元人民币按一年定期存入银行,到期后扣除20%的利息税得本息和2 160元,求这种存款方式的年利率.
答案
一、1.3x=17-6 ;311
2.0 3.95
4.3(x-1)-2(x+3)=6 5.-1; 29
6
.1 7.3(5-x )-2(4+x)=6 8.-13 9.45385.6元 10.-7 11.4 12.1.2x
二、1.D 2.C 3.A 4.B 5.B 6.C 7.B 8.B 9.C 10
.B 11. B 12. A
三、1.x=187 2.x=3 3. x=5 4. x=711
四、1.300元
2. 84
3. 64张做盒底,86张做盒身。
4. 10%。