金属晶体结构

合集下载

金属材料的晶体结构

金属材料的晶体结构

金属材料的晶体结构一、晶体与非晶体固态物质可分为晶体与非晶体两类。

●晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。

晶体具有固定的熔点和凝固点、规则的几何外形和各向异性特点,如金刚石、石墨及一般固态金属材料等。

●非晶体是指其组成微粒无规则地堆积在一起的物质,如玻璃、沥青、石蜡、松香等都是非晶体。

非晶体没有固定的熔点,而且性能具有各向同性。

图1-18 简单立方晶格及其晶胞示意图二、金属的晶体结构(一)晶格●抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。

(二)晶胞●反映晶格特征、具有代表性的最小几何单元称为晶胞。

晶胞的几何特征可以用晶胞的三条棱边的边长(晶格常数)a、b、c和三条棱边之间的夹角α、β、γ等六个参数来描述。

(三)常见的金属晶格类型常见的晶格类型是:体心立方晶格、面心立方晶格和密排六方晶格:1.体心立方晶格体心立方晶格的晶胞是立方体,立方体的8个顶角和中心各有一个原子,每个晶胞实有原子数是2个。

具有这种晶格的金属有:α铁(α-Fe)、钨(W)、钼(Mo)、铬(Cr)、钒(V)、铌(Nb)等约30种金属。

图1-19 体心立方晶格示意图2.面心立方晶格面心立方晶格的晶胞也是立方体,立方体的八个顶角和六个面的中心各有一个原子,每个晶胞实有原子数是4个。

具有这种晶格的金属有:γ铁(γ-Fe)、金(Au)、银(Ag)、铝(Al)、铜(Cu)、镍(Ni)、铅(Pb)等金属。

图1-20 面心立方晶格示意图3.密排六方晶格密排六方晶格的晶胞是六方柱体,在六方柱体的十二个顶角和上下底面中心各有一个原子,另外在上下面之间还有三个原子,每个晶胞实有原子数是6个。

具有这种晶格的金属有:α钛(α-Ti)、镁( Mg)、锌(Zn)、铍(Be)、镉(Cd)等金属。

图1-21 密排六方晶格示意图三、金属的实际晶体结构●原子从一个核心(或晶核)按同一方向进行排列生长而形成的晶体,称为单晶体。

自然界存在的单晶体有水晶、金刚石等,采用特殊方法也可获得单晶体,如单晶硅、单晶锗等,单晶体具有显著的各向异性特点。

第一章-金属的晶体结构(共118张PPT)可修改全文

第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。

金属的晶体结构

金属的晶体结构

面心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:
③原子半径
面心立方晶格示意图
具有面心立方晶格 的金属有铝、铜、镍、 金、银、γ-铁等。
④致密度:0.74(74%)
第一节 金属的晶体结构
(2)密排六方晶格(胞)
金属原子分布在立方体的八个角上和六个面的中心。 面中心的原子与该面四个角上的原子紧靠。
体心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:一个体心立方晶胞所 含的原子数为2个。
体心立方晶格示意图 具有体心立方晶格
的金属有钼、钨、钒、 α-铁等。
第一节 金属的晶体结构
(1)体心立方晶格(胞)
体心立方晶胞特征: ③原子半径:晶胞中相距最近的两个原子之间距离的一半,或晶胞中原子 密度最大的方向上相邻两原子之间距离的一半称为原子半径(r原子)。
1.增大金属的过冷度 原理:一定体积的液态金属中,若成核速率N越大,则结晶后的晶粒
越多,晶粒就越细小;晶体长大速度G越快,则晶粒越粗。 随着过冷度的增加,形核速率和长大速度均会增大。但当过冷度超
过一定值后,成核速率和长大速度都会下降。对于液体金属,一般不会 得到如此大的过冷度,通常处于曲线的左边上升部分。所以,随着过冷 度的增大,成核速率和长大速度都增大,但前者的增大更快,因而比值 N/G也增大,结果使晶粒细化。
二、纯金属的晶体结构
晶体中原子(离子或分子)规则排列的方式称为晶体结构。 通过金属原子(离子)的中心划出许多空间直线,这些直线将形成空间格架。 这种格架称为晶格。晶格的结点为金属原子(或离子)平衡中心的位置。
晶体
晶格
第一节 金属的晶体结构
二、纯金属的晶体结构

金属晶体的常见结构

金属晶体的常见结构

金属晶体的常见结构
金属晶体的常见结构有以下几种:
1. 面心立方(FCC)结构:在这种结构中,金属原子分别位于正方形面的角点和中心,以及正方形面的中心。

每个原子都与12个邻近原子相接触,形成一个紧密堆积的结构。

典型的例子是铜、铝和金。

2. 体心立方(BCC)结构:在这种结构中,金属原子分别位于正方体的角点和正方体的中心。

每个原子都与8个邻近原子相接触,形成一个比较紧密的结构。

铁和钨是常见的具有BCC结构的金属。

3. 密排六方(HCP)结构:在这种结构中,金属原子以一定的方式排列,形成六边形的密排层,其中每个层的原子位于前一层原子的空隙上。

这些层之间存在垂直堆叠,形成一个紧密堆积的结构。

典型的例子是钛和锆。

除了以上三种常见的金属晶体结构外,还有其他特殊的结构,如体心立方密堆积(BCC HCP)和面心立方密堆积(FCC HCP)等。

这些不同的结构对于金属的性质和行为有着重要的影响。

1。

第三章金属的晶体结构与结晶

第三章金属的晶体结构与结晶
第三章 金属的晶体结构与结晶
钢和铁是制造机器设备的主要材料,它们都是以铁和碳为 主而组成的合金,要了解钢和铸铁的本质,首先要了解纯铁的 晶体结构。固态物质按原子的聚集状态分为晶体和非晶体。
§3-1 金属的晶体结构 一、晶体的概念
金属在固态下一般都是晶体。 晶体:原子在空间呈规律性排列的固体物质; 注意:在固态时呈规律性排列,而在液态时金属原子的排列 并不规律。如图3-1(a) 金属的结晶就是由液态金属转变为固态金属的过程。
图3-5 实际金属晶体
在晶界上原子的排列不像晶粒内部那样有规则,这种原子 排列不规则的部位称为晶体缺陷。根据晶体缺陷的几何特点, 将晶体缺陷分为点缺陷、线缺陷和面缺陷三种。 1. 点缺陷:不规则区域在空间三个方向上的尺寸都很小, 例如空位、置换原子、间隙原子。如图3-6
空位
间隙原子
置换原子
间隙原子
图3-3 面心立方晶格Fra bibliotek 3.密排六方晶格:由两个简单六方晶胞穿插而成,晶胞为六 方柱体,柱体的12个顶角和上、下面中心上各排列一个原子, 在上、下面之间还有三个原子。如图3-4
图3-4 密排六方晶格
(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的 金属较差。
§3-2 实际金属的结构 一、多晶体结构
1.铸态晶:液态金属结晶后形成的晶体。将铸锭剖开可以 看到三个不同的晶区: 表面细小等轴晶粒层:组织致密,性能比较均匀一致,无 脆弱晶界面,有良好的热加工性能和力学性能,但易形成缩松。 柱状晶粒区:性能具有方向性;热加工性能较低;组织致 密,空隙和气孔较少,所以沿柱状晶粒的轴向强度高,韧性也 较好。 中心粗大等轴晶粒层:组织不均匀,还存在缩孔,缩松, 夹杂及偏析等缺陷。
图3-9 纯金属冷却曲线

金属的晶体结构

金属的晶体结构

(一)、固溶体
基本特征:
(1)在原子尺度上是相互混合的。 (2)不破坏主晶相原有的晶体结构,但晶 胞参数可能有少许改变,基本保持了主晶相 的特性。
产生固溶体的过程
晶体生长过程中 溶液或熔体析晶 金属冶炼 烧结
如:Al2O3晶体中溶入一定量Cr2O3生成红宝石,可 以用作饰品及激光器 少量锌溶解于铜中生成黄铜
间隙固溶体
如陶瓷材料中的 MgO-CoO、MgO-CaO、 PbTiO3-PbZrO3、Al2O3-Cr2O3 Cu-Zn系 和 固溶体
在合金中较为常见,的是金属和 H、B、C、N等元素形成的固溶 体
按固溶浓度不同
无限固溶体
溶质和溶剂可以按任意比例 相互固溶所生成的固溶体
A ssessed A l - M g p h ase d i ag r am .

2 0.74 6
胞体积。
常见的晶体学参数
晶体中的间隙
[1 12] [1 11]
晶体中是存在空隙的,从钢球的模型中
(右侧)可以看出这些空隙就是钢球之间的
间隙。
6a
3
晶体间隙有两种:四面体和八面体
[1 1 1]
3a
体心立方晶体中(110面上原子的排列)
常见的晶体学参数
原子半径
最近邻的两个原子中心之间的距离一半,用r表示。
Fe2O3—Al2O3,=18.4%,有限固溶体
其它因素的影响
(5)温度 温度对固溶体的形成有明显影响,温
度升高有利于固溶体的形成。
质点尺寸、晶体结构和电价因素的影响
类别
质点尺寸 晶体结构 电价
无限
<15%
相同
相同
有限
<15% 二者中至少有一个不同 15%<<30% 二者可同可不同

常见的晶体结构

常见的晶体结构
Ti4+离子填充1/2八面体空隙;
晶胞分子数:Z=2;
晶胞中:2个八面体空隙 4个四面体空隙;
(2)质点坐标:
111 Ti : 000, 222
4
1 1 1 1 1 1 O : uuo, 1 u 1 u 0, u u , u u 2 2 2 2 2 2
1、金刚石结构
——立方晶系
(1)金刚石是面心立方格子
(2)碳原子位于立方体的8个
顶点,6个面心及立方体内4个
小立方体的中心。 (3)单位晶胞原子数:n=8
(4)晶胞内各原子的空间坐标: 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , ¼ ¼ ¾ , ¼ ¾ ¼, ¾ ¼ ¼ , ¾ ¾ ¾
体结构中,每一个负离子电荷数等于或近似等于相邻正离 子分配给这个负离子的静电键强度的总和,其偏差1/4 价”。
静电键强度
S=
正离子电荷数 Z , 正离子配位数 n
Z Z Si i ni i i
则负离子电荷数

电价规则有两个用途: 其一,判断晶体是否稳定;
其二,判断共用一个顶点的多面体的数目。
离子半径、电中性、阴离子多面体之间的连接
1、NaCl型结构
(1)密堆积情况: Cl- 离子面心立方堆积; Na+离子填充八面体空隙;
——立方晶系
晶胞分子数:Z=4;
晶胞中:4个八面体空隙
8个四面体空隙;
Na+离子填充全部八面体空隙
(2)质点坐标:
11 1 1 11 Cl : 000 , 0, 0 ,0 22 2 2 22
连接(2个配位多面体共用一个顶点),或者和另外3个[MgO6]八面体

第一章 金属的晶体结构-2

第一章  金属的晶体结构-2

h1 h2 h3
k1 k2 k3
l1 l2 0 l3
则三个晶面属于同一个晶带。
(5) 若hu+kv+lw=0,则晶向[u v w] 在晶面 (h k l)上。 (6) 在立方晶系中 [h k l] ⊥(h k l)
求(110)和(121)晶带面的晶带轴[uvw],根据
晶带定理可得,
晶带轴为:
2 2
,如{0 0 0}面

用间隙的内容解释γ-Fe溶碳能力大于α-Fe的原因?
四、晶向指数与晶面指数P13
能明确的、定量的表示晶格中任意两原子 间连线的方向或任意一个原子面。 能方便地使用数学方法处理晶体学问题。
晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。
1)
晶向指数
求法: 定原点 — 建坐标 — 求坐标— 化最小整数 — 加[ ]
1. 2.
3.
fcc与hcp相比,间隙尺寸相同,分布位置和数量不同。 fcc与bcc相比,fcc间隙数量少。
bcc与hcp相比,间隙尺寸不相同,数量相同。 虽然体心立方结构的致密度比面心立方结构的低,但它的间隙比较分 散,每个间隙的相对体积比较小,因此在体心立方结构中可能掺入杂 质和溶质原子的数量比面心立方结构的少。
正交晶系
d hkl
1 h k l a b c
2 2 2
立方晶系
d hkl
六方晶系
d hkl
a h k l
2 2
1
2
4 h 2 hk k 2 l 2 3 a c
上述公式仅适用于简单晶胞,对于复杂晶胞则要考虑原子链的影响 立方晶系
= < 100 >

金属的晶体结构

金属的晶体结构
不管原子以哪种方式进行堆垛,在原子刚球之间都必然存在 间隙,这些间隙对金属的性能以及形成合金后的晶体结构都 有很重要的影响。分析间隙的数量、大小及位置对了解材料 的相结构、扩散、相变等问题都很重要。
间隙半径:间隙中所能容纳的最大圆球的半径。
体心立方晶格中的间隙
八面体间隙: 6个×0.067a
四面体间隙: 12个×0.126a
体心立方晶格(body-centred cubic)
体心立方金属有:-Fe、Cr、V、W、Mo 等30种 。体心立方晶胞Z Nhomakorabeac
a a 2r
a
bY
X
晶格常数:a=b=c; ===90
晶胞原子数: 2
1+8*1/8=2
原子半径:
致密度:0.68
致密度= Va/Vc,其中 Vc:晶胞体积a3 Va=nV1 =24r3/3 配位数:8 配位数越大,原子排列 越紧密。
四、金属晶体中的晶面和晶向
Z
c
b a
晶面─晶体点阵中,通 过阵点的任一平面,代 Y 表晶体的原子平面,称 为晶面。
第1章 金属的晶体结构
1.1 金属 1.2 金属的晶体结构 1.3 实际金属的晶体结构
本章重点与难点
• ①金属键;建立金属原子的结构模型 。 • ②建立晶格和晶胞的概念;最常见的晶体结构:
体心立方结构、面心立方结构、密排六方结构; 立方晶系的晶向指数和晶面指数。 • ③晶体中存在的缺陷:点缺陷、线缺陷(位错)、 面缺陷。
晶胞的棱边长度一般称为晶格常数或点阵常数,用a、b、 c表示。晶胞的棱间夹角叫轴间夹角。用α、β、γ表示。
2、七大晶系和十四种布拉菲点阵
依据空间点阵的基本特点划分为七大晶系:

金属晶体常见的三种典型晶体结构

金属晶体常见的三种典型晶体结构

金属晶体常见的三种典型晶体结构金属晶体常见的三种典型晶体结构,哦,这个话题一说起来就特别有意思,真的是“层出不穷”的奥妙!你要是从没接触过这块儿,不用怕,咱们今天就带你一起飞跃这片“科技天际”,让你既能听得懂,又能有点“心潮澎湃”的感觉。

想象一下,你站在一块闪闪发亮的金属板前,心里是不是突然涌出一堆问题:“这玩意儿怎么硬?怎么能导电?这晶体到底长啥样?”这些问题背后都藏着几种常见的金属晶体结构,今天咱们就来聊聊这三大“明星”级别的结构,它们可真是金属界的常青树,怎么都不老。

首先要说的就是面心立方结构,简称FCC。

听到这四个字,是不是觉得有点复杂?其实不然,你只需要想象一块巧克力的形状就行。

想象一下,一块巧克力上每个小格子都是一个原子,而这些原子排列得特别精致,巧妙地把每个角落都填得满满当当的。

FCC的晶体结构就像是把原子摆成了一个立方体的形状,每个面中心也有一个原子。

你看,原子们排得有条不紊,紧紧挨在一起,好像在跳“原子舞”,丝毫没有任何空隙。

说到这里,可能有些人觉得,哎,金属也能这么“密不透风”?对的!这种结构是金属里面最紧凑的一种,想象一下它像是钢铁侠的铠甲,坚固无比,却又有些柔韧性,不容易断裂。

最典型的金属有铝、铜、金,甚至是白金也采用这种结构。

你要是碰到这些金属,不妨偷偷摸摸地感受一下它们那种稳定又柔软的质感,呵呵,绝对会让你对金属产生一丝丝的崇拜。

我们来聊聊体心立方结构,简称BCC。

这个名字听上去好像又高大上了点,但它比起FCC来说,结构相对松散一些。

想象一下,你把一堆小球堆成一个立方体的框架,框架的四个角和正中心各放一个小球。

这种结构相对没有FCC那么紧凑,所以原子之间的间隙大一点,形成了一个不太“死板”的形状。

BCC的金属比较坚硬,能耐高温,但它们的韧性稍微差了些。

常见的金属如铁(就是钢铁的原材料)就是典型的BCC结构。

别看铁在生活中随处可见,它的晶体结构可是有点“大块头”的,不是你随便就能和它“亲密接触”的。

金属晶体结构特征

金属晶体结构特征

金属晶体结构特征
1、金属晶体的晶格结构:金属晶体的晶格结构可以分为立方晶系、四方晶系、六方晶系、三斜晶系、正交晶系、单斜晶系等六种,其中立方晶系最为常见。

2、金属晶体的原子排列方式:金属晶体中的原子排列方式通常为紧密堆积和面心堆积两种。

紧密堆积指的是原子之间的距离最小,而面心堆积则是将原子填充在立方体的面心处。

3、金属晶体的晶格常数:晶格常数是指晶体中最小重复单元的长度和角度,它决定了晶体的物理和化学性质。

4、金属晶体的配位数:配位数指的是一个原子周围的最近邻原子的数目,不同的晶体结构具有不同的配位数。

金属晶体结构特征对于金属的物理和化学性质有着重要的影响。

通过对金属晶体结构的研究,可以更好地理解金属的性质,并且为设计新型金属材料提供有力的理论支持。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果某非金属元素的原子能以单键与其它原子共价结 合形成单质晶体,则每个原子周围共价单键的数目为8减去 元素所在周期表的族数(m),即共价单键数目为8-m, 亦称为8-m规则。
对于第VII族元素,每个原子周围共价单键个数为8 -7=1,因此,其晶体结构是两个原子先以单键共价结合 成双原子分子,双原子分子之间再通过范德华力结合形成 分子晶体,如图2-11 。
面心立方晶体结构
体心立方晶体结构

面体,四面体联合 形成立方体结构, 属面心立方结构
金刚石的配位情况
金刚石致密度计算法
8 4 a 3 3
nv
V
3
a3
8
0.34
晶胞分子数 n=8
3a 8r r 3a
8
值得注意的是O2、N2及石墨(C)不符合8 -m规则,因为它们不是形成单键。O2是三键, 一个键和两个三电子键。N2是一个键和两个 键。石墨是sp3杂化后和同一层上的C形成键, 剩余的pz电子轨道形成离域键。
2) 金属或合金在力学性能上表现出良好的塑性和延展性 金属的范性变形起因于金属中的原子面在外力作用下
沿某个特定原子面的某个特定方向的滑移。实验发现,铝 晶体受拉力作用后,晶体变长,并不是原子间距离增大, 而是晶体中各部分沿(111)晶面在[110]方向上移动了原 子间距的整数倍(详细情况请参阅位错的运动)。所以, 晶体虽然变长,但晶体中原子间距仍然保持原来的周期性 而未改变。
八面体空隙和四 面体空隙
面心立方空隙
面心立方点阵四面体间隙
面心立方点阵八面体间隙
致密度
ξ=
nv

4

4r
3
3
V
a3
4 4 (
2 a)3
34
a3
0.74
体心立方晶体结构
结构特点:质点位于角顶及体心 典型物质:Cr、V、Mo等
体心立方晶体结构几何特征
晶胞原子数n= 8 1 1 2 8
在金属晶体中,其延展性也有差异。铜、银、金等金属的延展 性非常好,这是因为铜、银、金晶体中存在完整的d电子层,d电子层 有互斥作用,使s电子重叠时不能进一步靠近,从而形成接触距离较 大的A1型结构。而A1型结构比A2、A3型结构和其它更复杂的结构有更 多的滑移系统。A1型金属具有12个滑移系统,即4个{111}面、3个滑 移方向<110>,故共有4×3=12个滑移系统。该面上原子堆积密度最 大,相互平行的原子面间距离也最大。非金属晶体,如刚玉(-Al2O3) 只有1个滑移面(001)和2个滑移方向,塑性变形受到严格限制,表 现出脆性。
图2-13 非金属元素单质晶体的结构基元 (c)第V族元素
对于第IV族元素,单键个数为8-4=4,每个原子 周围有4个单键(或原子)。其中C、Si、Ge皆为 金刚石结构,由四面体以共顶方式共价结合形成 三维空间结构,如图1-14 。
图2-14 非金属元素单质晶 体的结构基元(d)第IV族 元素
金刚石结构
原子半径r= 3 a 4
配位数CN=8 八面体空隙和四面体
空隙
体心立方空隙
体心立方点阵四面体间隙
体心立方点阵八面体间隙
致密度
ξ=
nv

2

4r
3
3
V
a3
2 4 ( 3a)3
34 a3
0.68
密排六方晶体结构
结构特点:质点位于角顶、上下底面面心及 体内
典型物质:Mg、Zn、Cd等
IB族的铜、银、金在其最外层电子4s1、5s1、6s1内都有d10 的电子构型,即d轨道五个方向全被电子占满。这些不参与成键的 d轨道在原子进一步靠近时产生斥力,使原子不能进一步接近,因 此,接触距离较大的A1型结构就比较稳定。
A1和A3型最紧密堆积结构之间也有差异。在两种结构中 每个原子周围均有12个最近邻原子,其距离为 r;有6个次近邻 原子,其距离为 2 r;从第三层近邻起,两种堆积有一定差别。 根据计算,这种差别可以导致六方最紧密堆积的自由焓比面心 立方最紧密堆积的自由焓低0.01%左右。所以,有些金属常温 下采用六方最紧密堆积,而在高温下由于A1的无序性比A3大, 即A1型比A3型具有更高的熵值,所以由A3型转变到A1型时,熵 变S0。温度升高,TS增大,G=H-TS0,因此,高 温下A1型结构比较稳定。
二、非金属元素单质的晶体结构
1.惰性气体元素的晶体 惰性气体在低温下形成的晶体为A1(面心立方)型或A3
(六方密堆)型结构。由于惰性气体原子外层为满电子构型, 它们之间并不形成化学键,低温时形成的晶体是靠微弱的没 有方向性的范德华力直接凝聚成最紧密堆积的A1型或A3型分 子晶体。
2.其它非金属元素单质的晶体结构 —休谟-偌瑟瑞(Hume-Rothery)规则
4.金属键的结构特征及金属的特性
1)金属或合金在组成上不遵守定比或倍比定律
金属键和离子键都没有方向性和饱和性。在离子晶体中, 为了保持电中性,正负离子在数目上具有一定比例,即离子 晶体中的正负离子在数目上符合化学中的定比或倍比定律。 在金属或合金中,电中性并不取决于各种原子的相对数目, 因此,金属往往很容易形成成分可变、不遵守定比或倍比定 律的金属化合物 。如: Cu5Zn8、 MgCu2等
(a)变形前
(b)变形后
单晶试棒在拉伸应力作用下的变化(宏观)
晶体中的原子面在外力作用下能否顺利实现滑移,取决于 晶体中滑移系统(由一个滑移面和一个滑移方向构成一个滑 移系统)的多少。滑移系统越多,越容易产生塑性变形。反 之,滑移系统越少,材料的脆性越大。
典型的金属结构,由于结合力没有方向性和饱和性、配位 数高、结构简单等原因,易产生滑移。共价晶体(如金刚石) 结构,要使滑移方向、键角方向、滑移周期都刚好一致是比 较困难的。在离子晶体中,虽然离子键也没有方向性和饱和 性,但滑移过程中在许多方向上有正负离子吸引、相邻同号 离子排斥,使滑移过程难以进行。
2.常见金属晶体结构
典型金属的晶体结构是最简单的晶体结构。由于金属键的 性质,使典型金属的晶体具有高对称性,高密度的特点。常见
的典型金属晶体是面心立方、体心立方和密排六方三种
晶体,其晶胞结构如图所示。另外,有些金属由于其键的性质 发生变化,常含有一定成分的共价键,会呈现一些不常见的结 构。锡是A4型结构(与金刚石相似),锑是A7型结构等。
(a)面心立方 (A1型)
(b)体心立方 (A2型)
常见金属晶体的晶胞结构
(c)密排六方 (A3型)
(A)面心立方晶体结构
结构特点:质点位于角顶及面心 典型物质:Al、Cu、Ag、Au等
面心立方晶体结构几何特征

晶胞原子数n=
8
1 8

6

1 2

4
原子半径r=
2a 4
配位数CN=12
第三节 单质晶体结构
同种元素组成的晶体称为单质晶体。 一、金属晶体的结构 二、非金属元素单质的晶体结构
一、金属晶体的结构
1.金属中原子紧密堆积的化学基础
由于金属元素的最外层电子构型多数属于S型,而S 型轨道没有方向性,它可以与任何方向的相邻原子的S轨道 重叠,相邻原子的数目在空间几何因素允许的情况下并无严 格的限制,因此,金属键既没有方向性,也没有饱和性。当 由数目众多的S轨道组成晶体时,金属原子只有按紧密的方 式堆积起来,才能使各个S轨道得到最大程度的重叠,使晶 体结构最为稳定。
图2-11 非金属元素单质晶体的结构基元(a)第VII 族元素
对于第VI族元素,单键个数为8-6=2,故其结构是 共价结合的无限链状分子或有限环状分子,链或环 之间由通过范德华力结合形成晶体,如图2-12
图2-12 非金属元素单质晶体的结构基元(b)第VI族元素
对于第V族元素,单键个数为8-5=3,每个原子周围 有3个单键(或原子),其结构是原子之间首先共价结合形 成无限层状单元,层状单元之间借助范德华力结合形成晶体, 如图1-13 。
密排六方晶体结构几何特征
晶胞原子数n=12 1 2 1 3 6 62
原子半径r= 1 a 2
配位数CN=12 八面体空隙和四
面体空隙
密排六方空隙
密排六方点阵四面体间隙
密排六方点阵八面体间隙
致密度
ξ=
nv
6 4r3
3
V 6 1 a 3 a 8a
22 3
6 4 (1 a)3

32 3 2a3
0.74
3.金属原子形成晶体时结构上的差异
为什么有的金属形成A1型结构,而有的形成A2或A3型结构?
周期表中IA族的碱金属原子最外层电子皆为ns1,为了实现
最大程度的重叠,原子之间相互靠近一些较为稳定,配位数为8的 一圈其键长比配位数为12的一圈之键长短一些,即A2型(体心堆积) 结构。
相关文档
最新文档