频谱分析仪的工作原理和使用方法
什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?
什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。
现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。
仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。
频谱分析仪的工作原理以及应用方面推广:频谱分析仪的组成及工作原理图1所示为扫频调谐超外差频谱分析仪组成框图。
输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。
LO 的频率由扫频发生器控制。
随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。
然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。
随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。
该迹线示出了输入信号在所显示频率范围内的频率成分。
频谱仪各部分作用及显示信号分析输入衰减器:保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。
混频器:完成信号的频谱搬移,将不同频率输入信号变换到相应中频。
在低频段(《3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(》3GHz)利用带通跟踪滤波器抑制镜像干扰。
本振(LO):它是一个压控振荡器,其频率是受扫频发生器控制的。
其频率稳定度锁相于参考源。
扫频发生器:除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。
频谱分析仪原理
频谱分析仪原理频谱分析仪是一种用来对信号进行频率分析的仪器,它可以将信号的频谱特性直观地显示出来,帮助人们了解信号的频率成分和功率分布情况。
频谱分析仪广泛应用于无线通信、雷达、声音处理、振动分析等领域。
本文将介绍频谱分析仪的原理及其工作过程。
频谱分析仪的原理基于傅里叶变换,它可以将时域信号转换为频域信号。
在频谱分析仪中,输入信号首先经过模拟或数字滤波器进行预处理,然后进入变换器进行频谱分析。
变换器将输入信号分解为不同频率成分的幅度和相位信息,并将这些信息转换为直流电压或数字信号输出。
最后,输出信号经过显示器或计算机进行处理,形成频谱图谱。
频谱分析仪的工作过程可以分为几个关键步骤。
首先,输入信号经过前置放大器进行放大,然后进入滤波器进行滤波,去除不需要的频率成分。
接下来,信号经过变换器进行频谱分析,得到频率成分的幅度和相位信息。
最后,这些信息经过显示器或计算机进行处理,形成频谱图谱,直观地显示信号的频率特性。
频谱分析仪的原理可以用简单的数学模型来描述。
假设输入信号为f(t),经过变换器变换后得到的频谱信号为F(ω),其中ω为频率。
根据傅里叶变换的原理,F(ω)可以表示为f(t)的频谱分量,即F(ω)=∫f(t)e^(-jωt)dt。
通过对F(ω)进行幅度和相位的分析,就可以得到信号的频谱特性。
频谱分析仪的原理和工作过程为工程技术人员提供了一种有效的手段,帮助他们对信号进行频率分析和特性评估。
通过频谱分析仪,人们可以直观地了解信号的频率成分和功率分布情况,为无线通信、雷达、声音处理、振动分析等领域的工程设计和故障诊断提供了重要参考。
总之,频谱分析仪是一种基于傅里叶变换原理的仪器,它可以将信号的频率特性直观地显示出来,帮助人们了解信号的频率成分和功率分布情况。
频谱分析仪的工作原理和过程为工程技术人员提供了一种有效的手段,帮助他们进行频率分析和特性评估。
通过频谱分析仪,人们可以直观地了解信号的频率特性,为工程设计和故障诊断提供了重要参考。
无线电频谱分析仪的工作原理与应用
无线电频谱分析仪的工作原理与应用无线电频谱分析仪是一种用于测量和分析无线电频谱的仪器。
它可以实时显示频谱,帮助工程师了解无线电信号的特征及其在各个频率范围内的分布情况。
本文将介绍无线电频谱分析仪的工作原理以及在不同领域的应用。
一、工作原理无线电频谱分析仪的工作原理可以简单概括为以下几个步骤:1. 信号接收:无线电频谱分析仪通过内置或外接天线接收到要分析的无线电信号。
2. 信号放大:接收到的信号经过前置放大电路进行信号放大,以提高信号的幅度和灵敏度。
3. 信号混频:经过放大后的信号和本地振荡器产生的中频信号进行混频操作,得到中频信号。
4. 信号滤波:对混频得到的中频信号进行滤波,去除不需要的频率成分,以便进行后续的频谱分析。
5. 信号解调:对滤波后的中频信号进行解调,恢复信号的原始调制方式,如调幅、调频等。
6. 信号转换:将解调后的信号转换为数字信号,以便进行数字信号处理和显示。
7. 数字信号处理:使用数字信号处理技术对信号进行频谱分析、频谱显示和信号参数计算等操作。
8. 频谱显示:将处理后的信号转换为频谱图形并显示在仪器的显示屏上,供用户查看和分析。
二、应用领域无线电频谱分析仪在多个领域有着广泛的应用,以下将介绍其中几个主要的应用领域。
1. 电信领域:无线电频谱分析仪在电信领域中被广泛应用于对无线电信号进行调制解调、频谱分析、调频定位、无线电干扰监测等工作。
它可以帮助工程师更好地分析和监测无线电信号的质量以及各种干扰情况,从而保证通信系统的正常运行。
2. 广播电视领域:广播电视频谱分析是保障广播电视信号质量的重要手段之一。
无线电频谱分析仪可以帮助广播电视工程师进行频谱监测、频谱规划以及无线电干扰分析等工作,从而提高广播电视信号的传输质量和覆盖范围。
3. 电子设备测试领域:在电子设备测试领域中,无线电频谱分析仪可以用于对设备的射频性能进行测试和分析。
通过对设备发出的无线电信号进行频谱分析,工程师可以了解到设备的发射功率、频率稳定性、谐波等参数,从而评估设备的性能和合格性。
频谱分析仪的原理和应用
频谱分析仪的原理和应用一、频谱分析仪的原理频谱分析仪是一种用于分析信号频谱的仪器。
它基于傅里叶变换的原理,将时域信号转换为频域信号,从而可以对信号的频谱特性进行分析。
频谱分析仪的主要原理如下:1.傅里叶变换:傅里叶变换是一种将时域信号转换为频域信号的数学方法。
频谱分析仪通过对信号进行傅里叶变换,可以将信号分解成不同频率的成分,从而得到信号的频谱图。
2.FFT算法:快速傅里叶变换(FFT)是一种高效计算离散傅里叶变换的算法。
频谱分析仪通常使用FFT算法对信号进行频谱分析,以实现实时的频谱显示和分析。
3.功率谱密度:频谱分析仪通过计算信号功率谱密度,可以得到不同频率下的信号功率分布情况。
功率谱密度可以反映信号的频谱特性,包括频率分量的强度、分布和峰值等信息。
4.窗函数:为了减少频谱泄漏和谱分辨率损失,频谱分析仪通常使用窗函数对信号进行加窗处理。
常用的窗函数有矩形窗、汉宁窗、汉明窗等,不同窗函数会对频谱的主瓣宽度和副瓣衰减等产生影响。
二、频谱分析仪的应用频谱分析仪在科学研究、工程领域和日常生活中具有广泛的应用。
下面列举了一些常见的应用场景:1. 无线通信•频率分配:频谱分析仪可以用于无线通信系统中的频率规划和频段分配。
通过分析不同频段的使用情况,可以避免频谱的重叠和冲突,提高通信系统的传输效率和可靠性。
•信道测量:频谱分析仪可以对无线信道进行测量和分析,了解信道的传输特性和衰减情况。
这对于优化信号传输、调整天线方向和减少干扰都是非常重要的。
2. 电子设备测试•信号分析:频谱分析仪可以用于对电子设备的输入和输出信号进行分析。
通过分析信号的频谱特性,可以检测设备是否存在频率误差、频率扭曲和幅度失真等问题。
•干扰检测:频谱分析仪可以用于检测和定位电子设备之间的干扰问题。
通过分析干扰源的频谱特征,可以确定干扰源的位置和频率,从而采取相应的措施进行干扰抑制和消除。
3. 音频处理•音频分析:频谱分析仪可以对音频信号进行频谱分析,了解音频信号的频率分布和能量分布情况。
频谱仪的操作和使用要点及工作原理
频谱仪的操作和使用要点及工作原理频谱仪的操作和使用要点1、怎样设置才能获得频谱仪较好的灵敏度,以便利观测小信号?首先依据被测小信号的大小设置相应的中心频率、扫宽(SPAN)以及参考电平;然后在频谱分析仪没有显现过载提示的情况下渐渐降低衰减值;假如此时被测小信号的信噪比小于15db,就渐渐减小RBW,RBW越小,频谱分析仪的底噪则越低,灵敏度就越高。
假如频谱分析仪有预放,打开预放。
预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。
对于信噪比不高的小信号,可以削减VBW或者接受轨迹平均,平滑噪声,减小波动。
需要注意的是,频谱仪测量结果是外部输入信号和频谱分析仪内部噪声之和,要使测量结果精准,通常要求信噪比大于20db。
2、辨别率带宽(RBW)越小越好吗?RBW越小,频谱分析仪灵敏度就越好,但是,扫描速度会变慢。
建议依据实际测试需求设RBW,在灵敏度和速度之间找到平衡点–既保证精准测量信号又可以得到快速的测量速度。
3、平均检波方式(Average Type)是如何选择、Power?Logpower?Voltage?Logpower对数功率平均、它通常又称为Videoaveraging,这种平均方式具有最低的底噪,适合于低电平连续波信号测试。
但对”类噪声“信号会有确定的误差,比如宽带调制信号W—CDMA等。
功率平均、又称RMS平均,这种平均方式适合于“类噪声“信号(如CDMA)总功率测量。
电压平均、这种平均方式适合于观测调幅信号或者脉冲调制信号的上升和下降时间测量。
4、扫描模式的选择、SWEEP还是FFT?现代频谱仪的扫描模式通常都具有SWEEP模式和FFT模式。
通常在比较窄的RBW设置时,FFT比SWEEP更具有速度优势,但在较宽RBW的条件下,SWEEP模式更快。
当扫宽小于FFT的分析带宽时,FFT模式可以测量瞬态信号;在扫宽超出频谱分析仪的FFT分析带宽时,假如接受FFT扫描模式,工作方式是对信号进行分段处理,段与段之间在时间上存在不连续性,则可能在信号采样间隙时,丢失有用信号,频谱分析就会存在失真。
频谱分析仪的工作原理及操作
五、 操作:
(一) 硬键、软键和旋钮:这是仪器的基本操作手段。1、 三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显示在屏幕上。2、 软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对应于按键处显示什么,它就是什么按键。3、 其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USER测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个BKSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗口键:ON打开、NEXT下一屏、ZOOM缩放。大旋钮下面的两个带箭头的键STEP配合大旋钮使用作上调、下调。
(三) 测试准备:1、限制性保护:规定最高输入射频电平和造成永久性损坏的最高电压值:直流25V,交流峰峰值100V。2、 预热:测试须等到OVER COLD消失。3、 自校:使用三个月,或重要测量前,要进行自校。4、 系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。配置步骤:按MODE键——CABLE TV ANALYZER软键——Setup软键,进入设置状态。细节为tune config调谐配置:包括频率、频道、制式、电平单位。Analyzer input输入配置:是否加前置放大器。Beats setup拍频设置、测CTB、CSO的频点(频率偏移CTB FRQ offset、CSO FRQ offset)。GATING YES NO是否选通测试行。C/N setup载噪比设置:频点(频率偏移C/N FRQ offset)、带宽。
(工作分析)频谱分析仪工作原理和应用
(工作分析)频谱分析仪工作原理和应用频谱分析仪工作原理和应用《频谱分析仪工作原理和应用》原始文档本章除了说明频谱分析仪工作原理、操作使用说明之外,也将其应用领域范围作详细的介绍,尤其应用于天线特性的量测技术将有完整说明。
本章的内容包括:本章要点1-1概论1-2频谱分析仪的工作原理1-3频谱分析仪的应用领域实习一频谱分析仪1-1概论就量测信号的技术观之,时域方面,示波器为一项极为重要且有效的量测仪器,它能直接显示信号波幅、频率、周期、波形与相位之响应变化,目前,一般的示波器至少为双轨迹输出显示装置,同时也具有与绘图仪连接的 IEEE-488、IEEE-1394 或 RS-232 接口功能,能将屏幕上量测显示的信息绘出,作为研究比较的依据,但它仅局限于低频的信号,高频信号则有其实际的困难。
频谱分析仪乃能弥补此项缺失,同时将一含有许多频率的信号用频域方式来呈现,以识别在各个频率的功率装置,以显示信号在频域里的特性。
图 1.1 说明方波在时域与频域的关系,此立体坐标轴分别代表时间、频率与振幅。
由傅立叶级数(Fourier Series)可知方波包含有基本波(Fundamental Wave)及若干谐波(Harmonics),信号的组合成份由此立体坐标中对应显示出来。
低频时,双轨迹模拟与数字示波器为目前信号时域的主要量测设备,模拟示波器可量测的输入信号频率可达 100 MHz,数字示波器有 100 MHz 与 400(或 500)MHz 等多种。
屏幕上显示信号的意义为横轴代表时间,纵轴代表信号电压的振幅,用示波器量测可得到信号时间的相位及信号与时间的关系,但无法获知信号失真的数据,亦即无法获知信号谐波分量的分布情况,同时量测微波领域(如 UHF 以上的频带)信号时,基于设备电子组件功能的限制、输入端杂散电容等因素,量测的结果无可避免地将产生信号失真及衰减,为解决量测高频信号上述的问题,频谱分析仪为一适当而必备的量测仪器,频谱分析仪的主要功能是量测信号的频率响应,横轴代表频率,纵轴代表信号功率或电压的数值,可用线性或对数刻度显示量测的结果。
频谱分析仪的原理操作应用pdf
频谱分析仪的原理操作应用1. 介绍频谱分析仪是一种常用的电子测试仪器,用于分析信号的频谱特征。
本文将介绍频谱分析仪的原理、操作和应用。
2. 频谱分析仪的原理频谱分析仪基于傅里叶变换原理,将信号从时域转换为频域,通过显示信号在不同频率下的幅度和相位信息,实现对信号频谱特性的分析。
2.1 傅里叶变换傅里叶变换是将一个信号从时域转换为频域的数学工具。
它将一个连续或离散的时域信号分解成不同频率分量的叠加,得到信号在频域上的表示。
2.2 快速傅里叶变换快速傅里叶变换(FFT)是一种快速计算离散傅里叶变换(DFT)的算法。
它通过降低计算复杂度,提高计算速度,广泛应用于频谱分析仪中。
3. 频谱分析仪的操作频谱分析仪的操作步骤如下:1.连接信号源:将待分析的信号源与频谱分析仪进行连接,确保接口连接正确。
2.设置参数:根据需要设置频谱分析仪的参数,包括采样率、带宽、中心频率等。
3.选择窗函数:窗函数用于减小信号频谱泄露和谱线扩展的影响,根据需要选择合适的窗函数。
4.启动分析:启动频谱分析仪,开始对信号进行频谱分析。
5.分析结果显示:频谱分析仪会将信号的频谱特征以图表的形式显示出来,包括幅度谱、相位谱等。
4. 频谱分析仪的应用频谱分析仪在各个领域都有广泛的应用,以下是几个常见的应用场景:4.1 通信领域在通信领域,频谱分析仪用于对通信信号进行分析和测试,包括调制解调、频谱占用等方面的研究。
4.2 音频领域在音频领域,频谱分析仪用于音频信号的分析和处理,可以用于音乐制作、音频调试等方面。
4.3 无线电领域在无线电领域,频谱分析仪用于无线电信号的分析和监测,可以用于无线电频段的占用情况、频率干扰等方面的研究。
4.4 电力领域在电力领域,频谱分析仪用于电力系统的故障检测和干扰分析,可以帮助发现电力设备的故障和电磁干扰源。
5. 总结本文介绍了频谱分析仪的原理、操作和应用。
频谱分析仪通过傅里叶变换将信号从时域转换为频域,并显示信号在不同频率下的幅度和相位信息,实现对信号频谱特性的分析。
频谱分析仪的原理与应用
频谱分析仪的原理与应用1. 什么是频谱分析仪?频谱分析仪是一种用于测量和分析信号频谱的仪器。
它能够将一个复杂的信号分解成不同频率分量,并显示出这些频率分量的幅度和相位信息。
频谱分析仪被广泛应用于无线通信、音频处理、电力系统等领域,主要用于故障诊断、信号质量评估和频谱监测等方面。
2. 频谱分析仪的工作原理频谱分析仪的工作原理基于信号的傅立叶变换。
傅立叶变换是将一个时域信号转换为频域信号的数学技术。
频谱分析仪通过对输入信号进行采样,然后使用快速傅立叶变换(FFT)算法将时域信号转换为频域信号。
FFT算法能够高效地计算出信号的频谱信息。
3. 频谱分析仪的应用频谱分析仪在各种领域中都有重要的应用,下面列举了一些常见的应用场景:3.1 无线通信在无线通信中,频谱分析仪用于信号质量评估和频谱监测。
它能够帮助工程师检测和解决信号干扰问题,提高通信系统的性能和可靠性。
3.2 音频处理频谱分析仪在音频处理领域中也有广泛的应用。
它可以帮助音频工程师分析音频信号的频谱特性,对音频进行均衡处理、降噪处理等,提高音频的质量。
3.3 电力系统频谱分析仪在电力系统中用于故障诊断和监测电力质量。
它可以检测和分析电力系统中的谐波、干扰等问题,提供电力系统运行的安全保障。
3.4 振动分析在机械领域,频谱分析仪可用于振动分析。
通过监测和分析机械设备的振动信号,可以判断设备的工作状态、故障原因等,以便进行维护和修理。
3.5 科学研究频谱分析仪在科学研究中也扮演着重要的角色。
比如在天文学中,频谱分析仪用于研究星体的辐射能谱,从而推断星体的性质和演化过程。
4. 频谱分析的优势和局限性频谱分析仪具有以下优势:•可以将信号分解为不同频率分量,便于对信号进行深入分析。
•可以显示信号的频谱信息,对信号特性进行可视化。
•可以帮助工程师解决信号质量问题和干扰问题,提高系统性能。
然而,频谱分析仪也有一些局限性:•频谱分析仪需要对信号进行采样和数字化,可能会引入一定的误差。
频谱仪原理及使用方法
频谱仪原理及使用方法频谱仪是一种将信号电压幅度随频率变化的规律予以显示的仪器。
频谱仪在电磁兼容分析方面有着广泛的应用,它能够在扫描范围内精确地测量和显示各个频率上的信号特征,使我们能够“看到”电信号,从而为分析电信号带来方便。
1.频谱仪的原理频谱仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。
频谱分析仪采用频率扫描超外差的工作方式。
混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。
检波后的信号被视频放大器进行放大,然后显示出来。
由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。
当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。
进行干扰分析时,根据这个频谱,就能够知道被测设备或空中电波是否有超过标准规定的干扰信号以及干扰信号的发射特征。
2.频谱分析仪的使用方法要进行深入的干扰分析,必须熟练地操作频谱分析仪,关键是掌握各个参数的物理意义和设置要求。
(1)频率扫描范围通过调整扫描频率范围,可以对所要研究的频率成分进行细致的观察。
扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。
在设置这个参数时,可以通过设置扫描开始频率目”无“’。
04朋和终止频率来确定,例如:startfrequeney=150MHz,stopfrequency=160MHz;也可以通过设置扫描中心频率和频率范围来确定,例如:eenterfrequeney=155MHz,span=10MHz。
这两种设置的结果是一样的。
Span越小,光标读出信号频率的精度就越高。
一般扫描范围是根据被观测的信号频谱宽度或信道间隔来选择。
如分析一个正弦波,则扫描范围应大于2f(f为调制信号的频率),若要观测有无二次谐波的调制边带,则应大于4f。
频谱分析仪的原理是怎样的呢
频谱分析仪的原理是怎样的呢频谱分析仪是一种用来分析信号频谱的仪器。
它能够将信号变换到频域,显示出信号的频率分布情况,从而让我们了解这个信号中不同频率分量的分布情况。
在通信、音频处理、电子测量等领域都有广泛的应用,那么频谱分析仪的原理是怎样的呢?下面我们来详细解析。
1. 傅里叶变换要理解频谱分析仪的原理,我们首先需要了解傅里叶变换。
傅里叶变换是一种数学变换,它能够将一个时域信号转化到频域上。
也就是说,它能够将信号的时间轴变换为频率轴,显示出信号在不同频率上的分布情况。
傅里叶变换的数学公式如下:F(w) = integral(f(t)e^(-jwt)dt)其中,F(w)表示信号在频率w上的幅度,f(t)表示信号在时间t上的幅度,e^(-jwt)是旋转因子。
这个公式告诉我们,对于任意一个信号,我们都可以通过傅里叶变换将其变换到频域上。
2. 频谱分析仪的原理频谱分析仪的原理基于傅里叶变换,但是它并不是直接应用傅里叶变换来分析信号的。
因为在实际应用中,我们常常需要对信号进行采样和量化,而傅里叶变换是基于连续信号的,无法直接应用于离散信号。
所以,频谱分析仪通常采用离散傅里叶变换(DFT)和快速傅里叶变换(FFT)来分析信号。
它们是傅里叶变换的一种离散形式,能够对离散信号进行频率分析。
具体来说,频谱分析仪通常包含一块称为“输入段”的信号处理电路,它能够对待分析信号进行预处理,如去除直流分量、滤波等;然后将处理后的信号送入FFT 处理电路中,进行快速傅里叶变换;最后,在输出段将信号进行处理,通过显示屏、打印机等形式将信号的频谱图输出。
3. 频谱分析仪的应用频谱分析仪在各个领域都有广泛的应用。
下面列举几个例子:通信领域在通信领域,频谱分析仪常用于分析和设计无线电信号和电信信号。
它可以用来对信道中的干扰信号进行分析、检测和定位,还可以对调制、损耗、噪声等信号参数进行分析和设计。
音频处理在音频处理领域,频谱分析仪可以用来对音乐、语音等音频信号进行频谱分析,寻找音频信号中的共振、失真、杂波等问题。
频谱分析仪工作原理和应用
频谱分析仪工作原理和应用一、背景介绍频谱分析仪是一种广泛应用于信号处理、无线电通信、音频、电视、雷达、波谱分析等领域进行精确测量和频域分析的仪器。
频谱分析仪可分析电信号在频率域内的谱分布情况,用于检测和分析信号的频谱分布、峰值等特征参数,为电子工程技术提供了重要的指导和支持。
二、工作原理频谱分析仪从信号源处接收电信号,转换为数字信号处理,并将其转换为频率分布的能量谱图。
该谱图显示了信号在不同频率范围内的能量密度,通过观察信号谱图中的各个谷、峰的位置和幅度大小,可以了解到被测信号的频谱特征。
信号进入频谱分析仪后,通过输入缓冲放大器放大信号后,会被经过混频器和频率合成器的带通滤波器以及IF处理电路缩小至若干个独立的频带,通过差分放大器进行高增益,然后进入下一步进行FFT变换用于计算信号频谱,最终输出到显示屏上。
频谱分析仪温度对颜色反应敏感,可以在当前环境下自动分析并调整颜色的温度值,保证信号在显示时的准确性。
三、应用领域1. 电信工程:频谱分析仪被广泛应用于电信领域,用于检测无线电频率、电源干扰和其他干扰源。
2. 音频工程:频谱分析仪可用于音频信号处理和分析,检测音频干扰源和声音失真等,还可以进行噪声印象评估。
3. 电视工程:频谱分析仪可用于电视信号分析、调节和校准以及电视广播的宽带信号分析。
4. 波谱分析:频谱分析仪在波谱分析中起着至关重要的作用,可以用于分析GPS信号的相位噪声、信号接收的不确定性等。
5. 科学研究:频谱分析仪可用于科学研究中,如用于分析地球物理数据、射电望远镜数据、星际信号、宇宙微波背景等。
四、常见型号目前,市场上常见的频谱分析仪型号有Tektronix,Agilent,Rohde & Schwarz等品牌,其中包括基础型的频谱分析仪,以及多功能、高级的可编程频谱分析仪。
多数频谱分析仪可提供各种分析功能,比如PEAK HOLD,AVERAGING和ZOOM等,可以有效地应对不同的场景需求。
频谱分析仪培训资料
2023-11-10contents •频谱分析仪基础知识•频谱分析仪操作方法•频谱分析仪高级应用•频谱分析仪维护与保养•常见问题及解决方案•实际应用案例分享目录频谱分析仪基础知识频谱分析仪简介频谱分析仪是一种用于测量信号频率、幅度和相位等参数的电子测试仪器。
它能够将输入信号按照频率进行分解,并测量每个频率分量的幅度和相位等信息。
频谱分析仪广泛应用于雷达、通信、电子对抗、电子侦察等领域。
频谱分析仪的工作原理将输入信号通过混频器与本振信号进行混频,得到一系列中频信号,再经过中放和检波等处理后得到频域数据。
通过FFT技术对中频信号进行处理,得到频域数据,从而得到输入信号的频率、幅度和相位等信息。
频谱分析仪通常采用快速傅里叶变换(FFT)技术对输入信号进行频谱分析。
频谱分析仪的种类和用途频谱分析仪按照工作原理可以分为实时频谱分析仪和扫频式频谱分析仪等。
实时频谱分析仪可以实时监测信号的变化,适用于雷达、通信等领域的信号监测和分析。
扫频式频谱分析仪可以对一定范围内的频率进行扫描测量,适用于电子对抗、电子侦察等领域。
频谱分析仪操作方法连接设备030201启动频谱分析仪调整设置选择测量模式根据测试需求,设置合适的扫描范围、分辨率带宽等参数。
设置扫描参数设置显示参数观察实时数据在显示器上观察实时测量数据,记录需要的数据。
开始测量按下测量按钮,开始进行信号测量。
分析数据根据测量结果,进行分析和计算,得出结论。
记录和分析数据频谱分析仪高级应用频率范围分辨率带宽设置频率范围和分辨率带宽信号质量信号稳定性观察信号的质量和稳定性频率分析对信号进行频率分析,包括频率成分、谐波分量、调制频率等参数的测量和分析。
模式识别通过对信号的特征提取和模式识别,对信号进行分类和鉴别,对于未知信号,可以通过模式识别技术进行信号源的判断和识别。
进行频率分析和模式识别频谱分析仪维护与保养清洁和保养内部部件检查和更换部件检查射频系统检查机械部件检查光学系统03避免极端温度存储和运输注意事项01存储环境02运输防护常见问题及解决方案如何解决无法启动的问题?电源故障检查电源插头是否牢固连接在电源插座上,确保电源线不损坏。
频谱分析仪的工作原理
频谱分析仪的工作原理
频谱分析仪是一种用于测量信号频谱特性的仪器。
它能够将一个信号分解成不同频率成分,并显示在频谱图上。
频谱分析仪的工作原理基于傅里叶变换。
傅里叶变换是一种将时域信号转换为频域信号的数学方法。
在频谱分析仪中,输入信号首先经过一个采样器进行采样,将模拟信号转换为数字信号。
然后,采样得到的数字信号进一步经过一个高速数字转换器(ADC)进行模数转换。
接下来,数字信号被送入快速傅里叶变换(FFT)算法。
FFT 算法能够将时域信号转换为频域信号,并计算出信号的频谱信息。
这些频谱数据随后被传输到显示器或计算机上,以产生频谱图。
频谱图是频谱分析仪显示的主要结果。
它将信号的频率表示为水平轴,将信号在每个频率上的能量表示为垂直轴。
频谱图能够清晰地显示信号的频率分布情况,包括频谱的峰值、宽度和相对大小等特征。
频谱分析仪在许多领域中得到广泛应用,如无线通信、音频处理、振动分析和故障诊断等。
通过对信号频谱的测量和分析,频谱分析仪能够帮助工程师和科研人员了解信号的特性,并进行相应的信号处理和优化。
频谱分析仪的原理应用pdf
频谱分析仪的原理应用1. 简介频谱分析仪是一种用来测量信号的频率和幅度分布的设备。
它可以将复杂的信号分解成不同频率的成分,提供信号在频率域上的详细分析结果。
本文将介绍频谱分析仪的工作原理及其在各个领域的应用。
2. 工作原理频谱分析仪的工作原理基于快速傅里叶变换(FFT)算法。
简单来说,它将时域上的信号转换成频域上的频谱图。
具体的工作步骤如下:1.采样:频谱分析仪通过模数转换器将连续的模拟信号转换成离散的数字信号。
2.分段:采样得到的信号通常是连续的,为了进行分析,需要将信号分成多个小段。
3.加窗:由于分析的信号段有边界效应,在进行傅里叶变换前需对每个信号段加窗。
4.快速傅里叶变换(FFT):对每个加窗后的信号段进行FFT变换,得到频谱图。
5.合并:将所有的信号段的频谱合并,得到最终的频谱图。
3. 应用领域频谱分析仪在以下领域有着广泛的应用:3.1 通信频谱分析仪在通信领域中扮演着重要的角色。
它可以用来分析无线电频谱,帮助调查和处理无线电干扰问题。
通过监测信号的频谱,可以确定干扰源,并采取相应的干扰消除措施。
此外,频谱分析仪还可以用于无线电频率规划和频谱管理。
3.2 音频在音频领域,频谱分析仪常用于音频信号的分析和处理。
它可以用来确定音频信号的频率分布,检测信号中的杂音和失真,并帮助进行音频信号的均衡和滤波处理。
频谱分析仪在音频设备的调试和优化中也发挥着重要作用。
3.3 电子设备测试频谱分析仪在电子设备测试中也扮演着重要角色。
它可以用来进行电磁兼容性测试,判断设备是否满足电磁兼容性标准。
频谱分析仪还可以用于测试射频(RF)信号,帮助定位和解决无线电频谱中的问题。
3.4 生物医学频谱分析仪广泛应用于生物医学领域。
它可以用来分析生物信号,例如心电图(ECG)、脑电图(EEG)和肌肉电图(EMG)。
通过对这些信号进行频谱分析,可以判断生物系统的功能状态、诊断疾病以及指导治疗。
4. 结论频谱分析仪是一种重要的测试设备,通过将信号从时域转换到频域,可以提供信号的频率和幅度分布的详细信息。
频谱分析仪的工作原理
频谱分析仪的工作原理
频谱分析仪是一种用于测量信号频谱特性的仪器,它可以将信号的频谱特性以图形的形式显示出来,从而帮助工程师分析和处理信号。
频谱分析仪的工作原理主要包括信号输入、信号处理和频谱显示三个部分。
首先,信号输入部分。
当被测信号进入频谱分析仪时,首先经过输入端口,然后经过放大器放大信号,接着进入混频器进行频率变换,将高频信号转换为中频信号,这样可以减小后续处理电路的带宽要求。
其次,信号处理部分。
经过混频器转换后的中频信号进入滤波器,滤波器可以滤除杂散信号,使得信号更加纯净。
接着,中频信号进入检波器,检波器可以将信号转换为直流信号,然后进入解调器,解调器可以对信号进行解调处理,最终得到被测信号的频谱特性数据。
最后,频谱显示部分。
经过信号处理后得到的频谱特性数据通过微处理器进行数字信号处理,然后送入显示器进行显示。
显示器可以将频谱特性以图形的形式直观地显示出来,包括频谱图、频谱密度图等,工程师可以通过观察这些图形来分析信号的频谱特性。
总的来说,频谱分析仪的工作原理是通过信号输入、信号处理和频谱显示三个部分相互配合,将被测信号的频谱特性以图形的形式显示出来,从而帮助工程师分析和处理信号。
通过频谱分析仪,工程师可以了解信号的频谱分布、频谱密度、谐波情况等重要特性,为信号处理和系统优化提供重要参考。
频谱分析仪原理
频谱分析仪原理频谱分析仪(SpectrumAnalyzer)是测量电路中信号振幅特性随频率变化的仪器。
在无线电、军用电子和通信等领域,频谱分析仪为测量频谱、调试无线电系统、振动分析和电磁兼容性等应用提供了可靠的工具。
本文将对频谱分析仪的基本原理进行详细介绍,包括其结构、工作原理和典型应用。
频谱分析仪的结构频谱分析仪的主要结构包括:频率源(Frequency Source)、中心频率精确度控制器(Frequency Accuracy Controller)、多频段调节器(Multiple Frequency-Band Adjuster)、频率振荡器(Frequency Oscillator)、放大器(Amplifier)、滤波器(Filter)、延时器(Delay)、调谐器(Tuner)和显示器(Display)等部件。
频谱分析仪的工作原理频谱分析仪的主要工作原理是,首先通过频率源发送一个高频信号,再由中心频率精确度控制器限定所发射信号的中心频率,经多频段调节器加宽信号的频带宽度,由放大器放大信号,经过滤波器过滤出所要测量的范围内的信号,然后经延时器延迟信号,经调谐器将其综合调谐,最后在显示器上显示出相应的频谱图像,通过仪表的读数就可以得到频谱分析的结果。
典型应用频谱分析仪在无线电、军用电子和通信领域具有重要的应用价值。
它可以用于测量频谱,用于检测收发信号,识别无线信号污染源,检测各种有害信号,以及测量无线电话、电视、雷达、通信系统的信号特性。
此外,它还可以用于振动分析、电磁兼容性(EMC)测试和频率校准等。
综上所述,频谱分析仪是一种非常有用的测量分析仪器,它的结构简单,工作原理清晰,应用广泛,在无线电、军用电子和通信等多个领域都有重要的应用价值。
频谱分析仪培训
频谱分析仪培训标题:频谱分析仪培训引言频谱分析仪是一种用于信号分析和频谱测量的电子测试设备,广泛应用于无线通信、电子工程、雷达系统等领域。
为了提高工程师和技术人员在实际工作中的频谱分析仪操作技能,本培训旨在提供全面、系统的频谱分析仪知识,帮助学员熟练掌握频谱分析仪的使用方法和技巧。
第一章:频谱分析仪的基本原理1.1 频谱分析仪的定义频谱分析仪是一种用于测量和分析电磁波频谱特性的电子测试设备,能够显示信号的幅度、频率、相位等参数。
1.2 频谱分析仪的工作原理频谱分析仪通过接收输入信号,对其进行频率分析,并将分析结果以图形或数据形式显示出来。
其核心部分包括:射频前端、本振、混频器、滤波器、检波器、显示单元等。
第二章:频谱分析仪的操作与使用2.1 频谱分析仪的硬件连接(1)连接射频电缆:将待测信号通过射频电缆连接至频谱分析仪的输入端口。
(2)连接外部设备:如计算机、打印机等,以便于数据传输和结果打印。
2.2 频谱分析仪的软件设置(3)设置中心频率:根据待测信号的频率范围,设置合适的中心频率。
(4)设置分辨率带宽:选择合适的分辨率带宽,以获得所需的频谱分辨率。
(5)设置参考电平:根据待测信号的幅度,设置合适的参考电平。
2.3 频谱分析仪的测量与数据分析(6)进行频谱测量:启动频谱分析仪,对输入信号进行测量。
(7)分析测量结果:观察频谱分析仪显示的频谱图,分析信号的幅度、频率、相位等参数。
第三章:频谱分析仪的应用实例3.1 无线通信系统测试利用频谱分析仪对无线通信系统的信号进行测试,分析信号的频率、幅度、调制方式等参数,以确保通信系统的正常运行。
3.2 雷达系统测试利用频谱分析仪对雷达系统的发射和接收信号进行测试,分析信号的频率、幅度、相位等参数,以评估雷达系统的性能。
3.3 电子设备干扰分析利用频谱分析仪对电子设备产生的干扰信号进行测试,分析干扰信号的频率、幅度等参数,以找出干扰源并进行整改。
第四章:频谱分析仪的维护与保养4.1 保持设备清洁:定期清洁频谱分析仪的外壳和接口,防止灰尘和污垢影响设备性能。
频谱分析仪原理
频谱分析仪原理
频谱分析仪是一种用来测量信号频谱分布的仪器。
它基于傅里叶变换的原理,将时域信号转换为频域上的能量分布。
其工作原理主要包括以下几个步骤:
1. 采样:首先,频谱分析仪对待测信号进行采样,将连续的信号转换为离散的样本点。
2. 加窗:为了避免频谱泄露和干扰,对采样得到的样本数据进行窗函数处理。
窗函数可以减少信号末端样本的突变,提高频谱分辨率。
3. 傅里叶变换:采用傅里叶变换算法,将时域信号转换为频域上的能量分布。
这可以通过离散傅里叶变换(DFT)或快速傅里叶变换(FFT)实现。
4. 数据处理:对傅里叶变换的结果进行幅度和相位的计算,得到频谱图。
通常,频谱图以频率为横轴,能量或幅度为纵轴进行表示。
5. 显示和分析:最后,频谱分析仪将频谱图以图形的形式显示出来,便于用户对信号频谱进行直观的观察和分析。
用户可以根据频谱图上不同频率分量的能量分布,进行信号的频率测量、信号波形恢复、噪声干扰分析等应用。
总的来说,频谱分析仪的工作原理是通过采样、加窗和傅里叶变换等步骤,将时域信号转换为频域上的能量分布,从而实现
对信号频谱分布的测量与分析。
通过频谱分析,可以获取信号在不同频率上的能量分布情况,为用户提供有关信号特性和干扰情况的重要信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.1 实时频谱分析仪
图2.3是付里叶分析仪原理框图。由于取样与 A/D转换速度的限制,快速付里叶变换(FFT)式 频谱分析仪无法用于高频及微波范围的频谱分 析仪。
模拟滤波器 模/数变换器 数字滤波器 衰减器 取样器 处理器 显示器 A D
FFT
图2.3付里叶分析 仪原理框图
fs
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
3 频谱分析仪性能参数的基本概念
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1.2频谱仪的发展
30年代末期,第一代扫频式频谱仪诞生。 60年代末期,可以为频谱仪提供频率和幅度的校准, 前端预选的频谱仪问世,它标志着频谱仪从此进入了 定量测试的时代。 70 70年代末,随着集成电路技术,快速A/D变换技术, A/D 频率合成技术,数字存储技术,尤其是微处理器技术 的飞速发展,频谱仪的技术指标大幅度提高。频率范 围扩展到100Hz-20GHz,分辨力带宽达到10Hz。 现在,频谱分析仪的测量频率范围已达到30Hz50GHz,外混频可以扩展到mm波波段,分辨力带宽 从1Hz-3MHz,测量信号的动态范围100dB,显示平均 噪声-110dBm。
镜像频率干扰
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频谱仪是一台超外差式接收机,它 的混频器是宽带的,因此在用频谱 仪测量信号时除了出现所需的信号 频率谱线外,还会显示出不需要的 镜像频谱。如图所示只要满足;,条 件时,和都会出现在频谱仪的显示 屏幕上,这就是镜像频率干扰。 有两种方案可以抑制镜像频率响应 的干扰:采用预选器和上变频的高 中频。
对数放大器
带通滤波器 预选器 第三本振 300MHz
带宽滤波器 检波器
第一本振 YTO (4~8)GHz
扫描发生器
显示器
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.3 基波及谐波混频
如果希望扩展频谱仪的工作频率范围,必须加 宽第一本振的调谐或扫频范围,只得增加本振 的频段和插件数目。这种基波混频方式虽然有 好处,但是设备繁复,不经济。实际上完全可 以利用本振的谐波来与信号混频,从而大大扩 展工作频段。 镜像频率干扰 频谱仪是一台超外差式接收机,它的混频器是 宽带的,因此在用频谱仪测量信号时除了出现 所需的信号频率谱线外,还会显示出不需要的 镜像频谱。
2.2 超外差扫频频谱分析仪的工作原理
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
F11F(3.9214GHz)
第 一 变 低通滤 第二变 低通滤波器 频器 波器 频器
F21F(321.4MHz)
F31F(21.4MHz)
MXR1 YTF
(0~70)dB 第二本振 3.6GHz
第三变 步进放 大器 频器
1.2频域分析 频域分析
观察并分析信号的幅度(电压或功率)与频率的关系,它 能够获取时域测量中所得不到的独特信息。例如谐波 分量,寄生信号,交调、噪声边带。最典型的频域信 号分析是测量调制,失真和噪声。通常进行信号频域 分析的仪器就是频谱分析仪。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.3 基波及谐波混频
多重响应- 多重响应-本振的基波和谐波与同一信号混频 产生同一中频。 产生同一中频。 谐波响应——本振的基波和谐波与信号的多个 谐波响应 本振的基波和谐波与信号的多个 频率成分进行混频产生同一中频。 频率成分进行混频产生同一中频。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.2 扫频频谱分析仪
扫频分析仪 A
滤波器扫过关注的测量 频率范围
全频谱LCD 显示
f1
f2
f
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.2 扫频频谱分析仪
调谐滤波器 检波器 显示器
扫描发生器
2.2 超外差扫频频谱分析仪的工作原理
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1 概述
1.1 时域分析 1.2 频域分析 1.3 频谱仪的发展
1 概述
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
无论你是一个电子设备或系统的设计制造工程 师,还是一个电子器件或系统的现场维护/修理 人员,都需要一台能观察并帮助你分析你的设 备或系统产生的电信号或电信号通过你的器件 或系统后质量变化的情况,比如,信号的功率 和幅度,调制或边带等等,通过分析来验证你 的设计,确定器件或系统的性能,判别故障点, 找出问题的所在,这就是信号特性分析。 目前,信号分析主要从时域,频域和调制域三 个方面进行。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频谱分析仪的工作原理和使用方法
1. 2 3 4 5 6 概述 频谱分析仪的工作原理 频谱分析仪性能参数的基本概念 频谱分析仪的测量准确度 频谱分析仪使用中应注意的问题 频谱分析仪使用实例- 频谱分析仪使用实例-E4405B
频谱分析仪的工作原理和使用方法
频谱分析仪的工作原理和使用方 法 3.6 动态范围 3.7 灵敏度 3.8 视频带宽(VBW) 3.9 信号/失真 3.10 信号/噪声 4 频谱分析仪的测量准确度 4.1 频率测量准确度 4.2 幅度测量准确度 5 频谱分析仪使用中应注意的 问题 6 频谱分析仪使用实例- E4405B 6.1 E4405B的前后面板开关,旋 钮,接头的功能 6.2 测量实例-测量AM信号波形 6.3 测量实例-看懂校准证书
2.1.2 扫频频谱分析仪
调谐滤波式频谱分析仪是用扫描发生器驱动调谐滤波 器,在整个频率范围内改变一个带通滤波器的中心频 率来工作的。随着中心频率的移动,依次选出的被测 信号各频谱分量,再经滤波器和视频放大后加到显示 器的垂直偏转电路。而水平偏转的输入信号来自驱动 并调谐带通滤波器的同一扫描发生器。这样,水平轴 就可以用于表示频率。 目前大量使用的是超外差式频谱分析仪。它又可以分 为扫中频和扫高频(扫前端)两种。 较老式的频谱仪大都是扫中频。由于扫频宽度不大, 故又称窄带频谱仪。扫中频频谱仪的另一个缺点是可 能出现杂波干扰和假响应较多,而且动态范围小,灵 敏度又低,现在基本被淘汰。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
现代扫前端超外差频谱分析仪的框图见图2.6。 主要组成部分有射频输入衰减器,预选器或低 通滤波器,混频器,中频(IF)放大器,中频滤 波器,检波器,视频放大器,本振,扫描发生 器和LCD显示器。
2.2 超外差扫频频谱分析仪的工作原理
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1 概述
Amplitude (power)
f re
y enc qu
tim e
时域测量
频域测量
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1 概述
1.1 时域分析
所谓时域分析就是观察并分析电信号随时间的变化情 况。例如,信号的幅度,周期或频率等。时域分析常 用仪器是示波器。但是示波器还不能提供充分的信息, 因此就产生了用频域分析的方法来分析信号。
2.1.1 实时频谱分析仪
所谓实时频谱分析仪是指能实时显示信号在某 一时刻的所有频率成分的分析结果。见图2.2。
滤波 检波 指示
输入
预放
图2.2 实时频谱分析 仪
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.1 实时频谱分析仪
被测输入信号经过宽带预放放大后,由多路分 配器分别送到并联的多个带通滤波器,每个滤 波器从被测信号中选出与其相对应的频谱分量, 经检波器检波后送到各个显示器保持并显示。 现在基本不用。 还有一种快速付里叶变换(FFT)式频谱分析仪 也属于实时型频谱分析仪,见图2.1。
1.2频域分析 频域分析
.
调制 调制 噪声 噪声 失真 失真
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1.2频域分析 频域分析
频谱分析仪(频谱仪)是信号频域特性分析的重 要工具。它将一个由许多频率分量组成复杂的 信号分解成各个频率分量。每一个频率分量的 电平被依次显示出来。 频域分析测量有许多独特的优点。用频谱分析 的方法很容易测量一个信号频率,功率,谐波 分量,调制假信号和噪声等。
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
2.1.1 实时频谱分析仪
还有一种快速付里叶变换(FFT)式频谱分析仪也 属于实时型频谱分析仪,见图2.1。
傅里叶分析
实时并联滤波测量
A
全频谱LCD 显示
图2.1 傅立叶 分析仪
f1
f2
f
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
频 谱 分 析 仪 的 工 作 原 理 和 使 用 方 法
1. 概述 1.1 时域分析 1.2 频域分析 1.3 频谱仪的发展 2 频谱分析仪的工作原理 2.1 频谱分析仪的类型 2.1.1. 实时频谱分析仪 2.1.2. 扫频频谱分析仪 2.2 超外差扫频频谱分析仪的 工作原理 2.3 基波及谐波混频 3 频谱分析仪性能参数的基 本概念 3.1 分辨力(RBW) 3.2 选择性 3.3 剩余调频 3.4 边带噪声 (相位噪声) 3.5 自适应关系