CMOS模拟开关(4066,4051-53)功能和原理
74hc4066工作原理
74hc4066工作原理
74HC4066 是一个四通开关模拟电路芯片,可以控制四个独立信号通路的开关状态。
它采用CMOS技术,由电荷耦合电路构成,主要由四个独立的双刀四通开关组成。
每个开关的控制端有两个输入引脚(S 和 I)。
S引脚用于设置开关的工作模式,高电平表示开关打开,低电平表示开关关闭。
I 引脚用于输入和输出信号,从输入端引入的信号将在上一个引脚连接的输出端输出。
当 S 输入为高电平时,相应的开关打开,输入信号将通过 I 引脚传递到对应的输出端。
当 S 输入为低电平时,相应的开关关闭,输入信号将无法通过开关传递到输出端。
举例来说,如果我们想通过第一个开关传递一个信号,我们可以将 S1 引脚拉高,然后通过 I1 引脚输入信号,信号将被传递到 Q1 引脚输出端。
这样,使用74HC4066芯片,我们可以通过控制开关的状态来选择不同的输入信号路径,从而实现信号的开关和选择功能。
这在很多需要切换信号的应用中非常有用,例如音频选择器、数据选择器等。
CMOS工作原理及应用
CMOS工作原理及应用CMOS的工作原理主要涉及两个方面:MOSFET的工作原理和互补工作方式。
MOSFET是一种三端可控器件,由栅极、源极和漏极组成。
当在栅极上加上一个正电压时,形成栅源电压,使得源极和漏极之间的通道导电。
而当在栅极上加上一个负电压时,形成栅源电压,通道导电关闭。
这个基本的工作原理可以实现CMOS电路中各种逻辑功能的实现。
互补工作方式是CMOS的独特之处,CMOS电路中同时包含P型和N型的MOSFET晶体管。
根据栅极电压的不同,P型和N型的MOSFET可以交替控制电流的流动,实现逻辑电路中的与、或、非等功能。
当P型和N型的MOSFET同时工作时,产生电流,而当其中一个关闭时,电流停止。
CMOS具有一系列的优点和应用。
首先,CMOS电路具有非常低的功耗,当电路中的晶体管不工作时,几乎没有漏电流。
其次,CMOS具有高集成度,可以在一个芯片上集成大量的晶体管,从而实现复杂的电路功能。
此外,CMOS还具有较高的抗辐射和抗干扰能力,使其在航空航天和军事领域得到广泛应用。
CMOS还在大量的电子设备中得到应用。
例如,CMOS被广泛用于数字逻辑电路,包括微处理器、存储器和数字信号处理器等。
此外,CMOS也被用于模拟电路,例如运算放大器、数据转换器和射频电路等。
此外,CMOS还可用于电源管理、触摸屏操作、传感器等应用。
总之,CMOS是一种基于互补结构的半导体技术,具有低功耗、高集成度和良好的抗辐射和抗干扰能力等特点。
它的工作原理基于MOSFET晶体管和互补工作方式,通过控制晶体管的通断,实现逻辑电路中的各种功能。
CMOS广泛应用于数字逻辑电路、模拟电路和其他各种电子设备中。
cd4051的原理
cd4051的原理CD4051是一种广泛使用的模拟多路开关,主要用于模拟信号的多路选择和切换。
它由CD4046、CD4051和CD4016组成。
它具有低通道串扰、低片间串扰和低电路电容的特点,可提供高精度和稳定的模拟信号切换。
以下是对CD4051原理的详细解释。
CD4051是一种CMOS逻辑级的模拟多路开关,它具有8个通道,可以通过选择信号来切换所需的通道。
它的引脚配置如下:1.通道选择引脚(S0、S1、S2):这3个引脚用来选择需要连接的通道。
通道选择是通过二进制编码来实现的,通过不同的S0、S1和S2的组合,可以选择8个不同的通道。
2.使能引脚(E):这个引脚用来使能或禁用CD4051、当E为高电平时,CD4051工作;当E为低电平时,CD4051处于关闭状态。
3.输出引脚(Y0-Y7):这些引脚用于输出所选择通道的模拟信号。
CD4051的原理基于电压分压和开关电容。
它内部有一系列的电压分压器和开关电容,通过S0、S1和S2的选择信号,连接所需的电压分压器和开关电容。
在给定通道的情况下,CD4051将所选通道的输入信号与内部的电压分压器和开关电容连接起来,然后将分压和开关结果输出到相应的输出引脚。
当选择不同通道时,CD4051会自动切换所需的电压分压器和开关电容,以保证输出的模拟信号的准确性和稳定性。
对于其他未选中的通道,CD4051将断开它们与模拟信号的连接,以避免信号串扰和混叠。
CD4051的工作电压范围为3V至18V,具有很低的静电功耗和高噪声抑制能力。
它可以与其他CMOS逻辑电路和微处理器接口,并且具有快速的响应时间和较高的带宽。
总结来说,CD4051是一种CMOS逻辑级的模拟多路开关,适用于模拟信号的多路选择和切换。
它通过选择信号来连接所需的通道,利用电压分压和开关电容原理实现通道切换,并输出准确和稳定的模拟信号。
CD4051具有低通道串扰和片间串扰、低电路电容等优点,广泛应用于数据选择、模拟信号开关和模拟信号电路切换等领域。
IC资料-CD4051_4052_4053多路选择模拟开关
850
270
1050
1300
330
120
400
520
Ω
210
80
240
300
10
10
Ω
5
±50 ±200 ±200 ±200
±0.01
±50
±500 ±2000 ±2000 ±2000
nA
±0.08 ±200 ±0.04 ±200 ±0.02 ±200
nA
1.5 3.0 4.0 3.5 7 11 -0.1 0.1 3.5 7 11 -10-5 -10-5
-0.1 0.1 20 40 80
-10-5 -10-5
-0.1 0.1 20 40 80
-0.1 0.1 150 300 600
信号输入VIS和输出VOS VDD=2.5V VEE=-2.5V 或VDD=5V VEE=0V VDD=5V 导通电阻 (峰值 RL=10kΩ VEE=-5V RON VEE ≤ VIS ≤ (任一通道) 或V DD=10V VDD) VEE=0V VDD=7.5V VEE=-7.5V 或V DD=15V VEE=0V VDD=2.5V VEE=-2.5V 或VDD=5V VEE=0V VDD=5V 任两个通道间 RL=10kΩ (任 VEE=-5V 的导通电阻增 或V DD=10V 一通道) 益 VEE=0V VDD=7.5V VEE=-7.5V ΔRON 或V DD=15V VEE=0V 关态通道漏电 VDD-=7.5V,VEE=-7.5V 流, 任一通道处 O/I=±7.5V,I/O=0V 于关态 inhibit=7.5V CD4051 关 态 通 道 漏 电 VDD=7.5V CD4052 流, 所有通道处 VEE=-7.5V O/I=0V 于关态 CD4053 I/O=±7.5V 控制输入A、B、C和inhibit VEE= VSS,RL VDD=5V =1k Ωto VSS VDD=10V 低 电 平 输 入 电 IIS<2uA,所有的 VIL 通道为关态 压 VDD=15V VIS=VDD thru
常用CMOS模拟开关功能和原理
常用CMOS模拟开关功能和原理CMOS模拟开关是一种常用的电子器件,用于开关模拟信号。
它在电子电路中广泛应用,能够实现信号的开关、选择、分配和调制等功能。
CMOS模拟开关的原理是基于CMOS(互补金属氧化物半导体)技术。
CMOS技术是一种特殊的半导体制造工艺,它由P型和N型MOSFET(金属氧化物半导体场效应晶体管)组成。
P型MOSFET的特点是在负电压下导电,而N型MOSFET在正电压下导电。
CMOS模拟开关的工作原理是利用P型和N型MOSFET的互补特点,以及它们的互补工作状态来实现模拟信号的开关。
在CMOS模拟开关中,一个P型MOSFET和一个N型MOSFET相连,形成一个互补对。
通过控制栅极电压来控制MOSFET的导通与截止,从而实现信号的开关。
CMOS模拟开关具有以下功能:1.信号开关:CMOS模拟开关可以实现信号的开关功能,当控制信号为高电平时,开关导通,信号可以通过;当控制信号为低电平时,开关截止,信号被阻断。
2.信号调制:CMOS模拟开关可以实现信号的调制功能,通过改变控制信号的频率和幅度,可以实现模拟信号的变化。
3.信号选择:CMOS模拟开关可以实现信号的选择功能,可以根据控制信号选择不同的输入信号传递到输出端,实现多路选择功能。
4.信号分配:CMOS模拟开关可以实现信号的分配功能,可以将输入信号分配到多个输出端。
CMOS模拟开关的优点是功耗低、噪声小、响应速度快、尺寸小、可靠性高。
这些优点使得它在各种应用场合都有广泛的应用。
例如,CMOS 模拟开关常用于音频、视频信号的开关和选择,射频信号的开关和调制,以及模拟信号的处理等领域。
总结起来,CMOS模拟开关通过利用P型和N型MOSFET的互补特性,以及它们的互补工作状态来实现信号的开关、选择、分配和调制等功能。
它具有功耗低、噪声小、响应速度快、尺寸小、可靠性高等优点,在电子电路中有着广泛的应用。
常用模拟开关芯片型号与功能和应用介绍
◆ 高压模拟开关采用全数字电路,时间为数字拨 码设置,可实现模拟断路器跳合闸时间设置、三相/分 相操作选择、输入信号逻辑控制等作用,从而模拟断 路器的跳、合闸动作。
◆ 高压模拟开关可以模拟分相操作断路器,也可 模拟三相操作断路器,跳合闸阻抗选择为400欧、200 欧、110欧任意选择,当模拟分相操作断路器时,其跳 合闸输入端子分别为A合、A跳、B合、B跳、C合、C 跳;当模拟三相操作断路器时,其跳合闸输入端子为 三跳、三合。另外,面板上还设有手动合闸和手动跳 闸按钮,并设有跳合闸信号灯,分别为A合、B合、C 合三个红色信号灯和A跳、B跳、C跳三个绿色信号灯, 在模拟三相操作断路器时,A、B、C三相信号灯同时 明灭。
模拟开关电路由两个或非门、两个场效应管及一个非 门组成,如图一所示。模拟开关的真值表见表一。
表一
EAB 100 111 0 0 高阻状态 0 1 高阻状态
模拟开关的工作原理如下:
当选通端E和输入端A同为1时,则S2端为0,S1 端为1,这时VT1导通,VT2截止,输出端B输出 为1,A=B,相当于输入端和输出端接通。
高压模拟开关技术参数 1.跳闸时间选择:20-100ms 2.供电电源AC200V±10% 3.跳合闸操作为电源电压:DC220V、DC110V 4.合闸时间选择:20-200ms 5.跳合闸阻抗选择400Ω、200Ω、110Ω 6.模拟断路器常闭/常开接点容量为AC220V/5A
高压模拟开关应用 高压模拟开关主要用于电力系统断电保护装置或
常用模拟开关芯片型号与功能和应用介绍
组会报告
专业:电子与通信工程 姓名:张威威
2015年4月18日
常用模拟开关芯片型号与功 能和应用介绍
一、模拟开关的电路组成及工作原理 二、常用的CMOS模拟开关集成电路 三、模拟开关集成电路的应用
(完整word版)cd4051
模拟开关开关在电路中起接通信号或断开信号的作用。
最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。
CMOS 模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。
1.单八路模拟开关CD4051CD4051引脚功能见图2。
CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
其真值表见表1。
“INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。
例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。
1、使用单电源时,CD4051的VEE可以和GND相连。
2、强烈建议A,B,C三路片选端要加上拉电阻。
3、CD4051的公共输出端不要加滤波电容(并联到地),否则不同通道转换后的电压经电容冲放电后会引起极大的误差。
4、禁止输出端(INH)为高电平时,所有输出切断,所以在应用时此端接地。
作音频信号切换时,最好在输入输出端串入隔直电容。
2、用途:CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路.如果在八个通道输入一模拟量,在输出端将输出什么输入什么是自己设定3、价格:在1.5元到2.0元之间4、原理圖:5、参数:导通电阻和平坦度模拟开关由一个传输门电路 (PMOS与NMOS并联) 构成,为了得到等效 (匹配) 的RON,PMOS大小需近似为NMOS的两倍。
常用模拟开关芯片型号与功能和应用介绍
INH 0 0 0 0 0 0 0 0
1
输入状态
C
B
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
接通通道
A
0
cX、bX、aX
1
cX、bX、aY
0
cX、bY、aX
1
cX、bY、aY
0
cY、bX、aX
1
cY、bX、aY
0
cY、bY、aX
1
cY、bY、aY
均不接通
十六路模拟开关CD4067
CD4067相当于一 个单刀十六掷开 关,具体接通哪 一通道,由输入 地址码ABCD来决 定。
为 拨 码 开 关 设 置 , 精 度 高 。 跳 闸 时 间 设 置 范 围 为 20200ms,合闸时间设置范围为20-100ms。
◆ 模拟断路器跳合闸电源电压为DC220V和DC110V 两档,试验前必须选择好电压和输入电压一致。
◆ 在模拟回路中设有继电器A、B、C各输出一组转 换触点,动断触点闭合或断开触点断开的触点和操作 电源完全隔离,可和微机型继电保护试验设备进行配 合。
1
1
0
0
“13”
1
1
1
0
0
“14”
1
1
1
1
0
“15”
1
均不接通
高压型模拟开关
高压模拟开关采用全数字电路,时间为数字拨码设置, 可实现模拟断路器跳合闸时间设置、三相/分相操作选 择、输入信号逻辑控制等作用,从而模拟断路器的跳、 合闸动作
高压模拟开关特性 ◆ 模拟断路器可模拟跳闸和合闸时间,时间设置
cd4053
cd4053CD4053是一种集成电路,属于模拟多路复用器与开关,这种器件在电子设备中具有广泛的应用。
本文将介绍CD4053的功能、工作原理、应用场景以及与其他类似器件的比较。
CD4053是一款16引脚的CMOS集成电路,由Harris(后来被Intersil收购)公司研发并生产。
它由三个独立的双二选一多路复用器组成,每个多路复用器有两个独立的输入端和一个公共输出端。
它还具有内部的线路保护功能,可以防止电源偏移和静电击穿等电路故障。
CD4053的功能非常强大,它可以用于模拟信号的多路复用、信号的开关以及多种电路之间的连接。
它可以通过控制端的逻辑电平来选择输入信号通向输出端的路径,从而实现不同的功能。
此外,CD4053还具有较大的输入电流范围和较小的电流漏流,使其适用于各种低功耗电路设计。
CD4053的工作原理比较简单,它使用CMOS技术来实现信号通路的控制。
在多路复用模式下,通过对控制端施加不同的逻辑电平,可以选择不同的输入信号通向输出端。
在开关模式下,通过控制端的逻辑电平来打开或关闭信号路径。
由于CD4053采用了CMOS 技术,它的功耗相对较低,能够在宽范围的工作电压下运行。
CD4053在电子设备中有着广泛的应用。
首先,它可以用作模拟信号的多路复用器。
在一些需要从多个信号源中选择一个信号进行处理或显示的应用中,CD4053可以非常方便地实现信号的切换与选择。
例如,在音频设备中,CD4053可以用于选择不同的输入音频信号,以便进行混音或音频切换。
其次,CD4053也可以用作数字信号开关。
在数字电路中,有时需要根据控制信号来打开或关闭信号通路。
CD4053可以很好地完成这一任务,通过对控制端施加逻辑电平,可以控制不同的数字信号通向输出端。
这在计算机总线系统、数字信号处理等应用中特别有用。
此外,CD4053还可以用作模拟开关。
在一些测试仪器或测量设备中,可能需要将不同的信号源与仪器或设备的输入端连接,以便进行测试或测量。
常用CMOS模拟开关功能和原理(CD40xx)
本页已使用福昕阅读器进行编辑。
福昕软件(C)2005-2007,版权所有,仅供试用。
常用CMOS模拟开关功能和原理开关在电路中起接通信号或断开信号的作用。
最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。
CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。
一、常用CMOS模拟开关引脚功能和工作原理1.四双向模拟开关CD4066CD4066的引脚功能如图1所示。
每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。
当控制端加高电平时,开关导通;当控制端加低电平时开关截止。
模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。
模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。
各开关间的串扰很小,典型值为-50dB。
图1 CD4066的引脚功能2.单八路模拟开关CD4051CD4051引脚功能见图2。
CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
其真值表见表1。
“INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。
例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。
图2 CD4051引脚功能表1 CD4051真值表3.双四路模拟开关CD4052CD4052的引脚功能见图3。
CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。
CD4051,CD4052,CD4053中文资料
模拟开关CD4051,CD4052,CD4053中文资料模拟开关CD4051,CD4052,CD4053中文资料CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C 和INH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰值至20V的模拟信号。
例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有的通道截止。
三位二进制信号选通8通道中的一通道,可连接该输入端至输出。
CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。
例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。
二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。
CD4053/CC4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C 和INH输入,具有低导通阻抗和低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。
例如若VDD=+5,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有通道截止。
控制输入为高电平时,“0”通道被选,反之,“1”通道被选。
模拟开关CD4051的应用要点
模拟开关CD4051的应用要点1、使用单电源时,CD4051的VEE可以和GND相连。
2、强烈建议A,B,C三路片选端要加上拉电阻。
3、CD4051的公共输出端不要加滤波电容(并联到地),否则不同通道转换后的电压经电容冲放电后会引起极大的误差。
4、禁止输出端(INH)为高电平时,所有输出切断,所以在应用时此端接地。
作音频信号切换时,最好在输入输出端串入隔直电容。
开关在电路中起接通信号或断开信号的作用。
最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。
CMOS 模拟开关是一种可控开关,它不像继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号,CD4051是最常用的模拟开关。
CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
其真值表见图1。
“INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS 电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V 的交流信号。
图1 CD4051真值表CD4051导通电阻小,CD4051在常温下的导通电阻为几百欧姆.供电电压范围较宽,速度相对较快,控制简单,适合作为量程转换模块中选择放大反馈回路的开关。
但是,多路模拟开关也有其不利的地方。
其导通电阻不恒定,随电源电压的增大而减小;控制信号电平也随电源电压增大而增大,在使用时需根据现场实际情况综合考虑,添加必要的外围电路,保证其工作正常。
在电源电压的选择上要结合实际需要,适当增大。
以上是CD4051作为量程切换的通道选择(反馈电阻选择)的参考电路图。
常用CMOS模拟开关引脚功能和工作原理
常用CMOS模拟开关引脚功能和工作原理CMOS(互补金属氧化物半导体)模拟开关是一种常用的电子元件,主要用于控制电路中的信号开关。
在实际应用中,CMOS模拟开关被广泛用于模拟信号处理、功率电子和高速数字电路等领域。
本文将重点介绍CMOS模拟开关的引脚功能和工作原理。
CMOS模拟开关的引脚功能可以分为控制引脚、输入引脚和输出引脚三类。
1.控制引脚:(1)使能引脚(EN):控制开关的开关状态。
当使能引脚为高电平时,开关处于开启状态;当使能引脚为低电平时,开关处于关闭状态。
(2)控制引脚(CTRL):用于控制开关的通断。
当控制引脚为高电平时,开关处于通道状态;当控制引脚为低电平时,开关处于断开状态。
2.输入引脚:CMOS模拟开关一般有两个输入引脚,分别为输入引脚A和输入引脚B。
这两个引脚用于输入模拟信号,并根据控制引脚的状态决定是否将信号传递到输出引脚。
当控制引脚为高电平时,如果输入引脚A为高电平,输入引脚B为低电平,则输出引脚会输出输入引脚A的信号(A→Y);如果输入引脚A为低电平,输入引脚B为高电平,则输出引脚会输出输入引脚B的信号(B→Y)。
3.输出引脚:输出引脚用于输出控制引脚和输入引脚之间的信号。
当控制引脚为低电平时,输出引脚会将信号屏蔽,无输出;当控制引脚为高电平时,输出引脚会将输入引脚的信号输出。
CMOS模拟开关的工作原理:CMOS模拟开关的工作原理基于互补对称的MOSFET(金属氧化物半导体场效应晶体管)的工作特性。
在CMOS模拟开关中,有两个MOSFET管子,一个被称为N通道MOSFET管子,另一个被称为P通道MOSFET管子。
这两个管子由控制引脚和使能引脚控制,以实现通断信号的控制。
当使能引脚为高电平时,开关进入开启状态,N通道MOSFET上的电源电压会使得沟道导通,而P通道MOSFET上的电源电压则使得沟道截流。
这样,输入引脚的信号可以通过N通道MOSFET的通道流到输出引脚,实现信号的传输。
模拟开关芯片原理
模拟开关芯片原理模拟开关芯片是一类集成电路,它们能够控制信号路径的连接与断开,类似于机械开关。
这些芯片通常由CMOS技术制造,因其低功耗和高速性能而广泛应用于各种电子系统中。
以下是模拟开关芯片工作原理的详细说明:1. 基本构造:晶体管:模拟开关芯片主要由金属氧化物半导体场效应晶体管(MOSFETs)构成。
这些晶体管作为开关元件,可以被控制在导通(ON)或截止(OFF)状态。
控制逻辑:芯片内部包含控制逻辑电路,用来接收外部控制信号,并根据这些信号来控制MOSFETs的状态。
2. 工作模式:导通状态:当控制信号使MOSFET的栅极电位高于阈值时,MOSFET导通,模拟信号可以通过MOSFET从输入端流向输出端。
截止状态:当控制信号使MOSFET的栅极电位低于阈值时,MOSFET截止,模拟信号无法通过,从而实现信号的隔离。
3. 开关速度:CMOS模拟开关的开关速度非常快,通常在纳秒级别。
这使得它们适合于高速数据采集和信号路由应用。
4. 阻抗特性:在导通状态下,模拟开关的输入输出阻抗通常很低,这有助于减少信号的衰减和失真。
在截止状态下,模拟开关的阻抗通常很高,以实现良好的隔离效果,防止信号泄漏。
5. 线性度和精度:模拟开关需要具备良好的线性度和精度,以确保信号的准确传输,特别是在模拟信号处理中。
6. 电源电压范围:CMOS模拟开关设计有一定的电源电压范围,只能在这个范围内正常工作。
超出这个范围可能会导致开关损坏。
7. 保护功能:许多模拟开关芯片还包括过压保护、短路保护等安全特性,以提高芯片在恶劣环境下的可靠性。
8. 应用:模拟开关芯片广泛应用于数据采集系统、模数转换器(ADC)和数模转换器(DAC)的输入/输出切换、信号路由、滤波器设计等领域。
模拟开关芯片的设计考虑了多种参数,如开关速度、阻抗、线性度、电源电压范围和保护机制等,以满足不同应用场景的需求。
通过精确控制这些参数,工程师可以设计出高效、可靠的模拟信号处理系统。
cmos模拟电路基本电路详解
cmos模拟电路基本电路详解CMOS(Complementary Metal-Oxide-Semiconductor)模拟电路是一种常用的集成电路技术,它由互补的金属氧化物半导体材料构成,具有低功耗、高集成度和抗干扰能力强等优点。
本文将详解CMOS模拟电路的基本电路结构和工作原理。
一、CMOS模拟电路的基本结构CMOS模拟电路由两个互补的MOS(Metal-Oxide-Semiconductor)器件组成,分别是P型金属氧化物半导体(PMOS)和N型金属氧化物半导体(NMOS)。
PMOS器件是由P型半导体材料制成的,其基本结构包括P型半导体、控制门和源/漏极。
当控制门的电压为低电平时,PMOS器件导通;当控制门的电压为高电平时,PMOS器件截断。
NMOS器件是由N型半导体材料制成的,其基本结构包括N型半导体、控制门和源/漏极。
当控制门的电压为高电平时,NMOS器件导通;当控制门的电压为低电平时,NMOS器件截断。
CMOS模拟电路由PMOS和NMOS器件的组合构成,通过控制两者的导通与截断来实现电路的功能。
二、CMOS模拟电路的工作原理CMOS模拟电路的工作原理可以分为三个阶段:上电初始化、输入信号处理和输出信号传递。
1. 上电初始化阶段在上电初始化阶段,CMOS模拟电路的电源电压将被施加在电路上。
同时,电路中的电容和电阻等元件将被充电或放电,确保电路处于稳定的工作状态。
2. 输入信号处理阶段在输入信号处理阶段,CMOS模拟电路接收输入信号,并根据输入信号的电平来控制PMOS和NMOS器件的导通与截断。
当输入信号为高电平时,NMOS器件导通,PMOS器件截断;当输入信号为低电平时,NMOS器件截断,PMOS器件导通。
通过这种方式,CMOS模拟电路实现了输入信号的处理。
3. 输出信号传递阶段在输出信号传递阶段,CMOS模拟电路将根据输入信号的处理结果,产生对应的输出信号。
输出信号的电平取决于PMOS和NMOS器件的导通与截断情况。
模拟开关(4066)介绍与应用
模拟开关(4066)介绍与应用模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。
当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。
模拟开关在电子设备中主要起接通信号或断开信号的作用。
由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。
一、模拟开关的电路组成及工作原理模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。
模拟开关的真值表见表一。
表一E A B10011100高阻状态01高阻状态模拟开关的工作原理如下:当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。
当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。
当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。
从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。
二、常用的CMOS模拟开关集成电路根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。
现将常用的模拟开关集成电路的型号、名称及特性列入表二中。
表二常用的模拟开关类别型号名称特点模拟开关CD4066四双向模拟开关四组独立开关,双向传输多路模拟开关CD40518选1模拟开关电平位移,双向传输,地址选择CD4052双4选1模拟开关电平位移,双向传输,地址选择CD4053三路2组双向模拟开关电平位移,双向传输,地址选择CD4067单16通道模拟开关电平位移,双向传输,地址选择CD4097双8通道电路模拟开关电平位移,双向传输,地址选择CD4529双四路或单八路模拟开关电平位移,双向传输,地址选择三、CD4066模拟开关集成电路的应用举例CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。
切勿忽视模拟和数字之间的异类---模拟开关
切勿忽视模拟和数字之间的异类---模拟开关3.1“土地佬”模拟开关可信源自于“接地”在写模拟开关之前想必都知道如下两种芯片CD4051类的一转多芯片和“单子冲”模拟式的CD4066,同时更多的反应是在用时感到4051那用起来是真简单,一下子就是一转多,而4066相比之下则没那么多灵活性。
再一个感觉就是4051真正用起来时未必那么好,起码比4066坏得容易,要想让4051工作好最好还要斟酌其电源设计,弄不好还要负电源,而4066设计到位则不必考虑此类问题,当然我这不是说4066比4051好,观点是物尽其用方好。
图3-1上面这个原理图上所提到的每个通道用到ABC三个4066模拟开关单元,其最早源自一张破解的德国仪器图纸,初期并未看到什么优势,但细看就会发现其工作原理是某通道打开时AB先闭合,C断开,当通道断开时其AB断开,C闭合。
这时带来的第一个好处就是C闭合等于3个模拟开关接地直接减少了模拟开关引入的噪音。
相比之下4051是如下图所示原理:图3-2这无疑对消除模拟开关内部噪音没什么好处。
许多单片机的高精度AD输入前端就是类似4051这种开关模式,用时可别忘了不用的通道设计成接地,尽可能减少空闲模拟开关通道引入的噪音。
包括各种带差动输入功能的多通道Δ-Σ型AD如AD779X系列,TI的ADS12XX 系列等,不用的通道切忌接地,对于模拟开关引入的噪音防患于未然不是件坏事。
3.2今晚掀谁的牌子皇帝说得算----细想细挑再做决定对于直流信号好确定问题,但在相当部分交流信号时还是要关注模拟开关的承受问题,4066能承受的负电压可不大,呵呵。
图3-3上图中A与B部分中使用的运放均为正负电源供电,A图中的运放只能用CD4051类的模拟开关,原因是输入信号副模拟开关必须承受负电压,用4051则可以满足要求。
而B图中根据“虚地”,“虚断”原理则可以看到模拟开关上能承受的电压怎么也不至于负到哪里去,用4066也没有问题,单电源的4066这时可能是个不错的东西,当然别忘了学习德国人的如3-1图的用法。
cmos开关原理
cmos开关原理
CMOS开关原理是基于电子元件的工作原理,通过控制电压来控制开关的通断状态。
CMOS(Complementary Metal-Oxide-Semiconductor)指的是互补金属氧化物半导体。
CMOS开关由一个pMOS(p型金属氧化物半导体)和一个nMOS(n型金属氧化物半导体)两个晶体管组成。
在CMOS 开关中,pMOS和nMOS是串联连接的,pMOS的源极与nMOS的漏极相连,而nMOS的源极与pMOS的漏极相连。
CMOS开关的工作原理是基于晶体管的导通与截止特性。
当pMOS的栅极电压为低电平(0V),而nMOS的栅极电压为高电平(VDD),此时pMOS导通,nMOS截止。
反之,当pMOS的栅极电压为高电平(VDD),而nMOS的栅极电压为低电平(0V),此时pMOS截止,nMOS导通。
由于pMOS和nMOS互为互补,所以当CMOS开关的输入信号为低电平时,即使存在微小的漏电流,也会带来非常小的功耗。
而当输入信号为高电平时,CMOS开关的导通能力非常强。
CMOS开关广泛应用于数字电路中,如逻辑门、存储器、微控制器等。
其优点包括低功耗、高噪声抑制能力、较高的集成度和稳定性等。
总之,CMOS开关利用pMOS和nMOS的导通与截止特性,
通过控制栅极电压来实现通断状态的切换,具有低功耗和高噪声抑制能力,适用于各种数字电路应用。
CMOS模拟开关及其应用
CMOS模拟开关及其应用无线电86.12 彭定武CMOS(互补金属氧化物半导体)集成电路具有微功耗、使用电源电压范围宽和抗干扰能力强等特点。
其发展日新月异,应用范围十分广泛。
本文介绍的CMOS模拟开关集成电路,在音频和视频范围可以使增益控制数字化,和微处理器配合使用可以简化自动控制电路的设计。
下面就MOS场效应管及CMOS模拟开关作一介绍。
MOS场效应管的工作原理金属氧化物半导体场效应三极管是通过光刻或扩散的方法,在P型基片(衬底)上制作两个N型区,在N型区上通过铝层引出两个电极,即源极(S)和漏极(D)。
漏源两个扩散区之间的硅表面上生成一层绝缘的氧化膜(二氧化硅),在氧化膜上也制作一个铝电极,即为栅极(G),两个扩散区和P型衬底分别构成PN结。
如果把源极和衬底相连接,并在栅源极间加正电压UGS,就会在衬底表面形成一个导电的反型层,它把漏源两个N扩散区连接起来,成为可以导电的沟道,见图1(a)。
若在漏源之间也加正电压U DS,则源极与漏极之间将有漏电流I D流通,且I D随U DS的增加而增大。
我们把开始有漏电流产生时的电压叫做开启电压U T,把在P型衬底上形成的导电反型层的场效应管叫做N沟道增强型MOS场效应管。
其符号见图1(b)。
MOS场效应管的漏极特性曲线及漏极电流I D随栅极电压U GS变化的特性曲线如图2所示。
由以上分析,我们可以把MOS管的漏极D和源极S当作一个受栅极电压U GS 控制的开关使用,即当U GS>U T时,漏极D与源极S之间导通,相当于一个开关接通,导通电阻约几百欧姆。
当U<U T时漏极D与源极s之间不导通,没有电流流过,则如同开关断开一样。
同样,也可在N型基片上制作两个P型区,以形成P沟道增强型MOS管,见图3。
典型的P沟道增强型MOS管的特性曲线如图4所示。
比较图2和图4我们可以看出,P沟道和N沟道MOS管的特性曲线是相反的。
在了解了MOS管的基本工作原理和特性曲线以后,下面谈谈CMOS开关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用固态继电器更加的不行!
4051之类的模拟开关过模拟量不太精确,可考虑使用固态继电器
发帖者IP:211.91.211.35
发表时间:2003年4月7日13:21:47
常用CMOS模拟开关功能和原理(4066,4051-53)二
二、典型应用举例
1.单按钮音量控制器
单按钮音量控制器电路见图6。
VMOS管VT1作为一个可变电阻并接在音响装置的音量电位器输出端与地之间。
VT1的D极和S极之间的电阻随VGS成反比变化,因此控制
模拟开关介绍与应用
模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。
当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。
模拟开关在电子设备中主要起接通信号或断开信号的作用。
由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。
一、模拟开关的电路组成及工作原理
模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。
模拟开关的真值表见表一。
表一
模拟开关的工作原理如下:
当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。
当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。
当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。
从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。
二、常用的CMOS模拟开关集成电路
根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。
现将常用的模拟开关集成电路的型号、名称及特性列入表二中。
表二常用的模拟开关
三、CD4066模拟开关集成电路的应用举例
CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。
每个开关有一个输人端和一个输出端,它们可以互换使用,还有一个选通端(又
称控制端),当选通端为高电平时,开关导通;当选通端为低电平时,开关截止。
使用时选通端是不允许悬空的。
下面介绍CD4066模拟开关的两个应用实例。
1.采样信号保持电路
采样信号保持电路如图二所
示。
图二采样信号保持电路
模拟信号Ui从运算放大器的同相输人端输人。
当模拟开关控制端为高电平时,模拟开关导通,电容C被充电至Ui,这个过程叫做输人信号的采样。
当采样结束时,使模拟开关控制端为低电平,模拟开关断开。
由于模拟开关断开时的电阻高达100M以上,且运放A2的输人阻抗也极高,故电容C上可以保持采样信号。
2.四路信号交替显示装置
一般的单线示波器只能显示一路连续信号,如果使用该装置,便能够用单线示波器同时显示出四路连续信号,在需要对不同信号的时间关系进行比较时,是十分方便的。
图三四路信号交替显示装置电路图
图三是该装置的电路图,它采用CD4017计数器和振荡器组成四节拍电路,控制两个CD4066内的4对模拟开关,使其依次导通。
在每一对模拟开关上,分别加有可调直流电平和一路输人信号,当模拟开关的选通端为高电平1时,模拟开关导通,直流电平和输人信号则经运算放大器反相求和后送到示波器的Y轴输人端。
由于四路信号对应不同的直流电平,所以在示波器上能将四路信号上下分开。
虽然四对模拟开关是受计数器的Q0、Q1、Q2、Q3输出端控制的,它们依次一个个地导通或截止,但由于振荡器的振荡频率较高,使人眼感觉不到波形的闪烁。