吉林大学2019-2020学年第一学期期末考试《离散数学》大作业参考答案
离散数学期末考试题及详细答案
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
离散数学期末考试题附答案和含解析1
..一、填空2.A ,B ,C 表示三个会合,文图中暗影部分的会合表达式为 (B⊕C)-AA C4.公式(PR)(SR)P的主合取范式为(PSR) ( PS R)。
5.若解说I 的论域D 仅包括一个元素,则 xP(x) xP(x) 在I 下真值为 1 。
6.设A={1,2,3,4},A 上关系图以下,则 R^2={(1,1),(1,3),(2,2),(2,4)}。
//备注: 0 1 0 01 0 1 0 0 1 0 1R 1 0 1 0 R 20 0 0 1 0 0 0 00 0 0 00 0 0 07.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图以下,则R={(a,b),(a,c),(a,d),(b,d),(c,d)}U{(a,a),(b,b)(c,c)(d,d)}。
备注:偏序知足自反性,反对称性,传达性8.图 的补图为 。
//补图:给定一个图G,又G 中全部结点和全部能使 G 成为完整图的增添边构成的图,成为补图. 自补图:一个图假如同构于它的补图,则是自补图 9.设A={a ,b ,c ,d},A 上二元运算以下:* a b c da abcd b b c d a ccdabd d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为a,b,c,d,它们的逆元分别为a,b,c,d 。
//备注:二元运算为 x*y=max{x,y},x,y A 。
10.以下图所示的偏序集中,是格的为 c。
//(注:什么是格?即随意两个元素有最小上界 和最大 下界的偏序)二、选择题 1、以下是真命题的有( C 、D )A .{a} {{a}};B .{{}} { ,{}};C .{{}, }; D .{} {{ }}。
2、以下会合中相等的有( B 、C )A .{4,3} ;B .{ ,3,4};C .{4, ,3,3};D .{3,4}。
;....3、设A={1,2,3},则A 上的二元关系有( C )个。
大学试卷《离散数学》及答案.docx
离散数学一、填空题(本大题共48分,共16小题,每小题3分)1.--公式为之充分必要条件是其合取范式之每一合取项中均必同时包含一命题变元及其否定2.无向图G具有是生成树,当且仅当的,若G为(n,m)连通图,要确定G的一棵生成树必删掉G的条边。
3.一个无向图的欧拉回路要求经过图中一次且仅一次,汉密顿图要求经过图中一次且仅一次。
4.设P:我生病,Q:我去学校(1)命题“我虽然生病但我仍去学校”符号化为o (2)命题“只有生病的时候,我才不去学校”符号化为o (3)命题"如果我生病,那么我不去学校”符号化为o5.设有33盏灯,拟公用一个电源,则至少需要5个插头的接线板数6.若HlAH2A-AHn是 ,则称Hl, H2, -Hn是相容的,若HlAH2A-AHn是 ,则称H1.H2, -Hn是不相容的7.设f,g,h 是N 到N上的函数(N 为自然数集合),f(n)=n+l;g(n)=2n;h(n)=0;贝lj(fdg)oh=8.K5的点连通度为 ,边连通度为o9.A={1, 2, 3, 4, 5, 6, 8, 10, 24, 36}, R 是A 上的整除关系。
子B={1, 2, 3, 4},那么B的上界是; B的下界是;:6的上确界是; B的下确界为10.命题公式P-*QAR的对偶式为11.设入={1, {2}, <t>},则A的幕集有元素个。
12.设A={0, 1,2, 3}, B={4,6, 7}, C={8, 9, 12, 14}, R1 是由A 到B 的关系,R2 是由B到C原关系,分别定义为Rl={<2, 6>, <3, 4>, <0, 7>} ;R2={<4, 8>, <4, 12>, <6, 12>,〈7, 14〉},则复合关系RloR2 为:13.设A= {<i)}, B={<t>, (<!>}},贝i]P(A) nP(B)= 。
离散数学大作业答案
一、简要回答下列问题:(每小题3分,共30分)1.请给出集合的结合率。
答:结合律(AUB)UC=AU(BUC)x∈(AUB)UC,即 x∈AUB 或 x∈C即 x∈A 或 x∈B 或 x∈C 即 x∈A 或 x∈B∪C即 x∈AU(BUC)说明 (AUB)UC包含于AU(BUC)同理可证AU(BUC)包含于(AUB)UC所以(AUB)UC=AU(BUC)2.请给出一个集合A,并给出A上既不具有自反性,又不具有反自反性的关系。
3.设A={1,2},问A上共有多少个不同的对称关系?答:不同的对称关系有:8种R = ΦR = {<1,1>}R = {<2,2>}R = {<1,1>,<2,2>}R = {<1,2>,<2,1>}R = {<1,1>,<1,2>,<2,1>}R = {<1,2>,<2,1>,<2,2>}R = {<1,1>,<1,2>,<2,1>,<2,2>}4.设A={1,2,3,4,5,6},R是A上的整除关系,M={2,3},求M的上界,下界。
5.关于P,Q,R请给出使极小项m0,m4为真的解释。
答:m0= ┐p∧┐q∧┐r m4= p∧┐q∧┐r6.什么是图中的简单路?请举一例。
答:图的通路中,所有边e1,e2,…,ek互不相同,称为简单通路。
7.什么是交换群,请举一例。
答:如果群〈G,*〉中的运算*是可以交换的,则称该群为可交换群,或称阿贝尔群。
如〈I,+〉是交换群。
8.什么是群中右模H合同关系?答:设G是群,H是G的子群,a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),记为a≡b(右mod H)。
9.什么是有壹环?请举一例。
答:幺元:如果A中的一个元素e,它既是左幺元又是右幺元,则称e为A中关于运算☆的幺元。
吉大网院 离散数学 大作业及答案 201903
一、简要回答下列问题(每小题5分,共30分)1、请给出集合的吸收率。
2、设A={1,2},请给出A上的所有关系。
答:集合A上的全部关系有2^(2^2)=16种:空关系{},全关系{<1,1>,<1,2>,<2,1>,<2,2>}{<1,1>}{<2,2>}{<1,2>}{<2,1>}{<1,1>,<1,2>}{<1,1>,<2,1>}{<1,1> ,<2,2>}{<1,2>,<2,1>}{<1,2>,<2,2>}{<2,1>,<2,2>}{<1,1>,<1,2>,<2,1>}{<1,1>,<1,2>,<2,2>}{< 1,1>,<2,1>,<2,2>}{<1,2>,<2,1>,<2,2>}3、什么是子句?请给出一例。
答:子句集S称为是可满足的,如果存在一个个体域和一种解释,使S中的每一个子句均为真,或者使得S的每一个子句中至少有一个文字为真。
否则, 称子句集S是不可满足的4、什么是前束范式?答:前束范式亦称前束式,一种谓词演算公式。
指其一切量词都未被否定地处于公式的最前端且其辖域都延伸至公式的末端的谓词演算公式。
设Q∈{∃,ᗄ},一个公式α是前束范式,当且仅当存在一个不含量词的公式β,使得α=(Q₁x₁)(Q₂x₂)…(Qₑxₑ)β.5、什么是谓词逻辑中的项?答:谓词逻辑中的项指变项和常项,变项又分为自由变项和约束变项。
6、什么是命题公式的演绎?答:用A'表示非A,则(A+B)'=A'B',(AB)'=A'+B'.二、设A是m元集合,B是n元集合。
离散数学考试题及详细参考答案
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
《离散数学》练习题和参考答案
《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学期末测试卷I及答案
答案:瑞士数学家 L.Euler(欧拉) 22.两个图同构是指其中一个图近经过哪些变换可以变为另一个图?
答案:1.挪动点的位置; 2.伸缩边的长短。
23. 什么是孤立点和悬挂点? 答案:孤立点:在任意图 G(V,E)中,度数为 0 的结点。
悬挂点:在任意图 G(V,E)中,度数为 1 的结点。 24.域和环相比增加了哪些要求? 答案:域:设(F,+,•)是环,若(F-{0},•)是阿贝尔群,则称(F,+,•)是域。 25.阿贝尔群具有哪些特点?比普通群增加了什么? 答案:阿贝尔群:设(G,•)是群,若其运算•是可交换的,则称(G,•)为阿贝尔群。 二、填空题 1.鸽笼原理是指什么? 答:n+1 只或更多的鸽子飞进 n 个笼子时,一定有一个笼子里面至少有 2 只鸽子。 2.哪位挪威数学家和法国数学家先后为群的研究做出了杰出的贡献? 答案:挪威数学家 Niels Henrik Abel (尼尔斯· 亨利克·阿贝尔)和法国数学家 Évariste Galois(埃瓦里斯特•伽罗瓦) 为群的研究做出了杰出的贡献。 3.单独一个节点 v 构成的序列 v 到 v 的长度为多少的路?叫做什么? 答案:单独一个节点 v 构成的序列 v 到 v 的长度为 0 的路叫做平凡路 4.命题公式(p→q)→r 的析取范式与合取范式各为什么?
7.设 A, 是一个偏序集,如果 A 中任意两个元素都有上确界和下确界,则称 A, 是一个格。 答:正确。也称(A, )为偏序格。
8.命题公式 P Q 的逆反式是 Q P 。
答:正确。左边= P Q P Q Q P Q P =右边
9.图
是弱连通图。
答:正确。该图为强连通图且属于弱连通图。
离散期末考试题及答案
离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。
吉大离散数学试题及答案
吉大离散数学试题及答案一、选择题1. 以下哪个选项不是离散数学中的基本概念?A. 集合B. 函数C. 微积分D. 关系答案:C2. 在集合论中,以下哪个操作不是基本的集合运算?A. 并集B. 交集C. 差集D. 微分答案:D3. 逻辑运算中的“与”操作,其结果为真当且仅当两个操作数都为真。
这个操作的符号是:A. ∧B. ∨C. ¬D. →答案:A二、填空题1. 一个集合的幂集包含该集合的所有_________。
答案:子集2. 如果函数f: A → B 是单射的,那么对于 A 中的任意两个不同的元素 a1 和 a2,f(a1) 和 f(a2) 在 B 中是_________的。
答案:不同的三、简答题1. 简述什么是图论中的“图”?答案:图是由顶点(或称为节点)和连接这些顶点的边组成的数学结构。
图可以是有向的或无向的,边可以是有权重的或无权重的。
2. 什么是逻辑中的“真值表”?答案:真值表是一种列出逻辑表达式中所有可能的真值组合及其结果的表格。
它用于展示逻辑表达式在不同输入值下的结果。
四、计算题1. 给定集合 A = {1, 2, 3} 和 B = {2, 3, 4},请找出 A 和 B 的交集。
答案:A ∩ B = {2, 3}2. 假设有一个函数 f(x) = x^2,计算 f(-3) 和 f(3) 的值。
答案:f(-3) = 9,f(3) = 9五、论述题1. 论述离散数学在计算机科学中的应用。
答案:离散数学是计算机科学的基础,它提供了处理计算机科学问题所需的数学工具和理论。
例如,集合论是数据库理论的基础;图论在网络和算法设计中有着广泛应用;逻辑和布尔代数是计算机硬件设计和编程语言的基础。
2. 讨论命题逻辑和谓词逻辑的区别。
答案:命题逻辑关注简单命题及其逻辑关系,而谓词逻辑则引入了量词和变量,允许表达更复杂的逻辑关系。
命题逻辑使用逻辑连接词(如与、或、非等)来构建表达式,而谓词逻辑则使用量词(如全称量词∀和存在量词∃)来描述涉及个体的命题。
《离散数学(本科)》2019-2020期末试题及答案
《离散数学(本科)》2019-2020期末试题及答案
一、单项选择题(每小题3分,本题共15分)
1.若集合A={a,b},B={ a,b,{ a,b }},则().
A.A⊂B,且A∈B B.A∈B,但A⊄B
C.A⊂B,但A∉B D.A⊄B,且A∉B
2.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为().
A.自反的B.对称的
C.传递且对称的D.反自反且传递的
3.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.
A.0 B.2 C.1 D.3
4.如图一所示,以下说法正确的是( ) .
A.{(a, e)}是割边B.{(a, e)}是边割集
C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集
图一
5.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().
A.(∀x)(A(x)∧B(x)) B.┐(∃x)(A(x)∧B(x))
C.┐(∀x)(A(x) →B(x)) D.┐(∃x)(A(x)∧┐B(x))
二、填空题(每小题3分,本题共15分)
6.若集合A的元素个数为10,则其幂集的元素个数为.7.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为.8.若A={1,2},R={<x, y>|x∈A, y∈A, x+y=10},则R的自反闭包为.
1。
离散数学期末考试试题(配答案)
一.填空题(每小题2分,共10分)1。
谓词公式的前束范式是__∃x∃y¬P(x)∨Q(y)__________。
2。
设全集则A∩B =__{2}__,_{4,5}____,__{1,3,4,5} _____3. 设,则__ {{c},{a,c},{b,c},{a,b,c}} __________,_____Φ_______。
4. 在代数系统(N,+)中,其单位元是0,仅有1有逆元。
5.如果连通平面图G有个顶点,条边,则G有___e+2—n____个面.二.选择题(每小题2分,共10分)1. 与命题公式等价的公式是()(A) (B)(C)(D)2. 设集合,A上的二元关系不具备关系( )性质(A)(A)传递性(B)反对称性(C)对称性(D)自反性3。
在图中,结点总度数与边数的关系是()(A) (B) (C)(D)4。
设D是有n个结点的有向完全图,则图D的边数为()(A) (B)(C)(D)5. 无向图G是欧拉图,当且仅当()(A)G的所有结点的度数都是偶数(B)G的所有结点的度数都是奇数(C)G连通且所有结点的度数都是偶数(D) G连通且G的所有结点度数都是奇数.三.计算题(共43分)1. 求命题公式的主合取范式与主析取范式.(6分)解:主合取方式:p∧q∨r⇔(p∨q∨r)∧(p∨¬q∨r)∧(¬p∨q∨r)= ∏0.2。
4 主析取范式:p∧q∨r⇔(p∧q∧r) ∨(p∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r)∨(p∧¬q∧r)=∑1。
3。
5。
6.72. 设集合上的二元关系R的关系矩阵为,求的关系矩阵,并画出R,的关系图。
(10分)3 无向图G有12条边,G中有6个3度结点,其余结点的度数均小于3,问G中至少有多少个结点?(10分)解:∵G(V,E),|E |=V,d(Vi)〈3,设至少有x个节点,由握手定理得:2×12=∑d(Vi)〈6×3+(x—6)×32<(x-6) =>x〉8故G中至少有9个节点。
《离散数学》期末练习题考试卷和答案
, 1, b , 2 , b , 4 , b , 3 , c
。 D. 4 。
2
4. 设 G 是 4 阶群,则其子群的阶不能是下面的 B. 2 C. 3 5.设 S 1 , 2 , 3 , 4 , 5,则下列集合中等于 S 的是 A. 1, 2 , 3 , 4
B. x x是有理数, x 25
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。
。
13. 某班有学生 50 人,有 26 人在第一次考试中得优,有 21 人在第二次考试中得优,有 17 人两次考试都 没有得优,那么两次考试都得优的学生人数是 14. 将布尔表达式 a c c b b c 化简得 为 。 。 )式。 )个极小项。
。 。
15. 设 P : 我 有 钱 , Q : 我 去 看 电 影 , 命 题 “ 当 且 仅 当 我 有 钱 时 , 我 才 去 看 电 影 ” 符 号 化 16. 设 a, b, * 是群,且 a * a b ,则 b * b 17.命题公式 p p q q r 是永( 18. P Q 的主析取范式中,含有(
C. x x是正整数, x 5
D. x x是有理数, x 5
。
6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
吉林大学离散数学课后习题答案
第一章集合论基础§1.1 基本要求1. 掌握集合、子集、超集、空集、幂集、集合族的概念。
懂得两个集合间相等和包含关系的定义和性质,能够利用定义证明两个集合相等。
熟悉常用的集合表示方法。
2. 掌握集合的基本运算:并、交、余、差、直乘积、对称差的定义以及集合运算满足的基本算律,能够利用它们来证明更复杂的集合等式。
3. 掌握关系、二元关系、空关系、全域关系、相等关系、逆关系的概念以及关系的性质:自反性、对称性、反对称性、传递性。
会做关系的乘积。
了解关系的闭包运算:自反闭包、对称闭包、传递闭包。
4. 掌握等价关系、等价类、商集的概念,了解等价关系和划分的内在联系。
5. 掌握部分序关系、部分序集、全序关系、全序集的概念以及部分序集中的特殊元素:最大元、最小元、极大元、极小元、上确界、小确界的定义。
能画出有限部分序集的Hasse 图,并根据图讨论部分序集的某些性质。
6. 掌握映射、映像、1-1映射等概念,会做映射的乘积。
了解可数集合的概念,掌握可数集合的判定方法。
7. 了解关系在数据库中的应用(数据的增、删、改)以及划分在计算机中的应用。
§1.2 主要解题方法1.2.1 证明集合的包含关系方法一.用定义来证明集合的包含关系是最常用也是最基本的一种方法。
要证明A⊆B,首先任取x∈A,再演绎地证出x∈B成立。
由于我们选择的元素x是属于A的任何一个,而非特指的一个,故知给出的演绎证明对A中含有的每一个元素都成立。
当A是无限集时,因为我们不能对x∈A,逐一地证明x∈B成立,所以证明时的假设“x是任取的”就特别重要。
例1.2.1 设A,B,C,D是任意四个非空集合,若A⊆C,B⊆D,则A×B⊆C×D。
证明:任取(x,y) ∈A×B,往证(x,y) ∈C×D。
由(x,y) ∈A×B知,x∈A,且y∈B。
又由A⊆C,B⊆D知,x∈C,且y∈D,因此,(x,y) ∈C×D。
大学《离散数学》期末考试试卷及答案(1)
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
《离散数学》期末练习题考试卷和答案
a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5
D. x x是有理数, x 5
。
6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。
吉林大学2020-2021学年第一学期期末考试《离散数学》大作业参考答案
2020-2021学年第一学期期末考试《离散数学》大作业
一综合题 (共1题,总分值10分 )
1. 设I是如下一个解释:
D={3,2}
试求出下列公式在I下的真值:
(1)(a,f(a))∧P(b,f(b));
(2)x∃yP(y,x);
(3)x∀y(P(x,y)→P(f(x),f(y)));(10 分)
解:
二证明题 (共1题,总分值10分 )
2. 设K和H都是群G的子群,试证明:若H·K是G的子群,则K·H = H·K。
(10 分)
证明:首先,证明*对于H∩K是封闭的。
设a,b∈H∩K,于是有a∈H,b∈H和a∈K,b∈K;由于(H,*)和(K,*)都是群,所以a*b∈H和a*b ∈K,即a*b∈H∩K,由此证得*对于H∩K是封闭的。
其次,运算*满足结合律是继承的.幺元e∈H∩K是易见的。
如果a∈H∩K,则a∈H,a∈K,并且a-1∈H,a-1∈K,由此可得a-1∈H∩K。
综上证明,(H∩K,*)是(G,*)的子群。
三问答题 (共8题,总分值80分 )
3. 什么是图?(10 分)
答:图(意指离散数学中的图这一概念)中的基本(初级)回路均是简单回路。
离散数学期末考试题及答案
离散数学期末考试题及答案1. 题目描述:以下是离散数学期末考试的题目。
请仔细阅读每个问题,并在题后给出相应的答案。
请注意,答案应尽量详细和准确,以确保得分。
1.1 命题与谓词逻辑(20分)1.1.1 什么是命题逻辑?它可以用于解决哪些问题?1.1.2 简要解释谓词逻辑的概念和其在离散数学中的应用。
1.2 集合和图论(30分)1.2.1 定义两个集合的并、交和差的概念。
1.2.2 解释有向图和无向图的区别,并给出一个实际应用中的例子。
1.3 关系和函数(40分)1.3.1 什么是关系?请给出一个实际应用中关系的例子。
1.3.2 定义函数的概念,并解释函数与关系的区别。
1.4 计数原理(20分)1.4.1 简要阐述乘法原理和加法原理的概念,并给出一个应用实例。
1.4.2 什么是排列和组合?请说明它们的应用场景,并给出一个例子。
2. 答案解析:2.1 命题与谓词逻辑1.1.1 命题逻辑是一种数学分支,用于研究命题之间的关系和推理规则。
其应用范围广泛,包括数学、计算机科学、哲学等领域。
1.1.2 谓词逻辑是一种扩展了命题逻辑的逻辑体系,它考虑了命题中的变量、谓词和量词等元素。
在离散数学中,谓词逻辑常用于描述集合、函数和关系等概念。
2.2 集合和图论1.2.1 集合的并(∪)是指将两个或多个集合中的所有元素取出形成一个新的集合;交(∩)指仅包含两个或多个集合中共有的元素;差(-)是指从一个集合中去除另一个集合中的元素。
1.2.2 有向图中,边是具有方向性的;而在无向图中,边是没有方向性的。
例如,在社交网络中,有向图可以表示人与人之间的关注关系,而无向图可以表示人与人之间的好友关系。
2.3 关系和函数1.3.1 关系是集合之间的一种特殊的子集,它描述了元素之间的某种联系。
例如,家族中的血亲关系可以看作是一个关系。
关系可以用图、矩阵等方式表示。
1.3.2 函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。
吉林大学离散数学课后习题答案
第二章命题逻辑§2.2 主要解题方法2.2.1 证明命题公式恒真或恒假主要有如下方法:方法一.真值表方法。
即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。
真值表法比较烦琐,但只要认真仔细,不会出错。
例2.2.1 说明 G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。
解:该公式的真值表如下:表2.2.1由于表2.2.1中对应公式G所在列的每一取值全为1,故G恒真。
方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。
例2.2.2 说明 G= ((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)是恒真、恒假还是可满足。
解:由(P→R) ∨⌝ R=⌝P∨ R∨⌝ R=1,以及⌝ (Q→P) ∧ P= ⌝(⌝Q∨ P)∧ P = Q∧⌝ P∧ P=0知,((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)=0,故G 恒假。
方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。
方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。
例子参见书中例2.4.3。
方法五. 注意到公式G蕴涵公式H的充要条件是:公式G→H是恒真的;公式G,H等价的充要条件是:公式G↔H是恒真的,因此,如果待考查公式是G→H型的,可将证明G→H 是恒真的转化为证明G蕴涵H;如果待考查公式是G↔H型的,可将证明G↔H是恒真的转化为证明G和H彼此相蕴涵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林大学网络教育学院2019-2020学年第一学期期末考试《离散数学》大作业
学生姓名专业
层次年级学号
学习中心成绩
年月日
作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。
一、简答题(每小题7分,共56分)
1、什么是命题公式的演绎?
答:首先定义了消解复杂性的两种范式:最简范式和文字范式,在此基础上采用演绎方法证明了L中的可判定性定理,并设计了命题公式的演绎判定算法P(F).P(F)的时间复杂度为O(n3),远远小于基于真值表法的O(2n)和基于策略方案HAL的O(n5)。
2、什么是子句?请给出一例。
答:子句是一组包含一个主词和一个动词的关连字。
子句与片语有明显的不同,后者为一组不含主词与动词关系的关连字,如"in the morning" 或"running down the street" 或"having grown used to this harassment."
3、什么是短语?请给出一例。
答:短语是由句法、语义和语用三个层面上能够搭配的语言单位组合起来的没有句调的语言单位,又叫词组。
它是大于词而又不成句的语法单位。
简单的短语可以充当复杂短语的句法成分,短语加上句调可以成为句子。
由语法上能够搭配的词组合起来的没有句调的语言单位
例如:粮食//丰收(名//动)(什么//怎么样)
4、什么是命题逻辑中的文字?
答:检测和消除命题逻辑公式中的冗余文字,是人工智能领域广泛研究的基本问题。
针对命题逻辑的子句集中子句的划分,结合冗余子句和冗余文字的概念,将命题逻辑的子句集中的文字分为必需文字、有用文字和无用文字3类。
5、什么是析取范式?请给出一例。
答:在离散数学中,仅由有限个文字构成的合取式称为简单合取式,而由有限个简单合取式构成的析取式称为析取范式。
范式存在定理说明了它的存在性:任一命题公式都存在着与之等值的析取范式与合取范式。
但它并不是惟一的。
主析取范式是惟一的。