《无机材料物理性能》课后习题答案

合集下载

无机材料物理性能-习题讲解

无机材料物理性能-习题讲解

2. 已知金刚石的相对介电常数r=5.5,磁化 率=-2.17×10-5,试计算光在金刚石中的传 播速度
c c c v n rr r (1 ) 3 108 5.5 (1 2.17 105 ) 1.28108 m / s
引起散射的其它原因还有:缺陷、杂质、晶粒界 面等。
7. 影响热导率的因素有哪些?
温度的影响:

低温:主要是声子传导。自由程则有随温度的升高而迅速降低的特点,低温时,上限为晶粒的距离, 在高温时,下限为晶格的间距。


高温下热辐射显著,光子传导占优势;
在低温时,热导率λ与T3成比例。高温时,λ则迅速降低。 结晶构造的影响 :声子传导与晶格振动的非谐和有关。晶体结构越复杂,晶格振动的非谐和越大, 自由行程则趋于变小,从而声子的散射大, λ 低。
9.证明固体材料的热膨胀系数不因内含均匀 分散的气孔而改变
对于内含均匀分散气孔的固体材料,可视为固相 与气相组成的复合材料,其热膨胀系数为:
V KW / K W /
i i i i i i i
由于空气组分的质量分数Wi≈0,所以气孔对热膨 胀系数没有贡献。
10. 影响材料散热的因素有哪些?
第三章
材料的光学性能
---习题讲解
1. 试述光与固体材料的作用机理
在固体材料中出现的光学现象是电磁辐射与固体材料中的 原子、离子或电子之间相互作用的结果。一般存在两种作 用机理: 一是电子极化,即在可见光范围内,电场分量与传播过程 中遇到的每一个原子都发生相互作用,引起电子极化,即 造成电子云和原子核的电荷中心发生相互位移,所以当光 通过介质时,一部分能量被吸收同时光速减小,后者导致 折射。 二是电子能态转变:即电磁波的吸收和发射包含电子从一 种能态向另一种能态转变的过程。材料的原子吸收了光子 的能量之后可将较低能级的电子激发到较高能级上去,电 子发生的能级变化与电磁波频率有关。

材料物理性能课后习题答案

材料物理性能课后习题答案

材料物理性能课后习题答案材料物理性能习题与解答目录1 材料的力学性能 (2)2 材料的热学性能 (12)3 材料的光学性能 (17)4 材料的电导性能 (20)5 材料的磁学性能 (29)6 材料的功能转换性能 (37)1材料的力学性能1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其杨氏模量为3.5×109 N/m2,能伸长多少厘米?解:拉伸前后圆杆相关参数表)(0114.0105.310101401000940cmEAlFlEll=⨯⨯⨯⨯⨯=⋅⋅=⋅=⋅=∆-σε10909.40⨯0851.01=-=∆=AAllε名义应变1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。

解:根据 可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。

证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:)21(3)1(2μμ-=+=B G E )(130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈⨯=+⨯=+=μ剪切模量)(390)(109.3)7.01(3105.3)21(388MPa Pa E B ≈⨯=-⨯=-=μ体积模量.,.,11212121212121S W VS d V ld A Fdl W W S W VFdl Vl dl A F d S l l l l l l ∝====∝====⎰⎰⎰⎰⎰⎰亦即做功或者:亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e e e Et t t σσεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

材料物理性能课后习题答案

材料物理性能课后习题答案

材料物理性能习题与解答目录1 材料的力学性能 .................................... 错误!未定义书签。

2 材料的热学性能 .................................... 错误!未定义书签。

3 材料的光学性能 .................................... 错误!未定义书签。

4 材料的电导性能 .................................... 错误!未定义书签。

5 材料的磁学性能 .................................... 错误!未定义书签。

6 材料的功能转换性能 ................................ 错误!未定义书签。

1材料的力学性能1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其杨氏模量为×109 N/m2,能伸长多少厘米?解:拉伸前后圆杆相关参数表)(0114.0105.310101401000940cmEAlFlEll=⨯⨯⨯⨯⨯=⋅⋅=⋅=⋅=∆-σε0851.01=-==Alε名义应变1-3一材料在室温时的杨氏模量为×108 N/m 2,泊松比为,计算其剪切模量和体积模量。

解:根据 可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。

证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

南京工业大学无机材料物理性能习题与答案2013年考试必备

南京工业大学无机材料物理性能习题与答案2013年考试必备

<无机材料物理性能>习题与答案一、填空题(每题2分,共36分)1、电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料中载流子的类型。

2、电导率的一般表达式为∑=∑=iiiiiqnμσσ。

其各参数n i、q i和μi的含义分别是载流子的浓度、载流子的电荷量、载流子的迁移率。

3、离子晶体中的电导主要为离子电导。

可以分为两类:固有离子电导(本征电导)和杂质电导。

在高温下本征电导特别显著,在低温下杂质电导最为显著。

4、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。

5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。

电子电导为主的陶瓷材料,因电子迁移率很高,所以不存在空间电荷和吸收电流现象。

6、导电材料中载流子是离子、电子和空位。

7. 固体材料质点间结合力越强,热膨胀系数越小。

8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的小。

在高温下,二者的导热率比较接近。

9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增大。

10. 无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的热容-温度曲线基本一致。

11. 晶体结构愈复杂,晶格振动的非线性程度愈大。

格波受到的散射大,因此声子的平均自由程小,热导率低。

12、波矢和频率之间的关系为色散关系。

13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。

14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。

15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。

16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。

《材料物理性能》 习题解答

《材料物理性能》 习题解答

材料物理性能习题与解答吴其胜盐城工学院材料工程学院2007,3目录1 材料的力学性能 (2)2 材料的热学性能 (12)3 材料的光学性能 (17)4 材料的电导性能 (20)5 材料的磁学性能 (29)6 材料的功能转换性能 (37)1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米?解:拉伸前后圆杆相关参数表体积V/mm 3 直径d/mm 圆面积S/mm 2 拉伸前 1227.2 2.5 4.909 拉伸后1227.22.44.524 1cm 10cm40cmLoad Load)(0114.0105.310101401000940000cm E A l F l El l =⨯⨯⨯⨯⨯=⋅⋅=⋅=⋅=∆-σε0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l lε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。

解:根据可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。

证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

无机材料物理性能习题解答

无机材料物理性能习题解答

目录1 材料的力学性能 (1)2 材料的热学性能 (11)3 材料的光学性能 (16)4 材料的电导性能 (19)5 材料的磁学性能 (28)6 材料的功能转换性能 (36)1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米?解:拉伸前后圆杆相关参数表)(0114.0105.310101401000940000cm E A l F l El l =⨯⨯⨯⨯⨯=⋅⋅=⋅=⋅=∆-σε0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l lε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。

解:根据可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。

证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

(完整版)《无机材料物理性能》课后习题答案

(完整版)《无机材料物理性能》课后习题答案

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.3238405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力Ff 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。

解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞和t = 时的纵坐标表达式。

τ解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

材料物理性能部分课后习题..

材料物理性能部分课后习题..

课后习题第一章1.德拜热容的成功之处是什么?答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方2.何为德拜温度?有什么物理意义?答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强3.试用双原子模型说明固体热膨胀的物理本质答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。

由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀第二章1.300K1×10-6Ω·m4000K时电阻率增加5%由于晶格缺陷和杂质引起的电阻率。

解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1)在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k) ----(2) 又: p(镍400k) = p(镍300k) * [1+ α* 100] ----(3) 其中参数: α为镍的温度系数约= 0.007 ; p(镍300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率p(杂400k)。

2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小?对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。

这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大而对半导体当温度升高时,满带中有少量电子有可能被激发到上面的空带中去,在外电场作用下,这些电子将参与导电。

无机材料物理性能习题答案

无机材料物理性能习题答案

1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-4一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

1-5试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:拉伸前后圆杆相关参数表 体积V/mm 3直径d/mm 圆面积S/mm 2拉伸前 1227.2 2.5 4.909 拉伸后1227.22.44.5240816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量//0--t t σττ./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

无机材料物理性能习题答案_整理版

无机材料物理性能习题答案_整理版

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,联组合而成的复杂模型。

如采用四元件模型来表示线性高聚物的蠕变过程等。

1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,的最小拉力值,并求滑移面的法向应力。

解:1-18 融熔石英玻璃的性能参数为:E=73 Gpa ;γ=1.56 J/m 2;理论强度σth=28 Gpa 。

如材料中存在最大长度为2μm 裂,且此内裂垂直于作用力方向,计算由此导致的强度折减系数。

2c=2μm c=1*10-6mcE c πγσ2==GPa269.010*1*14.356.1*10*73*269=-强度折减系数=1-0.269/28=0.991-20 一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图。

如果E=380 Gpa ,μ=0.24,求K Ic 值,设极限荷载达50Kg 。

计算此材料的断裂表面能。

解 c/W=0.1, Pc=50*9.8N ,B=10, W=10,S=40 代入下式:])/(7.38)/(6.37)/(8.21)/(6.4)/(9.2[2/92/72/52/32/12/3W c W c W c W c W c BW SP K c IC +-+-==]1.0*7.381.0*6.371.0*8.211.0*6.41.0*9.2[010.0*1040*8.9*502/92/72/52/32/12/3+-+- =62*(0.917-0.145+0.069-0.012+0.0012)=1.96*0.83==1.63Pam1/2212μγ-=E K IC 28.3)10*380*2/(94.0*)10*63.1(2)1(92622==-=EK IC μγJ/m 21-22 一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2mm;(2)0.049mm;(3)2 um, 分别求上述三种情况下的临界应力。

《无机材料物理性能》课后习题答案

《无机材料物理性能》课后习题答案

《材 料 物 理 性 能 》第一章材料的力学性能1- 1 一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉 细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名 义应力和名义应变,并比较讨论这些计算结果。

解:击丄F 4500真应力 T6995( MPa)A 4.524 10 6真应变 T In’ In^A 0 In 2:0.0816I 。

A 2.4F4500 名义应力 —— ---------- 6 917(MPa)A 0 4.909 10 6I A名义应变 01 0.0851丨0 A由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-5一陶瓷含体积百分比为 95%的AI 2O 3 (E = 380 GPa 和5%的玻璃相(E = 84 GPa), 试计算其上限和下限弹性模量。

若该陶瓷含有5%的气孔,再估算其上限和下限弹 性模量。

解:令 E 1=380GPa,E=84GPa,V=0.95,V 2=0.05。

则有上限弹性模量 E H E 1V 1 E 2V 2 380 0.95 84 0.05 365.2(GPa) 下限弹性模量 E L (V 1 V 2) 1 (型 °^) 1 323.1(GPa) E 1 E 2 380 84当该陶瓷含有5%勺气孔时,将P=0.05代入经验计算公式E=E(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa和293.1 GPa。

应力松弛曲线应变蠕变曲线应力松弛曲线应变蠕变曲线其蠕变曲线方程为: (t)3此拉力下的法向应力为: 3.17 10 cos601.12 108(Pa) 112(MPa)0.00152 / cos601-6试分别画出应力松弛和应变蠕变与时间的关系示意图, 并算出t = 0,t = 和 t =时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:其应力松弛曲线方程为:(t) (0)e -t/则有:(0)(0); ( )0; ( )(0)/eVoigt 模型可以较好地模拟应变蠕变过程:1-11 一圆柱形AI 2O 3晶体受轴向拉力F ,若其临界抗剪强度 T 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时 需要的最小拉力值,并求滑移面的法向应力。

无机材料物理性能习题答案_整理版

无机材料物理性能习题答案_整理版

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,联组合而成的复杂模型。

如采用四元件模型来表示线性高聚物的蠕变过程等。

1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,的最小拉力值,并求滑移面的法向应力。

解:1-18 融熔石英玻璃的性能参数为:E=73 Gpa ;γ=1.56 J/m 2;理论强度σth=28 Gpa 。

如材料中存在最大长度为2μm 裂,且此内裂垂直于作用力方向,计算由此导致的强度折减系数。

2c=2μm c=1*10-6mcE c πγσ2==GPa269.010*1*14.356.1*10*73*269=-强度折减系数=1-0.269/28=0.991-20 一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图。

如果E=380 Gpa ,μ=0.24,求K Ic 值,设极限荷载达50Kg 。

计算此材料的断裂表面能。

解 c/W=0.1, Pc=50*9.8N ,B=10, W=10,S=40 代入下式:])/(7.38)/(6.37)/(8.21)/(6.4)/(9.2[2/92/72/52/32/12/3W c W c W c W c W c BW SP K c IC +-+-==]1.0*7.381.0*6.371.0*8.211.0*6.41.0*9.2[010.0*1040*8.9*502/92/72/52/32/12/3+-+- =62*(0.917-0.145+0.069-0.012+0.0012)=1.96*0.83==1.63Pam1/2212μγ-=E K IC 28.3)10*380*2/(94.0*)10*63.1(2)1(92622==-=EK IC μγJ/m 21-22 一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2mm;(2)0.049mm;(3)2 um, 分别求上述三种情况下的临界应力。

《材料物理性能》课后习题答案

《材料物理性能》课后习题答案

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

《无机材料物理性能》课后习题答案.doc

《无机材料物理性能》课后习题答案.doc

解:&) 4.909x10 《材料物理馅能》第一章材料的力学性能1.1 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

F 4500 、—= ---------------- =995( MPa)A 4.524x1()2真应变勺=In上=In色=In 7 = 0.0816 1° A 2.42名义应力a = — = —- =917 (MP。

) —o名义应变 ^ = - = —-1=0.0851/。

A山计算结果町知:真应力大于名义应力,真应变小于名义应变。

1- 5 —陶瓷含体积百分比为95%的A12O3(E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令Ei=380GPa,E2=84GPa,Vi=0.95,V2=0.05。

则有上限弹性模量=E}V{ +E2V2 = 380 X 0.95 +84 X 0.05 =365.2(GF Q)下限弹性模量曲=(4 +生尸=(性 + 些广=323.1(。

「。

)E] E2 380 84当该陶瓷含有5%的气孔时,将P=0. 05代入经验计算公式E=E o(l-1.9P+O. 9P2)可得,其上、下限弹性模量分别变为331.3 GPa和293. 1 GPa。

1-11 一圆柱形MO]晶体受轴向拉力F,若其临界抗剪强度弓为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。

解:由题意得图示方向滑移系统的剪切强度可表示为:Feos 53。

T = -------- ;— x cos 600.00152〃r f xO.00152^- 2nFmin = ---------------- = 3.17 x 103 (N)m,n cos 53° X cos 60°此拉力下的法向应力为:(7 =317xI0_xcos60° = L12xl08(P€/) = 112(A/P6Z) 0.00152^/cos 60°0.0 应变蠕变曲线 =25.62 〜28.64GF“ 1-6试分别画出应力松弛利应变蠕变与时间的关系示意图,并算出t 二0, t=g 和L 二T 时的纵 坐标表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。

解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。

1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。

若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。

解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。

则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。

0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。

解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。

解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。

如采用四元件模型来表示线性高聚物的蠕变过程等。

).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e EEe e Et t t στεσεεεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0123450.00.20.40.60.81.0σ(t )/σ(0)t/τ应力松弛曲线0123450.00.20.40.60.81.0ε(t )/ε(∞)t/τ应变蠕变曲线)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移第二章 脆性断裂和强度2-1 求融熔石英的结合强度,设估计的表面能力为1.75J/m 2; Si-O 的平衡原子间距为1.6*10-8cm;弹性模量从60到75Gpaa E th γσ==GPa 64.28~62.2510*6.175.1*10*)75~60(109=-2-2 融熔石英玻璃的性能参数为:E=73 Gpa ;γ=1.56 J/m 2;理论强度σth=28 Gpa 。

如材料中存在最大长度为2μm 的内裂,且此内裂垂直于作用力方向,计算由此导致的强度折减系数。

2c=2μm c=1*10-6mc E c πγσ2==GPa 269.010*1*14.356.1*10*73*269=- 强度折减系数=1-0.269/28=0.992-5 一钢板受有长向拉应力350MPa ,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。

此钢材的屈服强度为1400 MPa ,计算塑性区尺寸r 0及其裂缝半长c 的比值。

讨论用此试件来求K IC 值的可能性。

c Y K σ=I =c .σπ=39.23Mpa.m 1/2mm K r ys125.0)(2120==I σπ =>==π151031.04/125.0/0c r >0.021 用此试件来求K IC 值的不可能。

2-6 一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2mm;(2)0.049mm;(3)2 um, 分别求上述三种情况下的临界应力。

设此材料的断裂韧性为1.62MPa.m 2。

讨论讲结果。

解:c Y K I σ= Y=1.12π=1.98cK I 98.1=σ=2/1818.0-c(1)c=2mm, MPa c 25.1810*2/818.03==-σ(2)c=0.049mm, MPa c 58.11610*049.0/818.03==-σ (3)(3)c=2um, MPa c 04.57710*2/818.06==-σ2-4 一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图。

如果E=380 Gpa ,μ=0.24,求K Ic 值,设极限荷载达50Kg 。

计算此材料的断裂表面能。

解 c/W=0.1, Pc=50*9.8N ,B=10, W=10,S=40 代入下式:])/(7.38)/(6.37)/(8.21)/(6.4)/(9.2[2/92/72/52/32/12/3W c W c W c W c W c BW S P K c IC +-+-==]1.0*7.381.0*6.371.0*8.211.0*6.41.0*9.2[010.0*1040*8.9*502/92/72/52/32/12/3+-+-=62*(0.917-0.145+0.069-0.012+0.0012) =1.96*0.83==1.63Pam 1/2212μγ-=E K IC 28.3)10*380*2/(94.0*)10*63.1(2)1(92622==-=EK IC μγ J/m 2第三章 材料的热学性能2-3 一热机部件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm.s.℃),最大厚度=120mm.如果表面热传递系数h=0.05 J/(cm 2.s.℃),假定形状因子S=1,估算可兹应用的热冲击最大允许温差。

解:hr S R T m m 31.01⨯'=∆=226*0.18405.0*6*31.01==447℃2-1 计算室温(298K )及高温(1273K )时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。

(1) 当T=298K ,Cp=a+bT+cT -2=87.55+14.96*10-3*298-26.68*105/2982=87.55+4.46-30.04 =61.97 *4.18J/mol.K(2) 当T=1273K ,Cp=a+bT+cT -2=87.55+14.96*10-3*1293-26.68*105/12732=87.55+19.34-1.65=105.24*4.18J/mol.K=438.9 J/mol.K据杜隆-珀替定律:(3Al 2O 3.2SiO 4) Cp=21*24。

94=523.74 J/mol.K2-2 康宁1723玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm.s.℃); α=4.6*10-6/℃;σp=7.0Kg/mm 2.E=6700Kg/mm 2,μ=0.25.求第一及第二热冲击断裂抵抗因子。

第一冲击断裂抵抗因子:ER f αμσ)1(-==66610*8.9*6700*10*6.475.0*10*8.9*7-=170℃ 第二冲击断裂抵抗因子:ER f αμλσ)1(-='=170*0.021=3.57 J/(cm.s)第四章 材料的光学性能3-1.一入射光以较小的入射角i 和折射角r 通过一透明明玻璃板,若玻璃对光的衰减可忽略不计,试证明明透过后的光强为(1-m)2定律所得的计算值。

趋近按,可见,随着温度的升高Petit Dulong C m P -,解:rin sin sin 21=W = W’ + W’’ m WW W W m n n W W -=-=∴=⎪⎪⎭⎫⎝⎛+-=1'1"11'22121其折射光又从玻璃与空气的另一界面射入空气 则()21'"1"'"m WW m W W -=∴-= 3-2 光通过一块厚度为1mm 的透明Al 2O 3板后强度降低了15%,试计算其吸收和散射系数的总和。

解:11.0)()(0)(0625.185.0ln 1085.0-⨯+-+-+-=-=+∴=∴=∴=cm s e e I Ie I I s x s x s αααα第五章 材料的电导性能4-1 实验测出离子型电导体的电导率与温度的相关数据,经数学回归分析得出关系式为:TBA 1lg +=σ (1) 试求在测量温度范围内的电导活化能表达式。

(2) 若给定T1=500K ,σ1=10-9(1).-ΩcmT2=1000K ,σ2=10-6(1).-Ωcm计算电导活化能的值。

解:(1))/(10T B A +=σ 10ln )/(ln T B A +=σ10ln )/(T B A e +=σ=)/.10(ln 10ln T B A e e =)/(1kT W e A - W=k B ..10ln - 式中k=)/(10*84.04K eV -(2) 500/10lg 9B A +=-1000/10lg 6B A +=- B=-3000W=-ln10.(-3)*0.86*10-4*500=5.94*10-4*500=0.594eV4-3本征半导体中,从价带激发至导带的电子和价带产生的空穴参与电导。

激发的电子数n 可近似表示为:)2/ex p(kT E N n g -=,式中N 为状态密度,k 为波尔兹曼常数,T 为绝对温度。

试回答以下问题:(1)设N=1023cm -3,k=8.6”*10-5eV.K -1时, Si(Eg=1.1eV),TiO 2(Eg=3.0eV)在室温(20℃)和500℃时所激发的电子数(cm -3)各是多少:(2)半导体的电导率σ(Ω-1.cm -1)可表示为μσne =,式中n 为载流子浓度(cm -3),e 为载流子电荷(电荷1.6*10-19C ),μ为迁移率(cm 2.V -1.s -1)当电子(e )和空穴(h )同时为载流子时,h h e e e n e n μμσ+=。

相关文档
最新文档