抗拉强度_延伸率_屈服强度
工程材料力学性能
工程材料力学性能引言工程材料的力学性能是指材料在受力作用下的力学行为和性质。
工程材料力学性能的研究对于工程设计、材料选择和结构安全等方面具有重要意义。
本文将对工程材料的力学性能进行详细阐述。
工程材料的力学性能指标弹性模量弹性模量是衡量材料抵抗变形的能力的一个重要指标。
它是在材料受压缩或拉伸力作用下,材料内部原子和分子之间的相对位移产生时所产生的应力与应变之比。
弹性模量越大,材料的刚度就越大,抵抗变形的能力越强。
屈服强度屈服强度是指材料在受力作用下开始变形的临界点。
当应力达到一定值时,材料开始发生塑性变形,无法恢复到原来的形状。
屈服强度常用于材料的强度设计和材料性能的比较。
抗拉强度抗拉强度是指材料在受拉力作用下的最大承载能力。
抗拉强度可以反映材料的抵抗拉断能力,是工程结构的安全性能的重要指标。
断裂韧性是指材料在断裂前能吸收的总能量。
它是衡量材料抵抗断裂能力的重要指标。
材料的断裂韧性越高,代表其在受外力作用下具有较好的耐久性和抗冲击性。
硬度硬度是指材料的抵抗划痕、穿刺和压入等形变的能力。
硬度可以反映材料的抗划痕和抗磨损能力。
常用的硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。
蠕变性能蠕变性能是指材料在常温和高温下长期受持续载荷作用时的变形行为。
材料的蠕变性能对于结构的稳定性和耐久性具有重要影响。
工程材料力学性能的实验测试方法为了评估材料的力学性能,常常需要进行实验测试。
以下是几种常见的工程材料力学性能测试方法:拉伸测试拉伸测试是评估材料抗拉性能的常用方法。
通过施加恒定的拉力,测量材料的应变和应力,从而得到材料的拉伸强度、屈服强度和延伸率等力学性能参数。
压缩测试是评估材料抗压性能的常用方法。
通过施加恒定的压力,测量材料的应变和应力,从而得到材料的压缩强度和压缩模量等力学性能参数。
弯曲测试弯曲测试是评估材料耐弯曲性能的常用方法。
通过施加力矩,使材料发生弯曲变形,测量材料的应变和应力,从而得到材料的弯曲强度和弯曲模量等力学性能参数。
材料性能标准
一材料机械性能1.取样根据DIN EN 10002-1或者宝钢标准2.试样分2种:长度*宽度1)80*20 (mm)2)50*12.5 (mm)3. 机械性能主要的机械性能有抗拉强度,延伸率,屈服强度抗拉强度(бb )指材料在拉断前承受最大应力值。
当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。
此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。
钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。
屈服强度又称为屈服极限,是材料屈服的临界应力值。
当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。
延伸率(δ ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。
Lo:起始测量长度,Lu:断后测量长度Le:仪器测试长度,△Lm:在最大力时的延长So:试验长度内的起始截面,Su:断裂后最小的试验截面断裂延伸:Lo-Lu *100%Lo断裂收缩:So-Su*100%So最大力矩的总延伸率:Agt=△Lm*100%Le为了避免试样可能出现甩掉的情况,此时试样的断裂位于界限之外,可采用下面的方法:A)在试验之前可以把起始测量长度划分为N等分的小段。
B)在实验结束后,可以用X表示没个短的断裂块的测量标记,可以用Y表示在长的断裂块上的分段划线,它离开断裂位置的距离应该尽可能的大,和到测量标记的距离一样,如果X和Y之间的分段距离的数目为n个,就可以按照下面所述确定断裂伸长1)当N-n的结果为偶数时间参照图,X和Y之间的距离和Y到分段划线之间的距离就可以进行测量,其为在(N-n)/2距离处位于Y的另一边的距离断裂伸长可以按照下面的方程进行计算:A=XY-2YZ-Lo *100%Lo2)当N-n的结果为奇数时参照图,X和Y之间的距离和Y到分段划线Z‘和Z“之间的距离就可以测量,其为在N-n-1 和N-n+1距离处位于Y另外一边的距离2 2断裂伸长可以按照下面的方程进行计算A=XY+YZ‘+YZ“-Lo *100%Lo硬度主要以HV为主根据不同需要采用不同的硬度测试比如,常用的维氏硬度(HV):一般以黑色金属为主要测试对象。
关于抗拉强度和屈服强度的区别
首先自我介绍一下,本人现在某检测机构任职,我任职的这家机构主要是对金属材料进行理化检验,有CMA认证(中国计量认证)、CNAS 认证(国家认可委认证),属国家级实验室。
检测结果全球100多个国家互认。
本人任金属物理检测室副主任,物理检测技术组组长。
应当算得上是专业人士。
什么是的屈服强度和抗拉强度。
要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
金属材料的力学性能是指在外载荷作用下其抵抗 或 的能力。
金属材料的力学性能是指在外载荷作用下其抵抗或的能力。
金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。
1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。
材料单位面积受载荷称应力。
2、屈服点(6s):表示屈服强度,指材料在扎搓过程中,材料所受到形变达至某一临界值时,载荷不再减少变形却稳步减少或产生0.2%l。
时形变值,单位用牛顿/毫米
2(n/mm2)则表示。
3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。
单位用牛顿/毫米2(n/mm2)表示。
如铝锂合金抗拉强度可达.5mpa
4、延伸率(δ):材料在弯曲脱落后,总弯曲与完整标距长度的百分比。
工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把
δ≤5%的`材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。
5、断面收缩率(ψ)材料在弯曲脱落后、断面最小增大面积与原断面积百分比。
6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(hbs、hbw)和洛氏硬度(hra、hrb、hrc)。
7、冲击韧性(ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(j/cm2)。
钢材的屈服强度、抗拉强度、延伸率、冲击功的关系
钢材的屈服强度、抗拉强度、延伸率、冲击功的关系什么是的屈服强度和抗拉强度。
所以,抗拉极限载荷与实验材料的截⾯积之⽐,就是抗拉强度。
抗拉强度是材料单位⾯积上所能承受外⼒作⽤的极限。
超过这个极限,材料将被解离性破坏。
弹性材料在受到恒定持续增⼤的外⼒作⽤下,直到断裂。
究竟发⽣了怎样的变化呢?⾸先,材料在外⼒作⽤下,发⽣弹性形变,遵循胡克定律。
什么叫弹性形变呢?就是外⼒消除,材料会恢复原来的尺⼨和形状。
当外⼒继续增⼤,到⼀定的数值之后,材料会进⼊塑性形变期。
材料⼀旦进⼊塑性形变,当外⼒,材料的原尺⼨和形状不可恢复!⽽这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉⼒⽽⾔,这个临界点的拉⼒值,叫屈服点。
从晶体⾓度来说,只有拉⼒超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,⽽不是从断裂的时候开始的!但我要说的是不管哪个强度,只拿⼀个来说事,都不能说明这种材料安全与否或者结实与否!咱们这⾥就说钢材吧,别的不说了。
关于屈服强度和抗拉强度还有⼀个参数,可能知道的⼈不多,它究竟起什么左右,可能知道的⼈更少。
这个参数就是屈强⽐!屈强⽐就是屈服强度和抗拉强度的⽐值。
范围是0~1之间。
屈强⽐是衡量钢材脆性的指标之⼀。
屈强⽐越⼤,表明钢材屈服强度和抗拉强度的差值越⼩,钢材的塑性越差,脆性就越⼤!为什么这样说呢,这⾥要引进⼀个新的指标——延伸率。
通俗⼀点说就是钢材被拉断后,和原来⽐,伸长了多少。
这是检验钢材塑性好坏的⼀个重要指标。
这个数值越⼤,表明钢材的延展性越好。
上⾯我说了,当钢材拉伸超过屈服点之后,这个时候的钢材已经不可能恢复原来的尺⼨,⼀直到断裂,钢材都在不断的被拉长。
屈强⽐越⼤,屈服强度和抗拉强度的差值越⼩,那么在的加荷速率不变的情况下,钢材被拉长的时间就越短,那么延伸率就越低。
有点罗嗦了!下⾯进⼊正题!根据能量守恒定律,能量只能转换或者传递。
当钢材被拉伸的时候,归根结底是能量的转换吸收。
什么是屈服强度和抗拉强度
什么是屈服强度和抗拉强度要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
究竟发生了怎样的变化呢?首先,材料在外力作用下,发生弹性形变,遵循胡克定律。
什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。
当外力继续增大,到一定的数值之后,材料会进入塑性形变期。
材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。
抗拉强度_延伸率_屈服强度
.问题:什么是抗拉强度,延伸率,屈服强度?球铁管是一种即有高强度和高弹性的输水管道,球铁管优秀的力学性能是它在种类繁多的输水管材中立于不败之地的保证,因而我们有必要对描述球铁管的各种力学性能做一番介绍:1.延伸率延伸率主要衡量球墨铸铁塑性性能-即发生永久变形而不至于断裂的性能。
δ= (L-L0)/L0*100%δ---伸长率L0----试样原长度L----试样受拉伸断裂后的长度2.强度强度是金属材料在外力作用下抵抗永久变形和断裂的能力。
工程上常用来表示金属材料强度的指标有屈服强度和抗拉强度。
a.屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。
δS=Fs/A OFs----试样产生屈服现象时所承受的最大外力(N)A O----试样原来的截面积(mm2)δS---屈服强度(Mpa)b.抗拉强度是指金属材料在拉断前所能承受的最大应力,用δb=F O/A OF O----试样在断裂前的最大外力(N)A O----试样原来的截面积(mm2)δb---抗拉强度(Mpa)Table:三种不同材料之间的机械性能对比退火球墨铸铁铸态球墨铸铁管灰口铁管屈服强度≥300MPa 未定义未定义抗拉强度≥420MPa ≤300MPa ≥200 MPa延伸率≥10% ≥3% ≤3%断裂形式塑性变形突然断裂突然断裂对于球墨铸铁管而言,其试样实际就是取自插口处试样加工过后的试棒;对球墨铸铁管件而言,其试样通常是取自与管件同批的铁水铸出的Y型试块加工成的试棒。
管材和管件的抗拉强度实验,就是用试棒拉断前的最大持续力除以试棒面积计算得出的抗拉强度。
把试棒断裂的两部分拼在一起测量伸长的标距,用伸长标距与初始标距之比求得伸长率。
不同的管材之间因为力学性能实验方法有别,所以某些管材宣传他们的力学性能甚至优于铸铁管是毫无根据的。
'.。
金属屈服强度、抗拉强度、硬度知识
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
⑵洛氏硬度(HR)
当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:
3.抗拉强度(σb)
材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)
材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
以120kg以内的载荷和支持角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)
2.屈服强度(σ0.2)
有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
5.屈强比(σs/σb)
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
材料力学性能知识要点
1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。
2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率断面收缩率 、 冲击功 。
3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。
4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。
1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。
2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。
3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、(2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。
4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。
5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。
6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。
请说明下面公式各符号的名称以及其物理意义7、c IC c a Y K /=σσc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大,σc 表示引力的最大值;K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;Y :几何形状因子a c : 裂纹长度 8、对公式m K c dNda )(∆=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。
dNda :裂纹扩展速率(随周次); c 与m :与材料有关的常数;K ∆:裂纹尖端的应力强度因子幅度9、εss-蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;σ为蠕变应力。
金属屈服强度、抗拉强度、硬度知识
有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)
材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。
⑵洛氏硬度(HR)
当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:
HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
6.硬度
硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
⑶维氏硬度(HV)
以120kg以内的载荷和支持角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)
什么是屈服强度和抗拉强度
什么是屈服强度和抗拉强度Document number:NOCG-YUNOO-BUYTT-UU986-1986UT什么是屈服强度和抗拉强度要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
究竟发生了怎样的变化呢首先,材料在外力作用下,发生弹性形变,遵循胡克定律。
什么叫弹性形变呢就是外力消除,材料会恢复原来的尺寸和形状。
当外力继续增大,到一定的数值之后,材料会进入塑性形变期。
机械常识-金属屈服强度、抗拉强度、硬度知识
机械常识-金属屈服强度、抗拉强度、硬度知识(2011-8-9 15:17:44)机械常识--金属屈服强度、抗拉强度、硬度知识钢材机械性能介绍1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
抗拉强度伸长率屈服强度符号
抗拉强度伸长率屈服强度符号
在材料力学性能测试和标记中,抗拉强度、伸长率和屈服强度通常用特定的符号表示。
这些符号的常见表示方式:
1. 抗拉强度:抗拉强度是材料在受拉应力下破坏之前能够承受的最大拉力。
它通常用大写字母"σ"(sigma)表示,后面跟着一个小的"UTS"(Ultimate Tensile Strength)表示,例如:σUTS。
2. 伸长率:伸长率是材料在拉伸断裂前能够延展的程度。
它通常用大写字母"ε"(epsilon)表示,后面跟着一个百分比表示,例如:ε%。
3. 屈服强度:屈服强度是材料在拉伸过程中开始发生塑性变形的应力值。
它通常用大写字母"σ"(sigma)表示,后面跟着一个小的"YS"(Yield Strength)表示,例如:σYS。
需要注意的是,不同国家和行业可能会使用略有不同的符号表示方法。
因此,在特定的材料测试标准或规范中,可能会提供明确的符号表示。
在实际应用中,确保准确理解和使用相关符号非常重要。
金属屈服强度、抗拉强度、硬度知识
钢材机械性能介绍
1.屈服点(σs)
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)
2.屈服强度(σ0.2)
有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)
材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强பைடு நூலகம்相应的还有抗压强度、抗弯强度等。
�
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
⑶维氏硬度(HV)
以120kg以内的载荷和支持角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)
6.硬度
硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
钢材的主要力学指标
钢材的主要力学指标
钢材是一种广泛应用于建筑、工程、制造以及其他领域的材料。
在设计和使用钢材时,其主要力学指标是非常重要的。
以下是钢材的主要力学指标:
1. 抗拉强度:钢材的抗拉强度是指其在拉伸过程中所能承受的最大应力值。
这个值通常以兆帕为单位来表示。
2. 屈服强度:钢材的屈服强度是指其在拉伸过程中所能承受的应力值,达到这个值时钢材开始产生塑性变形。
这个值通常也以兆帕为单位来表示。
3. 延伸率:钢材的延伸率是指其在拉伸过程中能够发生塑性变形的程度,以百分比表示。
4. 冲击韧性:冲击韧性是指钢材在受到冲击或撞击时所能承受的能量吸收能力。
这个指标通常以焦耳或千克米为单位。
5. 硬度:钢材的硬度是指其抵抗划痕和压痕的能力。
硬度可以用多种方法来测试,例如布氏硬度和洛氏硬度等。
这些力学指标在钢材的设计、制造、选择和使用中都非常重要,设计人员和工程师需要根据具体的应用场景来选择合适的钢材材料。
- 1 -。
关于抗拉强度和屈服强度的区别
抗拉强度与屈服强度的区别及实例首先自我介绍一下,本人现在某检测机构任职,我任职的这家机构主要是对金属材料进行理化检验,有CMA认证(中国计量认证)、CNAS 认证(国家认可委认证),属国家级实验室。
检测结果全球100多个国家互认。
本人任金属物理检测室副主任,物理检测技术组组长。
应当算得上是专业人士。
什么是的屈服强度和抗拉强度。
要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
什么是屈服强度和抗拉强度
什么是屈服强度和抗拉强度要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
究竟发生了怎样的变化呢首先,材料在外力作用下,发生弹性形变,遵循胡克定律。
什么叫弹性形变呢就是外力消除,材料会恢复原来的尺寸和形状。
当外力继续增大,到一定的数值之后,材料会进入塑性形变期。
材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。
力学性能指标
脆性材料的拉伸性能
脆性材料拉伸时,没有屈服阶段,也没有颈缩现象。
应力应变曲线没有明显的直线段,通常在应力较小时,
取 e 图上的弦线近似地表示拉伸时的应力应变关
系,并按弦线的斜率近似地确定弹性模量 E。 反映强度的力学性能只能测得强度极限,而且拉伸时
强度极限 b 的值较低。 由于抗拉强度较差,一般不宜选做承受拉力的构件。
三、本课程的研究的内容
1、变形和断裂的行为过程与微观机理 2、评定材料的力学性能指标及其物理和工程实用意义 3、力学性能指标的测试原理、方法和影响因素 4、改善力学性能的方法和途径
四、课程的任务与要求
课程任务
掌握评价金属材料力学性能的有关基本知识、基 本理论和基本技能。
能评价、选择金属材料;根据需要能提出检测项 目;
会按要求操作检测设备,完成检测任务。 培养在产品质量检测工作中,分析、解决问题的
实际能力。
四、课程的任务与要求
教材内容
第一部分(第一至第七章),主要论述用于评价构件安全 、有效地服役所需要的力学性能指标和相关的理论知识, 以及测定原理和方法;
第二部分(第八至第十一章),主要论述评价机件寿命所 需要的力学性能指标,包括疲劳、蠕变、环境效应和磨损
拉伸性能及试验
拉伸试样
拉伸试样一般为经机加工的试样和不经机加工的全截面试样, 其横截面通常为圆形、矩形、异形以及不经加工的全截面形 状。
拉伸性能及试验
拉伸试样
1) 圆形试样
d0 l0
拉伸性能及试验
2) 矩形试样
3)异型试样
t b
l0
拉伸性能及试验
拉伸性能及试验
三、拉伸试验设备
材料拉伸性能指标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:什么是抗拉强度,延伸率,屈服强度?
球铁管是一种即有高强度和高弹性的输水管道,球铁管优秀的力学性能是它在种类繁多的输水管材中立于不败之地的保证,因而我们有必要对描述球铁管的各种力学性能做一番介绍:
1. 延伸率
延伸率主要衡量球墨铸铁塑性性能-即发生永久变形而不至于断裂的性能。
δ= (L-L 0)/L 0*100%
δ---伸长率
L 0----试样原长度
L----试样受拉伸断裂后的长度
2. 强度
强度是金属材料在外力作用下抵抗永久变形和断裂的能力。
工程上常用来表示金属材料强度的指标有屈服强度和抗拉强度。
a. 屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。
δS =Fs/A O
Fs----试样产生屈服现象时所承受的最大外力(N )
A O ----试样原来的截面积(mm 2)
δS ---屈服强度(Mpa)
b. 抗拉强度是指金属材料在拉断前所能承受的最大应力,用δb =F O /A O
F O ----试样在断裂前的最大外力(N )
A O ----试样原来的截面积(mm 2)
δb ---抗拉强度(Mpa )
Table:三种不同材料之间的机械性能对比
对于球墨铸铁管而言,其试样实际就是取自插口处试样加工过后的试棒;对球墨铸铁管件而言,其试样通常是取自与管件同批的铁水铸出的Y 型试块加工成的试棒。
管材和管件的抗拉强度实验,就是用试棒拉断前的最大持续力除以试棒面积计算得出的抗拉强度。
把试棒断裂的两部分拼在一起测量伸长的标距,用伸长标距与初始标距之比求得伸长率。
不同的管材之间因为力学性能实验方法有别,所以某些管材宣传他们的力学性能甚至优于铸铁管是毫无根据的。
退火球墨铸铁 铸态球墨铸铁管 灰口铁管 屈服强度
≥300MPa 未定义 未定义 抗拉强度
≥420MPa ≤300MPa ≥200 MPa 延伸率 ≥10% ≥3% ≤3% 断裂形式 塑性变形 突然断裂 突然断裂。