电气工程及其自动化外文翻译----继电保护发展现状
电气工程及其自动化技术的发展现状及趋势
电气工程及其自动化技术的发展现状及趋势摘要:目前,我国经济科学技术得到了迅速的发展,对各个行业的进步都起到了有力的促进作用,电气工程自动化目前作为新兴产业,在未来电气领域的发展中也发挥了突出的作用。
但是,由于我国对电气自动化的研究和应用晚于西方国家,这一技术的发展空间依旧是比较广阔的,所以,我国对电气自动化技术的研发与应用力度依旧有待进一步的强化。
电气工程自动化技术是科技领域技术发展的关键,因此,对其发展我们要加大支持力度。
关键词:电气工程;自动化;发展趋势引言电气自动化技术的应用研究意义重大,关注电气设备的升级改造,重视自动化技术的应用研究,围绕电气工程的发展动力出发,拓宽自动化技术的应用范畴。
具体应用环节,应结合相关行业进行针对性分析,保证电气自动化方案的应用效果,体现电气工程的科研与技术发展的意义。
1技术特点完成电气自动化技术基本功能的总结后,应客观分析该技术应用的特点,基于此,下述内容侧重远程操控与集中控制进行详细总结。
第一,远程操控,电子信息以及计算机技术的不断发展,电气工程逐渐朝向智能化方向递进。
电气工程以及下属涵盖项目,均不能离开自动化技术,保证该技术的应用效果,应详细研究远程操控技术特点。
所谓自动化其核心利用网络集成以及终端系统,对电力系统、生产环节等进行的远距离操控。
此过程利用自动化技术实现远距离操控,因此,此过程成为技术应用的核心特点。
技术应用具体环节,需要搭载集成设备以及互联网核心系统,利用网络设备以及数据分析与处理功能,实现电力系统、生产环节的内部自动操控架构。
以此避免因人工效率问题造成的弊端,体现自动化技术的应用价值。
第二集中控制,远程操控属于广泛层面的技术特点,在众多领域均有所涉及与应用。
集中控制属于电气设备内部的操控系统,属于集中控制模式。
集中控制是以智能技术为背景的自动化升级,可促进电气工程实现全方位、动态化控制的核心内容。
以目前技术应用层面分析,电气工程所覆盖的领域,集中控制的尚未全部实现,仍处于研究阶段。
现代继电保护的现状及发展趋势
电力系统微机继电保护的现状及发展趋势系别机电工程学院专业班级电气工程及其自动化学生姓名XXX学号XXXXXXXXX目录目录 (1)前言 (2)一、微机继电保护的特点 (2)二、微机继电保护的发展史 (3)三、我国继电保护的现状 (4)四、继电保护的未来发展 (5)五、结束语 (7)前言继电保护技术是向着计算机化、智能化和数据通信一体化的方向发展。
随着计算机硬件的快速发展。
电力系统对微机保护的要求也在不断的提高当中,继电保护装置应该具有大容量的数据的长期存放的一个空间,这样才能够做到需要的时候快速处理这些数据,:还要有强大的通信能力,这样能够与其他保护和控制的装置来共享所有数据的信息,使得继电保护装置能够具备计算机的所欲功能。
为了保证整个电力系统能够安全运行,各个保护单元要能够协调工作,所以,实现微机保护装置的网络化是势在必行的。
大量电缆的投资很大,使得二次回路很复杂,但是如果利用数据通信一体化的计算机装置安装保护设备,通过计算机网络可以免除大量的控制电缆。
随着社会的不断发展,继电保护技术的发展也在不断网络化和智能化这对继电保护的技术提出了新的挑战,所以我们要对继电保护装置进行维护来使设备正常运行,从而提高整个电力系统的安全性。
一、微机继电保护的特点研究和实践证明,与传统的继电保护相比较,微机保护有许多优点,其主要特点如下:1.改善和提高继电保护的动作特征和性能,动作正确率高。
主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术,如自适应、状态预测、模糊控制及人工神经网络等,其运行高正确率也已在实践中得到证明。
2.可以方便地扩充其他辅助功能。
如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。
3.工艺结构条件优越。
体现在硬件比较通用,制造容易统一标准;装置体积小,减少了盘位数量;功耗低。
4.可靠性容易提高。
电气工程及其自动化的发展现状及发展趋势
电气工程及其自动化的发展现状及发展趋势一、引言电气工程及其自动化是现代工程技术中的重要领域,它涉及到电力系统、电子技术、自动控制等多个学科的知识。
本文将对电气工程及其自动化的发展现状进行详细分析,并展望未来的发展趋势。
二、电气工程及其自动化的发展现状1. 电力系统的发展电力系统是电气工程的核心领域之一。
近年来,随着经济的快速发展和人民生活水平的提高,对电力的需求量不断增加。
为满足这一需求,电力系统不断进行升级和扩建,提高了电力供应的可靠性和稳定性。
2. 电子技术的进步电子技术的快速发展为电气工程带来了巨大的变革。
现代电气设备采用了大量的电子元器件,使得设备的性能得到了极大的提升。
例如,智能电网的建设利用了先进的电子技术,实现了电力系统的高效运行和智能管理。
3. 自动控制技术的应用自动控制技术是电气工程及其自动化的重要组成部份。
随着计算机技术和通信技术的进步,自动控制系统的功能不断提升。
现代工业生产中的自动化程度越来越高,大大提高了生产效率和质量。
4. 电气工程在能源领域的应用电气工程在能源领域的应用也日益广泛。
新能源技术的发展使得电气工程在可再生能源领域有了更多的应用。
例如,太阳能发电和风能发电等技术的发展,为电气工程的可持续发展提供了新的机遇。
三、电气工程及其自动化的发展趋势1. 智能化发展随着人工智能和大数据技术的不断进步,电气工程及其自动化将朝着智能化方向发展。
智能电网、智能家居等领域将会得到更广泛的应用,提高生活质量和能源利用效率。
2. 绿色能源的推广随着环境保护意识的增强,绿色能源将成为电气工程的发展方向之一。
通过开辟利用太阳能、风能等可再生能源,减少对传统能源的依赖,实现能源的可持续发展。
3. 自动化技术的集成自动化技术在电气工程中的应用将更加广泛和深入。
自动化系统将与物联网、云计算等技术相结合,实现设备之间的互联互通,提高生产效率和运行安全性。
4. 电气工程的国际合作电气工程及其自动化是国际性的学科领域,国际合作将进一步促进其发展。
电气工程及其自动化的发展现状及发展趋势
电气工程及其自动化的发展现状及发展趋势引言概述:电气工程及其自动化作为现代工程技术的重要组成部份,已经在各个领域得到广泛应用。
随着科技的不断发展,电气工程及其自动化领域也在不断创新和进步。
本文将从发展现状和未来趋势两个方面对电气工程及其自动化进行探讨。
一、发展现状:1.1 电气工程在各行业中的应用广泛电气工程在能源、交通、通信、创造等各个行业中都有着重要的应用。
例如,在能源领域,电气工程技术被用于发电、输电、配电等环节;在交通领域,电气工程技术被用于交通信号控制、电动车辆等方面。
1.2 自动化技术的不断发展随着人工智能、大数据等技术的不断发展,自动化技术也在不断进步。
自动化系统的智能化、网络化、集成化程度越来越高,为各行业提供了更高效、更精准的解决方案。
1.3 电气工程领域的新技术不断涌现在电气工程领域,新技术如物联网、5G通信、云计算等不断涌现,为电气工程的发展带来了新的机遇和挑战。
二、发展趋势:2.1 智能化和网络化趋势不断加强未来电气工程及其自动化将更加注重智能化和网络化发展。
智能化技术将更多应用于自动化系统中,实现设备之间的智能互联,提高系统的自适应性和智能化程度。
2.2 绿色能源和节能技术将成为发展重点随着环境保护意识的增强,绿色能源和节能技术将成为电气工程发展的重点。
未来电气工程将更多应用于新能源开辟、能源管理和节能减排等方面。
2.3 人工智能和大数据技术将引领未来发展人工智能和大数据技术将成为电气工程及其自动化的核心驱动力。
未来电气工程将更多应用于智能创造、智慧城市等领域,实现智能化、高效化的生产和生活。
结论:电气工程及其自动化作为现代工程技术的重要组成部份,其发展现状和未来趋势充满着机遇和挑战。
随着科技的不断进步,电气工程将在更多领域展现出其重要作用,为人类社会的发展做出更大的贡献。
电气工程及其自动化专业外文文献英文文献外文翻译方面
1、 外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerT h e sin gle -ch ip mi c ro co m p u t e r is t h e cu lm in at io n of b ot h t h e d e ve lo p me nt of t h e d ig ita l co m p u t e r a n d t h e i nte g rated c ircu it a rgu ab l y t h e to w mo st s ign if i cant i nve nt i o n s of t h e 20t h c e nt u ry [1].T h ese to w t yp e s of arch ite ct u re are fo u n d in s in gle -ch ip m i cro co m p u te r. S o m e e mp l oy t h e sp l it p ro gra m /d at a m e m o r y of t h e H a r va rd arch ite ct u re , s h o wn in -5A , ot h e rs fo l lo w t h e p h i lo so p hy, wid e l y ad a p ted fo r ge n e ral -p u rp o se co m p u te rs an d m i cro p ro ce ss o rs , of m a kin g n o l o g i ca l d i st in ct i o n b et we e n p ro gra m an d d ata m e m o r y as in t h e P rin c eto n a rch ite ct u re , sh o wn in -5A.In ge n e ra l te r m s a s in g le -ch ip m ic ro co m p u t e r is ch a ra cte r ized b y t h e in co r p o rat io n of all t h e u n its of a co mp u te r into a s in gle d e vi ce , as s h o w n in F i g3-5A-3.-5A-1A Harvard type-5A. A conventional Princeton computerProgrammemory Datamemory CPU Input& Output unitmemoryCPU Input& Output unitResetInterruptsPowerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).RO M is u su a l l y fo r t h e p e r m an e nt , n o n -vo lat i le sto rage of an ap p l i cat io n s p ro g ram .M a ny m i c ro co m p u te rs a n d m i cro co nt ro l le rs are inte n d ed fo r h i gh -vo lu m e ap p l i cat io n s a n d h e n ce t h e e co n o m i cal man u fa c t u re of t h e d e vi ces re q u ires t h at t h e co nt e nts of t h e p ro gra m me mo r y b e co mm i ed p e r m a n e nt l y d u r in g t h e m a n u fa ct u re of c h ip s . C lea rl y, t h i s imp l ies a r i go ro u s ap p ro a ch to ROM co d e d e ve lo p m e nt s in ce ch an ges can n o t b e mad e af te r m an u fa ct u re .T h i s d e ve l o p m e nt p ro ces s m ay i nvo l ve e mu l at i o n u sin g a so p h ist icated d e ve lo p m e nt syste m wit h a h ard wa re e mu l at i o n capab i l it y as we ll as t h e u s e of p o we rf u l sof t war e to o l s.So m e m an u fa ct u re rs p ro vi d e ad d it i o n a l ROM o p t io n s b y in clu d in g in t h e i r ran ge d e v ic es w it h (o r inte n d ed fo r u s e wit h ) u se r p ro g ram m a b le m e mo r y. T h e s im p lest of t h e se i s u su a l l y d e v i ce wh i ch can o p e rat e in a m i cro p ro ce s so r mo d e b y u s in g s o m e of t h e in p u t /o u t p u t l in es as an ad d res s a n d d ata b u s fo r a cc es sin g exte rn a l m e m o r y. T h is t yp e o f d e vi ce can b e h ave f u n ct i o n al l y as t h e s in gle ch ip m i cro co m p u t e r f ro m wh i ch it i s d e ri ved a lb e it wit h re st r icted I/O an d a m o d if ied exte rn a l c ircu it. T h e u s e of t h e se RO M le ss d e vi ces i s co mmo n e ve n in p ro d u ct io n circu i ts wh e re t h e vo lu m e d o e s n ot ju st if y t h e d e ve lo p m e nt co sts of cu sto m o n -ch ip ROM [2];t h e re ca n st i ll b e a si gn if i cant sav in g in I/O an d o t h e r ch ip s co m pared to a External Timing components System clock Timer/ Counter Serial I/O Prarallel I/O RAM ROMCPUco nve nt io n al m i c ro p ro ces so r b ased circ u it. M o re exa ct re p l a ce m e nt fo rRO M d e v ice s can b e o b tain ed in t h e fo rm of va ria nts w it h 'p i g g y-b a c k'E P ROM(E rasab le p ro gramm ab le ROM )s o cket s o r d e v ice s w it h E P ROMin stead of ROM 。
电气工程的外文文献(及翻译)
电气工程的外文文献(及翻译)文献一:Electric power consumption prediction model based on grey theory optimized by genetic algorithms本文介绍了一种基于混合灰色理论与遗传算法优化的电力消耗预测模型。
该模型使用时间序列数据来建立模型,并使用灰色理论来解决数据的不确定性问题。
通过遗传算法的优化,模型能够更好地预测电力消耗,并取得了优异的预测结果。
此模型可以在大规模电力网络中使用,并具有较高的可行性和可靠性。
文献二:Intelligent control for energy-efficient operation of electric motors本文研究了一种智能控制方法,用于电动机的节能运行。
该方法提供了一种更高效的控制策略,使电动机能够在不同负载条件下以较低的功率运行。
该智能控制使用模糊逻辑方法来确定最佳的控制参数,并使用遗传算法来优化参数。
实验结果表明,该智能控制方法可以显著降低电动机的能耗,节省电能。
文献三:Fault diagnosis system for power transformers based on dissolved gas analysis本文介绍了一种基于溶解气体分析的电力变压器故障诊断系统。
通过对变压器油中的气体样品进行分析,可以检测和诊断变压器内部存在的故障类型。
该系统使用人工神经网络模型来对气体分析数据进行处理和分类。
实验结果表明,该系统可以准确地检测和诊断变压器的故障,并有助于实现有效的维护和管理。
文献四:Power quality improvement using series active filter based on iterative learning control technique本文研究了一种基于迭代研究控制技术的串联有源滤波器用于电能质量改善的方法。
电气工程及其自动化的发展现状及发展趋势
电气工程及其自动化的发展现状及发展趋势概述:电气工程及其自动化是一门涵盖电力系统、电机与电器、电子技术、自动控制等多个学科的综合性学科。
随着科技的不断进步和社会的快速发展,电气工程及其自动化在各个领域中发挥着重要的作用。
本文将详细介绍电气工程及其自动化的发展现状,并探讨其未来的发展趋势。
一、电气工程及其自动化的发展现状1. 电力系统:电力系统是电气工程的核心领域之一。
目前,电力系统已经实现了从传统的集中式发电到分布式发电的转变。
分布式发电技术通过利用可再生能源和能源存储技术,提高了电力系统的可靠性和灵活性。
此外,智能电网技术的应用也使得电力系统更加智能化和可持续发展。
2. 电机与电器:电机与电器是电气工程的另一个重要领域。
随着科技的进步,电机与电器的性能不断提高。
高效节能的电机和电器产品得到了广泛应用。
此外,智能家居技术的发展也使得电器设备更加智能化和便捷。
3. 电子技术:电子技术是电气工程的重要组成部分。
随着半导体技术的不断发展,电子器件的集成度和性能有了巨大的提升。
微电子技术、集成电路技术和光电子技术等的应用,推动了电子产品的快速发展,如智能手机、平板电脑等。
4. 自动控制:自动控制是电气工程的核心技术之一。
随着计算机技术和通信技术的发展,自动控制系统变得更加智能化和高效。
自动化生产线、机器人技术等的应用,提高了生产效率和质量。
二、电气工程及其自动化的发展趋势1. 新能源技术的应用:随着能源危机和环境污染的日益严重,新能源技术的发展成为电气工程的重要方向。
太阳能、风能、潮汐能等可再生能源的开发和利用将得到进一步推广和应用。
同时,能源存储技术的发展也将为新能源的大规模应用提供支持。
2. 智能化和自动化技术的发展:智能化和自动化技术是电气工程的发展趋势之一。
随着人工智能、物联网技术的迅猛发展,智能家居、智能交通、智能制造等领域将得到快速发展。
自动驾驶技术的突破将彻底改变交通方式和交通系统。
3. 大数据和云计算的应用:大数据和云计算技术的发展将为电气工程带来新的机遇。
电气工程及其自动化的发展现状及发展趋势
电气工程及其自动化的发展现状及发展趋势引言概述:电气工程及其自动化是现代工业领域中不可或者缺的重要学科,它涵盖了电力系统、电子技术、自动控制等多个领域。
本文将从五个方面详细阐述电气工程及其自动化的发展现状及发展趋势。
一、电力系统的发展现状及趋势:1.1 可再生能源的应用:随着环境保护意识的增强,可再生能源如风能、太阳能等在电力系统中的应用越来越广泛。
1.2 智能电网的建设:智能电网通过信息技术的应用,实现了对电力系统的智能化管理,提高了电力系统的可靠性和效率。
1.3 超高压输电技术的发展:超高压输电技术能够实现长距离大容量输电,减少能源损耗,提高电网的稳定性。
二、电子技术的发展现状及趋势:2.1 小型化和集成化:电子器件和电路越来越小型化和集成化,使得电子产品体积更小、性能更强大。
2.2 物联网的兴起:物联网的发展促进了电子技术的创新,实现了设备之间的互联互通,为智能家居、智慧城市等领域的发展提供了基础支持。
2.3 人工智能的应用:人工智能技术在电子领域的应用日益广泛,如智能语音助手、人脸识别等,提高了电子产品的智能化水平。
三、自动控制技术的发展现状及趋势:3.1 控制算法的优化:自动控制领域不断优化控制算法,提高系统的控制性能和响应速度。
3.2 机器学习的应用:机器学习技术在自动控制领域的应用使得系统能够通过学习和优化,提高自身的控制能力。
3.3 自动驾驶技术的突破:自动驾驶技术的发展使得汽车能够实现无人驾驶,提高了交通安全性和出行便利性。
四、智能创造的发展现状及趋势:4.1 工业机器人的广泛应用:工业机器人在创造业中的应用越来越广泛,提高了生产效率和产品质量。
4.2 云计算和大数据的应用:云计算和大数据技术为智能创造提供了强大的计算和数据支持,实现了生产过程的智能化和优化。
4.3 人机协作的发展:人机协作技术的发展使得人与机器能够更加密切地合作,提高了生产效率和灵便性。
五、安全与可靠性的挑战及应对措施:5.1 网络安全的威胁:随着互联网的发展,网络安全问题日益突出,电气工程及其自动化领域需要加强网络安全意识和技术防护措施。
电气工程及其自动化的发展现状及发展趋势
电气工程及其自动化的发展现状及发展趋势1. 引言电气工程及其自动化是一门涵盖电力系统、电子技术、自动控制和信息工程等多个学科的综合性学科。
随着科技的不断进步和社会的快速发展,电气工程及其自动化在各个领域都起到了至关重要的作用。
本文将详细介绍电气工程及其自动化的发展现状,并展望未来的发展趋势。
2. 电气工程及其自动化的发展现状2.1 电力系统电力系统是电气工程的重要组成部份,主要包括发电、输电、配电和用电等环节。
目前,电力系统正朝着高效、可靠、可持续发展的方向发展。
在发电方面,传统的燃煤、燃油发电正在逐渐被清洁能源发电所取代,如太阳能发电和风能发电等。
在输电方面,高压直流输电技术的应用使得电力传输更加高效稳定。
在配电方面,智能配电网的建设为电力调度和管理提供了更多的可能性。
在用电方面,智能电网的推广使得能源利用更加智能化和高效化。
2.2 电子技术电子技术是电气工程的核心技术之一,涉及电子器件、电路设计、信号处理等方面。
目前,电子技术的发展日新月异。
例如,集成电路技术的进步使得电子器件的尺寸不断缩小,性能不断提升。
无线通信技术的快速发展使得人们可以随时随地进行信息交流。
人工智能技术的应用使得电子设备具备了更多的智能化功能。
此外,电子技术在医疗、交通、通信等领域的应用也得到了广泛推广。
2.3 自动控制自动控制是电气工程的另一个重要组成部份,主要涉及控制系统的设计与实现。
目前,自动控制技术正朝着智能化、自适应和网络化的方向发展。
例如,工业自动化系统的应用使得生产过程更加高效和精确。
智能家居系统的推广使得居住环境更加舒适和智能化。
自动驾驶技术的发展使得交通运输更加安全和便捷。
此外,自动控制技术在航天、军事、能源等领域也发挥着重要的作用。
2.4 信息工程信息工程是电气工程的重要分支,主要涉及信息传输、存储和处理等方面。
目前,信息工程正朝着大数据、云计算和物联网的方向发展。
大数据技术的应用使得海量数据的处理和分析变得更加高效和准确。
电气工程及其自动化 外文翻译 外文文献 英文文献 电力系统的简介
Brief Introduction to The Electric Power SystemPart 1 Minimum electric power systemA minimum electric power system is shown in Fig.1-1, the system consists of an energy source, a prime mover, a generator, and a load.The energy source may be coal, gas, or oil burned in a furnace to heat water and generate steam in a boiler; it may be fissionable material which, in a nuclear reactor, will heat water to produce steam; it may be water in a pond at an elevation above the generating station; or it may be oil or gas burned in an internal combustion engine.The prime mover may be a steam-driven turbine, a hydraulic turbine or water wheel, or an internal combustion engine. Each one of these prime movers has the ability to convert energy in the form of heat, falling water, or fuel into rotation of a shaft, which in turn will drive the generator.The electrical load on the generator may be lights, motors, heaters, or other devices, alone or in combination. Probably the load will vary from minute to minute as different demands occur.The control system functions (are)to keep the speed of the machines substantially constant and the voltage within prescribed limits, even though the load may change. To meet these load conditions, it is necessary for fuel input to change, for the prime mover input to vary, and for torque on the shaft from the prime mover to change in order that the generator may be kept at constant speed. In addition, the field current to the generator must be adjusted to maintain constant output voltage. Thecontrol system may include a man stationed in the power plant who watches a set of meters on the generator output terminals and makes the necessary adjustments manually. In a modern station, the control system is a servomechanism that senses generator-output conditions and automatically makes the necessary changes in energy input and field current to hold the electrical output within certain specifications..Part 2 More Complicated SystemsIn most situations the load is not directly connected to the generator terminals. More commonly the load is some distance from the generator, requiring a power line connecting them. It is desirable to keep the electric power supply at the load within specifications. However, the controls are near the generator, which may be in another building, perhaps several miles away.If the distance from the generator to the load is considerable, it may be desirable to install transformers at the generator and at the load end, and to transmit the power over a high-voltage line (Fig.1-2). For the same power, the higher-voltage line carries less current, has lower losses for the same wire size, and provides more stable voltage.In some cases an overhead line may be unacceptable. Instead it may be advantageous to use an underground cable. With the power systems talked above, the power supply to the load must be interrupted if, for any reason, any component of the system must be moved from service for maintenance or repair. Additional system load may require more power than the generator can supply. Another generator with its associated transformers and high-voltage line might be added.It can be shown that there are some advantages in making ties between the generators (1) and at the end of the high-voltage lines (2 and 3), as shown in Fig.1-3. This system will operate satisfactorily as long as no trouble develops or no equipmentneeds to be taken out of service.The above system may be vastly improved by the introduction of circuit breakers, which may be opened and closed as needed. Circuit breakers added to the system, Fig.1-4, permit selected piece of equipment to switch out of service without disturbing the remainder of system. With this arrangement any element of the system may be deenergized for maintenance or repair by operation of circuit breakers.Of course, if any piece of equipment is taken out of service, then the total load must be carried by the remaining equipment. Attention must be given to avoid overloads during such circumstances. If possible, outages of equipment are scheduled at times when load requirements are below normal.Fig.1-5 shows a system in which three generators and three loads are tied together by three transmission lines. No circuit breakers are shown in this diagram, although many would be required in such a system.Part 3 Typical System LayoutThe generators, lines, and other equipment which form an electric system are arranged depending on the manner in which load grows in the area and may be rearranged from time to time.However, there are certain plans into which a particular system design may be classified. Three types are illustrated: the radial system, the loop system, and the network system. All of these are shown without the necessary circuit breakers. In each of these systems, a single generator serves four loads.The radial system is shown in Fig.1-6. Here the lines form a “tree” spreading out from the generator. Opening any line results in interruption of power to one or more of the loads.The loop system is illustrated in Fig.1-7. With this arrangement all loads may be served even though one line section is removed from service. In some instances during normal operation, the loop may be open at some point, such as A. In case a line section is to be taken out, the loop is first closed at A and then the line section removed. In this manner no service interruptions occur.Fig.1-8 shows the same loads being served by a network. With this arrangement each load has two or more circuits over which it is fed.Distribution circuits are commonly designed so that they may be classified as radial or loop circuits. The high-voltage transmission lines of most power systems are arranged as network. The interconnection of major power system results in networks made up by many line sections.Part 4 Auxiliary EquipmentCircuit breakers are necessary to deenergize equipment either for normal operation or on the occurrence of short circuits. Circuit breakers must be designed to carry normal-load currents continuously, to withstand the extremely high currents that occur during faults, and to separate contacts and clear a circuit in the presence of fault. Circuit breakers are rated in terms of these duties.When a circuit breaker opens to deenergize a piece of equipment, one side of the circuit breaker usually remains energized, as it is connected to operating equipment. Since it is sometimes necessary to work on the circuit breaker itself, it is also necessary to have means by which the circuit breaker may be completely disconnected from other energized equipment. For this purpose disconnect switches are placed in series with the circuit breakers. By opening these disconnectors, thecircuit breaker may be completely deenergized, permitting work to be carried on in safety.Various instruments are necessary to monitor the operation of the electric power system. Usually each generator, each transformer bank, and each line has its own set of instruments, frequently consisting of voltmeters, ammeters, wattmeters, and varmeters.When a fault occurs on a system, conditions on the system undergo a sudden change. V oltages usually drop and currents increase. These changes are most noticeable in the immediate vicinity of fault. On-line analog computers, commonly called relays, monitor these changes of conditions, make a determination of which breaker should be opened to clear the fault, and energize the trip circuits of those appropriate breakers. With modern equipment, the relay action and breaker opening causes removal of fault within three or four cycles after its initiation.The instruments that show circuit conditions and the relays that protect the circuits are not mounted directly on the power lines but are placed on switchboards in a control house. Instrument transformers are installed on the high-voltage equipment, by means of which it is possible to pass on to the meters and relays representative samples of the conditions on the operating equipment. The primary of a potential transformer is connected directly to the high-voltage equipment. The secondary provides for the instruments and relays a voltage which is a constant fraction of voltage on the operating equipment and is in phase with it;similarly, a current transformer is connected with its primary in the high-current circuit. The secondary winding provides a current that is a known fraction of the power-equipment current and is in phase with it.Bushing potential devices and capacitor potential devices serve the same purpose as potential transformers but usually with less accuracy in regard to ratio and phase angle.中文翻译:电力系统的简介第一部分:最小电力系统一个最小电力系统如图1-1所示,系统包含动力源,原动机,发电机和负载。
继电保护外文翻译
Relay protection development present situation Abstract reviewed our country electrical power system relay protection technological development process has outlined the microcomputer relay protection technology achievement proposed the future relay protection technological development tendency will be: Computerizes networked protects the control the survey the data communication integration and the artificial intellectualization. Key word relay protection present situation development,relay protections future development1 relay protection development present situationThe electrical power system rapid development to the relay protection proposed unceasingly the new request the electronic technology computer technology and the communication rapiddevelopment unceasingly has poured into the new vigor for the relay protection technology development therefore the relay protection technology is advantageous has completed the development 4 historical stage in more than 40 years time.After the founding of the nation our country relay protection discipline the relay protection design the relay manufacture industry and the relay protection technical team grows out of nothing has passed through the path in about 10 years which advanced countries half century passes through. The 50s our country engineers and technicians creatively absorption the digestion have grasped the overseas advanced relay protection equipment performance and the movement technology completed to have the deep relay protection theory attainments and the rich movement experience relay protection technical team and grew the instruction function to the national relay protection technical teams establishment. The acheng relay factory introduction has digested at that time the overseas advanced relay manufacture technology has established our country relay manufacturing industry. Thus our country has completed the relay protection research the design the manufacture the movement and the teaching complete system in the 60s. This is a time which the mechanical and electrical relay protection prosper swas our country relay protection technology development has laid the solid foundation.From the end of the 50s the transistor relay protection was starting to study. In the 60s to the 80s in are the times which the transistor relay protection vigorous development and widely uses. Tianjin University and the Nanjing electric power automation plant cooperation research 500kv transistor direction high frequency protection the transistor high frequency block system which develops with the Nanjing electric power automation research institute is away from the protection moves on the Gezhou Dam 500 kv line finished the 500kv line protection to depend upon completely from the overseas import time.From the 70s started based on the integration operational amplifier integrated circuit protection to study. Has formed the complete series to at the end of 80s integrated circuit protection substitutes for the transistor protection gradually. The development the production the application the integrated circuit protects which to the beginning of the 90s still were in the dominant position this was the integrated circuit protection time. The integrated electricity road work frequency conversion quantity direction develops which in this aspect Nanjing electric power automation research institute high frequency protected the vital role the Tianjin University and the Nanjing electric power automation plant cooperation development integrated circuit phase voltage compensated the type direction high frequency protection also moves in multi- strip 220kv and on the500kv line.Our country namely started the computer relay protection research from the end of the 70s the institutions of higher learning and the scientific research courtyard institute forerunners function. Huazhong University of Science and Technology southeast the university the North China electric power institute the Xian Jiaotong University the Tianjin University Shanghai Jiaotong University the Chongqing University and the Nanjing electric power automation researchinstitute one after another has all developed the different principle the different patternmicrocomputer protective device. In 1984 the original North China electric power institute developed the transmission line microcomputer protective device first through the appraisal and in the system the find application had opened in our country relay protection history the new page protected the promotion for the microcomputer to pave the way. In the host equipment protection aspect the generator which southeast the university and Huazhong University of Science and Technology develops loses magnetism protection the generator protection and the generator Bank of transformers protection also one after another in 1989 in 1994 through appraisal investment movement. The Nanjing electric power automation research institute develops microcomputer line protective device also in 1991 through appraisal. The Tianjin University and the Nanjing electric power automation plant cooperation development microcomputer phase voltage compensated the type direction high frequency protection the Xian Jiaotong University and the Xu Chang relay factory cooperation development positive sequence breakdown component direction high frequency protection also one after another in 1993 in 1996 through the appraisal. Heres the different principle the different type microcomputer line and the host equipment protect unique provided one batch of new generation of performance for the electrical power system fine the function has been complete the work reliable relay protection installment. Along with the microcomputer protective device research in microcomputer aspect and so on protection software algorithm has also yielded the very many theories result. May say started our country relay protection technology from the 90s to enter the time which the microcomputer protected.2 relay protections future development -2-The relay protection technology future the tendency will be to computerizes networked the intellectualization will protect the control the survey and the data communication integration development.2.1 computerizes Along with the computer hardware swift and violent development the microcomputer protection hardware also unceasingly is developing. The original North China electric power institute develops the microcomputer line protection hardware has experienced 3 development phases: Is published from 8 lists cpu structure microcomputer protection does not develop to 5 years time to the multi- cpu structure latter developed to the main line does not leave the module the big modular structure the performance enhances greatly obtained the widespread application. Huazhong University of Science and Technology develops the microcomputer protection also is from 8 cpu develops to take the labor controlling machine core partially as the foundation 32 microcomputers protection.The Nanjing electric power automation research institute from the very beginning has developed 16 cpu is the foundation microcomputer line protection obtained the big area promotion at present also is studying 32 protections hardware system. Southeast the university develops the microcomputer host equipment protects the hardware also passed through improved and the enhancement many times. The Tianjin University from the very beginning is the development take more than 16 cpu as the foundation microcomputer line protection in 1988 namely started to study take 32 digital signals processor dsp as the foundation protection the control the survey integration microcomputer installment at present cooperated with the Zhuhai Jin automatic equipment company develops one kind of function complete 32 big modules a module was a minicomputer. Uses 32 microcomputers chips only to focus by no means on the precision because of the precision the a/d switch resolution limit is surpassed time 16 all is accepts with difficulty in the conversion rate and the cost aspect 32 microcomputers chips have the very high integration rate more importantly very high operating frequency and computation speed very big addressing space rich command system and many inputs outlet. The cpu register the data bus the address bus all are 32 has the memory management function thememory protection functionand the duty transformation function and cache and the floating number part all integrates the high speed buffer in cpu.The electrical power system the request which protects to the microcomputer enhances unceasingly besides protection basic function but also should have the large capacity breakdown information and the data long-term storage space the fast data processing function the formidable traffic capacity with other protections the control device and dispatches the networking by to share the entire system data the information and the network resources ability the higher order language programming and so on. This requests the microcomputer protective device to have is equal to a pc machine function. In the computer protection development initial period once conceived has made the relay protection installment with a minicomputer. At that time because the small machine volume big the cost high the reliability was bad this tentative plan was not realistic. Now with the microcomputer protective device size similar labor controlling machine function the speed the storage capacity greatly has surpassed the same year small machine therefore made the relay protection with complete set labor controlling machine the opportunity already to be mature this will be one of development directions which the microcomputer protected. The Tianjin University has developed the relay protection installment which Cheng Yongtong microcomputer protective device structure quite same not less thanone kind of labor controlling machine performs to change artificially becomes. This kind of equipment merit includes: has the 486pc machine complete function can satisfy each kind of function request which will protect to current and the future microcomputer. size and structure and present microcomputer protective device similar the craft excellent quakeproof guards against has been hot guards against electronmagetic interference ability may move in the very severe working conditions the cost may accept. uses the std main line or the pc main line the hardware modulation may select the different module wilfully regarding the different protection the disposition nimble is easy to expand.Relay protection installment computerizes is the irreversible development tendency. How butto satisfies the electrical power system request well how further enhances the relay protection the reliability how obtains the bigger economic efficiency and the social efficiency still must conduct specifically the thorough research.2.2 networked The computer network has become the information age as the information and the data communication tool the technical prop caused the human production and the social life appearance has had the radical change. It profoundly is affecting each industry domain also has provided the powerful means of communication for each industry domain. So far besides the differential motion protection and the vertical association protection all relay protections installment all only can respond the protection installment place electricity spirit. The relay protection function also only is restricted in the excision breakdown part reduces the accident to affect the scope. This mainly is because lacks the powerful data communication method. Overseas already had proposed the system protection concept this in mainly referred to the safe automatic device at that time. Because the relay protection function not only is restricted in the excision breakdown part and the limit accident affects the scope this is most important task but also must guarantee the entire system the security stable movement. This requests each protection unit all to be able to share the entire system the movement and the breakdown information data each protection unit and the superposition brake gear in analyze these information and in the data foundation the synchronized action guarantees the system the security stable movement. Obviously realizes this kind of system protection basic condition is joins the entire system each main equipment protective device with the computer network that is realization microcomputer protective device networked. This under the current engineering factor is completely possible.Regarding the general non- systemprotection the realization protective device computer networking also has the very big advantage. The relay protection equipment can obtain system failure information more then to the breakdown nature the breakdown position judgment and the breakdown distance examination is more accurate. Passed through the very long time to the auto-adapted protection principle research also has yielded the certain result but must realize truly protects to the system movement way and the malfunction auto-adapted must obtain the more systems movement and the breakdown information only then realization protection computer networked can achieve this point.Regarding certain protective device realization computer networkings also can enhance the protection the reliability. The Tianjin University in 1993 proposed in view of the future Three Gorges hydroelectric power station 500kv ultrahigh voltage multi- return routes generatrix one kind of distributional generatrix protection principle developed successfully this kind of equipment initially. Its principle is disperses the traditional central generatrix protection certain with to protect generatrix to return way to be same the generatrix protection unit the dispersible attire is located in on various return routes protection screen each protection unit joins with the computer network each protection unit only inputs this return route the amperage after transforms it the digital quantity transmits through the computer network for other all return routes protection unit each protection unit acts according to this return route the amperage and other all return routes amperage which obtains from the computer network carries on the generatrix differential motion protection the computation if the computed result proof is the generatrix interior breakdown then only jumps the book size return route circuit breaker Breakdown generatrix isolation. When generatrix area breakdown each protection unit all calculates for exterior breakdown does not act. This kind the distributional generatrix protection principle which realizes with the computer network has the high reliability compared to the traditional central generatrix protection principle. Because if a protection unit receives the disturbance or the miscalculation when moves by mistake only can wrongly jump the book size return route cannot create causes the generatrix entire the malignant accident which excises this regarding looks like the Three Gorges power plant to have the ultrahigh voltage generatrix the system key position to be extremely important.By above may know microcomputer protective device may enhance the protection performance and the reliability greatly this is the microcomputer protection development inevitable trend.2.3 protections control survey data communication integrations In realization relay protection computerizing with under the condition the protective device isin fact a high performance the multi-purpose computer is in an entire electrical power system computer network intelligent terminal. It may gain the electrical power system movement and breakdown any information and the data from the net also may protect the part which obtain.翻译后:继电保护的发展现状摘要回顾了我国电力系统继电保护技术发展的过程,概述了微机继电保护技术的成就,提出了未来继电保护技术发展的趋势是:计算机化网络化保护控制测量数据通信一体化和人工智能化。
电气工程及其自动化的发展现状及发展趋势
电气工程及其自动化的发展现状及发展趋势一、引言电气工程及其自动化是一门涉及电力系统、电机与电器、电子技术、自动控制等多个学科的综合性学科。
随着科技的不断进步和社会的发展,电气工程及其自动化在各个领域扮演着重要的角色。
本文将详细探讨电气工程及其自动化的发展现状及未来的发展趋势。
二、电气工程及其自动化的发展现状1. 电力系统电力系统是电气工程的核心领域之一。
近年来,随着可再生能源的快速发展,电力系统正朝着智能化、高效化、可靠性和可持续性发展。
智能电网的建设和运营,以及电力系统的自动化控制技术的应用,使得电力系统的运行更加安全、稳定和可靠。
2. 电机与电器电机与电器是电气工程的重要组成部分。
随着工业生产的不断发展,对电机与电器的需求也在不断增加。
目前,电机与电器的发展趋势主要包括高效节能、小型化、智能化和可靠性提升。
新型材料、先进制造技术和智能控制技术的应用,使得电机与电器的性能得到了显著提升。
3. 电子技术电子技术是电气工程的重要支撑技术。
随着半导体技术的不断进步,电子技术在各个领域的应用越来越广泛。
尤其是在通信、计算机、消费电子等领域,电子技术的发展突飞猛进。
未来,电子技术将继续向着高速、高集成度和低功耗的方向发展。
4. 自动控制自动控制是电气工程及其自动化的核心内容之一。
随着科技的不断进步,自动控制技术在各个领域的应用越来越广泛。
自动化生产线、智能机器人、自动驾驶等技术的发展,使得生产效率大幅提升,同时也带来了更高的安全性和可靠性。
三、电气工程及其自动化的发展趋势1. 智能化智能化是电气工程及其自动化的未来发展趋势之一。
随着人工智能、大数据和物联网等技术的发展,电气工程及其自动化将更加注重智能化的应用。
智能电网、智能家居、智能工厂等概念已经逐渐成为现实,未来智能化的发展将为人们的生活和工作带来更多便利和效益。
2. 绿色化绿色化是电气工程及其自动化的另一个重要发展趋势。
随着全球对环境保护和可持续发展的要求越来越高,电气工程及其自动化将更加注重节能减排和可再生能源的利用。
电气类外文翻译---- 110KV供电系统继电保护作用浅析
中文2000字附录:110Kv power supply system relay protection function brief analysisNot only the 110Kv power supply system relay protection function brief analysis electrical power system security and the reliability relate electrical power system itself the movement, similarly relates in the power transmission scope the factories and mines, the enterprise, whether the inhabitant uses electricity normally.Because simultaneously the electrical power system has the strong connectivity, electrical power system interior any barrier all possibly affects the overall system normal operation, thus we must complete the power supply system practically the relay protection question.First, the 11OKV power supply systemGenerally speaking electrical power system including the electricity generation, changes the electricity, the electric transmission, the power distribution and uses electricity and so on five links, between five links restricted mutually, cooperates mutually has facilitated the electrical power system stability together.But in fact, because these five links not always in the identical place, the identical time complete, the electric transmission must surmount the vast area, simultaneously the electrical power system must not carry on the connection with the equipment, thus strengthened its movement environment complexity, causes electrical power system the zero failure rate to guarantee with difficulty.The 110Kv power supply system is in the entire electrical power system important constituent, it whether safe, stable, reliable movement, not only relates the system own movement quality, whether moreover relates in its power transmission scope general user normal prompt using electricity, it the economical normal development and the society is stably taking on the important energy safeguard duty to the power transmission scope in.Therefore the 110KV power supply system design and the movement management must observe national comprehensively the related standard and the standard, as well as correlation area specifically standard standard.In the 110Kv power supply system is containing a subsystems and two subsystems.Two subsystems were opposite in a subsystems are complex, violate the subsystems to include the relay protection installment, the automatic device and the secondary circuit.The relay protection installment is uses for in the power supply system to a subsystems to carry on the surveillance, the survey, the control and the protection, is composed set of special automatic devices by the relay.The reasonable relay protection installment correct establishment to guarantees the 110Kv power supply system the normal operation to have the positive function.Second, the relay protection digs reads and the related principleElectrical power system rapid development to the relay protection to propose unceasingly the new request, the electronic technology, the computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology development.The relay protection is refers when in the electrical power system electric power part (for example generator, line and so on) or electrical power system itself has occurred the breakdown endangers the electrical power system safe operation, can to the attendant promptly send out thewarning signal, or directly to the circuit breaker which controls sends out the trip order to terminate one kind of automated protection which these events develop, the relay protection equipment can monitor the electrical equipment the normal work situation, and sends out the prompt signal differently according to the normal work situation and the equipment movement maintenance condition, in order to the attendant carries on prompt processing, either carries on the adjustment automatically by the protective device, either continues these to move possibly can cause the accident electrical equipment to excise.Response normal work situation relay protection equipment common belt certain time-lag action.The relay protection principle of work mainly has used in the electrical power system the part has when the short circuit or the unusual situation the electrical quantity (electric current, voltage, power, frequency and so on) change as well as in transformer fuel tank when breakdown occurs the massive gas and the oil stream speed increase or the flowing tubing head pressure intensity increase the higher condition.The electrical power system request provides the safekeeping of security for it to continue the electricity installment to have following performance:(1) reliability. The reliability is refers to the protection to be supposed to move time the body should act reliably.Should not when the movement should reliable not act.The reliability is to the relay protection installment performance most basic request.(2) selectivity. The selectivity is refers first by the breakdown equipment logical 'OR' circuit itself protection excision breakdown, when the breakdown equipment logical 'OR' circuit itself protection or the circuit breaker resist moves, only then allows by the neighboring equipment to protect, the line protection or the circuit breaker malfunction protection excision breakdown.In order to guarantee has in the coordinate request protection and the identical protection has the coordinate request two parts (for example start and trip part or block system and movement part) the selectivity to the neighboring equipment and the line, its sensitivity coefficient and the operating time, should coordinate mutually in the ordinary circumstances.(3) sensitivity. The sensitivity is refers when the equipment logical 'OR' circuit occurs by the extent of protection in the metallicity short circuit, the protective device should have the essential sensitivity coefficient, each kind of protection smallest sensitivity coefficient has the specific stipulation in the regulations.Selectivity and sensitive request, through relay protection installation realization.(4) speed. The speed is refers to the protective device to be supposed to excise the short circuit breakdown as soon as possible, its date enhances the system stability, reduces the breakdown equipment and the line damage degree, reduces the breakdown to affect the scope, enhances automatic switches on again with the emergency power supply or the emergency apparatus automatic investment effect and so on.Third, relay protection in 11OKV power supply system Chen Ai function1. The guarantee continues the electricity system the reliability is plays the relay protection installment role the premise. Continues the electricity system the reliability is plays the relay protection installment role the premise.Generally speaking the relay protection reliability mainly by the disposition reasonable, the quality and the technical performance fine relay protection installment as well as the normal movement maintenance and the management guaranteed.2. Relay protection in electrical power system safe operation function. The relay protection mainly has following two points in the electrical power system safe operation function:(1) safeguard electrical power system security.When is protected when the electrical power system part breaks down, should rapidly accurately for be separated from the breakdown part recent circuit breaker by this part relay protection equipment to send out the trip order, causes the breakdown part to interrupt promptly from the electrical power system, by maximum limit reduces to the electrical power system part itself damage, reduces to the electrical power system safe power supply influence, and satisfies the electrical power system certain specific requests (for example maintenance electrical power system transition condition stable and so on).(2)pair of electrical power system normal work carries on the prompt.Responded the electrical equipment the normal work situation, (whether there is and different e.g. frequent attendant) does send out the signal according to the normal work situation and the equipment movement maintenance condition, in order to the attendant carries on processing, either carries on the adjustment automatically by the equipment, either continues these to move can cause the accident electrical equipment to excise.Response normal work situation relay protection installment permission belt certain time-lag action.(3) pair of electrical power system movement carries on the monitoring.The relay protection is not merely an accident processing and the response installment, simultaneously also is monitors the electrical power system normal operation the installment.The relay protection is the electrical power system safe normal operation important safeguard, at present oneself after obtained the widespread application, along with the science and technology unceasing progress, the relay protection technology presents day by day to the microcomputer, the network, the intellectualization, protects, the control, the survey and the data communication integration development tendency.110KV供电系统继电保护作用浅析电力系统的安全性和可靠性不仅关系到电力系统本身的运行,同样关系到送电范围内的厂矿、企业、居民能否正常用电。
浅谈电气工程及其自动化的发展现状与展望
浅谈电气工程及其自动化的发展现状与展望1. 引言1.1 电气工程及其自动化的定义电气工程是研究电力系统、电力设备与电力电子技术等领域的工程学科,其主要目的是研究电力的生产、传输、分配和利用,以及利用电力进行自动化控制和信息处理。
电气工程涉及到电力系统的建模、分析与设计,电力设备的选型与维护,电力电子技术的应用等方面,是现代工业、交通、通信、医疗等领域不可或缺的重要学科。
而电气工程自动化是指利用先进的电子技术、通信技术和计算机技术,对电力系统进行自动控制和监测,实现电力生产、传输、分配和利用过程的自动化管理和优化。
电气工程自动化的发展,使得电力系统的运行更加稳定可靠,提高了电力系统的效率和安全性,促进了电力行业的现代化和智能化发展。
电气工程及其自动化对现代社会和经济发展具有重要意义,为各行各业提供了可靠的电力支持,推动着社会的进步和发展。
1.2 电气工程及其自动化的重要性电气工程及其自动化在现代社会中扮演着至关重要的角色。
电气工程的发展和应用为现代社会的各个领域提供了强大的支撑。
从家庭电器到大型工业设备,几乎所有领域都需要电气工程技术来确保正常运行和高效生产。
电气工程自动化的引入大大提高了生产效率和质量,降低了人工成本和错误率。
通过自动化技术的应用,工业生产得以智能化、自动化,提高了生产效率和产品质量,为企业创造了更大的经济效益。
电气工程及其自动化的发展也为科学技术的进步和社会发展提供了推动力。
随着数字化、智能化时代的到来,电气工程自动化将扮演着更为重要的角色,为各行各业提供更加智能、高效的解决方案,为社会经济发展注入动力和活力。
电气工程及其自动化的重要性不可低估,值得我们对其发展前景进行深入探讨和研究。
2. 正文2.1 电气工程的发展历程电气工程的发展历程可以追溯到19世纪初叶,当时人们开始研究电学现象并尝试利用电力改善生活。
首次使用电力进行远距离传输的实践是在1882年,纽约和明尼阿波利斯之间的110英里距离上建造了一个直流输电线路。
电气工程及其自动化的发展现状分析及发展趋势
电气工程及其自动化的发展现状分析及发展趋势1. 引言1.1 电气工程及其自动化的发展现状分析及发展趋势电气工程及其自动化作为现代工程技术领域的重要分支,在我国的发展历程中扮演着举足轻重的角色。
随着科技的不断进步和社会的不断发展,电气工程及其自动化领域也在不断壮大和完善。
其在各行业中的应用已经成为推动产业升级和技术创新的重要力量。
电气工程从最初只是对电力系统进行规划和设计,到如今涵盖了电力、电子、通信、自动化控制等领域,其发展历程可以说是跨越了一个时代的变化。
随着数字化、智能化的兴起,电气工程在各行业中的应用越发广泛,如能源领域的电力输配、工业领域的自动化生产线、交通领域的智能交通系统等,都离不开电气工程技术的支持。
随着人工智能、大数据、物联网等新一代技术的不断涌现,电气工程自动化技术也在不断创新和完善。
传统的PLC控制系统正在向工业互联网时代迈进,智能化、高效率已成为电气工程自动化的发展方向。
未来,随着智能制造的加速推进,电气工程及其自动化领域将迎来更多的机遇和挑战。
总的来说,电气工程及其自动化将继续成为未来的发展重点,技术的创新将推动行业的进步,合作交流将促进其发展。
电气工程及其自动化的市场前景将会更加广阔,为我国产业升级和经济发展注入新的动力和活力。
2. 正文2.1 电气工程的发展历程电气工程作为一门重要的工程学科,在现代工业和社会发展中扮演着不可或缺的角色。
它的发展历程可以追溯至19世纪末的工业革命时期。
当时,人们开始意识到电力的重要性,电气工程逐渐成为工程学科中的一个重要分支。
随着科学技术的不断进步,电气工程在20世纪迎来了蓬勃的发展。
在这个时期,许多重要的电气设备和技术被发明和推广,比如电力系统、变压器、发电机等,为工业生产和生活提供了重要的支持。
随着电气工程的不断发展,电力系统的稳定性和可靠性得到了显著提升,电力传输效率也得到了极大的改善。
随着信息技术的快速发展,电气工程也逐渐向智能化、自动化方向发展。
电气工程专业英语(电力类)翻译
实用资料:电气工程专业课(电力类)翻译参考专业外语:Professional English电路(上)electrical circuit (I)电路(下)electrical circuit (II)金工实习machinery practice电机(上)electrical machinery (I)电工实验与测试electrical experiment & test电子综合实践integrated electronic practice信号与系统signal & system电子技术基础(模拟)fundamentals of electronic (analog)电磁场electromagnetic field电子技术实验electronic experiment(I)电子辅助设计EDA Electronic Design Automatic(I)发电厂动力工程基础Heat power engineering in generating plant企业管理enterprise management电气主系统electrical system principle电力系统稳态/暂态分析Steady-State/ Transient-State Analysis of Power System 电力系统继电保护Power System Relaying Protection电力系统潮流计算机分析:Computer Analysis of Power Flow数字电子技术Digital Electrical Technique微机原理microcomputer principle电子技术基础(数字)fundamentals of electronic (digital)自动控制automatic control theory电力系统分析electric power system analysis电子技术基础实验electronic experiment(II)电气主系统课程设计electrical system principle-course design电子辅助设计EDA Electronic Design Automatic(II)通信与计算机网络communication & computer networks电力系统继电保护electric power system relaying电力系统继电保护Power System Protective Relaying电力系统远动技术electric power system remote protocol生产实习productive practice Technology继电保护课程设计electric power system relaying-course design电力电子技术power electronics电力电子技术基础:Fundamentals of Electronics Power Technology电力电子课程设计Power electronics course design电力系统自动控制electric power system control & automation高电压技术High voltage engineering Technology变电站自动化substation automation电力经济electric power system economics电能质量控制electric power quality control配电网自动化distribution system automation电力系统新技术new techniques on electric power system控制电机electrical machine control调度自动化与能量管理energy management & automation灵活交流输电系统flexible AC transmission system计算机保护computer protection电力系统电磁兼容EMC in electric power system毕业实习graduation practice毕业设计graduation dissertation数字信号处理:Digital Signal Processing自动控制理论:Automatic Control Theory电气工程基础:Fundamentals of Electrical Engineering电磁场概论:Introduction to Electro-Magnetic Field计算机继电保护:Microcomputer-Based Relaying Protection电气设备的绝缘检测与故障诊断:Insulation Diagnostics and Troubl-Shooting for Electrical Installations电网规划:Power System Planning可编程控制器原理及应用:Principles of PLC (Programmable logic Controller) And Application电磁场数值计算:Numerical Computation of Electro-Magnetic Field电力系统继电保护:Relay Protection of Power System电力系统自动装置原理The Principle of Electric Power System Automatic Equipment电力通信系统及调度自动化:Power System Communication and Dispatching Automatic专业方向电气工程Electrical Engineering电机与电器Electric Machines and Electric Apparatus电力系统及其自动化Power System and its Automation高电压与绝缘技术High Voltage and Insulation Technology电力电子与电力传动Power Electronics and Power Drives电工理论与新技术Theory and New Technology of Electrical Engineering电子科学与技术Electronics Science and Technology。
电气工程及其自动化的发展现状研究
电气工程及其自动化的发展现状研究摘要:电气工程及其自动化是当前我国每一个行业发展中非常重要的一项技术,该技术不仅可以实现智能化、自动化的操作,同时也可以有效的减少能源的浪费,提高状的系统的运行水平和应用效果。
关键字:电气工程;自动化;发展现状引言目前,随着电气工程行业的快速发展,电气自动化技术的发展水平也在持续提高。
为了更好提升电气工程应用效率与水平,强化电气自动化技术合理、科学应用显得尤为必要。
主要对电气工程、自动化技术等内容进行了分析和研究,并对电气自动化技术应用的优势与意义展开了有效分析,进而提出更加行之有效的应用策略与方法,促进中国电气工程行业发展更加快速且持续。
1电气工程自动化及其重要性电力系统是电力系统安全可靠的重要组成部分。
在工业生产中,各种先进的智能设备和仪器不断地被运用到生产中,因而在电力工程中发挥着越来越重要的作用。
从50年代起,电力自动化逐渐形成,以化工行业为例,到今天,随着自动化技术与设备技术的飞速发展,它的发展速度和应用范围也在飞速扩展,在过去的数十年里,由单纯的人工操作向连续生产的快速发展,对整个行业的发展作出了重大的贡献。
随着工艺单的不断发展,对产品的稳定性要求也不断提高,仪表的使用也日益广泛,自动化技术在国民经济中的应用日益广泛,涉及的范围很广,从一个简单的回路闭环控制到一个单元设备的完全自动化,所采用的仪器也从气动组合仪表、电动组合仪表到DCS,在化工行业得到广泛的应用,其控制水平也在不断提高,从单一参数控制回路到多变量复合控制技术,并且正在以一种欣欣向荣的方式影响着人类的生产和生活。
当前,快速反应、临界稳定工艺、能量综合平衡技术已被广泛采用,可以说,在日常生活中,自动化的身影随处可见。
随着工业化进程的不断扩大,尤其是在化学工业领域,对自动化的需求越来越大。
同时,信息化对化学自动化技术的发展产生了巨大的影响,其应用范围也越来越广。
2电气工程及其自动化的发展现状随着当前我国各个行业领域对于电气工程及其自动化技术的重视力度在不断的加强,这一技术也得到了全面的发展,并且逐步的融合到了每一个行业中。
继电保护外文翻译、中英对照
毕业设计(论文) 外文翻译外文题目: Protection Relay 中文题目:继电保护学院名称:电子与信息工程学院专业:电气工程及其自动化班级:电气082继电保护摘要:继电保护非常重要,因为大部分的用户,是从分布线和分配制度以来,比任何其他部分的系统更容易受到破坏。
回顾我国电力系统继保护技术发展的过程中,概述了微机继电保护技术的成就,提出了未来继电保护技术发展趋势将是:计算机化,电网络化,保护,控制,调查结果显示,数据通信一体化和人工智能化。
关键词:继电保护,继电保护现状发展,继电保护的未来发展一、继电保护原理及现状电力系统的迅速发展对继电保护不断提出新的要求,电子技术,计算机技术的快速发展不断为继电保护技术的发展注入新的活力,因此,继电保护技术是有利的,在40多年的时间里已完成发展了4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。
50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。
阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。
因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。
这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。
60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。
其中天津大学与南京电力自动化设备厂合作研究的500kv晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝50 0 kv线路上,结束了500kv线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(外文翻译材料)学院:专业:学生姓名:指导教师:电气与电子工程学院电气工程及其自动化- 1 -Relay protection development present situationAbstract: Reviewed our country electrical power system relay protection technological development process, has outlined the microcomputer relay protection technology achievement, propose the future relay protection technological development tendency will be: Computerizes, networked, protects, the control, the survey, the data communication integration and the artificial intellectualization.Key word: relay protection, present situation development, future development1 relay protection development present situationThe electrical power system rapid development to the relay protection propose unceasingly the new request, the electronic technology, computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology development, therefore, the relay protection technology is advantageous, has completed the development 4 historical stage in more than 40 years time.After the founding of the nation, our country relay protection discipline, the relay protection design, the relay manufacture industry and the relay protection technical team grows out of nothing, has passed through the path in about 10 years which advanced countries half century passes through. The 50's, our country engineers and technicians creatively absorption, the digestion, have grasped the overseas advanced relay protection equipment performance and the movement technology , completed to have the deep relay protection theory attainments and the rich movement experience relay protection technical team, and grew the instruction function to the national relay protection technical team's establishment. The relay factory introduction has digested at that time the overseas advanced relay manufacture technology, has established our country relay manufacturing industry. Thus our country has completed the relay protection research, the design, the manufacture, the movement and the teaching complete system in the 60's. This is a- 2 -time which the mechanical and electrical relay protection prospers, was our countries relay protection technology development has laid the solid foundation.From the end of the 50's, the transistor relay protection was starting to study. In the 60's to the 80's,it is the times which the transistor relay protection vigorous development and widely used. Tianjin University and the Nanjing electric power automation plant cooperation research 500kV transistor direction high frequency protection the transistor high frequency block system which develops with the Nanjing electric power automation research institute is away from the protection, moves on the Gezhou Dam 500kV line , finished the 500kV line protection to depend upon completely from the overseas import time.From the 70's, start based on the integration operational amplifier integrated circuit protection to study. Has formed the completely series to at the end of 80's integrated circuit protection, substitutes for the transistor protection gradually. The development, the production, the application the integrated circuit protects which to the beginning of the 90's still were in the dominant position, this was the integrated circuit protection time. The integrated electricity road work frequency conversion quantity direction develops which in this aspect Nanjing electric power automation research institute high frequency protected the vital role, the Tianjin University and the Nanjing electric power automation plant cooperation development integrated circuit phase voltage compensated the type direction high frequency protection also moves in multi- strip 220kV and on the 500kV line.Our country namely started the computer relay protection research from the end of the 70's, the institutions of higher learning and the scientific research courtyard institute forerunner's function. Huazhong University of Science and Technology, southeast the university, the North China electric power institute, the Xian Jiao tong University, the Tianjin University, Shanghai Jiao tong University, the Chongqing University and the Nanjing electric power automation research institute one after another has all developed the different principle, the different pattern microcomputer protective device. In 1984 the original North China electric power institute developed- 3 -the transmission line microcomputer protective device first through the evaluation and in the system the find application, had opened in our country relay protection history the new page, protect the promotion for the microcomputer to pave the way. In the host equipment protection aspect, the generator which southeast the university and Huazhong University of Science and Technology develop loses magnetism protection, the generator protection and the generator? Bank of transformers protection also one after another in 1989、1994 through appraisal and investment movement. The Nanjing electric power automation research institute develops microcomputer line protective device also in 1991 through appraisal. The Tianjin University and the Nanjing electric power automation plant cooperation development microcomputer phase voltage compensated the type direction high frequency protection, the Xian Jiao tong University and the Xuchang Relay Factory cooperation development positive sequence breakdown component direction high frequency protection also one after another in 1993, in 1996 through the appraisal. Here, the different principle, the different type microcomputer line and the host equipment protect unique, provided one batch of new generation of performance for the electrical power system fine, the function has been complete, the work reliable relay protection installment. Along with the microcomputer protective device research, in microcomputer aspect and so on protection software, algorithm has also yielded the very many theories result. May say started our country relay protection technology from the 90's to enter the time which the microcomputer protected.2 relay protections future developmentThe relay protection technology future the tendency will be to computerizes, networked, the intellectualization, will protect, the control, the survey and the data communication integration development.2.1 computerizesAlong with the computer hardware swift and violent development, the microcomputer protection hardware also unceasingly is developing. The original- 4 -North China electric power institute develops the microcomputer line protection hardware has experienced 3 development phases: Is published from 8 lists CPU structure microcomputer protection, does not develop to 5 years time to the multi- CPU structure, latter developed to the main line does not leave the module the big modular structure, the performance enhances greatly, obtained the widespread application. Huazhong University of Science and Technology develops the microcomputer protection also is from 8 CPU, develops to take the labor controlling machine core partially as the foundation 32 microcomputers protection.The Nanjing electric power automation research institute from the very beginning has developed 16 CPU is the foundation microcomputer line protection, obtained the big area promotion, at present also is studying 32 protections hardware system. Southeast the university develops the microcomputer host equipment protects the hardware also passed through improved and the enhancement many times. The Tianjin University from the very beginning is the development take more than 16 CPU as the foundation microcomputer line protection, in 1988 namely started to study take 32 digital signals processor (DSP) as the foundation protection, the control, the survey integration microcomputer installment, at present cooperated with the Zhuhai automatic equipment company develops one kind of function complete 32 big modules, a module was a minicomputer. Uses 32 microcomputers chips only to focus by no means on the precision, because of the precision the a/d switch resolution limit, is surpassed time 16 all is accepts with difficulty in the conversion rate and the cost aspect; 32 microcomputers chips have the very high integration rate more importantly, very high operating frequency and computation speed, very big addressing space, rich command system and many inputs outlet. The CPU register, the data bus, the address bus all are 32, has the memory management function, the memory protection function and the duty transformation function, and (cache) and the floating number part all integrates the high speed buffer in CPU.The electrical power system the request which protects to the microcomputer enhances unceasingly, besides protection basic function, but also should have the- 5 -large capacity breakdown information and the data long-term storage space, the fast data processing function, the formidable traffic capacity, with other protections, the control device and dispatches the networking by to share the entire system data, the information and the network resources ability, the higher order language programming and so on. This requests the microcomputer protective device to have is equal to a pc machine function. In the computer protection development initial period, once conceived has made the relay protection installment with a minicomputer. At that time because the small machine volume big, the cost high, the reliability was bad, this tentative plan was not realistic. Now, with the microcomputer protective device size similar labor controlling machine function, the speed, the storage capacity greatly has surpassed the same year small machine, therefore, made the relay protection with complete set labor controlling machine the opportunity already to be mature, this will be one of development directions which the microcomputer protected. The Tianjin University has developed the relay protection installment which Cheng Yong tong microcomputer protective device structure quite same not less than one kind of labor controlling machine performs to change artificially becomes. This kind of equipment merit includes: has the 486pc machine complete function, can satisfy each kind of function request which will protect to current and the future microcomputer. size and structure and present microcomputer protective device similar, the craft excellent, quakeproof, guards against has been hot, guards against electromagnetic interference ability, may move in the very severe working conditions, the cost may accept. Uses the STD main line or the pc main line, the hardware modulation, may select the different module willfully regarding the different protection, the disposition nimble, and is easy to expand.Relay protection installment, computerizes is the irreversible development tendency. How but to satisfies the electrical power system request well, how further enhances the relay protection the reliability, how obtains the bigger economic efficiency and the social efficiency, still must conduct specifically the thorough research.- 6 -2.2 networkedThe computer network has become the information age as the information and the data communication tool the technical prop, caused the human production and the social life appearance has had the radical change. It profoundly is affecting each industry domain, also has provided the powerful means of communication for each industry domain. So far, besides the differential motion protection and the vertical association protection, all relay protections installment all only can respond the protection installment place electricity spirit. The relay protection function also only is restricted in the excision breakdown part, reduces the accident to affect the scope. This mainly is because lacks the powerful data communication method. Overseas already had proposed the system protection concept, this in mainly referred to the safe automatic device at that time. Because the relay protection function not only is restricted in the excision breakdown part and the limit accident affects the scope (this is most important task), but also must guarantee the entire system the security stable movement. This requests each protection unit all to be able to share the entire system the movement and the breakdown information data, each protection unit and the superposition brake gear in analyze this information and in the data foundation the synchronized action, guarantees the system the security stable movement. Obviously, realizes this kind of system protection basic condition is joins the entire system each main equipment protective device with the computer network, that is realization microcomputer protective device networked. This under the current engineering factor is completely possible.Regarding the general non- system protection, the realization protective device computer networking also has the very big advantage. The relay protection equipment can obtain system failure information more, then to the breakdown nature, the breakdown position judgment and the breakdown distance examination is more accurate. Passed through the very long time to the auto-adapted protection principle research, also has yielded the certain result, but must realize truly protects to the system movement way and the malfunction auto-adapted, must obtain the more- 7 -systems movement and the breakdown information, only then realization protection computer networked, can achieve this point.Regarding certain protective device realization computer networking also can enhance the protection the reliability. The Tianjin University in 1993 proposed in view of the future Three Gorges hydroelectric power station 500kv ultrahigh voltage multi-return routes generatrix one kind of distributional generatrix protection principle, developed successfully this kind of equipment initially. Its principle is disperses the traditional central generatrix protection certain (with to protect generatrix to return way to be same) the generatrix protection unit, the dispersible attire is located in on various return routes protection screen, each protection unit joins with the computer network, each protection unit only inputs this return route the amperage, after transforms it the digital quantity, transmits through the computer network for other all return routes protection unit, each protection unit acts according to this return route the amperage and other all return routes amperage which obtains from the computer network, carries on the generatrix differential motion protection the computation, if the computed result proof is the generatrix interior breakdown then only jumps the book size return route circuit breaker, Breakdown generatrix isolation. When generatrix area breakdown, each protection unit all calculates for exterior breakdown does not act. This kind the distributional generatrix protection principle which realizes with the computer network has the high reliability compared to the traditional central generatrix protection principle. Because if a protection unit receives the disturbance or the miscalculation when moves by mistake, only can wrongly jump the book size return route, cannot create causes the generatrix entire the malignant accident which excises, this regarding looks like the Three Gorges power plant to have the ultrahigh voltage generatrix the system key position to be extremely important.By above may know, microcomputer protective device may enhance the protection performance and the reliability greatly, this is the microcomputer protection development inevitable trend.- 8 -2.3 protections, control, survey, data communication integrationsIn realization relay protection computerizing with under the condition, the protective device is in fact a high performance, the multi-purpose computer, is in an entire electrical power system computer network intelligent terminal. It may gain the electrical power system movement and breakdown any information and the data from the net, also may protect the part which obtains it any information and the data transfer for the network control center or no matter what a terminal. Therefore, each microcomputer protective device not only may complete the relay protection function, moreover in does not have in the breakdown normal operation situation also to be possible to complete the survey, the control, the data communication function that is realization protection, control, survey, data communication integration.At present, in order to survey, the protection and the control need, outdoor transformer substation all equipment, like the transformer, the line and so on the secondary voltage, the electric current all must use the control cable to direct to . Lays the massive control cable not only must massively invest, moreover makes the secondary circuit to be extremely complex. But if the above protection, the control, the survey, the data communication integration computer installation, will install in outdoor transformer substation by the protection device nearby, by the protection device voltage, the amperage is changed into after this installment internal circulation the digital quantity, will deliver through the computer network, then might avoid the massive control cable. If takes the network with the optical fiber the transmission medium, but also may avoid the electromagnetic interference. Now the optical current transformer (OTA) and the optical voltage transformer (OTV) in the research trial stage, future inevitably obtained the application in the electrical power system. In uses OTA and in the OTV situation, the protective device should place is apart from OTA and the OTV recent place, that is should place by the protection device nearby. OTA and the OTV light signal inputs after this integration installment in and transforms the electrical signal, on the one hand serves as the protection the computation judgment; On the other hand took the survey quantity, delivers through- 9 -the network. May to deliver from through the network by the protection device operation control command this integrated installment, carries out the circuit breaker operation from this the integrated installment. In 1992 the Tianjin University proposed the protection, the control, the survey, the correspondence integration question, and has developed take the tms320c25 digital signal processor (DSP) as a foundation protection, the control, the survey, the data communication integration installment.2.4 intellectualizationsIn recent years, the artificial intelligence technology like nerve network, the genetic algorithms, the evolution plan, the fuzzy logic and so on all obtained the application in electrical power system each domain, also started in the relay protection domain application research. The nerve network is one non-linear mapping method, very many lists the complex non-linear problem with difficulty which the equation or solves with difficulty, the application nerve network side principle may be easily solved. For example exhibits in the situation in the transmission line two sides systems electric potential angle to occur after the transition resistance short-circuits is a non-linear problem, very difficult correctly to make the breakdown position from the protection the distinction, thus creates moves by mistake or resists to move; If thinks after the network method, passes through the massive breakdowns sample training, so long as the sample centralism has fully considered each kind of situation, then in breaks down time any all may correctly distinguish. Other likes genetic algorithms, the evolution plan and so on also all has its unique solution complex question the ability. May cause the solution speed these artificial intelligence method suitable unions to be quicker? The Tianjin University carries on the nerve network type relay protection from 1996 the research, has yielded the preliminary result. May foresee, the artificial intelligence technology must be able to obtain the application in the relay protection domain, by solves the problem which solves with difficulty with the conventional method.3 conclusions- 10 -Since the founding of China's electric power system protection technology has undergone four times. With the rapid development of power systems and computer technology, communications technology, relay technology faces the further development of the trend. Domestic and international trends in the development of protection technologies: computerization, networking, protection, control, measurement, data communications integration and artificial intelligence, which made protection workers difficult task, but also opened up the activities of vast.- 11 -继电保护发展现状摘要:回顾我国电力系统继电保护技术的发展过程,概述了微机继电保护技术成果,提出了未来继电保护技术的发展趋势将是:计算机化,网络化,保护,控制,调查,数据通信一体化和人工智能化。