储液器和气液分离器的选型
制冷系统:气液分离器介绍
制冷系统作为一个整体除了四大件(压缩机、冷凝器、节流装置、蒸发器)以外还有很多附属部件,如今天要介绍的一一气液分离器。
什么是气液分离器?汽液分离器的主要作用是:在启动、运行或融霜(热泵)后制冷剂液体返回时对压缩机保护,主要是通过分离并保存回气管里的制冷剂液体来实现保护。
气液分离器对系统的低压侧提供额外的内部容积,可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。
所以它有时也称作低压储液器。
两点值得注意的是:(1)非共沸制冷剂系统中不应使用汽液分离器。
(2)冷冻油的处理由于在分离制冷剂液体过程中,冷冻油也会被分离出来并积存在气液分离器底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。
气液分离器的基本结构如下图:气液分离器主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器。
气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。
二、气液分离器VS储液器什么是储液器?什么是气液分离器?它们各自的用途是什么?1、储液器从它的名称本身含义就很清楚,是专门用来储存制冷剂液体,提供制冷系统循环所需的供液量,确保制冷系统的运行稳定而设置的。
微型制冷系统中(如家用冰箱冷柜空调,即使用毛细管节流的系统)是不会设置储液器的,只有在小型以上的制冷装置中才会设置。
2、气液分离器从它的名称本身含义也不难理解,它是气体和液体分离的装置。
同样,从装置的名称就很容易知道它的作用了,即用来防止液侬润滑油或制冷剂诙击压缩机,保证压缩机安全正常运转。
部分家用冰箱空调及以上制冷装置中都会设置,特别是在大型制冷装置中更为重要。
了解了它们各自的用途,自然就知道了它们各自的安装位置。
按照制冷工程的工艺流程,储液器必须(也只能、只有)安装在冷凝器之后,调节阀(节流阀、膨胀阀)之前。
所以采用毛细管节流方式的系统中就不存在了,根本不可能存在。
气液分离器设计论文
气液分离器设计论文一、气液分离器的设计原理气液分离器的设计原理主要基于两种物质之间的相态差异,通过利用气体和液体之间的密度和粘度等差异来实现分离。
在气液分离器中,气体通常通过进料管进入,然后通过分离介质展开,并在分离介质中与液体相互作用,从而实现气液分离。
二、气液分离器的设计流程1.确定物料特性:首先需要确定处理的气体和液体的特性,包括流量、压力、温度、组成等。
这些物料的特性将对分离器的设计和选择产生影响。
2.确定设备选型:根据物料特性和分离要求,选择适当的气液分离器类型,包括总体形式、入口位置、出口位置、流动路径等。
3.计算处理容量:根据物料特性和处理要求,计算出所需的处理容量,包括气体和液体的流量。
4.计算设计参数:根据物料特性和处理容量,计算出分离器的设计参数,包括分离介质的形状、尺寸、孔径等。
5.进行设备设计:根据计算得到的设计参数,进行气液分离器的详细设计,包括细节尺寸、结构布置等。
三、气液分离器的优化方法1.优化分离介质:分离介质的选择对分离效果有着重要影响,在设计中可以选择具有较好分离性能的材料,如网格结构、纤维材料等。
2.优化流动路径:流动路径的设计也会对分离效果产生影响,可以通过改变管道形状、加入隔板等方式来改善分离效果。
3.优化设备结构:设备结构的合理设计也能够提高气液分离器的效果,可以通过改变分离器的长度、直径等参数来改善分离效率。
4.优化操作参数:在实际操作中,还可以通过调整气体和液体的流量、压力、温度等操作参数来提高分离效果。
总结起来,气液分离器的设计是一个综合考虑物料特性、设备选型、处理容量和设计参数等多种因素的过程。
通过优化设计,可以提高分离效果,实现更加高效和可靠的气液分离。
气液分离器类型的
气液分离器类型的1. 气液分离器类型的介绍气液分离器是一种用于将气体和液体分离的设备,广泛应用于工业生产过程中。
它的主要作用是通过不同的分离原理,将气体和液体分离开来,从而实现对气体和液体的有效处理和管理。
根据不同的设计和应用要求,气液分离器可以分为多种类型。
2. 常见的气液分离器类型在工业领域中,常见的气液分离器类型包括以下几种:2.1 重力分离器重力分离器是一种利用物料在重力作用下的沉降速度差异来实现气液分离的设备。
它通常采用垂直布置的结构,通过减小气体和液体速度差、增加分离室高度等方法,使得液滴或颗粒在分离室内沉降,从而将气体和液体分离开来。
2.2 离心分离器离心分离器是一种利用离心力来使气体和液体分离的设备。
它通过高速旋转机械部件,将气体和液体分离开来。
离心分离器具有分离效果好、设备结构简单、操作方便等优点,广泛应用于化工、制药、食品等领域。
2.3 过滤分离器过滤分离器是一种通过过滤作用将气体和液体分离的设备。
它采用滤材过滤的方式,通过不同滤材的孔径选择,将气体中的固体颗粒或液体滴聚集在滤材上,使气体和液体分离开来。
过滤分离器适用于处理小颗粒物料或需要高纯度气体的场合。
2.4 萃取分离器萃取分离器是一种通过相溶性差异将气体和液体分离开来的设备。
它通常采用萃取剂与被处理物料接触,通过物料在两相之间的传质过程,将气体和液体分离开来。
萃取分离器广泛应用于化工、石油、环保等领域中的萃取、吸收等工艺。
3. 气液分离器的选择与设计在选择和设计气液分离器时,需考虑以下几个因素:3.1 分离效果分离效果是衡量气液分离器好坏的重要指标。
不同类型的气液分离器在分离效果上有所差异,因此需要根据具体的应用要求选择适合的分离器类型。
3.2 处理能力处理能力是指气液分离器能够处理的气体和液体流量。
根据工艺的需求,需选择处理能力适当的分离器,以确保其能够满足工艺过程中的流量要求。
3.3 设备尺寸和成本设备尺寸和成本是选择和设计气液分离器时需要考虑的因素之一。
气液固分离技术的选型
① 重力沉降 ② 折流分离 ③ 离心力分离 ④ 丝网分离 ⑤ 超滤分离 ⑥ 填料分离等。 无锡汉英公司综合了几种分离原理后,设计的气液分离器有以下三大类。
无锡汉英机器制造有限公司产品介绍
4.1 离心分离原理为主的 QF 型气液分离器 通过五级分离—折流、离心、重力、变向、凝聚
布朗运动的扩散沉积和静电吸引。夹带在气相中的细 小液体雾滴,经过丝网时,雾滴碰到丝网被粘附下来, 经过反复多次吸附雾滴,极小的雾滴附聚、聚结成为 大的液滴,液滴在重力的作用下,沿着编织的丝与丝 的交叉点向下运动,同时继续吸附气体中夹带的雾 滴,长大的雾滴流到丝网的底部,当液滴自身的重力 超过气速和液体表面的张力的合力时,液滴就跌落下 来,达到净化的作用。
丝网分离的优缺点: 优点:1)除雾沫、蒸气、油气效率高;2)结构简单。 缺点:1)体积较大;2)丝网需定期清洗和更换;3)气体中固体颗粒多时, 丝网易堵塞。
4.3 折流分离原理为主的 QF-Y 型气液分离器 折流分离原理: 由于气体与液体的密度不同,液体与气体
混合一起流动时,如果遇到阻挡,气体会折流 而走,而液体由于惯性,继续有一个向前的速 度,向前的液体附着在阻挡壁面上由于重力的 作用向下汇集到一起,通过排放管排出。夹带 在气相中的细小液体雾滴,经过叶片时,被快 速、连续改变运动方向,雾滴被粘附下来,经 过反复多次吸附雾滴,极小的雾滴附聚、聚结成为大的液滴,液滴在重力的作用
1、气液分离器应用范围: • 可安装在气体压缩机的出入口,分离或回收压缩气体中 的冷凝水 • 可安装在蒸汽管线中,分离冷凝水 • 可安装在气液混合部位的进/出口,分离出液体 • 可安装在真空泵前,分离排放真空系统中的冷凝水 • 可安装在分馏塔顶冷凝冷却器后作气相除雾 • 可安装在各种气体水洗塔,吸收塔及解析塔的气相除雾 • 可安装在水冷却塔后的冷凝水分离 • 可安装在地热蒸汽分离器 • 可安装在气体排放管路中,分离出有害液体和尘埃后达 标排放 • 气液分离器也可应用于气体除尘,油水分离及液体脱除 杂质等多种工业场合
气液分离器
气液分离器气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。
因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。
因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。
气液分离器的基本结构见图,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图右下角。
气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。
气液分离器的设计和使用必须遵循以下原则:1.气液分离器必须有足够的容量来储存多余的液态制冷剂。
特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。
还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。
用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。
在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。
2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。
回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。
如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出-0.050 in -1.3 mm,并给出一般气液分离器是-3.2mm。
当然如果有条件也可能用试验优化这个尺寸,以达到最好效果。
还有过滤网,谷轮推荐使用不小于30X30目(0.6mm孔径),这里推荐使用50X60 目,这里好象有点矛盾,不过考虑到在中国空调安装的水平,特别是分体式的安装,经常会有杂质进入系统,所以用大点孔径会稳妥些。
气液分离器设计计算
空间,然后计 算 分 离 器 的 长 度, 以 满 足 持 液 量 和
波动的要求, 以 利 于 气 液 的 分 离。 可 见 卧 式 分 离
器尺寸的计算方法是一个反复迭代的过程。根据
体积平衡可以得到:
VH + VS = L ( AT - AVD + ALLL )
持液量和液体波动体积可以通过停留时间和
摘要 介绍气液分离器理论基础和设计方法,提出气液分离器计算方法的改进和对比实例。 关键词 气液分离器 设计 计算方法
气液分离器依据重力沉降原理,采用 《油气 集输 设 计 规 范》 GB 50350 - 2005 及 《分 离 器 规 范》 SY / T 0515 - 2007 进行计算和选取,并以以下 假设为基础: ①悬浮物的运动速率为常数; ②分 离器内不发生凝聚和分散作用; ③液、固微粒均 是球形。计算 忽 略 微 粒 沉 降 的 加 速 阶 段, 仅 考 虑 分离不小于 50μm 微粒的情况。此外,在计算中引 入立式分离器修正系数 K1,气体空间占有的空间 面积分率 K2、气体空间占有的高度分率 K3 和长径 比 K4 经验参数[1],这无疑增加分离器计算的不确 定性。设计人 员 先 依 据 标 准 规 范 进 行 计 算, 再 根 据经验及工程需要进行修正,有时最终所选设备 会比计算结 果 大 很 多, 造 成 不 必 要 的 浪 费。 基 于 以上考虑,综合多种计算方法得出分离器计算方 法。该方法不 仅 满 足 工 程 需 要, 而 且 采 用 使 设 备 重量最轻的优化过程使投资最低,可为气液分离 器选型提供参考。
DV 2
( ft)
最小取 6in。
( 7) 计算高液位到入口管嘴中心的高度:
HLIN = 12 + dN ( 带入口转向器)
(完整word版)气液分离器选型
7.8气液分离器7.8.1概述气液分离器的作用是将气液两相通过重力的作用进行气液的分离。
7.8.2设计步骤(1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定气体流速对分离效率是一个重要因素。
如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。
气速对分离效率的影响见下图:图7-69 分离效率与气速的关系图2) 计算方法G u 5.0)(GG L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kgG K 为常数,通常107.0=G K 3) 尺寸设计丝网的直径为5.0)(0188.0GG G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。
由于安装的原因(如支承环约为mm 1070/50⨯),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。
低液位(LL )和高液位(HL )之间的距离由下式计算:21.47DtV H L L = 式中D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ;L H —低液位和高液位之间的距离,m ;液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。
气体空间高度的尺寸见下图所示。
丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。
图7-70 立式丝网分离器5) 接管直径① 入口管径两相混合物的人口接管的直径应符合下式要求 Pa u GL G 15002<ρ 式中GL u ——接管内两相流速,s m /; G ρ——气相密度,3/m kg ; 由此导出25.05.03)(1002.3GG L p V V D ρ⨯+⨯⨯>-式中p D ——接管直径,m ;L V ——液体体积流量,h m /3; G V ——气体体积流量,h m /3; 其余符号意义同前。
制冷系统辅助配件介绍(油分、汽分、储液器、干燥过滤器)
制冷系统辅助设备
3 分离与贮存设备
3.1 气液分离器 制冷系统中的气液分离设备,用于
重力供液系统中,如氨液分离器, 将蒸发器出来的蒸气中的液滴分离 掉,以提高压缩机运转的安全性; 它也用在贮液器后面,用来分离因 节流降压而产生的闪发气体,不让 它进入蒸发器,以提高蒸发器工作 效率 分离原理主要利用气体和液体的密 度不同,通过扩大管路通径减小速 度以及改变速度的方向,使气体和 液体分离 气液分离器有立式和卧式两种 正常工作时,其进气阀、回气阀、 供液阀、出液阀、浮球的均压阀、 压力表阀都是常开的a Nhomakorabea氨贮液器
b)氟利昂贮液器
1-压力表阀 2-出液管 3-安全阀 4-放空气管 5-放油管接头 6-平衡管 7-进液管
制冷系统辅助设备
3.3 油分离器 工作的基本原理如下:
1)利用油的重度与制冷剂气 体重度的不同,进行沉降分 离。
2)利用扩大通道截面降低气 体流速(一般约在0.8~ 1m/s),造成轻与重的物质 易分离。
组和小型空调机组
冷暖型机组可在夏季向空调系统提供冷冻水源,而在冬季可向空 调系统提供空调热水水源,或直接向室内提供冷风和热风 。
制冷回路流程 制热回路流程
制冷系统辅助设备
1-风扇 2-翅片式换热器 3-套管式换热器 4-水泵
5-膨胀阀 6-视镜 7-干燥过滤器 8-贮液罐 9-气液分离器 10-压缩机 11-四通换向阀 12-单向阀 1 13-单向阀2 14-单向阀3 15-单向阀4 16-低压接口 17-高压接 口
制冷系统辅助设备
3.2 贮液器
1.高压贮液器 高压 贮液器一般位于冷凝 器之后,作用是:
1)贮存冷凝器流出的制冷 剂液体,使冷凝器的传热 面积充分发挥作用; 2)保证供应和调节制冷系 统中有关设备需要的制冷 剂液体循环量; 3)起到液封作用,即防止 高压制冷剂蒸气窜至低压 系统管路中去。
气液分离器选型
7.8气液分离器7.8.1概述气液分离器的作用是将气液两相通过重力的作用进行气液的分离。
7.8.2设计步骤(1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定气体流速对分离效率是一个重要因素。
如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。
气速对分离效率的影响见下图:图7-69 分离效率与气速的关系图2) 计算方法G u 5.0)(GG L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kgG K 为常数,通常107.0=G K 3) 尺寸设计丝网的直径为5.0)(0188.0GG G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。
由于安装的原因(如支承环约为mm 1070/50⨯),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。
低液位(LL )和高液位(HL )之间的距离由下式计算:21.47DtV H L L = 式中D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ;L H —低液位和高液位之间的距离,m ;液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。
气体空间高度的尺寸见下图所示。
丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。
图7-70 立式丝网分离器5) 接管直径① 入口管径两相混合物的人口接管的直径应符合下式要求 Pa u GL G 15002<ρ 式中GL u ——接管内两相流速,s m /; G ρ——气相密度,3/m kg ; 由此导出25.05.03)(1002.3GG L p V V D ρ⨯+⨯⨯>-式中p D ——接管直径,m ;L V ——液体体积流量,h m /3; G V ——气体体积流量,h m /3; 其余符号意义同前。
储液干燥器及液气分离器(仅供借鉴)
专业理论课电子教案模板
专业名称汽修
课程名称汽车空调检修
授课教师张建强
班级15汽车1、2班
教研组长董秀娇
一、组织教学
老师:上课
学生:起立
学生:老师好
老师:同学们好
老师:坐下
二、复习与导入
通过回忆循环离合器制冷系统的工作过程,逐渐导入储液罐和液气分离器的作用。
三、新授
活动6:储液干燥器及液气分离器
压缩机转速的变化将使系统中制冷剂流量发生变化;封闭的管路系统,使得实际的制冷剂流量又是固定的。
一、储液罐
储液罐在系统中的安装位置如图2-64所示。
储液罐的作用如下:
储液:具备能储存系统工质总量1/3左右的容积。
干燥:一块100cm3的XH-7分子筛在65℃时,能吸收多于100滴水。
过滤:能过滤因制造和维修而带入的微量碎屑、尘土等杂质,避免引起制冷剂流动阻塞。
液气分离:当冷凝器工作不良时,进入储液罐的制冷剂可能含有气态成份。
为保证流出的制冷剂都为液态,储液罐必须具备液气分离功能。
在储液罐顶部通常还设有视液观察玻璃,通过它可观察系统制冷剂的流动状况,并判别制冷剂量的多少及是否受到污染。
二、液气分离器
对于孔管系统采用一种名为积累器的储液器,它安装在蒸发器与压缩机之间的管路上,如图2-68所示。
又名液气分离器。
1.液气分离器结构与作用
液气分离器的结构如图2-69所示,罐内除有干燥剂、过滤器之外,。
储液干燥器及液气分离器及储罐制作安装施工方案
专业理论课电子教案模板专业名称汽修课程名称汽车空调检修授课教师张建强班级15汽车1、2班教研组长董秀娇教学环节及内容教学策略方法组织实施一、组织教学老师:上课学生:起立学生:老师好老师:同学们好老师:坐下二、复习与导入通过回忆循环离合器制冷系统的工作过程,逐渐导入储液罐和液气分离器的作用。
三、新授活动6:储液干燥器及液气分离器压缩机转速的变化将使系统中制冷剂流量发生变化;封闭的管路系统,使得实际的制冷剂流量又是固定的。
一、储液罐储液罐在系统中的安装位置如图2-64所示。
储液罐的作用如下:储液:具备能储存系统工质总量1/3左右的容积。
干燥:一块100cm3的XH-7分子筛在65℃时,能吸收多于100滴水。
过滤:能过滤因制造和维修而带入的微量碎屑、尘土等杂质,避免引起制冷剂流动阻塞。
液气分离:当冷凝器工作不良时,进入储液罐的制冷剂可能含有气态成份。
为保证流出的制冷剂都为液态,储液罐必须具备液气分离功能。
在储液罐顶部通常还设有视液观察玻璃,通过它可观察系统制冷剂的流动状况,并判别制冷剂量的多少及是否受到污染。
二、液气分离器对于孔管系统采用一种名为积累器的储液器,它安装在蒸发器与压缩机之间的管路上,如图2-68所示。
又名液气分离器。
1.液气分离器结构与作用液气分离器的结构如图2-69所示,罐内除有干燥剂、过滤器之外,2.液气分离器工作原理制冷剂从顶部进入容器后,撞击塑料杯,未蒸发的液态制冷剂将沉入容器底部,在顶部的气态制冷剂被引出管吸向压缩机,U形管底部的小孔,允许少量冷冻油流回压缩机,以保证压缩机工作时润滑的需要。
此小孔也会有少量的制冷剂流回压缩机,由于在到达压缩机之前的低压管路中少量制冷剂会汽化完毕,所以不合引起“液击”。
三、液气分离器与储液器的区别1.液气分离器装在制冷系统的低压区而储液罐装在系统的高压区。
2.液气分离器内留下液态制冷剂,这些制冷剂在容器内慢慢蒸发,离开的则是气态制冷剂,这样容器就起到液气分离作用;并且由于储液品种主要是气体,所以容积较大。
T-PE002303C 气液分离器计算及选型导则
ρL − ρv ρv
(2.3.3.1)
式中: uc——临界速度,m/s;
ρL——操作条件下的液体密度,kg/m3; ρv——操作条件下的气体密度,kg/m3。 2.3.3.2 安全系数 对于允许有一定液沫夹带的容器,如油气分离器、燃料气分液罐、紧急放空罐等, 容器中不装破沫网时,气体速度最高可取临界速度的 170 %。对液沫夹带严格限制的容 器,如压缩机入口分液罐等,不装破沫网时,气体速度可取 80 %临界速度;装破沫网 时,可取 100 %~150 %临界速度。有时为安全起见如重整气液分离罐带破沫网气速取 80 %临界速度,总之应从安全、投资、占地及工程经验综合考虑。 2.3.3.3 气相空间
第8页 共9页
T-PE002303C-2005
导则
图 2.3.5
图 2.3.5 典型的带分水包的回流罐结构图
图中:N 代表物料管口,P 代表压力计口,L 代表液位计口。
2.3.6 卧式气液分离器分水包确定原则
分水包的直径 d 按重相液体(一般为水)的速度取 0.0025 m/s 来决定,见式(2.3.6)。
导则
1 总则
1.1 目的 为规范炼油或石油化工装置靠重力气液分离器设备的工艺设计,特编制本导则。
1.2 范围 1.2.1 本导则规定了工艺装置气液分离器的选型,工艺计算方法和主要结构尺寸设计 的要求。 1.2.2 本导则适用于常规气-液分离,系指带有或不带有破沫网装置的卧式或立式分 离器中气体夹带的一定大小的液滴在容器的气体空间靠重力自然沉降的分离。
第4页 共9页
T-PE002303C-2005
导则
卧式容器的气体空间截面积是指高液面以上与液面垂直的弓形截面积,可由图
2.3.3.3 查出,立式容器的气体空间截面积指水平截面积。计算方法按式(2.3.3.3-1)、
锂冷空间堆气液分离器选型初探
锂冷空间堆气液分离器选型初探李来冬,李清,葛思淼(中国原子能科学研究院,北京102413)锂冷空间堆是大功率空间核反应堆的主要堆型,采用锂作为冷却剂。
锂冷空间堆存在产氦的问题,产生的氦会对锂回路传热不利,需在锂回路设计气液分离器除氦[1]。
设计气液分离器需要选择合适的参考模型。
气液分离器种类繁多,按分离过程分为机械分离和传质分离;按有无运动件分为能动式和非能动式[2]。
本文通过考虑锂冷空间堆的技术要求,如微重力、耐高温、可靠性高、重量轻、能耗低等,分析气液分离原理、典型气液分离器特点,选择锂冷空间堆气液分离器研究设计的参考模型。
1参考气液分离原理选型微重力是影响选型的重要因素,离心分离、惯性分离、过滤分离、吸附均不受重力影响,可选择这些原理的分离器为参考模型[3-5]。
离心分离是使流体形成旋流,产生离心力场使气体向中心聚集,液体环绕在气体外侧,实现分离。
惯性分离是通过改变流道方向,利用液体和气体的惯性不同,液体惯性大仍以原方向运动,气体惯性小易改变方向按后来的方向运动,实现分离。
过滤分离是流体经过毛细结构时,液体可通过,气体被毛细结构处的表面张力阻止,实现分离。
吸附是指物质表面吸住周围介质中的分子或离子的现象。
可靠性、能耗、振动、重量、分离效率等是选型需考虑的重要因素,能动式和非能动式的分离器涉及到这些方面。
能动式的一般结构较复杂,不能连续在线工作,需人工干预;非能动式的除分离效率较低外,能连续在线工作,不需人工干预,其它方面如重量、能耗、振动、可靠性等有优势,况且非能动式的可通过优化设计达到高的分离效率[3-6]。
所以,锂冷空间堆气液分离器的研究设计,适合选择非能动式的气液合离器作参考模型。
2参考已有方案选型通过调研气液分离器国内外研究状况,选择与第1节分析结果相符的气液分离器方案作为研究对象。
它们均采用了离心分离、惯性分离、过滤分离、吸附中的一种或几种,并且都是非能动的。
2.1切向入口旋流器图1是由美国德州农工大学Cable等设计的旋流器,可用于空间核电源,如锂冷空间堆除氦、微重力朗肯循环等。
制冷设备的选型计算
Qzl F Kt m
压缩机高压 级的理论输 气量(m3/h)
4 V qV tH D 3600
中间冷却器中 的气体流速, 可取0.5m/s。
所选的中间冷却器应符合冷却面积和筒体直径两项 指标的要求 。
第二节 换热设备的选型计算 四、回热式热交换器的选型 计算
管板式、吹胀式和冷却排管等几种。 ② 冷风机 工作在空气露点以下、0℃以上的冷却空气式蒸发器 凝结水的处理方法之一 见图3-15.
(2)冷却液体式蒸发器
这类蒸发器包括壳管式、水箱式和套管式三种型式。壳 管式蒸发器有满液式与干式两种,水箱式蒸发器也有直 立管式、螺旋管式及蛇管式等几种型式。
第二节 换热设备的选 型计算
机房气液分离器
4qV t D 3600
4qm v0 D 3600
选
三、节流机构
节流机构的作用是为蒸发器提供适量的制冷剂液体,同
时又维持系统高、低压侧的压力差,保证蒸发器中适宜 的蒸发压力。
(1)常用节流机构
手动调节的节流装置—手动膨胀阀; 用制冷剂蒸气过热度调节的节流装置—包括热力膨胀阀 及电子膨胀阀等; 不能调节的节流装置—恒压膨胀阀和毛细管等; 浮球调节阀。
回热式热交换器用于氟利昂制冷装置中,从冷凝器 或中间冷却器来的高压制冷剂液体与流出蒸发器的 回气进行热交换,使液体过冷,蒸气过热。对小型 氟利昂制冷装置,如电冰箱,将供液管与回气管绑 或焊在一起构成结构简单的回热式热交换器。
第二节 换热设备的选型计算 回热式热交换器的传热面积按下式计算:
进热交换器 的制冷剂液 体温度
Qhr F Kt m
(t1 t ) (t 2 t ) t m ' t1 t 2 2.3 lg t 2 t1'
气液分离器的设计和选择概要
含液滴的气相流量液相密度 , ・仇“ “ 。
, 肠。
二。
, 。
, 七气相密度。
瓜二进出口接管间距预先假定值、。
气相粘度液滴直径。
声。
・先由式灿计算二向的有关数据〔权 ,夕 , 九 , 。
一日。
一‘ 一“ 〕器内液体体积, ‘ 了一根据上面数据如按美国计的卧式重力沉降器 , , 印法设 , 石‘ “ 夕二丫‘ 一“ 夕司内径为 , 长度因为液体体积是 , 乙一 , 如用本文介绍的设计法则可使分离器的体积明显减小在保持分离效率条件下可节约钢材减少投资 , 护根据式 , , , 口一‘ 一。
, 一。
・ , 先。
假定进出管不插入器内即 , 还需下列假定条件入。
口管角度夕。
由式 , , 总分离时间一几。
, ,。
〕夕一一 , 入口管径入口气速‘ 由式。
, 计算相应的石。
, “ 夕一夕。
夕一。
石 , 二。
一。
计算的口接管向器 , 。
值大于原假定的 , , 值 , , , 。
, 故设计不合理要重新调整有关尺寸将入沪和的调整出。
值根据计算结果 , 可进行合理内插入 , 乌一。
则分离时间减至一丫各有关的物理参数数群。
可按公式计算二于原假定的二两。
, 值是 , , 计算值二二是。
一一 , , 一一 , 小于假定值说明假定是可行的户娜月内口户孟 , 名设计结果内一户 , 。
①分离器内径岛②分离器全长。
一・・“ 一 , 。
一“ 一材, ‘ ③入口管插入深度石④长径比石 , 。
,。
一。
一矛一忍, ‘, 一 , , , 几一见图一一 , , 不难看出用本法介绍的设计方法同样分离效果的卧式分离器气流面积。
其外形尺寸比传统。
, 二〔手一二。
的”石・工一法要小。
如果再适当提高夕和但同时还要注 , 一‘ 。
值 , 还能减少设备的体积、意考虑经济合理的石。
, 几值车间布置要求。
一以及某些特殊需要等因素峨下面的计算忽略碟形封头假定合理的 , 几 , 一 , , 三、雾沫分离器的选择汽相体积一一液体体积一折板除沫器一、折板除沫器有格板式和叶片式两种基本医药工程设计年第期型式格板式除沫器在每个格板上有 , 排 , 较多的场合宜选用人形板型式对污垢物系 , , 与气流方向呈开发的一种型式。
小型制冷装置储液器设计与选型excel表格
小型制冷装置储液器设计与选型excel表格随着科技的不断发展,小型制冷装置在日常生活中的应用越来越广泛,其性能和效率也受到了更多的关注。
储液器作为小型制冷装置中的重要部件,其设计与选型对于整个制冷装置的运行稳定性和能效性能起着至关重要的作用。
为了更好地满足小型制冷装置的设计需求,我们设计了一套储液器设计与选型的excel表格,以辅助工程师进行有效的设计与选型工作。
一、储液器的作用和设计要求1. 储液器的作用储液器主要用于储存制冷剂,并确保制冷剂在蒸发器中的蒸发过程中,能够始终处于液态状态,从而保证制冷循环系统的正常运行。
2. 设计要求储液器的设计需要考虑到制冷剂的种类、工作条件、流量需求等因素,以确保储液器能够稳定可靠地工作,并能够满足制冷系统的性能要求。
二、excel表格的设计与功能我们设计的excel表格主要包括以下几个功能模块:1. 制冷剂性质表在这一模块中,我们列出了常见制冷剂的物性参数,如饱和压力、饱和温度、比熵等,以便工程师在设计储液器时能够准确地选择适合的制冷剂,并参考其物性参数进行设计计算。
2. 储液器设计计算模块在这一模块中,我们设计了涵盖储液器设计计算所需的各项参数和公式,如储液器的容积计算公式、进出口管道的设计参数、流通阻力损失的计算等,以方便工程师根据具体的工程要求进行储液器的设计计算。
3. 储液器选型模块在这一模块中,我们列出了常见制冷系统的工作条件和流量需求参数,工程师只需填入相应的具体数值,excel表格就会根据预设的选型算法,自动计算出适合的储液器型号和规格,从而简化了工程师的选型工作。
三、excel表格的使用方法在实际应用中,工程师只需要根据具体的制冷系统参数和工作条件,在excel表格中填入相应的数值,即可得到储液器设计所需的各项参数和选型建议。
通过这套excel表格的使用,工程师能够更加方便快捷地进行储液器的设计与选型工作,提高工作效率和设计准确度。
四、结语小型制冷装置储液器设计与选型excel表格的应用,为工程师提供了一套方便易用的工具,能够在一定程度上简化设计与选型工作,提高设计准确度和工作效率,有助于提升小型制冷装置整体性能和稳定性。
储液器
储液器储液器是一个通常安装在制冷系统高压液管上的压力容器,用来储存制冷系统在负载变化时所导致的多余的制冷剂。
在一些资料中也提到也有低压储液器,但不多见,可能是气液分离器也可以承担部分储液功能的原因吧。
在大型系统中,也可以在维护或维修时临时储存制冷系统的所有或部分制冷剂,以免造成浪费。
在水冷冷凝器,它的底部有一定的空间也储存制冷剂液体。
其实在翅片管式,如果没有地方储存制冷剂液体,那么在它的底部将会积存液体,从而减小换热面积,影响冷凝效果,这种情况下最好能增加一个储液器。
在风冷系统中,储液器可以保证液管充满制冷剂,从而避免热力膨胀阀因制冷剂液体的不连续而误动作。
而且储液器的使用还可以增加一定的过冷度从而提高系统效率。
储液器的结构见图F.1,主要分为立式和卧式两种。
对于储液器容量的选择有以下几个原则:1.最好可以用80%的容量就可以装入制冷系统里所有的制冷制,还有20%的空间是应付当制冷剂温度升高而引起体积的增加或容纳蒸发时的制冷剂气体。
因为储液器的出口是连接节流装置,为了保证流到节流装置的都是液体,会在出口管连接一根通到储液器底部的汲取管,因为蒸发的制冷剂气体会积聚在储液器的顶部。
根据储液器直径的大小,还要有一定量的液体封住汲取管入口,这部分液体不包含在正常的制冷剂充注量里,液封制冷剂的量由储液器的直径和汲取管口高度确定。
2.如果制冷系统有多个蒸发器,当某一个蒸发器在低负载或停止时,那么需要储液器去储存不用的制冷剂。
3.储液器作为一个压力容器,根据容量大小,必须要有以下安全保护装置:a.易熔塞(在火灾时用);b.防爆膜;c. 安全泄压阀。
4.选择容量的时候原则上当储液器内的储存最多制冷剂时,在40摄氏度(ASHRAE15-78规定是90F(32C))时的体积不要超过储液器容积的90%,以免发生爆炸。
而且储液器的容积应该总大于运行所需要的充注量的容积。
计算时可参考下式:容量(kg)=(最大系统充注量/0.9)+液封量5.最大工作压力是450psi(3.1MPa). 这样如果使用16MnR钢板,6mm板厚的破坏压力是3.5MPa,用Q235B可能要6mm以上板厚。
储液器和气液分离器的选型
储液器和气液分离器的选型
1、储液器的选型
高压储液器的容量是按整个制冷系统每小时制冷剂循环量的1/3-1/2来选取的,而且储存制冷剂的最大量不超过本身容积的80%,选择高压储液器容积可按下式计算:
V=(1/2~1/3)qmv3’/0.7~0.8
式中:V-储液器的容积(m3)
qm-系统中制冷剂的循环流量kg/h
v3’-冷凝温度下液体制冷剂的比体积 m3/kg
2、气液分离器的选型
气液分离器的选型时一般考虑能容纳50%机组的充灌量。
气液分离器筒径计算公式:
D=(4qv,th/πω)1/2
式中:D-筒体直径(m)
qv,th-压缩机理论输气量 m3/s
ω-气液分离器内气体流速,一般取0.5m/s。
筒体高度H=(3-4)D
风冷热泵机组用干式蒸发器也要配气液分离器。
气液分离器
气液分离器一个好的气液分离器应具有如下特点:一、分离效率高。
一)分离效率的现状从气液分离器的要求来看,就要求其能将气体与液体尽可能分离,经过气液分离器之后,液体就是液体,不含有气体,而气体就是气体,不含有液体。
当然一个分离器实际上其分离效率不可能100%,因种种原因实际的情况是根据不同分离要求来选择气液分离器。
1、分离要求比较低的,选择重力沉降分离。
2、分离要求一般的,选择普通的折流分离(挡板分离)或者普通的离心分离(旋流分离)。
3、要求较高的,选择填料分离。
4、要求高的,选择丝网分离。
5、要求很高的,选择微孔过滤分离。
当然这样选择也不是绝对的,实际使用中气液分离效率可能并不完全符合上述顺序。
其原因以后说明。
气液分离器分离效率的选择跟待分离的液体物性有关,如果液体粘度大,分子间作用力强,相对来说容易分离一些,所以油水分离器一般分离极数比水分离器低。
同样的分离要求,较粘液体的分离器的分离方式在上述顺序中可以降低一档。
但较粘的液体存在的严重问题在于液体下流时间较长。
二)提高气液分离器的分离效率的好处上面说的是气液分离器的现状,那究竟这样选择是不是最合理的呢?1、净化分离器。
净化分离器的作用是将气体中无用或有害的液体分离出来,也就是说分离效率越高,气体中无用或有害的液体越小,带来的好处越多:如果是无用的液体少了,也就是使净化气体的使用效率高了,也就是气体的使用成本低了;如果是有害的液体少了,就不光是净化气体使用成本低了,而且是降低了液体的危害程度,用户的运行成本因此也明显更降低了。
典型的净化分离器如:油水分离器。
油水分离器一般安装在压缩机的进口或者出口。
如果安装在进口的油水分离器分离效率高,压缩机的功效会提高,为什么呢?因为压缩机可以做有用功和无用功,如果进口气体中间含有无用的油水越少,其有用功增加,其功效越高,那么从长远来看,降低的运行成本远远大于提高油水分离效率所用的成本。
如果分离效率提高了1%,也就是压缩机电耗减少了1%,而一般提高分离效率1%所用的成本只相当于半年节省的电费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储液器和气液分离器的选型
1、储液器的选型
高压储液器的容量是按整个制冷系统每小时制冷剂循环量的1/3-1/2来选取的,而且储存制冷剂的最大量不超过本身容积的80%,选择高压储液器容积可按下式计算:
V=(1/2~1/3)qmv3’/0.7~0.8
式中:V-储液器的容积(m3)
qm-系统中制冷剂的循环流量kg/h
v3’-冷凝温度下液体制冷剂的比体积 m3/kg
2、气液分离器的选型
气液分离器的选型时一般考虑能容纳50%机组的充灌量。
气液分离器筒径计算公式:
D=(4qv,th/πω)1/2
式中:D-筒体直径(m)
qv,th-压缩机理论输气量 m3/s
ω-气液分离器内气体流速,一般取0.5m/s。
筒体高度H=(3-4)D
风冷热泵机组用干式蒸发器也要配气液分离器。