同济高数(上册)公式大全
同济高数上册公式大全
v1.0 可编辑可修改第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(limx F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(limx F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(limx F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(3))()(limx F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f x x f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类: (1)第一类间断点设0x 是函数y = f (x )的间断点。
同济大学高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinα ctgαtgα 90°+α cosα -sinα-ctgα -tgα180°-α sinα -cosα -tgα -ctgα 180°+α -sinα-cosα tgαctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
同济高等数学公式大全
导数公式:(tgxY = sec 2 x (ctgx\ = -cscr x (secx)/ = secx・tgx (cscx)' = -cscx-ctgx (a x y = a x \na (log “)‘ = -^一 xina(arcsinx)' = ‘ 「,VI-x 2(arccosL¥)'=——.Vl-x 2(^W=T __基本积分表^ 三角函数的有理式积分:j tgxdx = - ln|cosx| + C J ctgxdx = In |s in x| + C jsec xdx = ln|sec x + tg^ + C J c scxdx = ln|cscx- ctgx\ + C \^-^- = -arctg-+C j 。
+JT a a JJ f -a『仝亠4+cJcr -x* 2a a-x f . JA =arcsin^ + C J 7777 G f —— = [sec 2xdx = tgx + C Jcos* x 」f = fcsc 2 xdx = -ctgx+ C J sin ~ x 」 J secx • tgxdx = secx + CJcscx ・c7gM: = -cscx + C [a x dx=— + C J In a ^shxdx = chx + C J chxdx = shx + C jj :" 2 = b(x +±(r ) + CZ/?-2n_2j y/x 2 +a 2dx = — ylx 2 +a 2 + 牛ln(x + y/x 2 +a 2) + C2 2f ^jx 2 -a 2dx = - Jx 2 -a 2 -— J 2 2 j >la 2 -x 2clx = ?-Ju 2 -x 2+ 牛arcsin — + C高等数学公式x-a x + a In *2 "2 I n = J sin" xdx =J cos" xdx =111 X + J + C2・ 2u1一"2sin x = ----- , cosx 二 ----- ?1 + w 21 + w 2双曲正^.thx = — =e ~e chx e x +e r arshx = ln(x + Jx' +1)archx = ±ln(x + y/x 2 一 1) arthx = —In2三角函数公式: •诱导公式:、^数 角卜、sin costgctg ・a・ sina cosa-tga-ctga90°-a cosa sina ctga tga 90°+a cosa ・ sina -ctga -tga 180°-a sina ・ cosa -tga -ctga 180°+a ・ sina ・ cosa tga ctga 270°-a -cosa ・ sina ctga tga 270°+a -cosa sina -ctga-tga 360°-a -sina cosa・tga -ctga 360°+a sina cosa tgactga•倍角公式:dx =2du 1 +w 2一些初等函数: 双曲正弦:曲¥ =X . -x双曲余弦乂加=__—2两个重要极限:v sinx ‘lini ------ = 1lim (1 + 丄)x =e = 2.718281828459045... x X•和差角公式:sin(a±0) = sinacos0 土 cosasin 0 cos((z±/7) = cosacos/7 + sin<zsin 0 fg(a±0) =tga 土 tg 。
(完整版)同济高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dxCshx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x aa a ctgx x x tgx x x x ctgx xtgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , 一些初等函数: 两个重要极限:三角函数公式:·诱导公式:函数角A sincos tg ctg -α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.211(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg ·正弦定理:·余弦定理:R CcB b A a 2sin sin sin ===C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ 中值定理与导数应用:拉格朗日中值定理。
高等数学(同济第七版)(上册)-知识点
WORD 格式可编辑版
...
第二章 导数与微分 一.基本概念
1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。
∈[ a,b] ,有公式
,
, 称为拉格朗日余项 上面展开式称为以0(x) 为中心的n 阶泰勒公式。当 x0 =0 时,也称为n阶麦克劳林
WORD 格式可编辑版
...
公式。 常用公式( 前8个)
WORD 格式可编辑版
...
五.导数的应用
一.基本知识 设函数f ( x) 在 x0 处可导,且 x0 为f ( x) 的一个极值点,则 f '(x0) 0 。 我们称x 满足 f '(x0) 0 的 x0 称为 f (x) 的驻点,可导函数的极值点一定是驻点, 反之不然。极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。
二.求导公式
三.常见求导
WORD 格式可编辑版
...
1. 复合函数运算法则 2. 由参数方程确定函数的运算法则
设x =( t) ,y =(t) 确定函数y = y( x) ,其中'(t),'(t) 存在,且'(t) ≠ 0,则 dy '(t)
dx '(t) 3. 反函数求导法则 设y = f ( x) 的反函数x = g( y) ,两者皆可导,且f ′( x) ≠ 0 则 g'( y) 1 1 ( f '(x) 0)
2. 第二充分条件
f (x) 在 x0 处二阶可导,且 f (x0) 0 ,f (x0 ) 0 ,则①若 f (x0 ) 0 , 则 x0 为极大值点;②若 f (x0 ) 0 ,则 x0 为极小值点.
同济大学 高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
同济高等数学公式大全
高等数学常用公式导数公式:基本积分表: 三角函数有理式积分:secx 一 tgxdx - secx + C狂厅R2nJIn - J sin" xdx =J cos" xdx - 0 0______ = 2 _______________________________\y/x +a dx = — y lx +a + gln(x + y/x +孑)+ C2 2(tgxY = sec 2 x (ctgx\ = ~cscr x (secx)'二 secx • fgx (cscx)' = ~cscx~ ctgx (ay = a " \na (bgaX)'二-/——xin(arcs i nx)"二(arccosL¥ )"= ——,Vl-x 2 (arctgxY =" --------- (arcctgxy 二 -----------z;1 +尸tgxdx - - In 1cos+2sec xdx = tgx + Cctgxdx 二 I n | s i n x | COS x J 心川 c sc 2 xdx = ~ctgx + Cjsec,vJx 二 In |sec x ++c scxdx 二 In |CSCX-ctgx\ + C r dx 1 x 「------- --- -arctg~+C Jo + a ac sex ■ ctgxdx - — c sex + C [a dx — + CJ I n ashxdx = chx + Cx~a厂一J~ 2a a~xf dx. x. ----------- =arc sin ——+ CJ. /7T7 achxdx = shx +cL 「二 ln(x + 11x ±a) + 0f ylx-a dx = -ylx2~a2 -一 1 n x + J_ 日 ~ + J 2 2arcsi iw + CJ 2 2,2u 1 — ” 2sin x ----- ----- c osx 二 ------- ?1 + w2 1 + w 2两个重要极限:v s i nx ,I i n i ----- 二 1 xT)工双曲余弦:C/LX 二 ________ 双曲正切:〃 …chx e +earshx = \n(x + y/x +1) archx - ± I n (x + y/x - 1)f 1, 1+x arthx =——I n 一一2 l-x三角函数公式: •诱导公式:「数角A\s i nCOS喏Ctg-a -si i ia cosa - tga 一 ctga90° -a cosa sinactga tga 900+a cosa 一 s i na- ctga - tga 180° -a sma-cosa-tga - ctga 180° +a -s i i i a -cosatga ctga 270° -a 一 cosa-s i na ctga tga 270° +a -cosa sina - ctga - tga 360° -a -si i ia cosa -tga - ctga 360° +asmacosatgactga'和差化积公式:一些初等函数: I im (1 +1)n 二 c 二 2. 718281828459045...s i n (a±/7)二 s i nacos/ ctg(a±f!)二tgg 箜空拼/? + sin<zs in 止+t 観第gtgfl + \ctgP±ctgas i n a + s i n p - 2s i ns i n cr~s \v\ J3 - 2coscosa + cos/3 -2cosa. c • a 十 TI . s in -------------------a+ b .. a~p -------- s i n -------- z za+6 a-p ------ cos • • • •一a~p cosa-cosp 二 z cos (a±/7) 槌(a±fl)直线:K 二0;定积分的近似计算:矩形法:j 刊《勺,(%+>• i +…+)•倍角公式:sin 2a - 2s i necosacos2a = 2cos- a~l = 1 ~2s i rT a 二 cos-(z-sin- a sin 3a - 3s i n6Z~4s in, ctga-\2ctga2iga_屋cos3a 二 4cos a~3cosccig2a -ig2a -1 a・半角公式:os6Z sin ——y ——a |I + cos<z 2 2-a , iI-cosa I-cosa sin a 7 2 \ 1+cosa sina 1 + cosa. 日丄十cosaC^FvF-dbsasinaf 正弦定理:急=焉=短二2R•余弦定理: c =a +b 2 ~2abcosC cosa sina1-cosa•反三角函数性质:arcs i nx = --arccosx 2 高阶导数公式一莱布尼兹(Le ibniz )公式:7t arctgx =—arcct^x中值定理与导数应用:拉格朗日中值定理:/⑸一/(〃)二:⑹Si )/ ( 〃 )——/ ( 〃丿 f ■ (4柯西中值定理:尸® _尸3)二戸晅当F (x )二MH,,柯西中值定理就般格朗日中值定理V :曲率:弧微分公式:ds 二J1 +)八dx,其中)/二rga平均曲率&从M 点到IT 点,切线斜率的倾角变化量;As : As弧长。
高等数学(同济第七版)(上册)_知识点总结
...高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较f(x)设l imf(x)0,limg(x)0且llimg(x)(1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[g(x)],称g(x) 是比f(x)低阶的无穷小。
(2)l≠0,称f(x)与g(x)是同阶无穷小。
(3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x)2.常见的等价无穷小当x→0时sinx~x,tanx~x,arcsinx~x,arccosx~x,1-cosx~x^2/2,xe-1~x,ln(1x)~x,(1x)1~x二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x)≤f(x)≤h(x)若limg(x)A,limh(x)A,则l imf(x)A2.两个重要公式sinx公式11limx0x1/x公式2xelim(1)x03.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次xe 1x2x2!3x3!...nxn!no(x )sinxx3x3!5x5!... (n1)(2nx2n11)!2no(x1)WORD格式可编辑版...cosx12x2!4x4!... (2nxnox2n1)(2n!)ln(1x)x2x23x3... (nxnox n11)(n)(1x)1x (1)2!2x n ox n(1)...((n1))x...(n!)arctanxx3x35x5... (2n1xnox2n11)(2n11)5.洛必达法则定理1设函数f(x)、F(x)满足下列条件:(1)lim()0fxxx0 ,limF(x)0xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limxx0Fx)(f(x)f(x)存在(或为无穷大),则limlimxx0FFx(x)xx()这个定理说明:当f(x)limx0Fxx()存在时,f(x)limxx0Fx()也存在且等于f(x)limxx0F(x);当f(x) limxx()0Fx 为无穷大时,f(x)limx()x0Fx也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(LHospital)法则.型未定式定理2设函数f(x)、F(x)满足下列条件:(1)lim()fxxx0 ,limF(x)xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limx)x0F(x存在(或为无穷大),则f(x)f(x)limlimxx0F(x)x x F(x)注:上述关于x时未定式型的洛必达法则,对于x时未定式型x同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“0”和“”型的未定式,其它的未定式须先化简变形成“0”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限WORD格式可编辑版...f(xx)f(x)00'基本公式()limfx0x0x(如果存在)3.利用定积分定义求极限基本格式1n1klimf()f(x)dxnnnk1(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设x是函数y=f(x)的间断点。
同济高等数学公式大全
同济版高等数学公式导数公式:根基积分表:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的 有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x archx x x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx-+±=++=+-==+=-=----)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xx xx x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质: arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz ) 公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学(上)定义定理归纳(同济六版)
高等数学(上)定义、定理及一些重要结论归纳(按照同济第六版上册第一章到第六章,不含第七章微分方程,定理证明从略)第一章函数与极限(1)(数列极限的定义){}{}{}lim ,()n n n n n n n x a N n N x a a x x a x a x a n εε→∞>−<=→→∞设为一数列,如果存在常数,对于任意给定的正数(不论它多么小),总存在正整数,使得当时,不等式都成立,那么就称常数是数列的极限,或者称数列收敛于,记为或(2)(数列极限的唯一性){}n x 如果数列收敛,那么它的极限唯一.(3)(收敛数列的有界性){}{}n n x x 如果数列收敛,那么数列一定有界。
(4)(收敛数列的保号性)n lim ,0(0),0,,0(0).n n n x a a a N n N x x →∞=><>>><如果且或那么存在正整数当时都有或(5)(收敛数列保号性的推论){}00lim ,0(0).n n n n n x x x x a a a →∞≥≤=≥≤如果数列从某项起有(或),且那么或(6)(收敛数列与其子数列间的关系){},.n x a a 如果数列收敛于那么它的任一子数列也收敛,且极限也是(7)(自变量趋于有限值时函数极限的定义)0000(),0,0()(),()lim ()()()x x f x x A x x x f x f x A A f x x x f x A f x Ax x εδδε→><−<−<→=→→设函数在点的某一去心邻域内有定义.如果存在常数对于任意给定的正数(不论它多么小),总存在使得当满足不等式时,对应的函数值都满足不等式那么常数就叫做函数当时的极限,记作或当(8)(函数极限存在的条件)000()()().f x x x f x f x −+→=函数当时极限存在的充分必要条件是左极限及右极限各自存在并且相等,即(9)(自变量趋于无穷大时函数极限的定义)().,,()(),()lim ()()().x f x x A X x x X f x f x A A f x x f x A f x Ax εε→∞>−<→∞=→→∞设函数当大于某一正数时有定义如果存在常数对于任意给定的正数(不论它多么小),总存在正数使得当满足不等式时,对应的函数值都满足不等式那么常数就叫做函数当时的极限,记作或当(10)(函数极限的唯一性)lim ().x x f x →如果存在,那么这极限唯一(11)(函数极限的局部有界性)0lim (),00,0().x x f x A M x x f x M δδ→=>><−<<如果那么存在常数和使得当时,有(12)(函数极限的局部保号性1)0lim (),0(0)00()0(()0).x x f x A A A x x f x f x δδ→=><><−<><如果且或,那么存在常数,使得当时,有或(13)(函数极限局部的保号性2)000lim ()(0),().2x x f x A A x U x x U x Af x →=≠∈>��如果那么就存在着的某一去心邻域(),当()时,就有(14)(函数极限局部保号性的推论)0()0(()0),lim (),0(0).x x x f x f x f x A A A →≥≤=≥≤如果在的某一去心邻域内或而且那么或(15)(函数极限与数列极限的关系){}{}000lim (),(),(),()lim ()lim ().n n x x n n n x x f x x f x x x x n N f x f x f x →+→∞→≠∈=如果极限存在为函数的定义域内任一收敛于的数列且满足:那么相应的函数值数列必收敛,且(16*)(Heine 归并定理){}000lim (),()(),lim ().n n n x x n n f x x x x n x x n N f x →+→∞→→∞≠∈极限存在的充分必要条件是:对任何数列满足且有存在(17)(无穷小的定义)0()()lim ()0,()().x x x f x f x f x x x x →→∞=→→∞如果函数的极限那么称函数为当或时的无穷小(18)(无穷小与函数极限的关系)0()()lim ()(),.x x x x x x f x A f x A αα→→∞→→∞==+在自变量的同一变化过程或中,函数的充分必要条件是其中是无穷小(19)(无穷大的定义)000()0(),0(0),0()(),()().f x x x M X x x x X f x M f x x x x δδ∀>∃>∃><−<>>→→∞设函数在的某一去心邻域内有定义(或大于某一正数时有定义).如果对于不论它有多大或使得当或时,总有成立则称函数为当或是的无穷大(20)(无穷大与无穷小之间的关系)1,(),;()()1()0,.()f x f x f x f x f x ≠在自变量的同一变化过程中如果为无穷大则为无穷小反之,如果为无穷小,且则为无穷大�以下为一些极限运算法则的相关定理(21).有限个无穷小的和也是无穷小(22).有界函数与无穷小的乘积是无穷小(23).常数与无穷小的乘积是无穷小(24).有限个无穷小的乘积也是无穷小(25)(函数极限运算法则)[]lim (),lim (),(1)lim ()()lim ()lim ();(2)lim[()()]lim ()lim ();lim ()()(3)0,lim .()lim ()x x x x x x x x x x x f x A g x B f x g x f x g x A B f x g x f x g x A B f x f x A B g x g x B→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞==±=±=±⋅=⋅=⋅≠==如果那么若有则(26)(数列极限运算法则){}{}n .lim ,lim ,1lim();(2)lim ;(3)0(),0,lim.n n n n n n n n n n n n n x y A B x y A B x y A B x Ay n N B y B→∞→∞→∞→∞+→∞==±=±⋅=⋅≠∈≠=设有数列和如果那么()当且时(27)[]lim (),,lim ()lim ().x x x f x c cf x c f x →∞→∞→∞=如果存在而为常数则(28)[]lim (),lim ()lim ().nnx x x f x n N f x f x +→∞→∞→∞⎡⎤∈=⎣⎦如果存在,而则(29)()(),lim (),lim (),.x x x x x a x b a b ϕψϕψ→∞→∞≥==≥如果而那么(30)(复合函数的极限运算法则)000000[()]()()[()]lim (),lim (),0,(,),(),lim [()]lim ().x x u u x x u u y f g x u g x y f u f g x x g x u f u A x U x g x u f g x f u A δδ→→→→=====∃>∈≠==�设函数是由函数与函数复合而成,在点的某一去心邻域内有定义,若且当时有则(31)(数列极限的夹逼准则极限存在准则I ){}{}{}{}001,,2lim ,lim ,lim .n n n n n n n n n n n n n x y z n N n n y x z y a z a x x a →∞→∞→∞∃∈>≤≤===如果数列、及满足下列条件:()当时,有()那么数列的极限存在,且(32)(函数极限的夹逼准则极限存在准则I ’)0()()()()1(,)()()()()(2)lim (),lim ,lim ()lim ().x x x x x x x x x x U x r x M g x f x h x g x A A f x f x A →→∞→∞→∞→∞→∞→∞→∞∈>≤≤===�如果()当或时,那么存在,且(33)(数列极限存在准则极限存在准则II ).单调有界数列必有极限(34)(函数极限存在准则极限存在准则II II’’)00000()()().(,,,)f x x f x x f x x x x x x x −−+→→→−∞→+∞设函数在点的某个左邻域内单调且有界,则在的左极限必定存在类似(35)(柯西极限存在准则){}00,,.n n m x N N N m N n N x x εε+∀>∃∈>>>−<数列收敛的充分必要条件是:对于,且使得当时,就有(36)(两个无穷小之间的比较)0:lim 0,lim ,lim 0,;(4)lim 0,0,.(5)lim 1,x x x k x x c c k k αβαββαβοααββααββααββααββααβα→∞→∞→∞→∞→∞≠==∞=≠=≠>=∼已知和是在同一个自变量的变化过程中的无穷小,且(1)如果就说是比高阶的无穷小,记作=();(2)如果就说是比低阶的无穷小.(3)如果就说与是同阶无穷小如果就说是关于的阶无穷小如果就说与是等价无穷小,记作.(37)().βαβαοα=+与是等价无穷小的充分必要条件是(38)(等价无穷小替换定理)''',',limlim lim .''x x x βββααββααα→∞→∞→∞=∼∼设且存在,则(39)(函数连续性的定义1)[]00000()lim lim ()()0,().x x y f x x y f x x f x y f x x ∆→∆→=∆=+∆−==设函数在点的某一邻域内有定义,如果那么就称函数在点连续(40)(函数连续性的定义2)000()lim ()(),().x x y f x x f x f x f x x →==设函数在点的某一邻域内有定义,如果那么就称函数在点连续(41)(连续函数的和、差、积、商的连续性)000()(),(()0).ff xg x x f g f g g x gx ±⋅≠设函数和在点连续则它们的和(差)、积及商当时都在点连续(42)(反函数的连续性){}1()()(),().x y x y f x I x f y I y y f x x I −====∈如果函数在区间上单调增加(或单调减少)且连续,那么它的反函数也在对应的区间上单调增加或单调减少且连续(43)(复合函数的连续性1)[][]00000()()(),().lim (),(),lim ()lim ()().f g x x x x u u y f g x u g x y f u U x D g x u y f u u u f g x f u f u →→→===⊂=====��设函数由函数与函数复合而成若而函数在连续则(44)(复合函数的连续性2)[][][][]000000000()()(),().(),(),(),(),lim ()lim ()()().f g x x u u y f g x u g x y f u U x D u g x x x g x u y f u u u y f g x x x f g x f u f u f g x →→===⊂==========�设函数是由函数与函数复合而成若函数在连续且而函数在连续则复合函数在也连续即(45)(初等函数的连续性)..基本初等函数在它们的定义域内都是连续的一切初等函数在其定义区间内都是连续的(46)(有界性与最大值最小值定理)在闭区间上连续的函数在该区间上有界,且一定能取得它的最大值和最小值.(47)(零点定理)[]()(),,()()0,,()0.f x a b f a f b a b f ξξ⋅<=设函数在闭区间上连续且那么在开区间内至少有一点,使得(48)(介值定理)()[,],()(),(,),(,)().f x a b f a A f b B C A B a b f C ξξ==∀∈∃∈=设函数在闭区间上连续且在这区间的端点取不同的函数值及那么对于使得(49)(介值定理的推论).M m 在闭区间上连续的函数必取得介于最大值与最小值之间的任何值(50)(一致连续性的定义)121212().0,0,,,,()().().f x I x I x I x x f x f x f x I εδδε∀>∃>∀∈∀∈−<−<设函数在区间上有定义如果对于使得对于和当时就有那么就称函数在区间上是一致连续的(51)(一致连续性定理)()[,],.f x a b 如果函数在闭区间上连续那么它在该区间上一致连续第二章导数与微分(1)(导数的定义)000000000000000()(),()();lim(),(),(),()()()lim lim lim x x x x x y f x x x x x x x yy f x x f x xy f x x y f x x f x f x x f x f yf x x x ∆→∆→∆→→=∆+∆∆∆=+∆−∆′==+∆−∆′===∆∆设函数在点的某个邻域内有定义,当自变量在处取得增量点仍在该邻域内时相应的函数取得增量如果存在,则称函数在点处可导并称这个极限为函数在点处的导数记为即0000()(),,().x x x x x x x f x dyy x x dxdf x dx===−′−也可记作或(2)(函数可导的充分必要条件)000000()()()()()().f x x f x f x f x f x f x −+−+′′′′′==函数在点处可导的充分必要条件是左导数和右导数都存在且相等,即(3)(可导与连续的关系)(),.y f x x =如果函数在点处可导则函数在该点必连续(4)(函数的和、差、积、商的求导法则)[]2()(),(1)()()()()(2)[()()]()()()()()()()()()(3)(()0).()()u u x v v x x x u x v x u x v x u x v x u x v x u x v x u x u x v x u x v x v x v x v x ==′′′±=±′′′=+′′′⎡⎤−=≠⎢⎥⎣⎦如果函数及都在点具有导数,那么它们的和、差、积、商(除分母为0的点外)都在点具有导数且(5)(反函数的求导法则){}11()()0,()11(),,().()y x y x f y I f y y f x dy I x x f y y I f x dx f y dxdy−−′=≠=′⎡⎤==∈==⎣⎦′如果函数在区间内单调、可导且则它的反函数在区间内也可导且或(6)(复合函数的求导法则)[](),()(),(),()().u g x x y f u u g x y f g x x dy dy dy du f u g x dx dx du dx====′′=⋅=⋅如果在点可导而在点可导则复合函数在点可导且其导数为或(7)(微分的定义)000000(),,()()(),,()(),,.y f x x x x y f x x f x y A x x A x y f x x A x y f x x x dy dy A x ο=+∆∆=+∆−∆=∆+∆∆=∆=∆=∆设函数在某区间内有定义及在这区间内如果增量可表示为其中是不依赖于的常数那么称函数在点是可微的,而叫做函数在点相应于自变量增量的微分记作即(8)(可微与可导的关系)0000()(),(),(),().f x x f x x f x x dy f x dx dy f x dx ′′==函数在点可微的充分必要条件是函数在点可导且当在点可微时其微分一定是即函数微分的表达式(9)(函数和、差、积、商的微分法则)()()2()(),(1)(2)(3)(0).u u x v v x x x d u v du dv d uv vdu udv u vdu udvd v v v ==±=±=+−⎛⎞=≠⎜⎟⎝⎠如果函数及都在点可微,那么它们的和、差、积、商(除分母为0的点外)都在点可微且(10)(复合函数的微分法则)[]()()()()(),().x u y f u u g x x f g x dy y dx f u g x dx dy f u du dy y du ==′′′′′====设函数及都在点处可导,则复合函数的微分为也可以写成或第三章微分中值定理与导数的应用(1)(费马引理)0000000()(),,(),()()(()()),()0.f x x U x x x U x f x f x f x f x f x ∀∈′≤≥=设函数在点的某邻域内有定义并在处可导如果对有或那么(2)(罗尔定理)[]()()(),(2),;(3),()().,()()0.f x a b a b f a f b a b a b f ξξξ=′<<=如果函数满足:(1)在闭区间上连续;在开区间上可导在区间端点处的函数值相等即那么在内至少有一点,使得(3)(拉格朗日中值定理)[]()()()(1),;(2),;,(),()()()().f x a b a b a b a b f b f a f b a ξξξ′<<−=−如果函数满足:在闭区间上连续在开区间上可导那么在内至少有一点使等式成立(4)()0,().f x I f x I 如果函数在区间上的导数恒为那么在区间上是一个常数(5)(柯西中值定理)[]()()()()()(1),;(2),;(3),,()0;()()(),,.()()()f x F x a b a b x a b F x f b f a f a b F b F a F ξξξ′∀∈≠′−=′−如果函数及满足:在闭区间上连续在开区间上可导对那么在内至少有一点使等式成立(6)(洛必达法则)000000()()()()()0()()()(1)lim ()0lim ()0,lim ()lim ()lim()0;0(2)(),()(),()0;()(3)lim ,()limx x x x x x x x x x x x x x x x x x x x x f x f x g x f x g x g x f x g x U x x X g x f x g x f →→→→→→∞→∞→∞→∞→∞→→∞→→∞===∞=∞∞∞′>≠′∞′�且或者且,即极限为未定式或在某去心邻域或时可导且存在或为则0()()()lim .()()x x x x f x g x g x →→∞′=′(7)(泰勒中值定理泰勒公式)()()()()0()20000000(1)10(1)0(),(1),,,()()()()()()()()(),2!!()()()().(1)!,,(),()n n n n n n n n f x x a b n a b f x f x f x f x f x x x x x x x R x n f R x x x a b n x a b f x M R x x x ξξο++++∀∈′′′=+−+−++−+=−<<+∈≤=−⋯如果函数在含有的某个开区间内具有直到阶的导数则对x 恒有其中称为拉格朗日型余项.如果当时则有.n⎡⎤⎣⎦,称为佩亚诺型余项(8)(麦克劳林公式)()20(0)(0)0,()(0)(0)(),2!!n nn f f x f x f f x x x R x n ′′′==+++++⋯在泰勒公式中,当时称为麦克劳林公式.(9)(函数单调性的判定定理)[]()()[]()[](),,,.(1),()0,(),.(2),()0,(),.y f x a b a b a b f x y f x a b a b f x y f x a b =′>=′<=设函数在上连续在内可导如果在内那么函数在上单调增加如果在内那么函数在上单调减少将闭区间换成其他各种区间(包括无穷区间),结论也同样成立.(10)(曲线凹凸性的定义)1212121212(),,()(),()()();22()()(2),()()().22f x I I x x x x f x f x f f x I x x f x f x f f x I ++⎛⎞<⎜⎟⎝⎠++⎛⎞>⎜⎟⎝⎠设在区间上连续对上任意两点(1)如果恒有那么称在上的图形是向上凹的或凹弧如果恒有那么称在上的图形是向上凸的或凸弧(11)(曲线凹凸性的判定定理)[]()()[]()[](),,,,(1),()0,(),;(2),()0,(),f x a b a b a b f x f x a b a b f x f x a b ′′>′′<设在上连续在内具有一阶和二阶导数那么若在内则在上的图形是凹的若在内则在上的图形是凸的.(12)(函数极值的定义)000000()(),(),()()(()()),()()f x x U x U x x f x f x f x f x f x f x <>�设函数在点的某邻域内有定义如果对于去心邻域内的任意一点有或那么就称是函数的一个极大值(或极小值).(13)(可导函数取得极值的必要条件)000(),,()0.f x x x f x ′=设函数在处可导且在处取得极值那么(14)(判定极值的第一充分条件)()()()()()()000000000000000(),,.(1),,()0,,,()0,();(2),,()0,,,()0,();(3),,(),().f x x x U x x x x f x x x x f x f x x x x x f x x x x f x f x x x U x f x f x x δδδδδδ′′∈−>∈+<′′∈−<∈+>′∈��设函数在处连续且在的某去心邻域内可导若时而时则在处取得极大值若时而时则在处取得极小值若时的符号保持不变则在处没有极值(15)(判定极值的第二充分条件)0000000()()0,()0,(1)()0,();(2)()0,()f x x f x f x f x f x x f x f x x ′′′=≠′′<′′>设函数在处具有二阶导数且那么当时函数在处取得极大值当时函数在处取得极小值.(16)(区间内单一极值时最值的判定)000000()(,),()(),()();(2)()()().f x x x f x f x f x f x f x f x f x 函数在一个区间有限或无限开或闭内可导且只有一个驻点并且这个驻点是函数的极值点,那么(1)当是极大值时就是在该区间上的最大值当是极小值时,就是在该区间上的最小值第四章~第六章一元函数积分学(1)(原函数的定义),()(),,()()()(),()()(()).I F x f x x I F x f x dF x f x dx F x f x f x dx I ′∀∈==如果在区间上可导函数的导函数为即对都有或那么函数就称为或在区间上的原函数(2)(原函数存在定理)(),(),()()..f x I I F x x I F x f x ∀∈′=如果函数在区间上连续那么在区间上存在可导函数使对都有即连续函数一定有原函数(3)(原函数之间的关系){}()().()()(),()()(),(),().f x I f x F x x f x x F x C C f x F x C C ΦΦ−=+−∞<<+∞如果在区间上有一个原函数,那么就有无限多个原函数假设和均为的原函数则为某个常数且的全体原函数所组成的集合就是函数族(4)(不定积分的定义),()()(()),().,(),(),.I f x f x f x dx I f x dx f x f x dx x ∫∫在区间上函数的带有任意常数项的原函数称为或在区间上的不定积分记作其中记号称为积分号称为被积函数称为被积表达式称为积分变量(5)(不定积分的性质1)[]()(),()()()().f xg x f x g x dx f x dx g x dx ±=±∫∫∫设函数及的原函数存在则(6)(不定积分的性质2)(),()().f x k kf x dx k f x dx =∫∫设函数的原函数存在为非零常数,则(7)(不定积分的凑微分法第一类换元法)[]()(),(),()()()u x f u u x f x x dx f u du ϕϕϕϕ==⎡⎤′=⎣⎦∫∫设具有原函数可导则有换元公式(8)(不定积分的代入法第二类换元法)[]11()(),()0.[()](),()()(),()().t x x t x f x x f x dx f t t dt x x t ψψψψψψψψψ−−=′′=≠⎡⎤′==⎣⎦∫∫设是单调的、可导的函数并且又设具有原函数则有换元公式其中是的反函数(9)(不定积分的分部积分法)()(),.u u x v v x udv uv vdu ===−∫∫设函数及具有连续导数那么(10)(定积分的定义)[][][][][][]{}[][][]012101121112111(),,,,,,,,,,,max ,,,,,,()0,n n n n i i i n i i i ni i i i i i f x a b a b a x x x x x b a b n x x x x x x x x x x x x x x a b f x x x λξξλξ−−−−−==<<<<<=∆=−=∆∆∆∈∆→∈∑⋯⋯⋯设函数在有界闭区间上有定义,在中任意插入若干个分点把区间分成个小区间各个小区间的长度依次为记,令若无论区间怎么分划,在时总存在与选取无关的确定的[][][]01(),(),(),()lim (),(),(),,,,,nbi i ai I f x a b I f x a b f x dx I f x f x f x dx x a b a b λξ→===∆∑∫极限,则称函数在上是可积的,这个极限称为函数在区间上的定积分简称积分记作其中叫做被积函数叫做被积表达式叫做积分变量叫做积分下限叫做积分上限叫做积分区间.(11)(函数可积的条件1)[][](),,(),.f x a b f x a b 设在区间上连续则在上可积(12)(函数可积的条件2)[][](),,,(),.f x a b f x a b 设在区间上有界且只有有限个间断点则在上可积(13)(定积分的性质1)[]()()()()bbbaaaf xg x dx f x dx g x dx±=±∫∫∫(14)(定积分的性质2)()()()bbaa kf x dx k f x dx k =∫∫是常数(15)(定积分的性质3),()()()bcbaaca cb f x dx f x dx f x dx<<=+∫∫∫设则(16)(定积分的性质4)[],()1,1.b baaa b f x dx dx b a ≡==−∫∫如果在区间上则(17)(定积分的性质5)[],,()0(()0),()0(()0).b baaa b f x f x f x dx f x dx a b ≥≤≥≤<∫∫如果在区间上或则或 ()(18)(定积分性质5的推论1)[],,()(),()()().b baaa b f x g x f x dx g x dx a b ≤≤<∫∫如果在区间上则 (19)(定积分性质5的推论2)()()bbaaf x dx f x dx a b ≤<∫∫ ().(20)(定积分的性质6)[](),,()()())baM m f x a b m b a f x dx M b a a b −≤≤−<∫设及分别是函数在区间上的最大值和最小值则((21)(定积分中值定理积分中值公式)[][](),,,()()().baf x a b a b f x dx f b a ξξ=−∫如果函数在积分区间上连续则在上至少存在一个点,使得成立(22)(积分上限函数的可导性)[][](),,()(),,()()()xaxa f x ab x f t dt a b d x f t dt f x a x b dxΦ=′Φ==≤≤∫∫如果函数在区间上连续则积分上限的函数在上可导并且它的导数 ().(23)[][](),,()()(),.xaf x a b x f t dt f x a b Φ=∫如果函数在区间上连续则函数就是在上的一个原函数(24)(牛顿(Newton)-莱布尼兹(Leibniz)公式微积分基本公式)()()[,],()()().baF x f x a b f x dx F b F a =−∫如果函数是连续函数在区间上的一个原函数则(25)(定积分的换元法)[][][]()()()(1)(),();(2)(),(,)()()().bay f x x t t x t a b t f x dx f t t dt βαϕαβϕϕαϕβϕαββαϕϕ==≤≤===′=∫∫假设函数在函数的值域上连续(),函数满足条件:在或上具有连续导数,则有(26)[][]0(1)(),,()2().(2)(),,()0.aaaaaf x a a f x dx f x dx f x a a f x dx −−−=−=∫∫∫若在上连续且为偶函数则若在上连续且为奇函数则(27)[]2200()0,1,(1)(sin )(cos );(2)(sin )(sin ).2f x f x dx f x dx xf x dx f x dx πππππ==∫∫∫∫若在上连续则(28)(),,(1)()();(2)()()().a T Taa nTTaf x T f x dx f x dx f x dx n f x dx n N ++==∈∫∫∫∫设是连续的周期函数周期为则(29)(定积分的分部积分法)[][],()(),.bbba aaa b u x v x udv uv vdu =−∫∫设在区间上函数和可导则(30)(无穷限的反常积分的定义)[)[)[)(),,,lim (),(),,(),()lim ().();,(),(),()tat taaat aaf x a t a f x dx f x a f x dx f x dx f x dx f x dx f x a f x dx f x →+∞+∞+∞→+∞+∞+∞+∞>+∞=+∞∫∫∫∫∫∫(1)设函数在区间上连续取如果极限存在则称此极限为函数在无穷区间上的反常积分记作即这时也称反常积分收敛如果上述极限不存在则函数在无穷区间上的反常积分没有意义习惯上称为反常积分(](],().(2)(),,,lim (),(),,(),()lim ().();,().(aabtt bbbtt b bdx f x dxf x b t b f x dx f x b f x dx f x dx f x dx f x dx f x dx +∞+∞→−∞−∞−∞→−∞−∞−∞−∞<−∞=∫∫∫∫∫∫∫∫发散这时记号不再表示数值设函数在区间上连续取如果极限存在则称此极限为函数在无穷区间上的反常积分记作即这时也称反常积分收敛如果上述极限不存在则称反常积分发散()()03)(),,()(),(),(),()()()lim ()lim (),();t tt t f x f x dx f x dx f x f x dx f x dx f x dx f x dx f x dx f x dx f x dx +∞−∞+∞−∞+∞+∞−∞−∞→+∞→−∞+∞−∞−∞+∞−∞+∞=+=+∫∫∫∫∫∫∫∫∫设函数在区间上连续如果反常积分和都收敛则称上述两反常积分之和为函数在无穷区间上的反常积分,记作即这时也称反常积分收敛否则就称反常积分().f x dx +∞−∞∫发散(31)(瑕点的定义)()()().f x a a f x 如果函数在点的任一邻域内都无界,那么点称为函数的瑕点也称为无界间断点(32)(无界函数的反常积分的定义)(](][)(),,(),lim (),(),,(),()lim ().().,().(2)(),,()btt ab b baatt ab baaf x a b a f x t a f x dx f x a b f x dx f x dx f x dx f x dx f x dx f x a b b f x ++→→>=∫∫∫∫∫∫(1)设函数在上连续点为的瑕点.取如果极限存在则称此极限为函数在上的反常积分仍然记作即这时也称反常积分收敛如果上述极限不存在则称反常积分发散设函数在上连续点为的瑕点.取[],lim (),()lim ().().(3)(),(),().()()()()()lim ()l tat bbt baaat bc abbcbtcaacat ct b f x dx f x dx f x dx f x dx f x a b c a c b c f x f x dx f x dx f x dx f x dx f x dx f x dx −−−→→→<=<<=+=+∫∫∫∫∫∫∫∫∫∫如果极限存在则定义否则,就称反常积分发散设函数在上除点外连续点为的瑕点如果两个反常积分与都收敛,则定义im ().().btt cbaf x dx f x dx +→∫∫否则,就称反常积分发散(33)(无穷限反常积分的审敛法1)[)[)(),,()0.()(),()xaaf x a f x F x f t dt a f x dx +∞+∞≥=+∞∫∫设函数在区间上连续且若函数在上有上界,则反常积分都收敛.(34)(无穷限反常积分的审敛法2比较审敛原理)[)()(),.0()()(),(),()0()()(),(),().aaaaf xg x a f x g x a x g x dxf x dxg x f x a x g x dx f x dx +∞+∞+∞+∞+∞≤≤≤<+∞≤≤≤<+∞∫∫∫∫(1)设函数和在区间上连续如果并且收敛则也收敛;(2)如果并且发散则也发散(35)(无穷限反常积分的审敛法3比较审敛法1)[)(),(0),()0.(1)01,()(),();0,()(),().p a a f x a a f x MM p f x a x f x dx xNN f x a x f x dx x+∞+∞+∞>≥>>≤≤<+∞>≥≤<+∞∫∫设函数在区间上连续且如果存在常数及使得则反常积分收敛(2)如果存在常数使得则反常积分发散(36)(无穷限反常积分的审敛法4极限审敛法1)[)(),,()0.1,lim (),()(2)lim ()0(lim ()),().p a x ax x f x a f x p x f x f x dx xf x d xf x f x dx +∞→+∞+∞→+∞→+∞+∞≥>=>=+∞∫∫设函数在区间上连续且(1)如果存在常数使得存在则反常积分收敛;如果或则反常积分发散(37)(无穷限反常积分的审敛法5)[)(),.(),().().aaaf x a f x dx f x dx f x dx +∞+∞+∞+∞∫∫∫设函数在区间上连续如果反常积分收敛则反常积分也收敛即绝对收敛的反常积分必定收敛(38)(无界函数的反常积分的审敛法1比较审敛法2)(](),,()0().(1)01,()(),();()(2)0()(),().b q a b a f x a b f x x a f x MM q f x a x b f x dx x a NN f x a x b f x dx x a≥=>>≤<≤−>≥<≤−∫∫设函数在区间上连续且,为的瑕点如果存在常数及使得则反常积分收敛如果存在常数,使得则反常积分发散(39)(无界函数的反常积分的审敛法2极限审敛法2)(](),,()0,().(1)01,lim ()()();(2)lim ()()0(lim ()()),().bq a x abax ax af x a b f x x a f x q x a f x f x dx x a f x d x a f x f x dx +++→→→≥=<<−−=>−=+∞∫∫设函数在区间上连续且为的瑕点如果存在常数使得存在,则反常积分收敛如果或则反常积分发散(40)(Γ函数的相关性质)21101220(1):()(0).0.(2)(1)()(0).,(1)!(3)0,().(4)()(1)(01).sin (5)(),,()2x s x s xs u s e x dx s e x dx s s s s s n N n n s s s s s ss e x dx x u s eu ππ+∞+∞−−−−+++∞−−−ΓΓ=>>Γ+=Γ>∈Γ+=→Γ→+∞ΓΓ−=<<Γ==Γ=∫∫∫函数定义 反常积分对任意都收敛递推公式: 当时当时余元公式:在中作代换有2100.11121,()(1).222s u tdu t t s t s e u du t +∞−+∞−++−===Γ>−∫∫再令或即有 (41).光滑曲线弧是可求长的。
同济高等数学公式大全
高等数学公式导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:·半角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学(同济第七版)上册-知识点汇总
高等数学(同济第七版)上册-知识点汇总————————————————————————————————作者:————————————————————————————————日期:高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
同济高等数学公式大全
高等数学公式导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式:·半角公式:·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n ϖϖϖϖϖdiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为l 2的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n nn nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
如果f (x )在间断点0x 处的左、右极限都存在,则称0x 是f (x )的第一类间断点。
左右极限存在且相同但不等于该点的函数值为可去间断点。
左右极限不存在为跳跃间断点。
第一类间断点包括可去间断点和跳跃间断点。
(2)第二类间断点第一类间断点以外的其他间断点统称为第二类间断点。
常见的第二类间断点有无穷间断点和振荡间断点。
四.闭区间上连续函数的性质在闭区间[a ,b ]上连续的函数f (x ),有以下几个基本性质。
这些性质以后都要用到。
定理1.(有界定理)如果函数f (x )在闭区间[a ,b ]上连续,则f (x )必在[a ,b ]上有界。
定理2.(最大值和最小值定理)如果函数f (x )在闭区间[a ,b ]上连续,则在这个区间上一定存在最大值M 和最小值m 。
定理3.(介值定理)如果函数f (x )在闭区间[a ,b ]上连续,且其最大值和最小值分别为M 和m ,则对于介于m 和M 之间的任何实数c ,在[a ,b ]上至少存在一个ξ ,使得f (ξ ) = c推论:如果函数f (x )在闭区间[a ,b ]上连续,且f (a )与f (b )异号,则在(a ,b )至少存在一个点ξ ,使得f (ξ ) = 0这个推论也称为零点定理第二章导数与微分一.基本概念1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。
二.求导公式三.常见求导1.复合函数运算法则2.由参数方程确定函数的运算法则设x =φ(t ),y =)(t ϕ确定函数y = y (x ),其中)('),('t t ϕφ存在,且)('t φ≠ 0,则)(')('t t dx dy φϕ= 3.反函数求导法则设y = f (x )的反函数x = g (y ),两者皆可导,且f ′(x ) ≠ 0 则)0)('())(('1)('1)('≠==x f y g f x f y g 4.隐函数运算法则设y = y (x )是由方程F (x , y ) = 0所确定,求y ′的方法如下:把F (x , y ) = 0两边的各项对x 求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y ′ 的表达式(允许出现y 变量) 5.对数求导法则 (指数类型 如x x y sin =)先两边取对数,然后再用隐函数求导方法得出导数y ′。
对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数(注意定义域。
关于幂指函数y = [f (x )]g (x ) 常用的一种方法,y = )(ln )(x f x g e 这样就可以直接用复合函数运算法则进行。
6. 求n 阶导数(n ≥ 2,正整数)先求出 y ′, y ′′,…… ,总结出规律性,然后写出y (n ),最后用归纳法证明。
有一些常用的初等函数的n 阶导数公式 (1) x n x e y e y ==)(, (2) n x n x a a y a y )(ln ,)(== (3) x y sin =,)2sin()(πn x y n += (4) x y cos =,)2cos()(πn x y n +=(5)x y ln =,n n n x n y ----=)!1()1(1)(第三章 微分中值定理与导数应用一 .罗尔定理设函数 f (x )满足(1)在闭区间[a ,b ]上连续;(2)在开区间(a ,b )可导;(3) f (a ) = f (b ) 则存在ξ ∈(a ,b ),使得f ′(ξ ) = 0二. 拉格朗日中值定理设函数 f (x )满足(1)在闭区间[a ,b ]上连续;(2)在开区间(a ,b )可导;则存在ξ ∈(a ,b ),使得)(')()(ξf ab a f b f =--推论1.若f (x )在(a ,b )可导,且f ′(x ) ≡ 0,则f (x )在(a ,b )为常数。
推论2.若f (x ) ,g (x ) 在(a ,b ) 皆可导,且f ′(x ) ≡ g ′(x ),则在(a ,b )f (x ) = g (x )+ c ,其中c 为一个常数。
三 .柯西中值定理设函数f (x )和g (x )满足:(1)在闭区间[a ,b ]上皆连续;(2)在开区间(a ,b )皆可导;且g ′(x ) ≠ 0则存在ξ ∈(a ,b )使得)(')(')()()()(ξξg f a g b g a f b f =--)(b a <<ξ(注:柯西中值定理为拉格朗日中值定理的推广,特殊情形g (x ) = x 时,柯西中值定理就是拉格朗日中值定理。
)四.泰勒公式(① 估值 ② 求极限(麦克劳林))定理 1.(皮亚诺余项的n 阶泰勒公式) 设f (x )在0 x 处有n 阶导数,则有公式,称为皮亚诺余项定理2(拉格朗日余项的n 阶泰勒公式)设f (x)在包含0 x 的区间(a,b)有n +1阶导数,在[a,b]上有n阶连续导数,则对x∈[a,b],有公式,,称为拉格朗日余项x=0 时,也称为n阶麦克劳上面展开式称为以0(x) 为中心的n 阶泰勒公式。
当林公式。
常用公式(前8个)五.导数的应用一.基本知识设函数f (x )在0x 处可导,且0x 为f (x )的一个极值点,则0)('0=x f 。
我们称x 满足0)('0=x f 的0x 称为)(x f 的驻点,可导函数的极值点一定是驻点,反之不然。
极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。
极值点判断方法 1. 第一充分条件 )(x f 在0x 的邻域可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点. 2.第二充分条件)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3.泰勒公式判别法(用的比较少,可以自行百度)二.凹凸性与拐点 1.凹凸的定义设f (x )在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有则称f (x)在I 上是凸(凹)的。