11等差数列练习题定
小学数学《等差数列》练习题(含答案)
小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手,多多赢得小印章!分析:以下答案仅供参考!(1) 先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、…… 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、…… 从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用a 1表示;末项:一个数列的最后一项,通常用a n 表示,它也可表示数列的第n 项. 每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变得差,通常用d 来表示;和 :一个数列的某些项的和,常用S n 来表示 .(3) 三个重要的公式:① 通项公式:末项=首项+(项数-1)×公差1(1)n a a n d =+-⨯回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:(),()n m a a n m d n m -=-⨯② 项数公式:项数=(末项-首项)÷公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到: 1()1n n a a d =-÷+ (1na a 若);1n ()1n a a d =-÷+(1n a a 若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、……、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组. 当然,我们还可以有其他的配组方法.③ 求和公式:和=(首项+末项)×项数÷21()2n n s a a n =+⨯÷对于这个公式的得到我们可以从两个方面入手:(思路1)1+2+3+…+98+99+100=101×50=5050(思路2)这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:(1)4+8+12+…+32+36=(4+36)×9÷2=20×9=180 ,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20×9 ;(2)65+63+61+…+5+3+1=(1+65)×33÷2=33×33=1089 ,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33×33 .如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项 .中项定理也可用在速算与巧算中.譬如:计算:124.68+324.68+524.68+724.68+924.68分析:这是一列等差数列,项数是奇数,中间数是524.68,所以可以用5×524.68=2623.4 .等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点.一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透.【复习2】某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.问:这个剧一共有多少个座位?分析:首项:70-(25-1)×2=22 ,座位总数:(22+70)×25÷2=1150.【复习3】小明从1月1日开始写大字。
等差数列典型例题(含答案)
等差数列试题精选一、选择题:(每小题5分,计50分)1.等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )62.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)73.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .54.记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 2 5.等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8.已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9.如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项 二、填空题:(每小题5分,计20分)11设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a _____________.12.已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________13.已知数列的通项a n = -5n +2,则其前n 项和为S n = . 三、解答题:(15、16题各12分,其余题目各14分)14.等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.15.已知数列{}n a 是一个等差数列,且21a =,55a =-。
新高考数学一轮二轮复习专题-专题十一 等差数列与等比数列(原卷版)-4月5月真题汇编
专题十一 等差数列与等比数列一、单选题1.(2021·全国高三专题练习(理))设数列{}n a 满足13a =,26a =,()2*129n n na a n a +++=∈N ,( )A .存在*n ∈N ,n a Q ∈B .存在0p >,使得{}1n n a pa +-是等差数列C .存在*n ∈N,n a =D .存在0p >,使得{}1n n a pa +-是等比数列2.(2021·全国高三专题练习)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( ) A .119B .121C .120D .122二、多选题3.(2021·全国高三专题练习)已知数列{}n a 的前n 项和为n S ,且满足1114240,1n n n n a a a a a λλμ++++--==,则下列结论正确的是( )A .若11,2λμ==,则{}n a 是等差数列 B .若11,2λμ==,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1nn + C .若12,2λμ==,则{}1n a +是等比数列 D .若12,2λμ==,则122n n S n +=--第II 卷(非选择题)请点击修改第II 卷的文字说明 三、解答题4.(2021·全国高三专题练习(理))已知正项数列{}n a 的前n 项和为n S ,且22111224n n n n n n a a a a a a ----=++(2n ≥),11a =.(1)证明数列{}n a 是等差数列,并求其前n 项和n S .(2)若141n n b S =-,试求数列{}n b 的前n 项和n T .5.(2021·浙江温州市·高三二模)已知数列{}n a 的前n 项和为n S ,且2,,n n n S n n ⎧=⎨⎩为奇数为偶数.(1)求23,a a 及通项公式n a ;(2)记1n n n b a a +=+,求数列{}12n n b -⋅的前2n 项的和2n T .6.(2021·全国高三专题练习(文))已知数列{}n a 对任意的*n N ∈都满足312233333nn a a a a n ++++=. (1)求数列{}n a 的通项公式; (2)令3413431log log n n n b a a -+=,求数列{}n b 的前n 项和为n T .7.(2021·天津河西区·高三一模)已知数列{} n a 是等差数列,{} n b 是递增的等比数列,且11a =,12b =,222b a =,3331b a =-. (1)求数列{} n a 和{} n b 的通项公式;(2)若()()1211 n a n n n c b b +=--,求数列{} n c 的前n 项和n S .8.(2021·浙江宁波市·高三专题练习)在①22n n nS +=;②112n n n a a a +-=-,77428S a ==;③11n n a n a n++=,36S =这三个条件中任选一个补充在下面的问题中,并加解答.问题:设数列{}n a 的前n 项和为n S ,___________,若2n nn a a b =,求数列{}n b 的前n 项和.注:如果选择多个条件分别解答,按第一解答计分.9.(2021·全国高三专题练习)数列{}n a 的前n 项之和为n S ,11a =,11n n a pa +=+(p为常数)(1)当1p =时,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项之和;(2)当2p =时,求证数列{}1n a +是等比数列,并求n S .10.(2021·莆田第二十五中学高二期末)已知{}n a 为等差数列,{}n b 为等比数列,111a b ==,5435()a a a =-,5434()b b b =-.(1)求{}n a 和{}n b 的通项公式;(2)221n n n c a b +=,求数列{}n c 的前n 项和n S .11.(2021·江苏高三专题练习)由整数构成的等差数列{}n a 满足31245,2a a a a ==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 的通项公式为2nn b =,将数列{}n a ,{}n b 的所有项按照“当n 为奇数时,n b 放在前面;当n 为偶数时、n a 放在前面”的要求进行“交叉排列”,得到一个新数列{}n c ,1b ,1a ,2a ,2b ,3b ,3a ,4a ,4b ,……,求数列{}n c 的前43n +项和43n T +.12.(2020·江苏南京市·南京师大附中高三月考)已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足22(2)21nn n S a n S =≥-. (1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)设1n n b S =,()211n n n n b c b b ++=⋅,求数列{}n c 的前n 项和n T . 13.(2020·江苏宿迁市·宿迁中学)已知各项均为正数的等差数列{}n a 的首项为1,且满足235621a a a =-. (1)求{}n a 的通项公式; (2)数列{}n b 的通项公式为2(1)2n n a n n a b a a +=+,其前n 项和为{}n S ,证明1n S <.14.(2020·天津静海区·高三月考)已知正项数列{}n a 的前n 项和为n S ,且n a 和n S 满足:()()2411,2,3n n S a n =+=⋅⋅⋅.(1)求{}n a 的通项公式;(2)设11n n n b a a +=⋅,求{}n b 的前n 项和n T ;(3)在(2)的条件下,对任意*n ∈N ,23n mT >都成立,求整数m 的最大值. 15.(2020·江苏南通市·高三期中)已知等差数列{}n a 的首项为1a ,公差为1(,)d a Z d Z ∈∈,前n 项的和为n S ,且7549,2426S S =<<.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项的和为T n ,求T n .16.(2020·陕西西安市·长安一中高二期中(文))正项数列{}n a 满足:2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前n 项和n T .17.(2021·山东高三专题练习)已知数列{}n a 中10a =,且1210n n a a ---=,()*2,n n N ≥∈.(1)求证:数列{}1n a +为等比数列;(2)设()1n n b n a =+,求数列{}n b 的n 项和n T .18.(2021·全国高三专题练习)数列{}n a 的前n 项和为n S ,已知11a =,()()12123n n n a n S +-=+(1n =,2,3,…). (1)证明:数列21n S n ⎧⎫⎨⎬-⎩⎭是等比数列; (2)求数列{}n S 的前n 项和n T .19.(2020·黑龙江哈尔滨市·哈尔滨三中高三期中(理))数列{}n a 中,12a =,()121n n n a a n++=.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)设n n n b a n=-,数列{}12nn n b b +的前n 项和为n S .求证:1n S <. 20.(2021·全国)已知数列{}n a 的前n 项和为n S ,()*112n n a S n =+∈N . (1)求n S ;(2)若21log 2n n n n b a a ⎛⎫=+⎪⎝⎭,求数列{}n b 的前n 项和n T .21.(2020·咸阳市高新一中高三月考(理))已知数列{}n a 是递增的等差数列,23a =,若13181,,a a a a a -+成等比数列. (1)求数列{}n a 的通项公式; (2)若13n n n b a a +=,数列{}n b 的前n 项和n S ,求n S . 22.(2021·江西新余市·高二其他模拟(理))等比数列{}n a 中,12a =,且2,21a +,3a 成等差数列,(1)求{}n a 的通项公式;(2)数列{}n b 满足122nb n a a a ⋅⋅⋅=,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和nS .23.(2020·湖南永州市·高三月考)设数列{}n a 的前n 项和为n S ,已知11a =,*11()n n a S n N +=+∈.(1)求数列{}n a 的通项公式; (2)若n a ,1b ,2b ,,n b ,1n a +组成一个2n +项的等差数列,记其公差为n d ,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .24.(2020·天津滨海新区·高三其他模拟)已知数列{}n a 的前n 项和为n S ,()2*n S n n N =∈,数列{}n b 为等比数列,且21a +,41a +分别为数列{}n b 第二项和第三项.(1)求数列{}n a 与数列{}n b 的通项公式;(2)若数列11n n n n n c a b a a +=+,求数列{}n c 的前n 项和n T . 25.(2020·宁夏银川一中高三月考(理))已知数列{}n a 满足114a =,112n n n n a a a a ---=⋅(2n ≥,*n N ∈),0n a ≠ (1)证明数列11n a ⎧⎫-⎨⎬⎩⎭*()n N ∈为等比数列,求出{}n a 的通项公式; (2)数列{}n a 的前项和为n T ,求证:对任意*n N ∈,23n T <. 26.(2020·湖北武汉市·高二期末)已知数列{}n a 满足11a =,13(1)n n na n a +=+,设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,说明理由;并求{}n a 的通项公式.27.(2020·重庆高二月考)已知数列{}n a ,{}n b ,n S 为数列{}n a 的前n 项和,214a b =,22n n S a =-,()211n n nb n b n n +-+=+()*n N ∈.(1)求数列{}n a 的通项公式; (2)证明n b n ⎧⎫⎨⎬⎩⎭为等差数列. (3)若数列{}n c 的通项公式为,2,4n nn n n a b n c a b n 为奇数为偶数⎧-⎪⎪=⎨⎪⎪⎩,令212n n n P c c -=+.n T 为{}n P 的前n 项的和,求n T .28.(2020·河北保定市·高碑店一中高一月考)已知数列{}n a 的前n 项和为n S ,且满足()112n n S a n N *+=∈(1)求数列{}n a 的通项公式n a ;(2)设()()113log 1n n b S n N *+=-∈,令12231111nn n Tb b b b b b +=++⋅⋅⋅+,求n T . 29.(2021·湖北荆州市·沙市中学高二期末)已知等差数列{}n a 的前n 项和为()*n S n N ∈,{}n b 的通项公式为3411142,2,11n n b b a a S b ==-=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}221n n a b -的前n 项和()*n T n N∈.30.(2020·广东河源市·中山高级中学高二期中)已知等差数列{}n a 满足253,25a S ==. (1)求数列{}n a 的通项公式; (2)令11n n n b a a +=,求数列{}n b 的前n 项和n S . 31.(2020·黑龙江哈尔滨市第六中学校高二开学考试(理))已知数列{}n a 满足12a =,132n n a a +=+.(1)证明{1}n a +是等比数列,并求{}n a 的通项公式;(2)若数列{}n b 满足3log (1)n n b a =+,n T 为数列{}·(1)n n b a +的前n 项和,求n T . 32.(2019·广东湛江市·高二期末(文))已知数列{}n a 是等比数列,首项11a =,公比0q >,其前n 项和为n S ,且11S a +,33S a +,22S a +成等差数列.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足n nnb a =,求数列{}n b 的前n 项和n T . 33.(2020·苏州市相城区望亭中学高二月考)已知等差数列{}n a 的公差d 大于0,且满足3655a a =,2716a a +=.数列{}n b 满足231222n b b a b =++1(*)2nn b n -++∈N . (1)求数列{}n a ,{}n b 的通项公式; (2)设121n n n n n a a a c b +++=,求n c 取得最大值时n 的值.34.(2020·湖北荆州市·沙市中学高二期末)已知等差数列{a n }满足a 1+a 4+a 7=0,a 3+a 6+a 9=﹣18,前n 项和为S n . (1)求S 9(2)记b n =|a n |,求数列{b n }的前9项和T 9.35.(2020·福清西山学校高三期中(文))数列{}n a 中,n S 为前n 项和,且*23()n n S na n n N =+∈.(1)求证:{}n a 是等差数列; (2)若25,n a b ==,n T 是{}n b 的前n 项和,求n T .36.(2020·大同市煤矿第四中学校高三期中(理))已知数列{}n a 成等差数列,各项均为正数的数列{}n b 成等比数列,132,8b b ==,且2323a a b -=,3433a a b -=. (1)求数列{}n a 和{}n b 的通项公式; (2)设2211log n n n c a b +=⋅,求数列{}n c 的前n 项和n S .37.(2020·陕西西安市·西安中学高二月考(理))已知数列{}n a 的前n 项和为n S ,且1111,(1,2,3,)2n n a a S n +===.(1)求数列{}n a 的通项公式;(2)设()312log 3n n b a +=时,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 38.(2020·湖南长沙市·高二月考)已知数列{}n a 的前n 项和为n S ,10a =,1n n S a n +=-,*n ∈N .(1)求证:数列{}1n a +是等比数列; (2)设数列{}n b 的前n 项和为n T ,已知1n n n b a =+,若不等式922n nT m a ≥-+对于*n ∈N 恒成立,求实数m 的最大值.39.(2020·长沙市湖南师大第二附属中学有限公司高三月考)已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为正项等比数列,且13a =,11b =,3212b S +=,5322a a b -=.(1)求数列{}n a 和{}n b 的通项公式;(2)若2(()n n nn S c b n 为奇数)为偶数⎧⎪=⎨⎪⎩,设{}n c 的前n 项和为n T ,求2n T .40.(2020·江苏省江阴市第一中学高二期中)设数列{}n a 的前n 项和为n S ,已知11a =,*13 1 (N )n n S S n +-=∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:31log n n b a +=,{}n b 的前n 项和为n T ,求12100111T T T +++的值.41.(2020·山西省长治市第二中学校高三月考(理))已知等差数列{}n a 的前n 项和为n S ,47a =,525S =,数列{}n b 满足113b =,113n n n b b n++=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n b 的前n 项和n T .42.(2020·武威第六中学高三月考(文))已知数列{}n a 的前n 项和为n S ,且()2*32n n nS n N -=∈,正项等比数列{}n b 满足11b a =,56b a =. (1)求数列{}n a 与{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 前n 项和n T . 四、填空题43.(2020·通榆县第一中学校高三月考(文))已知数列{}n a 的前n 项和为n S ,且364n n S a =-,若()*11,m k a a m k k N ⋅=≤<∈,则k 的取值集合是__________.44.(2020·桃江县第一中学高三期中)已知函数()1()1f x x -=+,数列{}n a 是正项等比数列,且10111a =,()()()()()32020202112f a f a f f a a f a +⋅⋅⋅++++=________.45.(2020·上海浦东新区·上外浦东附中高二月考)取出数列{},(4)n a n ≥的任意连续四项,若其中奇数项之和,偶数项之和均为同一个常数h (如连续四项1a ,2a ,3a ,4a ,满足1324a a a a h +=+=),则称数列{},(4)n a n ≥为错位等和数列,其中常数h 是公和.若n S 表示{}n a 的前n 项和,有如下命题: (1)若一个等差数列是错位等和数列,则1n a a =;(2)若一个等比数列是错位等和数列,则2n nh S =; (3)若12a a ≠,则错位等和数列一定是最小正周期为4的周期数列; (4)在错位等和数列{}n a 中,5h =,且201320146a a +=,若n 是偶数,则104,4210,4n k n k S k n k -=-⎧=⎨=⎩;其中,真命题的序号是________46.(2020·湖北省武昌实验中学高一月考)数列{}n a 的前n 项和为n S ,已知115a =,且对任意正整数,m n ,都有m n m n a a a +=⋅,若n S t <恒成立,则实数t 的最小值为________.47.(2020·四川攀枝花市·高三月考(文))正项等比数列{}n a 满足1354a a +=,且22a ,412a ,3a 成等差数列,设*1()n n nb a a n N +=∈,则12n b b b ⋅⋅取得最小值时的n 值为_________.48.(2020·安徽省太和第一中学高三月考(理))已知数列{}n a 的前n 项和为n S ,且22n n S a =-,则数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T =______.。
等差数列练习题(有答案) 百度文库
C.当n=10或n=11时,Sn取得最大值D.当Sn>0时,n的最大值为21
29.已知数列 是递增的等差数列, , . ,数列 的前 项和为 ,下列结论正确的是()
A. B.
C.当 时, 取最小值D.当 时, 取最小值
30.等差数列 的前 项和为 ,若 , ,则下列结论正确的是()
一、等差数列选择题
1.设等差数列 、 的前 项和分别是 、 .若 ,则 的值为()
A. B. C.1D.2
2.等差数列 中, ,公差 ,则 =()
A.200B.100C.90D.80
3.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为()
A.a8=34B.S8=54C.S2020=a2022-1D.a1+a3+a5+…+a2021=a2022
25.设d为正项等差数列 的公差,若 , ,则()
A. B. C. D.
26.在数列 中,若 为常数 ,则称 为“等方差数列” 下列对“等方差数列”的判断正确的是()
A.若 是等差数列,则 是等方差数列
【详解】
由题知,只需 ,
,A正确;
,B正确;
,C正确;
,所以 ,D错误.
【点睛】
本题考查等差数列的性质,解题方法是由已知确定 的范围,由通项公式写出各项(用 表示)后,可判断.
26.BCD
【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.
等差数列练习题(含答案)
等差数列练习题(含答案)2019年04⽉12⽇数学试卷姓名:___________班级:___________考号:___________⼀、选择题1.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =( ) A.58 B.88 C.143 D.1762.设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S 等于( ) A.13 B.35 C.49 D.633在数列中,,则=( )A. B. C. D.4.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,则第5节的容积为( ) A. 1升 B.6766升 C.4744升 D.3733升5.若等差数列{}n a 的前5项和525S =,且23a =,则7a = ( )A.12B.13C.14D.156.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.5B.6C.7D.不存在 7.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S 等于( ). A.5 B.7 C.9 D.118.已知{}n a 是等差数列, 311 40a a +=,则6?7?8 a a a -+等于( ).A.20B.48C.60D.72⼆、填空题9.《九章算术》“⽵九节”问题:现有⼀根9节的⽵⼦,⾃上⽽下各节的容积成等差数列,上⾯4节的容积共3升,下⾯3节的容积共4升,220x x m x x n -+-+=的四个根组成⼀个⾸项为14的等差数列, 则m n -=__________.11.已知△A B C 的⼀个内⾓为120,并且三边长构成公差为4的等差数列,则△A B C 的⾯积为__________.12.在等差数列{}n a 中,若4681012240a a a a a ++++=,则91113a a -的值为__________.13.在等差数列{}n a 中, 315,a a 是⽅程2610x x --=的两根,则7891011a a a a a ++++=__________.14.已知数列{}n a 是等差数列,若1591317117a a a a a -+-+=,则315a a +=__________. 三、解答题15.已知等差数列{}n a 的前n 项和为n S ,等⽐数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.1).若335a b +=,求{}n b 的通项公式; 2).若321T =,求3S .16.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等⽐数列. 1).求d ,n a ;2).若0d <,求123n a a a a ++++.17.n S 为等差数列{}n a 的前n 项和,且1=1a ,728S =.记[]=lg n n b a ,其中[]x 表⽰不超过x 的最⼤整数,如[]0.9=0,[]lg 99=1.1).求1b ,11b ,101b ;2).求数列{}n b 的前1000项和.18.已知{}n a 为等差数列,且36a =-,60a = 1).求{}n a 的通项公式;2).若等⽐数列{}n b 满⾜18?b =-,2123b a a a =++,求{}n b 的前n 项和公式19.已知数列{}n a 的⾸项为1, n S 为数列{}n a 的前n 项和, 11n n S q S +=+其中0q >,*n N ∈若232,,2a a a +成等差数列,求n a 的通项公式.20.已知b 是,a c 的等差中项, ()lg 5b -是()lg 1a -与()lg 6c -的等差中项,⼜,,a b c 三数之和为33,求这三个数.21.4个数成等差数列,这4个数的平⽅和为94.第1个数与第4个数的积⽐第2个数与第3个数的积少18.求这四个数.22.已知{}n a 是等差数列,且12312a a a ++=,816a = 1).求数列{}n a 的通项公式2).若从列{}n a 中,⼀次取出第2项,第4项,第6项, 第2n 项,按原来顺序组成⼀个新数列{}n b ,试求出{}n b 的通项公式.23.设{}n a 是公差不为零的等差数列, n S 为其前n 项和,满⾜222223457,7a a a a S +=+=. 1).求数列{}n a 的通项公式及前n 项和n S ; 2).试求所有的正整数m ,使得12⼀、选择题1.答案:B解析:由等差数列性质可知, 4811116a a a a +=+=,所以1111111() 882a a S ?+==.2.答案:C解析:根据等差数列性质及求和公式得:故选C答案: A 解析:因为,数列在中,, ,,所以,, 从⽽有,,……,上述n-1个式⼦两边分别相加得,,所以,故选A 。
小学等差数列练习题及答案
小学等差数列练习题及答案精品文档小学等差数列练习题及答案四年级奥数上册:第四讲等差数列及其应用习题解答四年级等差数列练习题1(找出规律后填出下面数列中括号里的数:1,,,,, 11, 13,,…1,,, 10,, 16, 19,…1,,, 10, 15,,8,…l,,,,,,,,…,, 11, 19,5,, 131;59,…2.已知等差数列5,9,13,17,…,它的第15项为_______.3.已知等差数列2,7,12,…,122,这个等差数列共有_____项。
4(从25往后数18个连续的奇数,最后一个奇数是______.5(被4除余1的两位数共有____个。
6(等差数列2,5,8,11,…,共有80项,其中所有奇数的和为_____.7(一个等差数列的第2项是2.8,第3项是3.1,则这个数列的第10项是_____.8(有10个同学聚会,见面时如果每人都和其余的每个人握一次手,那么共握手____次。
1 / 5精品文档9(在1949,1950,1951,……,1999,2000这52个自然数中,所有偶数之和比所有奇数之和多_____。
10(某市举行数学竞赛,比赛前规定,前15名可以获奖,比赛结果第一名1人,每2名并列2人,每三名并列3人,……,每十五名并列15人,用最简便的方法计算出得奖的一共有______人。
11(已知等差数列5,8,11,…,它的第21项为______。
12(自1开始,每隔三个自然数写出一个自然数来,得到一个数列,这个数列的前五项是 __________________,这个数列的前50项的和是_____________。
13(所有被7除余数是1的二位数的和是_________。
14(在13和29之间插入三个数,使这五个数成等差数插入的三个数依次是_______.15(有一批铁管,最低下一层是10根,倒数第二层是9根,以后每往上一层,铁管少一根,那么十层铁管一共有______根。
(完整版)等差数列练习题有答案
数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
高中数学等差数列的通项公式训练练习题含答案
高中数学等差数列的通项公式训练练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 在等差数列51、47、43,…中,第一个负数项为()A.第13项B.第14项C.第15项D.第16项2. 已知等差数列{a n},a2=4,a6+a7=6+a9,则公差d=()A.2B.1C.−2D.−13. 已知数列{a n}中,a1=2,a n+1=a n+12(n∈N∗),则a99的值为( )A.48B.49C.50D.514. 在等差数列{a n}中,a1+3a8+a15=60,则2a9−a10的值为( )A.6B.8C.12D.135. 数列{a n}中,若a1=1,a n+1=a n+4,则下列各数中是{a n}中某一项的是()A.2007B.2008C.2009D.20106. 若a≠b,两个等差数列a,x1,x2,b与a,y1,y2,y3,b的公差分别为d1,d2,则d1d2等于()A.3 2B.23C.43D.347. 在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N∗),则a5等于( )A.2 5B.13C.23D.128. 已知等差数列{a n}的公差d为正数,a1=1,2(a n a n+1+1)=tn(1+a n),t为常数,则a n=( )A.2n−1B.4n−3C.5n−4D.n9. 《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸10. 一个首项为,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A. B. C. D.11. 等差数列{a n},a1=0,公差d=1,则a8=________.712. 在等差数列{a n}中,a2=1,a4=5,则a n=________.13. 等差数列{a n}中,若a3+a5=4,则a4=________.14. 已知数列{a n}的前n项和S n=n2−9n,则其通项a n=________.15. 已知等差数列{a n},a n=4n−3,则首项a1为________,公差d为________.16. 《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”.其中“日减功迟”的具体含义是每天比前一天少织同样多的布,则每天比前一天少织布的尺数为________.17. “欢欢”按如图所示的规则练习数数,记在数数过程中对应中指的数依次排列所构成的数列为{a n},则数到2008时对应的指头是________,数列{a n}的通项公式a n=________.(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).18. 表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,则数字70在表中出现的次数为________19. 已知数列的前n项和为,,,则________.20. 已知数列满足,,若,则数列的前n项和________.21. 数列{a n}中,a1=8,a4=2且满足a n+2=2a n+1−a n(n∈N∗),数列{a n}的通项公式________.22. 在等差数列{a n}中,已知a4+a6=28,a7=20,求a3和公差d.23. 数列{a n}是等差数列,a1=f(x+1),a2=0,a3=f(x−1),其中f(x)=x2−4x+2,求通项公式a n.24. 设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.25. 已知数列{a n},|b n}满足a1=2,b1=1 ,且当n≥2a n=23a n−1+13b n−1+2b n=1 3a n−1+23b n−1+2(1)令c n=a n+b n,d n=a n−b n ,证明:{c n}为等差数列,{d n}为等比数列;(2)求数列{a n}的通项公式及前π项和S n26. 已知公差不为零的等差数列{a n}各项均为正数,其前n项和为S n,满足2S2=a2(a2+1)且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n+1⋅2a n,求数列{b n}的前n项和为T n.27. 已知公差不为零的等差数列{a n}的前n项和为S n,a3=4,a5是a2与a11的等比中项.(1)求S n;(2)设数列{b n}满足b1=a2, b n+1=b n+3×2a n,求数列{b n}的通项公式.28. 已知递增等差数列{a n}满足a1+a5=4,前3项的积为8,求等差数列{a n}的通项公式.29. 在等差数列{a n}中,已知a5=10,a12=31,求a1,d,a20,a n.30. 已知数列{a n},对于任意n∈N∗,都有a n=n2−bn,是否存在一个整数m,使得当b<m时,数列{a n}为递增数列?这样的整数是否唯一?是否存在最大的整数?31. 在等差数列{a n}中,a2=3,a9=17,求a19+a20+a21的值.32. 在等差数列{a n}中,已知a3=8,且满足a10>21,a12<27,若d∈Z,求公差d的值.33. 已知数列{a n}为等差数列,且a4=9,a9=−6.(1)求通项a n;(2)求a12的值.34. 已知:公差大于零的等差数列{a n}的前n项和为S n,且满足a3a4=117,a2+a5= 22.求数列{a n}的通项公式.35. 设无穷等差数列{a n}的前n项和为S n,求所有的无穷等差数列{a n},使得对于一切正整数k都有S k3=(S k)3成立.36. 在等差数列{a n}中,公差d≠0,己知数列a k1,a k2,a k3,…a kn…是等比数列,其中k1=1,k2=7,k3=25.(1)求数列{k n}的通项公式;(2)若a1=9,b n=√a k n6+√k n2,S n=b12+b22+b32...+b n2,T n=1b12+1b22+1b32...+1b n2,试判断{S n+T n}的前100项中有多少项是能被4整除的整数.37. 设正数数列的前项和为,对于任意,是和的等差中项. (1)求数列的通项公式;(2)设,是的前项和,是否存在常数,对任意,使恒成立?若存在,求取值范围;若不存在,说明理由.38. 记等差数列的前项和,已知.(1)若,求的通项公式;(2)若,求使得的的取值范围.39. 观察下表:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,……问:(1)此表第行的第一个数与最后一个数分别是多少?(2)此表第行的各个数之和是多少?(3)2019是第几行的第几个数?40. 等差数列{a n}中,d=2,a1=5,S n=60,求n及a n.参考答案与试题解析高中数学等差数列的通项公式训练练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】等差数列的通项公式【解析】根据等差数列51、47、43,…,得到等差数列的通项公式,让通项小于0得到解集,求出解集中最小的正整数解即可.【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47−51=−4,首项为51,所以通项a n=51+(n−1)×(−4)=55−4n,所以令55−4n<0解得n>554因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.【答案】B【考点】等差数列的通项公式【解析】(1)利用等差数列的性质进行解题即可.【解答】解:已知数列{a n}是等差数列,则a2=a1+d=4,a6+a7=2a1+11d=6+a1+8d,解得d=1 .故选B .3.【答案】D【考点】等差数列的通项公式【解析】的等差数列,由此能求出a99.由已知得数列{a n}是首项为a1=2,公差为a n+1−a n=12【解答】(n∈N∗),解:∵在数列{a n}中,a1=2,a n+1=a n+12∴数列{a n}是首项为2,公差为1的等差数列,2∴a99=2+98×1=51.2故选D.4.【答案】C【考点】等差数列的通项公式【解析】由已知条件利用等差数列的通项公式求解.【解答】解:在等差数列{a n}中,∵a1+3a8+a15=60,∴a1+3(a1+7d)+a1+14d=5(a1+7d)=60,∴a1+7d=12,∴2a9−a10=2(a1+8d)−(a1+9d)=a1+7d=12.故选C.5.【答案】C【考点】等差数列的通项公式【解析】利用等差数列的定义判断,再用通项公式求解即可.【解答】解:∵数列{a n}中有a1=1,a n+1=a n+4,∴数列{a n}为等差数列,且a1=1,公差d=4,即通项公式为:a n=4n−3,∵4n−3=2009,4n=2012,∴n=503且n=503是整数.故选C.6.【答案】C【考点】等差数列的通项公式【解析】由a,x1,x2,b为等差数列,根据等差数列的性质得到b=a+3d1,表示出d1,同理由a,y1,y2,y3,b为等差数列,根据等差数列的性质表示出d2,即可求出d1与d2的比值.【解答】解:∵a,x1,x2,b为等差数列,且公差为d1,∴b=a+3d1,即d1=b−a,3∵a,y1,y2,y3,b也为等差数列,且公差为d2,∴b=a+4d2,即d2=b−a,4则d 1d 2=43.故选C 7.【答案】 B【考点】等差数列的通项公式 【解析】 此题暂无解析 【解答】 解:由a n+1=2a nan+2,得1a n+1=a n +22a n=1a n+12,又a 1=1,所以数列{1a n}是以1为首项,12为公差的等差数列, 所以1a 5=1+4×12=3,所以a 5=13.故选B . 8. 【答案】 A【考点】等差数列的通项公式 【解析】根据数列的递推关系式,先求出t =4,即可得到{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3,{a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1,问题得以解决. 【解答】解:由题设2(a n a n+1+1)=tn(1+a n ),即a n a n+1+1=tS n ,可得a n+1a n+2+1=tS n+1, 两式相减得a n+1(a n+2−a n )=ta n+1, 所以a n+2−a n =t .由2(a 1a 2+1)=t(1+a 1) 可得a 2=t −1,由a n+2−a n =t 可知a 3=t +1.因为{a n }为等差数列,所以2a 2=a 1+a 3, 解得t =4,故a n+2−a n =4,由此可得{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3, {a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1, 所以a n =2n −1. 故选A . 9. 【答案】 B【考点】等差数列的通项公式【解析】从冬至日起各节气日影长设为{a n},可得{a n}为等差数列,根据已知结合前八项和公式和等差中项关系,求出通项公式,即可求解.【解答】由题知各节气日影长依次成等差数列,设为{a n}S n是其前?项和,则尺,所以a5=9.5尺,由题S S=9(a1+a5)24+a7=3a4=31.5所以a4=10.5,所以公差d=a5−a4=−1所以a12=a5+7d=2.5尺.故选:B.10.【答案】C【考点】等差数列的通项公式【解析】设等差数列{a n}的公差为|da4=23+5d,a7=23+6d,又:数列前六项均为正数,第七项起为负数,23+5d>0.23+6d<0−235<d<−236,又…数列是公差为整数的等差数列,d=−4,故选C.【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】1【考点】等差数列的通项公式【解析】直接由等差数列的通项公式求解.【解答】解:在等差数列{a n},由a1=0,公差d=17,得a8=a1+7d=0+7×17=1.故答案为:1.12.【答案】2n−3【考点】等差数列的通项公式【解析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2=1,a4=5,∴{a1+d=1a1+3d=5,解得{a1=−1d=2.∴a n=−1+2(n−1)=2n−3.故答案为2n−3.13.【答案】2【考点】等差数列的通项公式【解析】根据等差数列的定义和性质,结合题意可得2a4=a3+a5=4,由此解得a4的值.【解答】解:∵等差数列{a n}中,a3+a5=4,∴2a4=a3+a5=4,解得a4=2,故答案为:2.14.【答案】2n−10【考点】等差数列的通项公式【解析】利用递推关系a n={S1n=1S n−S n−1n≥2可求数列的通项公式【解答】解:∵S n=n2−9n,∴a1=S1=−8n≥2时,a n=S n−S n−1=n2−9n−(n−1)2+9(n−1)=2n−10 n=1,a1=8适合上式故答案为:2n−1015.【答案】1,4【考点】等差数列的通项公式【解析】根据等差数列的通项公式求出公差d,令n=1求得首项a1.【解答】解:由题意得,等差数列{a n},a n=4n−3,则公差d=4,令n=1得首项a1=1,故答案为:1、4.16.【答案】429等差数列的通项公式【解析】利用等差数列的通项公式求和公式即可得出.【解答】已知数列{a n}为等差数列,其中,a1=5,a n=1,S n=90.,1=5+(n−1)d,设公差为d,则90=n(5+1)2.解得:d=−42917.【答案】食指,4n−1【考点】等差数列的通项公式【解析】注意到数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,因此数到2008时对应的指头是食指.对应中指的数依次是:3,7,11,15,,因此数列{a n}是3为首项4为公差的等差数列,根据等差数列的通项公式即可得到答案.【解答】解:∵数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,∴数到2008时对应的指头是食指.∵对应中指的数依次是:3,7,11,15,因此数列{a n}的通项公式是a n=3+(n−1)×4=4n−1.故答案为:食指,4n−118.【答案】4【考点】等差数列的通项公式【解析】第1行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,求出通项公式,就求出结果.【解答】第i行第j列的数记为Aij.那么每一组i与j的组合就是表中一个数.因为第一行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,所以A1j=2+(j−1)×1=j+1,所以第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,所以Aij=(j+1)+(i−1)×j=ij+1.所以ij=69=1×69=3×23=23×3=69×1=81.所以表中的数70共出现54,19.【答案】________、1,2n—1【考点】等差数列的通项公式根据a n−1=S n+1−S n ,代入后等式两边同时除以S n+1S n+1.即可得【解答】因为a n−1=S n+1−S n则a n−1+2S n+1S n =0可化简为S n−1−S n +2S n−1S n =0等式两边同时除以S n−1S n可得1S n −1S n+1+2=0.即1S n−1−1S n =2 所以数列为等差数列,首项1S 1=1a 1=1,公差d =2 所以1S n=1+(n −1)×2=2n −1 即S n =12n−1故答案为:12n−1I =加加】本题考查了数列的综合应用,通项公式与前n 项和公式的关系,等差数列通项公式的求法,属于中档题.20.【答案】s _、4”1−4,3【考点】等差数列的通项公式【解析】a n+1n+1−a n n =2,求得an n 的通项,进而求得a n =2n 2,得b n 通项公式,利用等比数列求和即可.【解答】由题为等差数列,a n n =a 11+n −1×2=2na n =2n 2∴ b n =22n ∴ S n =4(1−42)1−4=4n−1−43,故答案为4n+1−43三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】a n =10−2n【考点】等差数列的通项公式【解析】本题考查等差数列通项公式,由条件 a n+2=2a n+1−a n 可得 a n+2−a n+1=a n+1−a n ,从而{a n }为等差数列,利用 a 1=8, a 4=2 可求公差,从而可求数列{a n }的通项公式.【解答】解:由题意, a n+2−a n+1=a n+1−a n ,∴ 数列 {a n } 为等差数列,设公差为d ,由a 1=8,a 4=2 ,得8+3d =2 ,解得d =−2,∴ a n =8−2(n −1)=10−2n .故答案为:a n =10−2n .22.【答案】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.【考点】等差数列的通项公式【解析】利用等差数列的通项公式求解.【解答】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.23.【答案】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .【考点】等差数列的通项公式【解析】题目给出了一个等差数列的前3项,根据等差中项概念列式a 1+a 3=2a 2,然后把a 1和a 3代入得到关于x 的方程,解方程,求出x 后再分别代回a 1=f(x +1)求a 1,则d 也可求,所以通项公式可求.【解答】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .24.【答案】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.【考点】等比数列的前n 项和等比数列的通项公式等差数列的通项公式【解析】(1)判断数列是等比数列,然后求{a n }的通项公式及前n 项和S n ;(2)利用数列的关系求出公差,然后求解通项公式.【解答】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.25.【答案】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n = 12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 【考点】由递推关系证明数列是等差数列等差数列与等比数列的综合数列的求和等比数列的通项公式等差数列的通项公式【解析】由题得到a n +b n =(a n−1+b n−1)+4(n ≥2),即可得到c n =c n−1+4(n ≥2),即可知{c n }是首项为a 1+b 1=3, 公差为4的等差数列.而a n −b n =13(a n−1−b n−1)(n ≥2),即可得d n =13d n−1(n ≥2),可知{d n }是首项为a 1−b 1=1, 公比为13的等比数列.由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1,即可得到a n =12×3+2n −12,再利用分组转换求和法即可得解S n .【解答】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n =12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 26.【答案】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4, 整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.【考点】等比中项数列的求和等差数列的通项公式【解析】此题暂无解析【解答】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4,整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.27.【答案】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.【考点】等比中项数列递推式等差数列的前n 项和等差数列的通项公式【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.28.【答案】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.【考点】等差数列的通项公式【解析】利用等差数列前n 项和公式列出方程组,求出首项和公比,由此能求出等差数列{a n }的通项公式.【解答】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.29.【答案】解:解法一:∵ a 5=10,a 12=31,则{a 1+4d =10a 1+11d =31⇒{a 1=−2d =3∴ a n =a 1+(n −1)d =3n −5,a 20=a 1+19d =55解法二:∵ a 12=a 5+7d ⇒31=10+7d ⇒d =3∴ a 20=a 12+8d =55,a n =a 12+(n −12)d =3n −5【考点】等差数列的通项公式【解析】此题暂无解析【解答】略30.【答案】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.【考点】等差数列的通项公式【解析】假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,则a n+1−a n=[(n+ 1)2−b(n+1)]−(n2−bn)=2n+1−b>0,由此能求出结果.【解答】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.31.【答案】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=117【考点】等差数列的通项公式【解析】由已知结合公式d=a9−a29−2可求d,然后利用等差数列的性质及通项公式即可求解【解答】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=11732.【答案】解:∵等差数列{a n}中,a3=8,且满足a10>21,a12<27,∴{a1+2d=8a1+9d>21a1+11d<27,∴{8−2d+9d>218−2d+11d<27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 【考点】等差数列的通项公式 【解析】由已知条件利用等差数列通项公式能求出公差d 的值. 【解答】解:∵ 等差数列{a n }中,a 3=8,且满足a 10>21,a 12<27, ∴ {a 1+2d =8a 1+9d >21a 1+11d <27,∴ {8−2d +9d >218−2d +11d <27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 33.【答案】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15.【考点】等差数列的通项公式 【解析】(1)利用等差数列通项公式列出方程组,求出首项与公差,由此能求出通项a n . (2)由通项通项a n ,能求出a 12的值.【解答】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15. 34.【答案】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 【考点】等差数列的通项公式 【解析】根据题意,由a 3+a 4=a 2+a 5,a 3⋅a 4的值求出a 3、a 4;由此求出{a 1=1d =4;即得通项公式a n . 【解答】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 35.【答案】解:若等差数列{a n }满足S k 3=(S k )3则当k =1时,有s 1=s 13,∴ a 1=0或a 1=1或a 1=−1当k =2时,有s 8=s 23,即8a 1+8×72d =(2a 1+d)3(1)当a 1=0时,代入上式得d =0或d =2√7或d =−2√7 ①当a 1=0,d =0时,a n =0,S n =0 满足S k 3=(S k )3此时,数列{a n }为:0,0,0…②当a 1=0,d =2√7时,a n =2√7(n −1),S n =2√7n(n−1)2=√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意③当a 1=0,d =−2√7时,a n =−2√7(n −1),S n =−2√7n(n−1)2=−√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意(2)当a 1=1时,代入上式得d =0或d =2或d =−8 ①当a 1=1,d =0时,a n =1,S n =n 满足S k 3=(S k )3此时,数列{a n }为:1,1,1…②当a 1=1,d =2时,a n =2n −1,S n =n 2 满足S k 3=(S k )3此时,数列{a n }为:1,3,5…③当a 1=1,d =−8时,a n =−8n +9,S n =n(5−4n) S 27≠(S 3)3 ∴ 不满足题意(3)当a 1=−1时,代入上式得d =0或d =−2或d =8 ①当a 1=−1,d =0时,a n =−1,S n =−n满足S k3=(S k)3此时,数列{a n}为:−1,−1,−1…②当a1=−1,d=−2时,a n=−2n+1,S n=−n2满足S k3=(S k)3此时,数列{a n}为:−1,−3,−5…③当a1=−1,d=8时,a n=8n−9,S n=n(4n−5)S27≠(S3)3∴不满足题意∴满足题意的等差数列{a n}有:①0,0,0…②1,1,1…③1,3,5…④−1,−1,−1…⑤−1,−3,−5…【考点】等差数列的通项公式【解析】先由k=1,k=2时,确定首项和公差,再验证每一组解是否符合题意,从而可以找到符合题意的数列【解答】解:若等差数列{a n}满足S k3=(S k)3则当k=1时,有s1=s13,∴a1=0或a1=1或a1=−1d=(2a1+d)3当k=2时,有s8=s23,即8a1+8×72(1)当a1=0时,代入上式得d=0或d=2√7或d=−2√7①当a1=0,d=0时,a n=0,S n=0满足S k3=(S k)3此时,数列{a n}为:0,0,0…=√7n(n−1)②当a1=0,d=2√7时,a n=2√7(n−1),S n=2√7n(n−1)2S27≠(S3)3∴不满足题意=−√7n(n−1)③当a1=0,d=−2√7时,a n=−2√7(n−1),S n=−2√7n(n−1)2S27≠(S3)3∴不满足题意(2)当a1=1时,代入上式得d=0或d=2或d=−8①当a1=1,d=0时,a n=1,S n=n满足S k3=(S k)3此时,数列{a n}为:1,1,1…②当a1=1,d=2时,a n=2n−1,S n=n2满足S k3=(S k)3此时,数列{a n}为:1,3,5…③当a1=1,d=−8时,a n=−8n+9,S n=n(5−4n)S27≠(S3)3∴不满足题意(3)当a1=−1时,代入上式得d=0或d=−2或d=8①当a 1=−1,d =0时,a n =−1,S n =−n 满足S k 3=(S k )3此时,数列{a n }为:−1,−1,−1…②当a 1=−1,d =−2时,a n =−2n +1,S n =−n 2 满足S k 3=(S k )3此时,数列{a n }为:−1,−3,−5…③当a 1=−1,d =8时,a n =8n −9,S n =n(4n −5) S 27≠(S 3)3 ∴ 不满足题意∴ 满足题意的等差数列{a n }有: ①0,0,0… ②1,1,1… ③1,3,5…④−1,−1,−1… ⑤−1,−3,−5… 36.【答案】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√kn2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数.【考点】等差数列的通项公式 【解析】(1)设{a n }的首项为a 1,公差为d(d ≠0),由题意可求得a 1=3d ,于是可求得a n 的关于d 的表达式,再利用a k 2ak 1=a 7a 1=9d3d =3,可求得其公比,继而可求得akn 的关系式,两者联立即可求得数列{k n }的通项公式k n .(2)先求出b n ,进一步求出S n +T n 的通项公式,再利用二项式知识解决整除问题 【解答】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√k n 2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数. 37.【答案】(1)a n =n ;(2)存在实数0≤λ<1符合题意.【考点】等差数列的通项公式 【解析】(1)根据S n 是a n 2和a n 的等差中项可知2S n =a n 2+a n ,且a n >0,则当n ≥2时,有2S n−1=(a n−1)2+a n−1,两式相减并化简即 可求解;(2)由(1)知a n =n ,由题意知,T n =1−(12)n,假设存在常数λ≥0,对任意n ∈N ,使恒成立等价于对任意n ∈N ′1−(12)n−λ(12)n>√λ恒成立整理化简,利用分离参数法求解恒成立问题即可.【解答】(1)由S n 是a n 2和a n 的等差中项可知,2S n =a n 2+a n ,且a n >0 则当n ≥2时,有2S n−1=(a n−1)2+a n−1两式相减可得,2S n −2S n−1=a n 2−a n−12+a n −a n−1即2a n =a n 2−a n−12+a n −a n+1,a n >0,化简可得,a n −a n−1=1(n ≥2) 所以数列{a n }是以1为首项1为公差的等差数列, 所以数列{a n }的通项公式为a n =n(2)由(1)知,a n =n ,因为b n =(12)n,所以数列{b n }的前几项和T n =1−(12)n假设存在常数λ≥0,对任意n ∈N ′,使T n −λ⋅2−a ,√λ恒成立 即对任意n ∈N1−(12)n−λ(12)n>√λ恒成立等价于对任意n ∈N ′1+√A <2n 恒成立即1+√2小于2a 的最小值即可.所以0≤λ<1满足对任意n ∈N ,使T n −λ⋅2−a >√λ恒成立.所以存在这样的实数?,对任意n ∈N ′,使恒成立,实数?的取值范围为0≤λ<1 38.【答案】(1)a n =−2n +8(2){n|1≤n ≤8,n ∈N }【考点】等差数列的通项公式 【解析】(1)由已知可得a 4=0,再根据a 2=4可得a 1,d 的方程组,解得.(2)由(1)可知a 1=−3d ,故可用含d 的式子表示S n 和a n ,列出不等式求解即可. 【解答】(1)设等差数列{a n }的首项为a 1公差为d ;因为等差数列{a n }的前)项和S n 且S 4=S 3.a 4=0,又∵ a 2=4 {a 1+3d =0a 1+d =4,解得{a 1=4d =−2 所以a n =a 2+(n −2)⋅d =−2n +8 (2)因为a 1=−3d >0,所以d <0 所以S n =na 1+n (n−1)2d =−3nd +n (n−1)2da n =a 1+(n −1)⋅d =(n −4)d 因为S n ≥a n ,所以(n 2−n 2−3n)d ≥(n −4)d因为d <0,所以n 2−n2−3n ≤n −4整理得n 2−9n +8≤0,解得1≤n ≤8 所以”的取值范围是{n|1≤n ≤8,n ∈N } 39.【答案】(1)第几行的第一个数是n 2,最后一个数是n 2+2n (2)第八行各个数之和为2n 3+3n 2+n(3)2019是第44行第84个数.【考点】等差数列的通项公式【解析】(1)根据此表的特点可知此表n行的第1个数为n2,第n行共有3+(n−1)×2=2n+ 1个数,依次构成公差为1的等差数列,利用等差数列的通项公式解之即可;(2)直接根据等差数列的前n项和公式进行求解;(3)1936=442×2019×452=2025,所以2019在第44行,然后设2019是此数表的第44行的第k个数,而第44行的第1个数为442,可求出k,从而得到结论.【解答】(1)由表可知,每一行都是公差为1的等差数列,第n行第一个数是n2,每一行比上一行多2个数,第一行有3个数,则第n行有3+(n−1)×2=2n+1个数,所以第一行最后一个数是n2+(2n+1−1)×1=n2+2n(当然也可以观察得出第n行最后一个数为(n+1)2−1)(2)由(1)知,第几行各个数之和为(2n+1)(n 2+n2+2n)2=(2n+1)(n2+n)=2n3+3n2+n(3)因为1936=442<2019<452=2025,所以2019在第44行,设2019是第44行第k个数,则2019=442+(k−1)×1,解得k=84,所以2019是第44行第84个数.40.【答案】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.【考点】等差数列的通项公式【解析】由等差数列的前n项和公式求出n的值,再由通项公式求出a6即可.【解答】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.。
(完整)数学等差数列练习题
练习题:等差数列第一类:已知等差数列的首项a1,项数n,公差d,求末项用公式:a n= a1+(n-1)×d(1)一个等差数列的首项为5,公差为2,那么它的第10项是()。
(2)等差数列7、11、15……、87,问这个数列共有( )项。
(3)等差数列3 、7 、11…,这个等差数列的第()项是43。
(4)已知等差数列的第1项为12,第6项为27.求公差()。
(5)已知一个等差数列的公差为2,这个等差数列的第10项是为23,这个等差数列的首项是()。
(6)一堆木料,最下层有24根,往上每一层都比下一层少2根,共10层,最上层有()根木料。
(7)把70拆成7个自然数,使这7个数从小到大排成一行后,相邻两个数的差都相等,那么,中间的数是().(8)5个连续奇数的和是35,其中最大的奇数是( )。
第二类:已知等差数列的首项a1,末项a n,项数n,求和用公式:s n=(a1+ a n)×n÷2 [或 s n=中间数×项数]1、已知等差数列2,5,8,11,14,17,20,求这个数列的和是()。
2、等差数列7+11+15+19+23+27+31+35的和是()3、求1+2+3+4+5+6+7+ (20)4、1+3+5+7+9+11+ (19)5、已知等差数列的首项是5,末项是47,求这个数列共有8项,求这个数列的和是( )。
6、王师傅每天工作8小时,第一小时加工零件5个,从第二小时起每小时比前一小时多加工相同的零件,第8小时加工了23个,王师傅一天加工零件()个。
7、已知等差数列2,5,8,11,14…,求前11项的和是多少?8、数列1、4、7、10、……,求它的前21项的和是多少?9、等差数列7,11,15,……… 87,这个数列的和是多少?10、已知等差数列5,8,11…47,求这个数列的和是多少?11、一个剧场设置了16排座位,后每一排都比前一排多2个座位,最后一排有68个座位,这个剧场共有多少个座位?12、有10个数,后一个比前一个多5,第10个数是100,求这10个数的和是多少?13、5个连续奇数,第一个数和最后一个数的和是18,求这5个连续奇数的和是多少?。
等差数列知识点+基础练习题
n-m(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A=或S=n(a+a)2222n+1是项数为2n+1的等差数列的中间项==(2n+1)an+1(项数为奇数的等差数列的各项和等于项数2{a}是等n差数列n+2.{a}是等差数列⇔a n+=1kn+n b(其中k,b是常数)。
(4)数列{a}是等差数列⇔S=An2+Bn,(其中A、B是常数)。
aaa等差数列知识点1.等差数列的定义:a-an 2.等差数列通项公式:n-1=d(d为常数)(n≥2);a=a+(n-1)d=dn+a-d(n∈N*),首项:a,公差:d,末项:an111a-a推广:a=a+(n-m)d.从而d=n m;n mn3.等差中项a+b22A=a+b(2)等差中项:数列{}是等差数列n⇔2a=a+a(n≥2)⇔2a=a+an n-1n+1n+1n n+24.等差数列的前n项和公式:n(n-1)d11n=na+d=n2+(a-d)n=An2+Bn n11(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)特别地,当项数为奇数2n+1时,a(2n+1)(a+a)S12n+12n+1乘以中间项)5.等差数列的判定方法(1)定义法:若a-a=d或a-a=d(常数n∈N*)⇔{}是等差数列.n n-1n+1n(2)等差中项:数列n ⇔2a=a+a(n≥2)⇔2a=a+an n-1n+1⑶数列n nn n6.等差数列的证明方法定义法:若a-a=d或an n-1n+1-a=d(常数n∈N*)⇔{}是等差数列.n n7.提醒:(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a、d、n、a及S,1n n 其中a、d称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即1知3求2。
(2)设项技巧:①一般可设通项a=a+(n-1)dn1②奇数个数成等差,可设为…,a-2d,a-d,a,a+d,a+2d…(公差为d);③偶数个数成等差,可设为…,a-3d,a-d,a+d,a+3d,…(注意;公差为2d)8..等差数列的性质:2 2 2{ a(2222nn+1 ⇒ ⎨ ⎨⎪⎩⎪⎩ ⎪ n+1是项数为 2n+1 的等差数列的中间项).(1)当公差 d ≠ 0 时,等差数列的通项公式 a = a + (n - 1)d = dn + a - d 是关于 n 的一次函数,且斜 n11率为公差 d ;前 n 和 S = na + n 1 n (n - 1) d dd = n 2 + (a - )n 是关于 n 的二次函数且常数项1为 0.(2)若公差 d > 0 ,则为递增等差数列,若公差 d < 0 ,则为递减等差数列,若公差 d = 0 ,则为常数列。
等差数列基础练习题及详细答案
等差数列基础习题一.选择题1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一25.两个数1与5的等差中项是()A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.110.如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 11.设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.12.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A . ﹣1B . 1C . 3D . 713.已知S n 为等差数列{a n }的前n 项的和,a 2+a 5=4,S 7=21,则a 7的值为( )A . 6B . 7C . 8D . 914.已知数列{a n }为等差数列,a 1+a 3+a 5=15,a 4=7,则s 6的值为( )A . 30B . 35C . 36D . 2415.等差数列{a n }的公差d <0,且,则数列{a n }的前n 项和S n 取得最大值时的项数n 是( )A . 5B . 6C . 5或6D . 6或7二.填空题1.如果数列{a n }满足:= _________ .2.如果f (n+1)=f (n )+1(n=1,2,3…),且f (1)=2,则f (100)= _________ .3. 已知等差数列{}n a 的前m 项和为30, 前2m 项和为100, 则前3m 项和为____.4.等差数列{}n a 中, 1a <0,最小,若n s s s ,4525=则n=______三解答题1.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .2.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式;(2)若S n =135,求以n .一.选择题(共15小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=(c)A.0B.8C.3D.119.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.10.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.11.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.12.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项性质求得a3和a4.13.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.14.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.15.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.二.填空题(共4小题)1.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列通项公式写出通项,本题是一个中档题目.2.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.3. 已知等差数列{}n a的前m项和为30, 前2m项和为100, 则前3m项和为2104.等差数列{}n a 中, 1a <0,最小,若n s s s ,4525=则n=____35__三.解答题 2.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .答案: S n=n 2-9n 或S n =-n 2+9n2.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式;(2)若S n =135,求以n .答案. a n =n+10,n=9。
高中等差数列知识点和相关练习试题
一、等差数列选择题1.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21SB .20SC .19SD .18S2.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-B .8C .12D .143.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .34.定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .9195.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .825两 B .845两 C .865两 D .885两 6.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2207.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11128.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S9.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .8010.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .15111.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( )A .24B .39C .104D .5212.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .1313.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10014.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2215.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13B .26C .52D .5616.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .517.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩18.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .919.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60B .120C .160D .24020.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .9二、多选题21.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >22.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .323.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为824.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S > D .若67S S >则56S S >.25.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列26.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列27.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=28.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 29.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列30.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n =C .数列{}n a 的通项公式为21n a n =-D .数列{}n a 为递减数列【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系1392a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392a d =-. 又10a >,所以0d <,因此222120(20)2002222n d d d dS n a n n dn n d ⎛⎫=+-=-=-- ⎪⎝⎭, 所以20S 最大. 故选:B. 2.D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D 3.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-, 故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯= 故选:D 5.C 【分析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,8106100a S =⎧⎨=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得设数列{}n a 的公差为d ,其前n 项和为n S ,则由题意得8106100a S =⎧⎨=⎩,即1176109101002a d a d +=⎧⎪⎨⨯+=⎪⎩,解得186585a d ⎧=⎪⎪⎨⎪=-⎪⎩. 所以长兄分得865两银子. 故选:C. 【点睛】关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和前n 项和公式. 6.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 7.C 【分析】 首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 8.B根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 9.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 11.D 【分析】根据等差数列的性质计算求解. 【详解】由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,74a =,∴11313713()13134522a a S a +===⨯=. 故选:D . 12.B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2,13.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 14.B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1n n a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d , 由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用.【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 16.A 【分析】由2219a a =,可得14a d =-,从而得2922n d dS n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A 17.B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题. 18.A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A 19.B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()11515815151581202a a S a +===⨯=. 故选:B 20.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C二、多选题21.BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;(2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.22.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 23.BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD. 24.BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 25.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD 26.AB 【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.故选:AB 【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解. 27.BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形. 28.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 29.AC 【分析】 由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 30.ABD 【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121nn n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-=所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212nn n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.。
小学等差数列练习题及答案
小学等差数列练习题及答案精品文档小学等差数列练习题及答案四年级奥数上册:第四讲等差数列及其应用习题解答四年级等差数列练习题1(找出规律后填出下面数列中括号里的数:1,,,,, 11, 13,,…1,,, 10,, 16, 19,…1,,, 10, 15,,8,…l,,,,,,,,…,, 11, 19,5,, 131;59,…2.已知等差数列5,9,13,17,…,它的第15项为_______.3.已知等差数列2,7,12,…,122,这个等差数列共有_____项。
4(从25往后数18个连续的奇数,最后一个奇数是______.5(被4除余1的两位数共有____个。
6(等差数列2,5,8,11,…,共有80项,其中所有奇数的和为_____.7(一个等差数列的第2项是2.8,第3项是3.1,则这个数列的第10项是_____.8(有10个同学聚会,见面时如果每人都和其余的每个人握一次手,那么共握手____次。
1 / 5精品文档9(在1949,1950,1951,……,1999,2000这52个自然数中,所有偶数之和比所有奇数之和多_____。
10(某市举行数学竞赛,比赛前规定,前15名可以获奖,比赛结果第一名1人,每2名并列2人,每三名并列3人,……,每十五名并列15人,用最简便的方法计算出得奖的一共有______人。
11(已知等差数列5,8,11,…,它的第21项为______。
12(自1开始,每隔三个自然数写出一个自然数来,得到一个数列,这个数列的前五项是 __________________,这个数列的前50项的和是_____________。
13(所有被7除余数是1的二位数的和是_________。
14(在13和29之间插入三个数,使这五个数成等差数插入的三个数依次是_______.15(有一批铁管,最低下一层是10根,倒数第二层是9根,以后每往上一层,铁管少一根,那么十层铁管一共有______根。
等差数列经典试题(含答案)
C. D.
24.已知数列 ,则前六项适合的通项公式为()
A. B.
C. D.
25.已知等差数列 的公差不为 ,其前 项和为 ,且 、 、 成等差数列,则下列四个选项中正确的有()
A. B. C. 最小D.
26. 是等差数列,公差为d,前项和为 ,若 , ,则下列结论正确的是()
A. B. C. D.
A.4(b2020-b2019)=πa2018·a2021B.a1+a2+a3+…+a2019=a2021-1
C.a12+a22+a32…+(a2020)2=2a2019·a2021D.a2019·a2021-(a2020)2+a2018·a2020-(a2019)2=0
23.已知数列 :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记 为数列 的前 项和,则下列结论正确的是()
故选:B.
【点睛】
关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用.
14.B
【分析】
利用等差数列的下标性质,结合等差数列的求和公式即可得结果.
【详解】
由等差数列的性质,可得 , ,
因为 ,
可得 ,即 ,
故数列的前13项之和 .
故选:B.
15.D
【分析】
由等差数列前n项和公式即可得解.
5.A
【详解】
由 .故选A.
6.B
【分析】
利用等差数列性质得到 , ,再利用等差数列求和公式得到答案.
【详解】
根据题意:小李同学每天跑步距离为等差数列,设为 ,
则 ,故 , ,故 ,
则 .
故选:B.
7.B
【分析】
把已知的两式相加得到 ,再求 得解.
等差数列的性质练习题
等差数列的性质练习题等差数列是数学中常见的一种数列形式,它具有一些独特的性质和规律。
在本文中,我们将通过练习题的形式来深入探讨等差数列的性质,并解答一些相关问题。
练习题一:已知等差数列的首项为a,公差为d,第n项为an。
若a=2,d=3,an=20,求n的值。
解答一:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到20 = 2 + (n-1)3。
简化方程可以得到18 = (n-1)3,进一步化简得到6 = n-1。
因此,n的值为7。
练习题二:已知等差数列的首项为a,公差为d,前n项和为Sn。
若a=1,d=4,Sn=45,求n的值。
解答二:根据等差数列的前n项和公式Sn = (n/2)(2a + (n-1)d),代入已知条件可以得到45 = (n/2)(2 + 4(n-1))。
简化方程可以得到45 = (n/2)(2 + 4n - 4)。
进一步化简得到45 = (n/2)(4n - 2)。
再次化简得到45 = 2n^2 - n。
将方程变为二次方程的标准形式,得到2n^2 - n - 45 = 0。
通过求解这个二次方程,可以得到n的值为5或-4。
由于数列的项数不能为负数,因此n的值为5。
练习题三:已知等差数列的首项为a,公差为d,第m项为am,第n项为an。
若a=3,d=2,am=11,an=23,求m和n的值。
解答三:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到23 = 3 + (n-1)2。
简化方程可以得到20 = (n-1)2,进一步化简得到10 = n-1。
因此,n的值为11。
同样地,代入已知条件可以得到11 = 3 + (m-1)2。
简化方程可以得到8 = (m-1)2,进一步化简得到4 = m-1。
因此,m的值为5。
通过解答以上练习题,我们可以看出等差数列的性质和规律。
首先,等差数列的通项公式an = a + (n-1)d可以用来求解数列的任意一项。
2019-2020学年高中数学课时分层作业11等差数列前n项和的综合应用
课时分层作业(十一) 等差数列前n 项和的综合应用(建议用时:60分钟)[基础达标练]一、选择题1.已知数列{a n }的前n 项和S n =n 2,则a n 等于( ) A .n B .n 2C .2n +1D .2n -1D [当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=1适合a n =2n -1,所以a n =2n -1.]2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A .5 B .4 C .3D .2C [由题意得S 偶-S 奇=5d =15, ∴d =3.或由解方程组⎩⎪⎨⎪⎧5a 1+20d =15,5a 1+25d =30,求得d =3,故选C .]3.已知等差数列的前n 项和为S n ,若S 13<0,S 12>0,则此数列中绝对值最小的项为( ) A .第5项 B .第6项 C .第7项D .第8项C [由题知,S 13=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以a 7<0,a 6+a 7>0,所以a 6>-a 7=|a 7|,所以a 7绝对值最小.]4.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 200等于( )A .100B .101C .200D .201A [A ,B ,C 三点共线⇔a 1+a 200=1, ∴S 200=2002(a 1+a 200)=100.]5.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,那么S 8S 16的值为( )A .18B .13C .19D .310D [设S 4=m ,则S 8=3m ,由性质得S 4、S 8-S 4、S 12-S 8,S 16-S 12成等差数列,S 4=m ,S 8-S 4=2m ,所以S 12-S 8=3m ,S 16-S 12=4m ,所以S 16=10m ,∴S 8S 16=3m 10m =310.] 二、填空题6.已知数列{a n }的前n 项和S n =n 2+2n ,则数列{a n }的通项公式a n =________. 2n +1 [当n =1时,a 1=S 1=3. 当n ≥2时,a n =S n -S n -1=n 2+2n -(n -1)2-2(n -1)=2n +1.因为n =1时,a 1=3,也满足a n =2n +1, 所以a n =2n +1.]7.已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 23或24 [∵a 24=0,∴a 1<0,a 2<0,…,a 23<0,故S 23=S 24最小.]8.设S n 为等差数列{a n }的前n 项和,若a 4=1,S 5=10,则当S n 取得最大值时,n 的值为________.4或5 [由⎩⎪⎨⎪⎧a 4=a 1+3d =1,S 5=5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=4,d =-1,∴a 5=a 1+4d =0,∴S 4=S 5同时最大. ∴n =4或5.] 三、解答题9.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,求a 9. [解] 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24, 即2a 1+5d =8. 由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.10.已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足a 1=1,a n +1=2S n +1,n ∈N +.(1)求a 2的值;(2)求数列{a n }的通项公式. [解] (1)∵a 1=1,a n +1=2S n +1, ∴a 2=2S 1+1=2a 1+1=3.(2)法一:由a n +1=2S n +1,得S n +1-S n =2S n +1,故S n +1=(S n +1)2. ∵a n >0,∴S n >0.∴S n +1=S n +1.∴数列{S n }是首项为S 1=1,公差为1的等差数列. ∴S n =1+(n -1)×1=n .∴S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又a 1=1适合上式,∴a n =2n -1.法二:由a n +1=2S n +1,得(a n +1-1)2=4S n , 当n ≥2时,(a n -1)2=4S n -1,∴(a n +1-1)2-(a n -1)2=4(S n -S n -1)=4a n .∴a 2n +1-a 2n -2a n +1-2a n =0,即(a n +1+a n )(a n +1-a n -2)=0. ∵a n >0,∴a n +1-a n =2.∴数列{a n }从第2项开始是以a 2=3为首项,公差为2的等差数列, ∴a n =3+2(n -2)=2n -1(n ≥2). ∵a 1=1适合上式,∴a n =2n -1.[能力提升练]1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18B [S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30, 由S n =n (a 1+a n )2=210,得n =14.]2.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( ) A .9 B .8 C .7 D .6B [∵a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),∴a n =2n -10.由5<2k -10<8, 得7.5<k <9,又k ∈N +,∴k =8.]3.在等差数列{a n }中,a 10<0,a 11>0且a 11>|a 10|,则满足S n <0的n 的最大值为________. 19 [因为a 10<0,a 11>0,且a 11>|a 10|, 所以a 11>-a 10,a 1+a 20=a 10+a 11>0, 所以S 20=20(a 1+a 20)2>0.又因为a 10+a 10<0,所以S 19=19×(a 10+a 10)2=19a 10<0,故满足S n <0的n 的最大值为19.]4.已知{a n }的前n 项和为S n ,且满足a 1=1,S n =n +12a n ,则{a n }的通项公式为________.a n =n (n ∈N +) [由已知2S n =(n +1)a n ,∴2S n -1=na n -1(n ≥2),两式相减,得2a n =(n +1)a n -na n -1, 即(n -1)a n =na n -1, ∴a n a n -1=n n -1(n ≥2),从而可得a 2a 1=21,a 3a 2=32,a 4a 3=43,…,a n a n -1=nn -1(n ≥2), 以上各式相乘可得a n =na 1=n (n ≥2). 又a 1=1也适合上式,∴a n =n (n ∈N +).]5.若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n . [解] ∵a 1=13,d =-4,∴a n =17-4n .当n ≤4时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =13n +n (n -1)2×(-4)=15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n ) =S 4-(S n -S 4)=2S 4-S n =2×(13+1)×42-(15n -2n 2)=2n 2-15n +56.∴T n =⎩⎪⎨⎪⎧15n -2n 2(n ≤4),2n 2-15n +56(n ≥5).。
11 高中数学等差数列与等比数列问题专题训练
专题11高中数学等差数列与等比数列问题专题训练【知识总结】1.等差数列、等比数列的基本运算等差数列、等比数列的基本公式(n ∈N *)(1)等差数列的通项公式:a n =a 1+(n -1)d ;(2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ; (4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.2.等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k .2.前n 项和的性质:对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).【高考真题】1.(2022·全国乙理) 已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( )A .14B .12C .6D .32.(2022·全国乙文) 记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.【题型突破】题型一 等差数列基本量的计算1.(2017·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .82.(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .123.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .144.(2016·全国Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .975.设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A .259B .269C .3D .2896.设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.7.(2020·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.8.(2020·新高考Ⅱ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 ________.9.(2013·全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .610.(2019·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n 题型二 等差数列性质的应用11.在等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( )A .3B .-3C .32D .-3212.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( )A .a 1+a 101>0B .a 1+a 101<0C .a 3+a 99=0D .a 51=5113.已知数列{a n }是等差数列,若a 1-a 9+a 17=7,则a 3+a 15等于( )A .7B .14C .21D .7(n -1)14.在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A .6B .12C .24D .4815.已知等差数列{a n },若a 1+a 2+a 3+…+a 12=21,则a 2+a 5+a 8+a 11=________.16.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( )A .14B .21C .28D .3517.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( ) A .14 B .15 C .16 D .1718.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对于任意的自然数n ,都有S n T n =2n -34n -3,则a 3+a 152(b 3+b 9)+a 3b 2+b 10=( ) A .1941 B .1737 C .715 D .204119.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .9020.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10题型三 等比数列基本量的计算21.(2017·全国Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.22.(2020·全国Ⅱ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .3223.(2019·全国Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .224.(2019·全国Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 25.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________. 26.(多选题)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3,若设其公比为q ,前n 项和为S n ,则( )A .q =2B .a n =2nC .S 10=2047D .a n +a n +1<a n +227.(2015·全国Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.28.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( ) A .2n -1 B .2-21-n C .2-2n -1 D .21-n -129.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( ) A .1 B .4 C .4或0 D .830.(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n .若a k +1+a k +2+…+a k +10=215-25,则k =( )A .2B .3C .4D .5 题型四 等比数列性质的应用31.在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( )A .-2B .-2C .±2D .232.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .1133.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( )A .4B .6C .8D .8-4234.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .335.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 3536.已知数列{a n }的各项都为正数,对任意的m ,n ∈N *,a m ·a n =a m +n 恒成立,且a 3·a 5+a 4=72,则log 2a 1+log 2a 2+…+log 2a 7=________.37.在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8 D .1638.已知数列{a n }为等比数列,且a 2a 6+2a 24=π,则tan(a 3·a 5)等于( )A .3B .-3C .-33D .±3 39.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( )A .16B .8C .22D .440.已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于 ( )A .2 020B .1 010C .2D .12题型五 等差与等比数列的综合计算41.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值为( ) A .-3 B .-1 C .-33D .3 42.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.43.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.44.(2017·全国Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .845.设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =_____,S 4S 2=______. 46.公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A .78B .85C .1D .9547.在公差d <0的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列,则|a 1|+|a 2|+|a 3|+…+|a n |=________.48.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( )A .a 6≤b 6B .a 6≥b 6C .a 12≤b 12D .a 12≥b 1249.已知正项数列{a n }满足a 2n +1-2a 2n -a n +1a n =0,设b n =log 2a n +1a 1,则数列{b n }的前n 项和为( ) A .n B .n (n -1)2 C .n (n +1)2 D .(n +1)(n +2)250.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列.若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3(n ∈N *)的最小值为( )A .4B .3C .23-2D .92。
等差数列练习题(带解析)
等差数列练习题一、单选题(共10题;共0分)1.数列前项和为,,,,若,则=()A. B. C. D.2.在数列中,,则的值为()A.−2B.C.D.3.数列,,,,的第14项是A. B. C. D.4.已知数列的前n项和为,且,则数列的通项公式为A. B. C. D.5.已知数列{a n}满足a1=1,,则254是该数列的()A.第14项B.第12项C.第10项D.第8项6.等比数列{a n}的前n项和为S n,己知S2=3,S4=15,则S3=( )A.7B.-9C.7或-9D.7.等差数列的前项和为,若,则()A. B. C. D.8.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布585尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺9.将正整数按如图所示的规律排列下去,且用表示位于从上到下第行,从左到右n列的数,比如,若,则有()A. B.C. D.10.世界上最古老的数学著作《莱茵德纸草书》中有一道这样的题目:把磅面包分给个人,使每人所得成等差数列,且使较大的两份之和的是较小的三份之和,则最小的份为()A.磅B.磅C.磅D.磅二、填空题(共10题;共0分)11.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第个图案中正六边形的个数是.由,,,…,可推出________.12.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则________.13.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n级分形图.则n级分形图中共有________条线段.14.已知圆的有条弦,且任意两条弦都彼此相交,任意三条弦不共点,这条弦将圆分成了个区域,(例如:如图所示,圆的一条弦将圆分成了2(即)个区域,圆的两条弦将圆分成了4(即)个区域,圆的3条弦将圆分成了7(即)个区域),以此类推,那么与之间的递推式关系为:________.15.如图,数表满足:第n行首尾两数均为n;(2)表中递推关系类似杨辉三角,记第n(n>1)行第2个数为a(n).根据表中上下两行数据关系,可以求得当n≥2时,a(n)=________.16.数列由,确定,则________.17.已知数列满足,,,则 ________.18.已知等比数列中,则其前3项的和的取值范围是________.19.(2018•北京)设是等差数列,且a1=3, a2+a5= 36,则的通项公式为________20.数列满足, ,数列的前项和为=________.三、解答题(共4题;共0分)21.已知等差数列的首项,公差,前项和为,.(1)求数列的通项公式;(2)设数列前项和为,求.22.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前n项和.23.在数列中,,,设.(1)证明:数列是等比数列,并求的通项公式;(2)求的前项和.24.设正项数列的前项和为,且满足,,.(1)求数列的通项公式;(2)若正项等比数列满足,,且,数列的前项和为,求证.等差数列练习题答案部分第 1 题:【答案】C【解析】【解答】由题意有:当时,,两式作差可得:,由于,故,即数列的奇数项、偶数项分别构成一个公差为3的等差数列,,据此可得,则数列的通项公式为:,,,加2后能被3整除,则.故答案为:C.【分析】本题利用对n进行分类讨论,再利用S求a的方法求出第k项,从而求出k的值。
(2021年整理)等差数列基础测试题(附详细答案)
等差数列基础测试题(附详细答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(等差数列基础测试题(附详细答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为等差数列基础测试题(附详细答案)的全部内容。
姓名:_______________学号:____________________班级:_____________________等差数列基础检测题一、选择题(共60分,每小题5分)1、已知等差数列{a n}的首项a1=1,公差d=2,则a4等于( )A.5 B.6C.7 D.92、已知{a n}为等差数列,a2+a8=12,则a5等于( )A.4 B.5C.6 D.73、在数列{a n}中,若a1=1,a n+1=a n+2(n≥1),则该数列的通项公式a n=()A.2n+1 B.2n-1C.2n D.2(n-1)4、等差数列{a n}的公差为d,则数列{ca n}(c为常数且c≠0)()A.是公差为d的等差数列B.是公差为cd的等差数列C.不是等差数列D.以上都不对5、在等差数列{a n}中,a1=21,a7=18,则公差d=( )A。
错误! B.错误!C.-错误!D.-错误!6、在等差数列{a n}中,a2=5,a6=17,则a14=()A.45 B.41C.39 D.37X k b 1 。
c o m7、等差数列{a n}中,前三项依次为错误!,错误!,错误!,则a101=( )A.50错误!B.13错误!C.24 D.8错误!8、已知数列{a n}对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上,则{a n}为()A.公差为2的等差数列 B.公差为1的等差数列C.公差为-2的等差数列 D.非等差数列9、已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是( )A.2 B.3C.6 D.910、若数列{a n}是等差数列,且a1+a4=45,a2+a5=39,则a3+a6=( )A.24 B.27C.30 D.3311、下面数列中,是等差数列的有()①4,5,6,7,8,…②3,0,-3,0,-6,…③0,0,0,0,…④错误!,错误!,错误!,错误!,…A.1个B.2个C.3个D.4个12、首项为-24的等差数列从第10项起开始为正数,则公差d的取值范围是()A.d>错误!B.d<3C.错误!≤d<3 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项。
53.一个递减(后项比前项小)的等差数列公差是6,有一项比第59项小
84,这一项比第59项(多或少)个公差,这一项是第
项。
54.—个递减(后项比前项小)的等差数列公差是6,有一项比首项小84,
这一项比首项(多或少)个公差,这一项是第项。
五求n项
55.—个递增的等差数列公差是3,第34项是123,第91项是。
例三:已知数列2. 5.8> 11、14、……•问47这个数列的第几项
练习:1、等差数列中,首项为1,末项为126,公差为5,这个等差数列有 多少项
2、等差数列1、3> 5、……、197、199共有多少项
3.1〜100中,是5的倍数有多少项
例四:求下列各等差数列的和。
(1)1+2+3+4++100
(2)3+6+9++39
56.一个递增的等差数列公差是6,第21项是192,第52项是。
57.一个递增的等差数列公差是3,第91项是336,第23项是。
58.一个递增的等差数列公差是4,第87项是523,第33项是。
59.一个递增的等差数列公差是4,首项是9,第91项是o
或少)个公差。
9、一个递减(后项比前项小)的等差数列,第18项比第32项
(多或少)个公差。
10.一个递减(后项比前项小)的等差数列,第32项比第18项
(多或少)个公差。
1K一个递减(后项比前项小)的等差数列,第74项比第26项
(多或少)个公差。
12.一个递减(后项比前项小)的等差数列,第74项比第91项
或少)个公差。
第二部分
17、一个递增(后项比前项大)的等差数列,第项比第75项
多19个公差。
ik一个递增(后项比前项大)的等差数列,第项比
第75项少19个公差。
19>一个递增(后项比前项大)的等差数列,第项比
首项多19个公差。
20.一个递增(后项比前项大)的等差数列,比第92项少19个
公差是第项。
42.一个递减(后项比前项小)的等差数列公差是9,第123项比第86项
(多或少)个公差。
13.一个递减(后项比前项小)的等差数列,第29项比第86项
(多或少)个公差。
14.一个递减(后项比前项小)的等差数列,第123项比第86项
(多或少)个公差。
15.一个递减(后项比前项小)的等差数列,首项比第76项(多
或少)个公差。
16.一个递减(后项比前项小)的等差数列,第76项比首项(多
4、一个递增(后项比前项大)的等差数列,
(多或少)个公差。
5、一个递增(后项L前项大)的等差数列,
(多或少)个公差。
6、一个递增(后项L前项大)的等差数列,
(多或少)个公差。
7、一个递增(后项比前项大)的等差数列,首项比第73项(多
或少)个公差。
8.一个递增(后项比前项大)的等差数列,第87项比首项(多
例二:已知数列2. 5. 8. 11.……求这个数列的第19项和第91项分别是 多少
练习:1、已知数列1、3、5、7、……•问105是这个数列的第几项
2.已知一个等差数列的首项是7,从7往后后一个数比前一个数多2,求 此数列的第100项是多少
3.已知一个等差数列的首项是3,公差等于2项数等于10,它的末项是多 少
例六:所有两位双数的和是多少
练习:1>所有两位单数的和是多少
2、所有两位双数的和比所有两位单数的和多多少
3.求所有被2除余1的两位数的和
例七 某体育馆西侧看台有30排座位,后面一排都比前面一排多2位,最 后一排有132人,体育馆西侧看台共有多少人
K电影院有13排座位,后面一排都比前面一排多4位,最后一排 有90人,这个电影院共有多少个座位
这一项比首项(Βιβλιοθήκη 或少)个公差,这一项是第项。50.一个递减(后项比前项小)的等差数列公差是7,有一项比第34项大
9b这一项比第34项(多或少)个公差,这一项是第
项。
51.一个递减(后项比前项小)的等差数列公差是8,有一项比第74项小
96,这一项比第74项(多或少)个公差,这一项是第
项。
52.一个递减(后项比前项小)的等差数列公差是9,有一项比第87项大
练习:1、1+2+3+4++199、
2、2+4+6++78
3、3+7+11+15++207、
4、95+92+89++11+8+5+2
例五三个连续自然数的和是30,请写出这三个数
练习:1、5个连续自然数的和是100,请写出这5个数
2、三个连续单数的和是93,请写出这三个数
3.7个连续自然数的和是70,请写出这7个数
(多或少)o
43.一个递减(后项比前项小)的等差数列公差是9,第23项比首项
(多或少)o
44.一个递减(后项比前项小)的等差数列公差是6,第46项比首项
(多或少)-
第四部分
45.一个递增(后项比前项大)的等差数列公差是3,有一项比第34项大
57,这一项比第34项(多或少)个公差,这一项是第
项。
46.—个递增(后项比前项大)的等差数列公差是£有一项比第78项小
等差数列练习题
例一:有一个数列3、6、9. 12.…….45,这个数列共有多少项
练习:1、等差数列中,首项为2,末项为100,公差为2,这个等差数列有 多少项
2、有一个数列:8、11. 14.……> 98,这个数列共有多少项
3.已知等差数列5、10> 15> 20>……> 205,这个等差数列共有多少项
2.12个同学聚会,如果见面时每个人都和其他人握手1次,那么 一共握多少次
3.时钟在每个整点敲打,敲打的次数等于该钟敲得点数,每半点也 敲一下,求时钟一昼夜总共敲打多少下
第一部分
(多或少)个公差。
2、一个递增(后项比前项大)的等差数列,
(多或少)个公差。
3、一个递增(后项比前项大)的等差数列,
(多或少)个公差。
56,这一项比第78项(多或少)个公差,这一项是第
项。
47.一个递增(后项比前项大)的等差数列公差是5,有一项比第46项大
60,这一项比第46项(多或少)个公差,这一项是第
项。
48.一个递增(后项比前项大)的等差数列公差是6,有一项比第64项小
72,这一项比第64项(多或少)个公差,这一项是第
项。
49.一个递增(后项比前项大)的等差数列公差是5,有一项比首项大70,