水轮机概论及工作原理共55页

合集下载

水轮机概论

水轮机概论

4、水轮机的装置方式
• 水轮机轴装置方式——立轴、卧轴、斜轴 • 机组连接方式:直接——水轮机轴、发电机轴在同一 轴线 间接——水轮机轴、发电机轴不在同 一轴线,靠传动装置连接 • 立轴直接连接方式——大中型水轮机 • 卧轴直接连接方式——大中型水斗式水轮机
金属蜗壳—立轴装置
混凝土蜗壳—立轴装置
金属蜗壳—卧轴布置
明槽——卧轴布置
5、思考练习
P17 1、2、3、4题

• •
2、水轮机基本类型
• 反击式水轮机——利用水流的压力能和动能做 功:混流式、轴流式、斜流式、贯流式 • 冲击式水轮机——利用水流的动能做功:水斗 式(切击式)、斜击式、双击式
混流式水轮机
• 指水流沿径向进入转轮然后沿轴向自转轮流出的水轮 机。适用水头一般为20~700m,适用水头范围广,结 构简单,运行可靠,应用最为广泛。
• 流道呈直线状的卧轴水轮机,分为定桨式和转桨式两种。 其转轮与轴流式水轮机相似,但效率和过流量比轴流式 水轮机大,适用水头一般为3~20m,是开发低水头和潮 汐水力资源的新型水轮机。按发电机的布置方式分为 全贯流式和半贯流式两种半贯流式又分为竖井式、轴 伸式和灯泡式,其中以灯泡式水轮机应用最广泛。
斜流式水轮机
• 水流经转轮叶片时倾向于轴线某一方向的水轮机。其 叶片可转动,在结构和特性方面介于混流式和轴流式 水轮机之间,适用水头一般为40~120m,比轴流式水 轮机的适用水头高,比混流式水轮机的平均效率高, 对水头、负荷变化的适应性好。缺点是制造工艺复杂, 造价高,小型电站不宜采用。
贯流式水轮机
水斗式水轮机
• 由喷嘴喷射的轮缘 上所组成,适用水头一般为100~1700m。
3、水轮机型号

水轮机的工作原理

水轮机的工作原理

水轮机的工作原理
首先,水轮机的工作原理是基于水的动能转换为机械能。

当水流经过水轮机叶片时,水的动能会转化为叶片的动能,使得叶片开始旋转。

这种旋转运动会带动水轮机主轴转动,从而驱动发电机产生电能。

其次,水轮机的工作原理还涉及到水的动能和势能的转换。

在水流经过水轮机叶片时,水的动能会转化为叶片的动能,同时也会有一部分水的势能被转化为叶片的动能。

这样,水轮机就能够将水的动能和势能转换为机械能,实现发电的效果。

另外,水轮机的工作原理还包括水流的控制和调节。

为了使水轮机能够正常工作,需要对水流进行控制和调节,以保证水流的稳定性和流速的合适性。

这样才能够保证水轮机的正常运转,提高发电效率。

此外,水轮机的工作原理还与水轮机的结构和设计有关。

不同类型的水轮机有不同的结构和设计,但其工作原理都是基于水的动能转换为机械能。

因此,在设计和选择水轮机时,需要考虑其工作原理和适用性,以实现最佳的发电效果。

总的来说,水轮机的工作原理是基于水的动能和势能转换为机械能,通过水流的能量来驱动水轮机转动,从而带动发电机产生电能。

在实际应用中,需要综合考虑水流条件、水轮机的结构和设计以及水流的控制和调节,以实现最佳的发电效果。

希望本文能够对水轮机的工作原理有所帮助。

水轮发电机结构及工作原理介绍2讲课文档

水轮发电机结构及工作原理介绍2讲课文档
立轴水轮发电机转子结构
现在二十九页,总共一百二十一页。
转子支架
磁轭
顶轴
转子
集电环组件
磁极
现在三十页,总共一百二十一页。
转子引线
• 主轴
– 主轴的作用是用来传递扭矩,应具有一定的强 度和刚度。
– 主轴一般由35号、40号、45号或20SiMn等钢整 锻而成。
– 小容量水轮发电机一般采用整锻实心轴,也有 的采用无缝钢管作为轴;大、中型容量的发电 机采用整锻空心轴。
现在十八页,总共一百二十一页。
• 水轮发电机的主要作用
将水轮机旋转的机械能最终转换成电能,其结构与 性能的好坏对电站的安全、稳定、高效运行起着致 关重要的作用。
• 水轮发电机组成
主要由定子、转子、机架、推力轴承、导轴承、冷却器、 制动器等部件组成。
现在十九页,总共一百二十一页。
水轮发电机定子结构
13—抗重螺栓;14—托盘;15—推力瓦;16—绝缘垫
现在三十六页,总共一百二十一页。
– 抗重螺栓
• 推力瓦由头部为球面的抗重螺栓支承,抗重螺栓垂 直拧入装有螺纹套筒的轴承座上。调整抗重螺栓的 高度,可使瓦块保持在同一水平面上,使瓦块受力 均匀。
– 推力瓦
• 推力瓦是推力轴承中的关键部件,它是整个机组转 动部分和固定部分的摩擦面,并且承受整个机组转 动部分的重量和轴向水推力。
– 按推力轴承位置分:立式发电机又分为悬式和伞 式两种。
• 推力轴承位于转子上方的发电机称为悬式发电机,它适 用于转速在100r/min以上。
• 推力轴承位于转子下方的发电机称为伞式发电机,无上 导的称为全伞式,有上导的称为半伞式,它适用于转速 在150r/min以下。
– 按冷却方式分:可分为空气冷却和水冷却两种 。

水轮机结构与工作原理

水轮机结构与工作原理

水轮机结构与工作原理嘿,你知道水轮机不?那可是个神奇的家伙!水轮机就像一个不知疲倦的大力士,默默地为我们的生活贡献着力量。

水轮机的结构那可相当复杂。

它有一个巨大的转轮,就像一个超级大的风扇叶片。

这个转轮可不一般,它是由坚固的材料制成,能够承受巨大的水流冲击力。

转轮上还有很多形状各异的叶片,这些叶片就像是一双双有力的手臂,在水流的推动下不停地转动。

水轮机还有一个外壳,就像一个坚固的堡垒,保护着里面的核心部件不受外界的破坏。

外壳上有各种管道和阀门,就像人体的血管和关节一样,控制着水流的进出和流向。

水轮机的工作原理也非常有趣。

想象一下,当水流从高处冲下来的时候,就像一群奔腾的野马,充满了力量。

这些水流冲击到水轮机的转轮上,就像一阵强风推动着风车的叶片一样,使转轮开始转动起来。

转轮的转动带动了连接在它上面的轴,轴又通过一系列的齿轮和传动装置,将动力传递给发电机或者其他设备。

这就像是一个接力赛,水流把力量传递给转轮,转轮又把力量传递给轴,轴再把力量传递给发电机,最后发电机把水流的能量转化为电能或者其他形式的能量。

水轮机的种类也有很多呢!有反击式水轮机和冲击式水轮机。

反击式水轮机就像一个温柔的大力士,它利用水流的压力和动能来推动转轮转动。

冲击式水轮机则像一个勇猛的战士,它直接利用水流的冲击力来推动转轮转动。

不同种类的水轮机适用于不同的场合和水流条件,就像不同的工具适用于不同的工作一样。

水轮机的作用可大了!它可以为我们提供清洁的电能,让我们的生活更加便利。

它还可以用于灌溉、排水、防洪等方面,为我们的农业和城市建设做出贡献。

水轮机就像一个默默无闻的英雄,在我们的生活中发挥着重要的作用。

水轮机的发展也是日新月异。

随着科技的不断进步,水轮机的效率越来越高,体积越来越小,性能也越来越稳定。

未来的水轮机可能会更加智能化,能够自动调节水流的大小和方向,适应不同的工作环境。

这就像我们的手机越来越智能一样,让人充满期待。

水轮机真的是一个了不起的发明!它让我们充分利用了大自然的力量,为我们的生活带来了很多好处。

水轮机原理及构造

水轮机原理及构造

水轮机原理及构造水轮机是一种将水流动能转化为机械能的能量转换装置。

它的工作原理基于动能守恒定律和能量守恒定律。

水轮机的构造主要包括水轮机轮盘、水轮机叶片、水轮机导叶和水轮机主轴等。

水轮机的工作原理:水轮机的工作原理是利用水流的冲击力和动能来推动轮盘旋转,从而进行能量转换。

具体来说,水轮机是利用流体在受力后产生的动量变化来实现动能转化的。

当水流经过水轮机叶片时,由于叶片形状和速度的变化,水流的动量发生了变化。

这个过程中,水流的动能减小,而叶片所受到的水流冲击力增加,从而推动轮盘旋转。

水流的动力作用可分为冲击力和剪力两部分,它们共同作用在叶片上,产生一个向环形斜盘中心方向的作用力,使其在金属皮带或摩擦轮的拉力下转动。

水轮机的构造:1.水轮机轮盘:水轮机轮盘是水轮机的主要部件,它可以分为定子轮盘和转子轮盘两部分。

定子轮盘通常是固定的,而转子轮盘则与主轴连接,并能转动。

轮盘的外形和材料选择需根据具体的工作条件和需求来确定。

2.水轮机叶片:水轮机叶片是位于轮盘上的一系列叶片,其形状和角度的设计对水轮机的性能具有很大的影响。

一般来说,叶片可以分为定叶和移动叶两种类型。

定叶是固定在轮盘上的,主要用于导向水流;移动叶则可以调整角度,用于控制水流的进入和出口。

叶片通常由耐磨和高强度的材料制成,如钢铁或铝合金。

3.水轮机导叶:水轮机导叶位于叶片和进水管道之间,用于引导水流进入叶片。

导叶的设计可根据水流的速度和压力来决定。

通常,导叶是可调角度的,通过调整导叶的角度,可以控制水流的流向和流速,从而实现对水轮机的调节。

4.水轮机主轴:水轮机主轴是连接轮盘和发电机或其他设备的中心轴。

它负责传输轮盘旋转产生的机械能,使之转化成用于发电或其他工作的机械能。

主轴的设计需考虑到承载能力、刚度和传动效率等要素。

除了以上主要构造部件外,水轮机还包括导叶机构、轴承、机壳和冷却系统等辅助部件。

导叶机构通常是由液压或电动设备控制,用于调节导叶的角度。

水轮机的工作原理

水轮机的工作原理

1、为了使水斗排出的水流不冲击下一个水斗的背
面,叶片的出水角β2 并不等于零,一般采用
β2= 7o~13o;
2、射流在斗叶曲面上的运动是扩散的,各点的圆
周速度U并不是均匀的,且由于摩擦损失的影响,
W2 也 并 不 等 于 W1 。 因 此 最 大 出 力 并 不 发 生 在 U=0.5V0时,根据实验,水斗式水轮机最有利的 U/V0约为0.42~0.49。
H.E.茹可夫斯基定理
P V
反击式水轮机转轮叶片上作用力的形成与绕流翼型 上的作用力类似。作用力的方向指向旋转方向,依靠 叶片工作面与背面的压力差而形成的。
转轮正是在压力差的作用下被“推”着旋转。
第三节 水轮机的效率及最优工况
一、水轮机的效率
水轮机将水流的输入功率转变为旋转轴的输出机
作用在水流质量上的外力及形成的力矩:
1、转轮叶片作用力:迫使水流改变运动的方向与速度 的大小,对水流产生作用力矩;
2、转轮外水流在转轮进、出口处的水压力:此压力对 转轮是轴对称的,压力通过轴心,不产生作用力矩;
3、上冠、下环内表面对水流的压力:内表面均为旋转 面,故此压力也是与轴线相交的,不产生作用力矩;
轴面速度
Vr
Vu
Vm VrV Vz
z
Vm Vr Vz
V Vu Vm
V U W
轴面速度
U Uu U z Ur
U Uu
V U W
W Wu Wz Wr Wu Wm
U Uu
Wr Wu Wm
W
V U W
V Vu Vz Vr Vu Vm
冲击作功的整个过程在大气压力下进行。
特 点:

水轮机的工作原理

水轮机的工作原理

3.卧轴混流式和贯流式水轮机
第七节 水斗式水轮机旳工作原理
一、水斗式水轮机工作旳基本方程式
自喷嘴喷射出来旳射流以很大旳绝对速度Vo 射向运动着旳转轮,如图2—18所示,Vo 可由下式
求得:
在选定喷嘴数目z。之后,则经过z。个喷嘴
旳流量Q 为:
当选用
kv =0.97,
则由已知旳 水轮机引用 流量,便可 得出射流旳
2.间隙汽蚀 当水流经过某些间隙和较小旳通道时,因局部 速度旳升高而形成了压力降低,当压力低于汽化压 力时所产生旳汽蚀称为间隙汽蚀。
3.空腔汽蚀 真空涡带周期性旳冲击使转轮下环和尾水管进 口处产生汽蚀破坏,这种汽蚀称为空腔气蚀。
4.局部汽蚀 因为水轮机旳过流表面在某些地方凹凸不平 因脱流而产生旳汽蚀。
当设有尾水管时,转轮出口处水流旳损失能量
3.尾水管旳作用 从 中减去 ,便可得出因为设置尾水管
后水轮机能够多利用旳能量 为:
综合以上所述,水轮机尾水管旳作用可归纳为:
1)汇集转轮出口旳水流,并引导水流排至下游;
2)当H‘>0时,以静力真空旳方式使水轮机完全 利用了这一高度所具有旳势能;
3)以动力真空旳方式使水轮机回收并利用了转轮 出口水流旳大部分动能。

,在正常工作时,其最高效率
=85%~90%,略低于混流式水轮机,但其效
率变化比较平稳,在低负荷和满负荷运营时其效
率反而比混流式水轮机为高,如图4—7所示
三、水斗式水轮机旳安装高程
对于立轴水斗式水轮机,如图2—17(c)所 示,其安装高程要求为喷嘴射流中心线旳高 程,则有:
对于卧轴水斗式水轮机,如图2—17(/)所 示,其安装高程要求为主轴中心线旳高程,则 有:

水轮机概述

水轮机概述

水轮机概述水轮机概述Hydraulic Turbine Overview在“水电站栏目”的“水力发电原理”一节中曾介绍中国传统应用的水轮机——水车,在本栏目介绍目前真正用于发电的水轮机的原理与结构。

水轮机是把水流的能量转换为旋转机械能的动力机械,是利用水流做功的水力机械,根据转换水流能量方式的不同,水轮机分为冲击式水轮机和反击式水轮机两大类。

把受水流作用而旋转的部件称为转轮。

冲击式水轮机冲击式水轮机的转轮受到喷射水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换,在同一时刻内,水流只冲击着转轮的一部分,而不是全部。

图1是冲击式水轮机水流向示意图。

图1 冲击式水轮机水流向示意图冲击式水轮机按水流的流向可分为切击式(又称水斗式)、斜击式、双击式三类,在后面章节会介绍常用的切击式与斜击式水轮机。

反击式水轮机与冲击式水轮机不同,反击式水轮机同时利用了水流的势能与动能,水流充满整个转轮的空间,在转轮叶片约束下改变流速与方向,从而对转轮叶片产生反作用力,驱动转轮旋转。

通过水轮机水流的大部分动能与势能都转换成转轮旋转的机械能。

反击式水轮机可分为混流式、轴流式、斜流式和贯流式。

轴流式水轮机轴流式水轮机的转轮如同风扇叶片,工作原理与常见的风力机相似。

水流从水轮机四周水平方向向中心流入(径向进入),然后转为向下方向推动转轮叶片做功,由于推动转轮叶片的水流方向与转轮轴方向平行,故称为轴流式水轮机。

图2是轴流式水轮机水流走向示意图图2 轴流式水轮机水流走向示意图混流式水轮机混流式水轮机的转轮看起来较复杂,水流从水轮机四周水平方向向中心流入转轮(径向进入),然后转为向下方向出口,水流进入转轮内在向轴芯方向通过叶片时推动转轮,同时在向下通过叶片时也推动转轮。

也就是说水流在径向与轴向通过叶片时都做功。

故称为混流式水轮机,也称为幅向轴流式水轮机。

图3是混流式水轮机水流走向示意图。

图3 混流式水轮机水流走向示意图斜流式水轮机斜流式水轮机转轮有点像轴流式水轮机转轮,只不过通过叶片的水流是倾斜于轴向,是轴流式水轮机的变种,通过调节叶片角度可适应较大的水头范围。

水轮机的工作原理

水轮机的工作原理

水轮机的工作原理水轮机是一种利用水能转换成机械能的装置,是水电站发电的主要设备之一。

它通过水流的动能转换成机械能,驱动发电机发电。

水轮机的工作原理主要包括水流入口、叶轮、转子、出口等几个部分,下面将详细介绍水轮机的工作原理。

首先,水轮机的工作原理是基于水的动能转换成机械能。

当水流通过水轮机的叶轮时,水的动能被传递给叶轮,使叶轮产生旋转运动。

这种旋转运动将驱动水轮机的转子旋转,转子与发电机相连,通过机械传动将机械能转换成电能。

其次,水轮机的叶轮是实现水能转换的核心部件。

叶轮通常由多个叶片组成,叶片的形状和排列方式会影响叶轮的效率和性能。

当水流通过叶轮时,叶片受到水流的冲击力,产生转动力,从而驱动叶轮旋转。

因此,叶轮的设计和制造对水轮机的工作效率和稳定性有着重要的影响。

另外,水轮机的转子是叶轮传递动能的部分,也是驱动发电机发电的关键。

转子通常由轴承、转子盘和转子叶片等部件组成,其主要作用是将叶轮传递的动能转换成机械能,并输出到发电机上。

转子的设计和制造需要考虑其承受水流冲击的能力和转动的平衡性,以确保水轮机的正常运行和发电效率。

最后,水轮机的出口是水流离开水轮机的地方,也是水轮机工作原理的最后一环。

当水流通过叶轮后,其动能已经转换成机械能,水流将从水轮机的出口流出,继续向下游流动。

在水轮机出口处通常设置有排水装置,用于控制水流的排放和保证水轮机的正常运行。

总的来说,水轮机的工作原理是基于水的动能转换成机械能,通过叶轮、转子等部件的协同作用实现水能的利用和发电。

水轮机的工作原理涉及流体力学、机械传动、发电原理等多个领域,是一种高效、可靠的水能利用装置。

希望通过本文的介绍,读者对水轮机的工作原理有了更深入的了解。

水轮机概论及工作原理

水轮机概论及工作原理

k vk2 5v52
2g
hk5
H
吸出高度
水轮机旳吸出高度是指转轮中压力最
低点(k)到下游水面旳垂直距离,常用HS
表达。
Hs
≤ 10.0 H
900
对不同旳 Hs要求如下
对不同形式水轮机旳HS作如下要求
立轴轴流式水轮机, HS为下游水 面至叶片转 动中心旳 距离 (如右图)
立轴混流式水轮机, HS为下游水面 至导叶下部底 环平面旳垂 直高度(图右)
式中:p ——发电机磁极对数
按转轮水流方向分
还击式
水 轮 机 类 冲击式 型
可逆式 *
混流式(HL)
轴流式(ZL)
轴流定桨式(ZD) 轴流转桨式(ZZ)
斜流式(XL)
斜流定桨式(XD) 斜流转桨式(XZ)
贯流式(GL)
切击式(CJ) 斜击式(XJ) 双击式(SJ)
贯流定桨式(GD) 贯流转桨式(GZ)
1.水轮机基本方程式
H (vu1 u1 vu2 u2 )
g
基本方程旳物理意义
方程旳实质:由水流能量转换为旋转机械能旳 平衡方程
水流与叶片相互作用,使得水轮机做功。水流 经过水轮机时,叶片迫使水流动量矩发生变化, 而水流以反作用力作用在叶片上,从而使转轮 取得力矩。
水能转变为旋转机械能旳必要条件:水流在转 轮出口旳能量不大于进口处旳能量,即转轮旳 进口和出口必须存在速度矩旳差值。
汽蚀现象
当某点旳压力到达(或低于)该温度下水旳汽化压 力时,水就局部汽化产生大量汽泡,同步水体中存在旳 许多眼看不见旳气核体积骤然增大也形成可见气泡,这 些气泡伴随水流进入高压区时,气泡瞬时破灭,因为汽 泡中心压力较低,气泡周围旳水质点将以很高旳速度向 汽泡中心撞击形成巨大旳压力,并以很高旳频率冲击金 属表面,使水轮机过流部件旳金属表面产生物理电化学 作用遭到破坏,这一现象就称为汽蚀现象,

(完整word版)水轮机概论

(完整word版)水轮机概论
情景1
2 均流速,m/s;I、II分别为Ⅰ-Ⅰ和Ⅱ-Ⅱ处的过流断面速度分布不均匀系数;为水的密度,kg/m3;g为重力加速度。 净水头H又可表示为: 1AghHH (1-2) 式中:Hg为水电站水头(毛水头);1Ah为水电站引水建筑物中的水力损失。 毛水头是水电站上、下游水位的高程差,用符号gH表示,单位为m。 2.额定水头Hr 额定水头是水轮机在额定转速下,输出额定功率时的最小净水头,单位为m。 3.设计水头Hd 设计水头是水轮机在最高效率点运行时的净水头,单位为m。 4.最大(最小)水头Hmax(Hmin) 最大(最小)水头是在运行范围内,水轮机水头的最大(最小)值,单位为m。 5.加权平均水头Hw 加权平均水头是在电站运行范围内,考虑负荷和工作历时的水轮机水头的加权平均值,单位为m。 图1-2 立轴反击式水轮机的工作水头
情景1
1 情景1 水轮机概论 1.1 水轮机基本参数 水轮机是把水流能量转换成旋转机械能的水力机械,是水电厂最主要的动力设备。水轮机主轴带动发电机轴旋转,利用发电机将机械能转换成电能。水轮机一般装在水电站的厂房内,如图1-1所示,当水流经引水道进入水轮机,由于水流和水轮机的相互作用,水流的能量便传给了水轮机,水轮机获得能量后开始旋转而做功。因为水轮机轴和发电机轴相连,水轮机便把它获得的能量传给了发电机,并驱动带有磁场的发电机转子转动而形成旋转磁场,发电机定子绕组切割磁力线而感应出电动势,带上外负荷后便输出了电流。 当水流通过水轮机时,水能即转变成机械能,这一工作过程的特性可用水轮机基 本参数来表征。其基本参数有:水头H、流量Q、功率P、效率η和转速n等。 1.1.1 水轮机水头H 1.净水头H 净水头是水轮机进口与出口测量断面的总水头差,即水轮机做功用的有效水头,用符号H表示,单位为m。图1-2为反击式水电站水轮机装置示意图。 对于反击式水轮机,进口断面取在蜗壳进口处Ⅰ-Ⅰ断面,出口断面取在尾水管出口Ⅱ-Ⅱ断面,则净水头为 ggpZggpZHIIIIIIIIII2222 (1-1) 式中:ZI 、ZII分别为断面Ⅰ-Ⅰ和Ⅱ-Ⅱ处相对于某基准的位置高度,m;Ip、IIp分别为断面Ⅰ-Ⅰ和Ⅱ-Ⅱ处的流体压强,Pa; I、II分别为Ⅰ-Ⅰ和Ⅱ-Ⅱ处过流断面的平 图1-1 拦河坝式水电站坝后式厂房 1-水轮机;2-发电机;3-尾水管;4-桥机;5-引水道

第三章 水轮机的工作原理

第三章 水轮机的工作原理
水轮机的总效率这种周期性的气泡产生破灭而破坏水轮机过流金属表面的现象称为水轮机的汽蚀现象反击式水轮机所提供给水流的过道并不是等断面的有宽窄之分这就会使水流流速大小不同进而引起压力低高不同亦就是造成水轮机内有高压区和低压区之分若低压区的压力达到或低于该温度下水的汽化压力时水就开始局部汽化产生大量汽泡同时水体中存在的许多眼看不见的气核体积骤然增大也形成可见气泡这些气泡随着水流进入高压区压力高于汽化力时气泡瞬时破灭由于汽泡中心压力较低气泡周围的水质点将以很高的速度向汽泡中心撞击形成巨大的水击压力可达几百甚至上千个大气压力并以很高的频率冲击金属表面高频率冲击的结果使过流流道的金属表面遭到严重破坏
HL220-L J-140 - - XL220-LH-520 - - ZZ560-LH-250 - - GD103-WP-275 - - XJ02— 60/1× XJ02—W—60/1×14 CJ22— 125/1× CJ22—W—125/1×12.5
第三章
第一节 第二节
水轮机的工作原理
水轮机的基本方程 水轮机的能量损失和效率
弯曲型尾水管
①尾水管进口直径D3 ②圆锥角θ ③尾水管管长L ④尾水管出口直径D5 ⑤尾水室的尺寸
1、圆锥段 弯管段(肘管) 2、弯管段(肘管) 3、水平扩散段
6、水轮机引水室有哪几种类型?
为适应不同条件,水轮机的引水室有开敞式与封闭式两大类。 (1)开敞式(明槽式) (2)封闭式 ①压力槽式和罐式 ②蜗壳式
作用:将射流动能转变为旋转机械能 作用:将射流动能转变为旋转机械能。 动能转变为旋转机械能。
折 流 板
当机组突然丢弃全部负荷时,折流板先转动, 当机组突然丢弃全部负荷时,折流板先转动,在 1~2s内使射流部分全部偏向,不冲击转轮,此时针阀 内使射流部分全部偏向, 内使射流部分全部偏向 不冲击转轮, 可在5~10s或更长时间内缓慢关闭,减小水锤压力。 或更长时间内缓慢关闭, 可在 或更长时间内缓慢关闭 减小水锤压力。

水轮机概论及工作原理

水轮机概论及工作原理

水轮机概论及工作原理水轮机是一种将水的能量转化为机械能的装置,广泛应用于水力发电和工业生产中。

水轮机的工作原理基于流体静力学原理和动力学原理,通过水流的压力和流速来驱动轮盘的转动。

水轮机的主要组成部分包括定子、转子和导水管道。

定子是需要安装在导水管道上的一种装置,用于引导水流并控制水流的压力和方向。

转子是水轮机的核心部分,由轮盘和转轴组成。

轮盘上面通常有多个叶片,可以根据水流的压力和流速来转动。

转轴将转动的动能传输给发电机或其他机械装置。

根据水轮机叶片的形状和布局方式,可以将水轮机分为多种类型,其中最常见的是水轮机和斜流水轮机。

水轮机:水轮机采用径流式布置,叶片通过水流的冲击和冲击力矩来转动轮盘。

流入水轮机的水流方向垂直于轮盘的转动轴线,水流经过叶片后冲击轮盘的另一侧。

水轮机适用于大流量、低水头的水力资源,如河流和瀑布。

斜流水轮机:斜流水轮机采用斜流式布置,水流的方向与轮盘的转动轴线呈45度角。

水流沿着叶片倾斜的方向经过水轮机,通过叶片的转动转变为轮盘的旋转动能。

斜流水轮机适用于中等流量、中等水头的水力资源,如河流和水库。

水轮机的工作过程可以概括为以下几个步骤:1.水流的引导:水轮机的定子通过导水管道将水流导向叶片区域。

定子具有特定的形状和角度,能够使水流以一定的速度和方向进入叶片。

2.水流的转向:水进入叶片区域后,受到叶片的作用发生方向的变化。

叶片的形状和布局可以改变水流的流向,并且通过冲击叶片产生冲击力矩来推动轮盘的转动。

3.转动轮盘:当水流对叶片施加冲击力矩时,叶片就会开始转动轮盘。

转动轮盘的速度取决于水流的流速和压力,以及叶片的形状和数量。

4.能量转移:转动轮盘的动能可以进一步转移到发电机或其他机械装置。

发电机将机械能转化为电能,用于供电;或者机械装置可以利用转动的动力进行生产。

总体上,水轮机利用水的能量来推动转子旋转,将水流的动能转化为机械能。

水轮机具有高效、可持续的特点,在水力资源丰富的地区广泛应用,为社会经济的发展提供了重要的能源支持。

水轮机的工作原理

水轮机的工作原理

第二章水轮机的工作原理第一节水流在反击式水轮机转轮中的运动一、复杂的空间非恒定流水轮机内的水流运动是复杂的空间非恒定流1) 水头、流量在不断变化2) 叶片形状为空间扭曲面,水流在两叶片之间的流道内为复合运动,流速的大小、方向在不断地变化,而转轮本身也在运动。

二、恒定流状态水轮机在某一工作状况时,(H、Q、N、η不变),水流在水轮机的蜗壳、导水叶及尾水管中的流动是恒定流。

水流在转轮内的流动相对于转轮旋转坐标而言,也是恒定流。

水流在转轮中的运动非常复杂,上述假定可以简化分析。

三、水流运动是空间三元流水流运动规律用速度三角形表达=+V——水流绝对流速(相对于地球)——水流随转轮旋转牵连流速W——水流沿叶片流动的相对流速用速度三角形分析水流运动的方法是研究转轮流速场的重要方法。

对于混流式水轮机,可以认为任一水流质点在转轮中的运动是沿着某一喇叭形的空间曲面(称之为流面)而作的螺旋形曲线运动。

流面即由某一流线绕主轴旋转而成的回旋曲面。

在整个转轮流道内有无数个这样的流面。

流面上每一个进口点的速度三角形是相同的;每一个出口点的速度三角形也是相同的。

根据恒定流假定可知,任一水流质点在转轮进口的运动状态及其流动到转轮出口的运动状态可由同一时刻该流面上任意进、出口点的速度三角形表示。

速度与分速度的空间矢量关系第二节 水轮机工作的基本方程式一、动量矩定理单位时间内水流对转轮的动量矩改变,应等于作用在该水流上的外力的力矩总和。

即:)(2211r V r V gQ M u u e-=γ其中M 为水流对转轮的力矩,方程右端为水流本身速度矩的变化。

该式表达了水轮机中水流能量转换为旋转机械能的平衡关系。

二、水轮机的基本方程在稳定工况下(n 、Q 、H 均不变),转轮内的水流运动时相对的恒定流,因此转轮的出力为:ϖγϖ)(2211r V r V gQ M N u u ee -==)(2211u u eV U V U gQ -=γs e e H Q N ηγ=所以,水轮机的基本方程为:2211u u s V U V U g H -=η该方程式对反击式、冲击式水轮机均适用。

水轮机原理及构造

水轮机原理及构造

水轮机原理及构造1、概述混流式水轮机工作原理:水流经压力钢管在开启蝶阀后进入蜗壳形成封闭的环流〔形成环流是为了使水流作用转轮时,使转轮各方向受力均匀,到达机组稳定运行的目的〕,在导叶开启后,水流径向进入转轮又轴向流出转轮〔所以称之为混流式水轮机〕,在这个过程中由水流和水轮机的相互作用,水流能量传给水轮机,水轮机开始旋转作功。

水轮机带动直流励磁的同步发电机转子旋转后,根据电磁感应原理〔问题〕,在三相定子绕阻中便感应出交流电势,带上外负荷后便输出电流。

注:电磁感应闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生感应电流,这种现象叫做电磁感应,产生的电流叫做感应电流。

①产生感应电流的必要条件是:a、电路要闭合;b、闭合电路中一部分导体做切割磁感线运动,缺一不可;假设是闭合电路的一部分导体,但不做切割磁感线运动则无感应电流,假设导体做切割磁感线运动但电路不闭合,导体上仍无感应电流则导体两端有感应电压。

②感应电流的方向跟磁场方向和导体切割磁感线运动方向有关三者互相垂直,改变磁场方向或改变导体切割磁感线方向都会改变感应电流的方向。

③在电磁感应现象中机械能转化为电能。

应用:发电机是根据电磁感应原理制成的,它使人们大规模获得电能成为现实。

①交流发电机主要由转子和定子两部分组成,另外还有滑环、电刷等。

②交流电的周期与频率周期和频率是用来表示交流电特点的两个物理量,周期是指交流发电机中线圈转动一周所用的时间,所以单位是“秒”;频率是指每秒钟内线圈转动的周数,它的单位是“赫”。

我国使用的交流电周期为0.02秒,频率是50赫,其意义是发电机线圈转一周用时0.02秒,即1秒内线圈转50周,因为线圈每转一周电流方向改变两次,所以,频率为50赫的交流电在1秒钟内方向改变100次。

2、水轮机的主要类型:水轮机基本类型有:还击式冲击式还击式:混流式〔HL〕、东风:HLA722C-LJ-192HL混流式水轮机设计序号为A722C为L立轴J金属蜗壳192转轮直径为192cm轴流式〔ZL〕:轴流转桨式〔ZZ〕轴流定桨式〔ZD〕、斜流式〔XL〕、贯流式〔GL〕:贯流转桨式〔GZ〕贯流定桨式〔GD〕特点:将位能〔势能〕、动能转换为压能,进行工作;转轮完全淹没在密闭的水体中。

水轮机结构与原理

水轮机结构与原理

水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。

早在公元前100年前后,中国就出现了水轮机的雏形——水轮,用于提灌和驱动粮食加工器械。

现代水轮机则大多数安装在水电站内,用来驱动发电机发电。

在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。

作完功的水则通过尾水管道排向下游。

水头越高、流量越大,水轮机的输出功率也就越大。

水轮机按工作原理可分为冲击式水轮机和反击式水轮机两大类。

冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。

冲击式水轮机按水流的流向可分为切击式(又称水斗式)和斜击式两类。

斜击式水轮机的结构与水斗式水轮机基本相同,只是射流方向有一个倾角,只用于小型机组。

早期的冲击式水轮机的水流在冲击叶片时,动能损失很大,效率不高。

1889年,美国工程师佩尔顿发明了水斗式水轮机,它有流线型的收缩喷嘴,能把水流能量高效率地转变为高速射流的动能。

理论分析证明,当水斗节圆处的圆周速度约为射流速度的一半时,效率最高。

这种水轮机在负荷发生变化时,转轮的进水速度方向不变,加之这类水轮机都用于高水头电站,水头变化相对较小,速度变化不大,因而效率受负荷变化的影响较小,效率曲线比较平缓,最高效率超过91%。

20世纪80年代初,世界上单机功率最大的水斗式水轮机装于挪威的悉·西马电站,其单机容量为315兆瓦,水头885米,转速为300转/分,于1980年投入运行。

水头最高的水斗式水轮机装于奥地利的赖瑟克山电站,其单机功率为22.8兆瓦,转速750转/分,水头达1763.5米,1959年投入运行。

反击式水轮机可分为混流式、轴流式、斜流式和贯流式。

在混流式水轮机中,水流径向进入导水机构,轴向流出转轮;在轴流式水轮机中,水流径向进入导叶,轴向进入和流出转轮;在斜流式水轮机中,水流径向进入导叶而以倾斜于主轴某一角度的方向流进转轮,或以倾斜于主轴的方向流进导叶和转轮;在贯流式水轮机中,水流沿轴向流进导叶和转轮。

水轮机工作原理

水轮机工作原理

水轮机工作原理水轮机是一种利用水力能量转换成机械能的装置,它广泛应用于水电站和水利工程中。

水轮机工作原理涉及到水的流动、压力、转动等基础物理原理。

下面将详细介绍水轮机的工作原理。

一、水能转化为机械能的过程水轮机的工作主要是通过水能转化为机械能来实现的。

当水从较高的地方流向较低的地方时,水具有一定的动能,称为水能。

水能可以通过水轮机将其转化为旋转的机械能。

水轮机一般由转子和定子两部分组成,其中转子是主要的转动部件,而定子则是固定不动的部件。

二、水轮机的工作过程1. 进水过程:水轮机工作的第一步是将水引导到转子上面。

一般来说,水会通过水闸门、堰坝等设施引导到水轮机上面,并作用于转子叶片上。

通过进水口控制水流量和压力,确保水能够正常作用于转子叶片上。

2. 水的压力转换:当水经过进水口后,会因为受到转子叶片的作用而改变流动方向。

在转子叶片上,水的动能会被转化为旋转的机械能。

这是因为在流经转子叶片时,由于叶片的形状和转动的运动,水会产生压力差,从而产生力矩,推动转子叶片旋转。

3. 机械能转化:当水的压力转换为转子叶片上的力矩后,转子就会开始旋转。

在转子旋转的过程中,通过轴将转子上的机械能传递给发电机或其他机械装置,用于发电或其他工作。

4. 出水过程:在水轮机完成工作后,水会从转子叶片上流出,并通过出水口排出。

一般来说,出水口会将水引导到下游的河流或其他水体中。

三、水轮机的类型和特点根据水轮机的结构和特点不同,可以将其分为垂直轴水轮机和水平轴水轮机两大类。

1. 垂直轴水轮机:垂直轴水轮机是指转子轴线和地面垂直的水轮机。

它的转子通常放置在下游的水流中,水从上方流入转子,再从底部流出。

垂直轴水轮机适用于较大的水头,具有结构简单、占地面积小、运转稳定等特点。

2. 水平轴水轮机:水平轴水轮机是指转子轴线和地面平行的水轮机。

它的转子通常放置在水流的侧面,水沿着转子的水平方向流过。

水平轴水轮机适用于较小的水头,具有装置灵活、维护方便等特点。

水轮发电机组原理

水轮发电机组原理

水轮发电机组原理
嘿,朋友们!今天咱来聊聊水轮发电机组原理,这可真是个超级有趣的事儿呢!
想象一下啊,水就像一群欢快奔跑的小精灵,它们从高处冲下来,那股劲头可足啦!水轮就像是个大力士,接住了这些小精灵,然后带着它们一起旋转起来,哇哦!这不就跟咱小时候玩的陀螺一样嘛,给它一个力,它就能转个不停。

而水轮发电机组呢,就是把水的力量转化成电的神奇机器。

就说那三峡大坝的水轮发电机组吧,那么庞大的家伙,日夜不停地工作着。

当水流奔腾而下,冲击着水轮,水轮就开始飞速转动,这不就像我们兴奋时心跳加速一样嘛!然后通过一系列复杂的装置和过程,电就产生啦!你说神奇不神奇?
“哎呀,那这水轮发电机组到底是咋工作的呀?”你可能会这么问。

嘿嘿,别着急呀!水从进水口进来,就像运动员站到了起跑线上,准备大显身手。

接着水冲击水轮,水轮开始转动,这时候就像是给机器注入了活力。

然后呢,转动的能量传递到发电机,发电机就像个魔法盒子,把机械能变成了电能,就好像魔术师把一个东西变成了另一个东西一样神奇!
这水轮发电机组可是为我们的生活提供了源源不断的电力呀,要是没有它,我们的生活得变成啥样啊!想想都觉得可怕。

所以呀,我们得好好珍惜这神奇的技术,感谢那些发明和维护这些设备的人们。

总之,水轮发电机组原理就是这么神奇又重要,它让我们的生活变得更加美好和便利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档