初二数学提优练习题
初二数学比较好的练习题
初二数学比较好的练习题数学是一门重要的学科,对于中学生来说,打牢数学基础是非常重要的。
下面是一些初二数学比较好的练习题,供学生们进行复习和巩固。
1.整数运算题1)求下列各题的计算结果:a) 25 + 18 - 33b) 48 - 23 + 11c) 69 + 15 - 422)计算下列各式的值:a) 7 × 5 + (10 - 4)b) 3 × (6 + 2) - 52. 分数加减乘除题1)求下列分数的和:a) 3/4 + 2/5b) 2/3 + 1/2 + 3/42)计算下列分数的差:a) 5/6 - 1/3b) 3/4 - 2/5a) 2/3 × 3/4b) 4/5 × 1/24)计算下列分数的商:a) 5/6 ÷ 2/3b) 4/5 ÷ 23. 平方根题1)求下列数的平方根:a) √36b) √64c) √1002)求下列平方根的值:a) √9 + √16b) √25 - √94. 代数式求值题1)计算下列代数式的值:a) 2x + 3 ,其中 x = 4b) 5y - 2 ,其中 y = 7a) 3(x + 2) ,其中 x = 5b) 2(y - 4) ,其中 y = 95. 几何图形题1)计算下列图形的周长:a) 正方形,边长为5cmb) 矩形,长为6cm,宽为3cm 2)计算下列图形的面积:a) 正方形,边长为8cmb) 矩形,长为9cm,宽为4cm6. 数列题1)求下列数列的和:a) 1 + 3 + 5 + 7 + 9 + 11b) 2 + 4 + 6 + 8 + 102)求下列数列的首项:a) 4 + 7 + 10 + 13 + 16 + ...b) -3 + 0 + 3 + 6 + 9 + ...以上是初二数学中比较好的练习题。
通过做题,学生们可以巩固数学知识,提高解题能力。
希望同学们能认真对待数学学习,不断进行练习和复习,取得优异的成绩!。
初二数学学霸提优大试卷苏教版
一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. 3.14B. -2/3C. 0.1010010001…D. √42. 如果a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 下列各式中,正确的是()A. (√3)² = 3B. (-5)² = -25C. (0.1)² = 0.01D. (3/4)² = 9/164. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 14cmB. 16cmC. 18cmD. 20cm5. 一个长方形的长是10cm,宽是5cm,那么这个长方形的面积是()A. 50cm²B. 100cm²C. 150cm²D. 200cm²二、填空题(每题5分,共25分)6. 如果x² - 4x + 3 = 0,那么x的值是______。
7. 0.25的倒数是______。
8. 下列各数中,正数有______个。
9. 一个数的平方根是2,那么这个数是______。
10. 下列各式中,完全平方公式适用的是______。
三、解答题(每题15分,共45分)11. 解方程:3x - 2 = 5x + 4。
12. 一个等腰三角形的底边长为12cm,腰长为10cm,求这个三角形的面积。
13. 一个长方体的长、宽、高分别是8cm、6cm、4cm,求这个长方体的体积。
四、应用题(每题15分,共30分)14. 甲、乙两地相距120km,一辆汽车从甲地出发,以60km/h的速度前往乙地,同时另一辆汽车从乙地出发,以80km/h的速度前往甲地,求两车相遇的时间。
15. 小明骑自行车从家出发去图书馆,他先以10km/h的速度匀速行驶了1小时,然后以15km/h的速度行驶了2小时,求小明家到图书馆的距离。
初二提优测试卷答案数学
一、选择题(每题5分,共25分)1. 下列数中,是偶数的是()A. -3B. 5C. 8D. 10答案:C解析:偶数是指能够被2整除的整数,因此8是偶数。
2. 下列图形中,是轴对称图形的是()A. 矩形B. 三角形C. 圆D. 正方形答案:C解析:轴对称图形是指图形中存在一条直线,使得图形在这条直线的两侧完全重合。
圆具有无数条对称轴,因此是轴对称图形。
3. 下列等式中,正确的是()A. 3x + 5 = 2x + 8B. 4x - 2 = 3x + 6C. 2x + 3 = 5x - 7D. 5x + 2 = 3x + 9答案:D解析:将等式两边的同类项合并,可得5x - 3x = 9 - 2,即2x = 7,所以x =3.5。
将x的值代入原等式,等式成立。
4. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x - 5C. y = 2xD. y = 3x^2答案:C解析:正比例函数是指当x变化时,y也按照相同的比例变化。
在选项中,只有C中的函数y = 2x满足这一条件。
5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 2xC. 2x + 3 = 5xD. 2x + 3 = 7x答案:A解析:将方程中的同类项合并,可得2x = 4,即x = 2。
将x的值代入原方程,方程成立,因此方程有唯一解。
二、填空题(每题5分,共25分)1. 若a = -3,则a^2的值为__________。
答案:9解析:a^2表示a的平方,即a乘以自己。
将a = -3代入,可得(-3)^2 = 9。
2. 下列图形中,周长最大的是__________。
答案:圆解析:周长是指图形边界上所有线段长度的总和。
在所有图形中,圆的周长最大,因为圆的周长与半径成正比。
3. 若x = 2,则2x + 3的值为__________。
答案:7解析:将x = 2代入2x + 3,可得2×2 + 3 = 7。
初二提优试卷数学答案
一、选择题(每题3分,共15分)1. 已知方程x²-2x-3=0的解为:A. x=1,x=3B. x=-1,x=3C. x=1,x=-3D. x=-1,x=-3答案:A解析:将方程x²-2x-3=0分解因式得:(x-3)(x+1)=0,所以x=3或x=-1。
2. 若一个数加上它的倒数等于4,则这个数为:A. 2B. 4C. 8D. 16答案:A解析:设这个数为x,则根据题意有x+1/x=4,化简得x²-4x+1=0,解得x=2。
3. 在直角坐标系中,点A(2,3)关于x轴的对称点为:A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)答案:A解析:点A(2,3)关于x轴的对称点,横坐标不变,纵坐标互为相反数,所以对称点为(2,-3)。
4. 下列函数中,y是x的二次函数为:B. y=x²+2x-1C. y=3/xD. y=2x³-3x²+4x答案:B解析:二次函数的一般形式为y=ax²+bx+c(a≠0),所以选B。
5. 已知等腰三角形ABC中,AB=AC,∠B=45°,则∠C为:A. 45°B. 90°C. 135°D. 180°答案:B解析:等腰三角形底角相等,所以∠A=∠C。
又∠B=45°,∠A+∠B+∠C=180°,所以∠A+45°+∠A=180°,解得∠A=67.5°,所以∠C=67.5°。
二、填空题(每题3分,共15分)6. 若方程2x+3=7的解为x=2,则方程3x-5=?的解为x=?答案:x=3解析:根据题意,方程2x+3=7的解为x=2,所以将x=2代入方程3x-5=?中,得32-5=?,解得x=3。
7. 在直角坐标系中,点P(-2,3)关于原点的对称点为?答案:(2,-3)解析:点P(-2,3)关于原点的对称点,横坐标和纵坐标都互为相反数,所以对称点为(2,-3)。
初二数学提优试卷答案
一、选择题(每题3分,共30分)1. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -4答案:A2. 下列数中,不是有理数的是()A. 1/2B. √3C. -2.5D. 0答案:B3. 若a、b、c成等差数列,且a + b + c = 12,则a^2 + b^2 + c^2的值为()A. 36B. 48C. 60D. 72答案:C4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 梯形答案:C5. 已知直线l与直线m相交,且∠1 = 45°,∠2 = 90°,则∠3的度数为()A. 45°B. 90°C. 135°D. 180°答案:C6. 若等腰三角形底边长为6,腰长为8,则该三角形的周长为()A. 14B. 18C. 20D. 22答案:C7. 下列方程中,无解的是()A. 2x + 3 = 7B. 5x - 2 = 3C. 3x + 2 = 0D. 2x^2 - 5x + 3 = 0答案:D8. 若函数f(x) = 2x - 1在区间[1, 3]上单调递增,则f(2)的值为()A. 1B. 3D. 7答案:C9. 已知平行四边形ABCD中,∠A = 60°,则∠B的度数为()A. 120°B. 60°C. 30°D. 90°答案:C10. 若a、b、c、d是等比数列,且a + b + c + d = 10,则a^2 + b^2 + c^2 + d^2的值为()A. 20B. 30C. 40D. 50答案:C二、填空题(每题5分,共20分)11. 若a、b、c成等差数列,且a + b + c = 15,则b的值为______。
答案:512. 已知等腰三角形底边长为10,腰长为8,则该三角形的面积为______。
2022-2023学年第二学期初二数学优选作业7
7.2 统计图的选用一、单选题1.在条形统计图上________,才会减少直观上的错觉.()A.横轴与纵轴都必须从0开始B.横轴与纵轴都不必从0开始C.纵轴不必从0开始,横轴必须从0开始D.横轴不必从0开始,纵轴必须从0开始2.太原某公司对某款新产品的生产成本进行调查,并绘制了如下扇形统计图,则材料费所在扇形的圆心角的度数是()A.126︒B.133.2︒C.144︒D.162︒3.要反映某地今年七月份日平均气温的变化情况,绘制()统计图比较合适.A.条形B.折线C.扇形D.复式条形4.如图,为了解六年级学生课外体育活动情况,随机调查了30名六年级学生课外体育锻炼的时间,将调查结果分为A,B,C,D四个类别,并绘制了如下条形统计图(D类别被墨水污染).若A,B,C三个类别条形的高度比为1:2:4,且B类别的人数为6,则此次调查中D类别的人数是()A.9 B.8 C.7 D.65.“双减”政策实施后,某校为了解七年级学生每天的作业完成时间的变化情况,最适合采用下列哪种统计图来进行描述()A.条形统计图B.扇形统计图C.折线统计图D.以上三种统计图都可以6.如图所示是某单位考核情况条形统计图(A、B、C三个等级),则下面的回答正确的是()A.C等级人最少,占总数的30%B.该单位共有120人C.A等级人比C等级人多10%D.B等级人最多,占总人数的237.我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()A.与2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降8.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.承德市教育局发布了“普通中小学校劳动教育状况评价指标”.为了了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到图所示的统计图表:则下列说法正确的是()A.本次调查活动共抽取300人B.m的值为129C.n的值为27D.扇形统计图中“2次”部分所对的圆心角为60°9.图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,某同学结合统计图分析得到如下结论:①该书店4月份的营业总额为45万元;②5月份“党史”类书籍的营业额为10.5万元;③4月份“党史”类书籍的营业额最高;④5月份“党史”类书籍的营业额最高,则上述结论中正确的是()A.④B.②③C.①②③D.①②④10.2021年开始,某省将试行“312++”的普通高考新模式,即除物理语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助政治学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A.甲的物理成绩领先年级平均分最多B.甲有2个科目的成绩低于年级平均分C.甲的成绩从高到低的前3个科目依次是地理、化学、历史D.对甲而言,物理、化学、地理是比较理想的一种选科结果二、填空题11.正常的人体血压每天都是变化的,若要反映一个人血压变化情况宜采用______统计图.12.某校制定了“阅读奖励方案”,方案公布后,随机征求了100名学生的意见,并对持有三种意见的人数进行统计,绘制出如图所示统计图,则赞成该方案的学生有___人.13.某校开展“我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图.在抽查的学生中,喜欢足球运动的人数为______.14.如图,所提供的信息不正确的是______(填序号).①七年级学生总数最多②九年级的男生数是女生数的两倍 ③女生总数比男生总数少16人④八年级的学生总数比九年级的学生总数多15.某中学共40位同学参加了演讲比赛,分段统计参赛同学的成绩,结果如下(分数为整数,满分为100分)分数段(分〕 61~70 71~80 81~90 91~100 人数51016m则m _________;若制作成扇形统计图,那么81~90分数段所对应扇形的圆心角为_________°. 16.如图是某地2月18日到23日 2.5PM 浓度和空气质量AQI 的统计图(当AQI 不大于100时称空气质量为“优良”).由图可得下列说法:①18日的 2.5PM 浓度最低;②21日的 2.5PM 浓度最高;③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与 2.5PM 浓度有关.其中正确的是________(填序号即可)17.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A .科普,B .文学,C .体育,D .其他)数据后,绘制出两幅不完整的统计图:小亮根据这两幅不完整的统计图得出以下五个结论:①样本容量为400 ;②类型B的人数为120人;③类型C所占百分比为30%;④类型C所对应的扇形的圆心角为126°;⑤类型D的人数是类型B的人数的13.你判断一下小亮结论中错误..的是_______ .(请填写序号)18.某电子产品店今年1~4月的电子产品销售总额如图①,其中一款平板电脑的销售额占当月电子产品销售总额的百分比如图②.根据图中信息,以下四个推断合理的是__________.(填序号)①从1月到4月,电子产品销售总额为290万元;②平板电脑2~4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了;③平板电脑4月份的销售额比3月份有所下降;④今年1~4月中,平板电脑售额最低的是3月.三、解答题19.某校在本期开展了“庆祝中国共产主义青年团成立100周年”主题阅读活动.为了解八年级学生五月份主题阅读量的情况,学校对八年级学生五月份主题阅读量进行了抽样调查,并将收集到的数据绘制成以下两幅不完整的统计图.请根据图中信息回答以下问题:(1)求本次抽查的八年级学生人数?所抽取的八年级学生五月份主题阅读量的平均数;(2)所抽取的八年级学生五月份主题阅读量的众数为____________本,中位数为____________本;(3)已知该校八年级有300名学生,请你估计该校八年级学生中,五月份主题阅读量为5本的学生人数.20.学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下的统计表和扇形统计图.态度非常喜欢喜欢一般不喜欢人数90 b 30 10百分比 a 35% 20%请你根据统计图表提供的信息解答下列问题:(1)该校随机抽取了____________名同学进行问卷调查;(2)求出a、b的值;(3)求在扇形统计图中“喜欢”部分扇形所对应的圆心角的度数.21.为了了解落实国家“双减”政策的情况,某校随机调查了部分学生在家完成作业的时间,按时间由短到长划分为A,B,C,D四个等级,并绘制了如下不完整的条形统计图和扇形统计图:根据以上信息,解答以下问题:(1)请将条形统计图补充完整;扇形统计图中m=,n=;(2)若该校有2800名学生,请估计全校在家完成作业时间为1小时及以下的学生有多少人?22.东北育才学校决定在学生中展开篮球、足球、排球、网球四种社团活动,为了解学生对四种社团活动的喜欢情况,随机调查了m名学生最喜欢的一种社团活动(每名学生必选且只能选择四种社团活动中的一种),并将调查结果绘制成如图的不完整的统计图表:学生最喜欢的社团活动的人数统计表社团活动学生数百分比篮球8040%足球60p排球n10%网球4020%根据图表中提供的信息,解答下列问题:(1)m=______,n=______,p=______;(2)请根据以上信息直接在图中补全条形统计图;(3)根据调查结果,请估计我校2000名学生中有多少名学生最喜欢足球社团活动.23.“十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日 5日 6日 7日 人数变化单位:万人3.2+ 0.6+ 0.3+ 0.7+1.3- 0.2+2.4-(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (2)以9月30日的游客人数为0点,请用折线统计图表示这7天的人数变化情况. 24.以下是某网络书店1-4月份关于图书销售情况的两个统计图:(1)求1月份该网络书店绘本类图书的销售额;(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全条形统计图①;(3)有以下两个结论:①该书店第一季度的销售总额为182万元;②该书店1-2月份绘本类图书销售额的月增长率为21%.请你判断以上两个结论是否正确,并选择一个结论说明理由.25.白色污染(White Pollution )是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区40户居民,记录了这些家庭某个月丢弃塑料袋的数量(单位:个):29 39 35 39 39 27 33 35 31 3132 32 34 31 33 39 38 40 38 4231 31 38 31 39 27 33 35 40 3829 39 35 33 39 39 38 42 37 32请根据上述数据,解答以下问题:分组划记频数A:25-30 ___________ ___________B:30~35 14C:35~40 ___________ ___________D:40~45 4合计/ 40(1)小彬按“组距为5”列出了如下的频数分布表(每组数据含最小值),请将表中空缺的部分补充完整,并补全频数分布直方图;(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在___________组的家庭最多;(填分组序号)(3)根据频数分布表,小彬又画出了图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中;(4)若该小区共有1000户居民家庭,请你估计每月丢弃的塑料袋数量不小于30个的家庭个数.26.某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.根据上表回答下列问题:(1)第一组一共进行了场比赛,A队的获胜场数x为;(2)当B队的总积分y=6时,上表中m处应填,n处应填;(3)写出C队总积分p的所有可能值为:.答案与解析一、单选题1.在条形统计图上________,才会减少直观上的错觉.()A.横轴与纵轴都必须从0开始B.横轴与纵轴都不必从0开始C.纵轴不必从0开始,横轴必须从0开始D.横轴不必从0开始,纵轴必须从0开始【答案】D【分析】在条形统计图上,横轴表示的事物,纵轴表示的数量,所以纵轴必须从0开始,横轴不必从0开始.【解析】根据条形图的画法,可得:纵轴必须从0开始,横轴不必从0开始.故选D.【点评】了解条形统计图的画法是关键.2.太原某公司对某款新产品的生产成本进行调查,并绘制了如下扇形统计图,则材料费所在扇形的圆心角的度数是()A.126︒B.133.2︒C.144︒D.162︒【答案】C【分析】用360︒乘以材料费所占百分比即可.【解析】解:由题意可得,材料费所在的扇形圆心角的度数°°⨯--=.360(125%35%)144故选:C.【点评】本题考查了扇形统计图圆心角度数的算法,熟练掌握圆心角度数的算法是解决本题的关键.3.要反映某地今年七月份日平均气温的变化情况,绘制()统计图比较合适.A.条形B.折线C.扇形D.复式条形【答案】B【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量多少,而且能反映数量的增减变化情况;扇形统计图反映部分与整体的关系;由此根据情况选择即可.∴绘制折线统计图比较合适;故选:B.【点评】此题考查了条形统计图、折线统计图与扇形统计图,熟练掌握统计图的相关概念是解答此题的关键.4.如图,为了解六年级学生课外体育活动情况,随机调查了30名六年级学生课外体育锻炼的时间,将调查结果分为A,B,C,D四个类别,并绘制了如下条形统计图(D类别被墨水污染).若A,B,C三个类别条形的高度比为1:2:4,且B类别的人数为6,则此次调查中D类别的人数是()A.9 B.8 C.7 D.6【答案】A【分析】设A类别的人数为x,根据比例关系得到26x=,即可求出x,计算出A、B、C三个类别人数,即可求出D类别人数.【解析】设A类别的人数为x,则B类别的人数为2x,C类别的人数为4x,∵B类别的人数为6,x∴26x=,解得:=3∴A、B、C三个类别的人数=24721++==,x x x x∴D类别的人数=30-21=9,故选:A.【点评】本题考查了条形统计图,掌握条形统计图的基本知识是解题关键.5.“双减”政策实施后,某校为了解七年级学生每天的作业完成时间的变化情况,最适合采用下列哪种统计图来进行描述()A.条形统计图B.扇形统计图C.折线统计图D.以上三种统计图都可以【答案】C【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图反映部分与整体的关系;由此根据情况选择即可.【解析】解:某校为了解七年级学生每天的作业完成时间的变化情况,采用折线统计图比较合适,故选:C.键.6.如图所示是某单位考核情况条形统计图(A、B、C三个等级),则下面的回答正确的是()A.C等级人最少,占总数的30%B.该单位共有120人C.A等级人比C等级人多10%D.B等级人最多,占总人数的23【答案】D【分析】由条形统计图可得该单位总人数和各等级的人数,从而对各选项的正误作出判断.【解析】解:由条形统计图可得该单位考核A等级40人,B等级120人,C等级20人,所以总人数为:40+120+20=180,所以B选项错误;由2011%180≈可知A错误;由40201100%20-==可知A等级比C等级人数多100%,C错误;由12021803=知B等级人数占总人数的23,又由各等级人数知B等级人数最多,所以D正确.故选D.【点评】本题考查条形统计图的应用,通过条形统计图获得有关信息并进行准确分析是解题关键.7.我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降【答案】C【分析】根据折线统计图逐项分析判断即可求解.【解析】解:A. 与2012年相比,2021年的人口出生率下降了近一半,故该选项正确,不符合题意;B. 近十年的人口死亡率基本稳定,故该选项正确,不符合题意;C. 近五年的人口总数持续上升,只是自然增长率在变小,故该选项不正确,符合题意;D. 近五年的人口自然增长率持续下降,故该选项正确,不符合题意.故选C.【点评】本题考查了折线统计图,从统计图获取信息是解题的关键.8.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.承德市教育局发布了“普通中小学校劳动教育状况评价指标”.为了了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到图所示的统计图表:则下列说法正确的是()A.本次调查活动共抽取300人B.m的值为129C.n的值为27D.扇形统计图中“2次”部分所对的圆心角为60°【答案】C【分析】A.根据一周劳动次数1次以下的人数和所占的百分比,即可求得本次抽取的人数;B.用总人数乘以3次的人数所占的百分比求出m的值,C.用4次及以上的人数除以总人数即可得出n的值;D.用360°乘以劳动次数为2次的人数所占的百分比即可.【解析】解:A.这次调查活动共抽取20÷10%=200(人),说法错误,不符合题意;B.m=200×43%=86,说法错误,不符合题意;C.n%=54÷200×100%=27%,即n的值为27,说法正确,符合题意;D.扇形统计图中“2次”部分所对的圆心角为:360°×20%=72°,说法错误,不符合题意.故选:C.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.9.图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,某同学结合统计图分析得到如下结论:①该书店4月份的营业总额为45万元;②5月份“党史”类书籍的营业额为10.5万元;③4月份“党史”类书籍的营业额最高;④5月份“党史”类书籍的营业额最高,则上述结论中正确的是()A.④B.②③C.①②③D.①②④【答案】D【分析】用1 ~ 5月的营业总额减去其他月份的总额,求出4月份的营业额,故①正确;用5月份的营业额乘以“党史”类书籍所占的百分比即可求出,故②正确;用4月份的营业额乘以“党史”类书籍所占的百分比即可求出4月份“党史”类书籍营业额,和5月份比较,故③错误;先判断出1 - 3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,再由③的结论,故④正确.【解析】解:该书店4月份的营业总额是:182- (30+ 40+ 25+ 42) = 45(万元),故①正确;5月份“党史”类书籍的营业额是42 ×25% = 10.5(万元),故②正确;4月份“党史”类书籍的营业额是45 ×20% = 9(万元),10.5>9,故③错误;1一3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,而4月份“党史”类书籍的营业额又小于5月份“党史”类书籍的营业额,故④正确,故选:D.【点评】本题考查了的是条形统计图和折线统计图的综合运用,解题的关键是读懂统计图,从不同的统计图中得到必要的信息.10.2021年开始,某省将试行“312++”的普通高考新模式,即除物理语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助政治学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A.甲的物理成绩领先年级平均分最多B.甲有2个科目的成绩低于年级平均分C.甲的成绩从高到低的前3个科目依次是地理、化学、历史D.对甲而言,物理、化学、地理是比较理想的一种选科结果【答案】C【分析】根据雷达图,判断甲各科成绩与年级平均分的高低,以及各科成绩的高低,进而可确定理想的选科组合,即可判断各选项的正误.【解析】A:由图知:甲的物理成绩领先年级平均分1.5分左右,比化学、地理要高,正确,不符合题意;B:其中有政治、历史比年级平均分低,正确,不符合题意;C:甲的成绩从高到低的前3个科目依次是地理、化学、物理或生物,错误,符合题意;D:由C知:物理、化学、地理对于甲是比较理想的一种选科结果,正确,不符合题意;故选:C.【点评】本题考查对图表数据的整合,进行判断,属于基础题.二、填空题11.正常的人体血压每天都是变化的,若要反映一个人血压变化情况宜采用______统计图.【答案】折线【分析】条形统计图的特点:能清楚的表示出数量的多少;折线统计图的特点:不但可以表示出数量的多少,而且能看出各种数量的增减变化情况;扇形统计图的特点:比较清楚地反映出部分与部分、部分与整体之间的数量关系;据此进行解答即可.【解析】解:若要反映一个人血压变化情况宜采用折线统计图;故选:C.【点评】此题考查的是统计图的选择,掌握条形、折线和扇形统计图的特点是解答的关键.12.某校制定了“阅读奖励方案”,方案公布后,随机征求了100名学生的意见,并对持有三种意见的人数进行统计,绘制出如图所示统计图,则赞成该方案的学生有___人.【答案】70【分析】首先求得赞成方案的所占百分比,然后用总人数乘以百分比即可.【解析】解:由扇形统计图可知:--=,赞成的百分比为120%10%70%⨯=人,所以100名学生中赞成该方案的学生有10070%70故答案为:70.【点评】本题考查的是扇形统计图的运用,读懂统计图并能熟练掌握扇形统计图直接反映部分占总体的百分比大小是解题的关键.13.某校开展“我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图.在抽查的学生中,喜欢足球运动的人数为______.【答案】30【解析】解:总人数=21÷14%=150人,喜欢足球的人数=150-21-39-15-45=30(人)故答案为30.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解答本题的关键.14.如图,所提供的信息不正确的是______(填序号).①七年级学生总数最多②九年级的男生数是女生数的两倍③女生总数比男生总数少16人④八年级的学生总数比九年级的学生总数多【答案】①③④【分析】根据条形统计图给出的数据对每一项进行分析,即可得出答案.【解析】解:①七年级学生有:8+13=21(人),八年级学生有:14+16=30(人),九年级学生有:10+20=30(人),则七年级学生总数最少,故原说法错误,符合题意;②九年级的男生数有20人,女生有10人,男生数是女生数的两倍,正确,不符合题意;③女生总人数有:8+14+10=32(人),男生总人数有:13+16+20=49(人),女生总数比男生总数少49-32=17(人),故原说法错误,符合题意;④八年级的学生总数有:14+16=30(人),九年级的学生总数有:10+20=30(人),八年级的学生总数与九年级的学生总数一样多,故原说法错误,符合题意; 所提供的信息不正确的是:①③④;故答案为:①③④.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.15.某中学共40位同学参加了演讲比赛,分段统计参赛同学的成绩,结果如下(分数为整数,满分为100分)分数段(分〕 61~70 71~80 81~90 91~100人数 5 10 16 m则m =_________;若制作成扇形统计图,那么81~90分数段所对应扇形的圆心角为_________°.【答案】 9 144【分析】利用40减去其他三个分数段的人数可得m 的值,利用360︒乘以8190~分数段的人数所占百分比即可得对应扇形的圆心角的度数.【解析】解:由表格可知,40510169m =---=,16360(100%)14440︒⨯⨯=︒, 即8190~分数段所对应扇形的圆心角为144︒,故答案为:9,144.【点评】本题考查了扇形统计图,熟练掌握统计调查的相关知识是解题关键.16.如图是某地2月18日到23日 2.5PM 浓度和空气质量AQI 的统计图(当AQI 不大于100时称空气质量为“优良”).由图可得下列说法:①18日的 2.5PM 浓度最低;②21日的 2.5PM 浓度最高;③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与 2.5PM 浓度有关.其中正确的是________(填序号即可)【答案】①②③④【分析】根据折线统计图提供的信息,逐一分析,即可解答.【解析】解:由统计图可知18日的 2.5PM浓度最低,故①正确;由统计图可知21日的 2.5PM浓度最高,故②正确;由统计图可知18日,19日,20日,23日的AQI不大于100,21日和22日的AQI大于100,∴这六天中有4天空气质量为“优良”,故③正确;比较两图可知, 2.5PM浓度值越小,空气质量指数AQI越低,故④正确;故答案为:①②③④.【点评】本题考查了折线统计图,解决本题的关键是从折线统计图中获取相关信息.17.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图:小亮根据这两幅不完整的统计图得出以下五个结论:①样本容量为400 ;②类型B的人数为120人;③类型C所占百分比为30%;④类型C所对应的扇形的圆心角为126°;⑤类型D的人数是类型B的人数的13.你判断一下小亮结论中错误..的是_______ .(请填写序号)【答案】③【分析】根据A类100人占25%可计算样本容量,根据D占10%可计算类型D的人数,可得类型B的人数,根据C类140人÷总样本容量即可得所占百分比,类型C所占百分比×360°可得所对扇形的圆心角度数,根据类型B,类型D的人数即可判断⑤.【解析】100÷25%=400(人),∴样本容量为400,故①正确;类型D的人数是400×10%=40(人),∴类型B的人数为:400-100-140-40=120(人),故②正确;。
初二数学提优试卷十四
(备用图)
初二数学提优卷(十四)
1.如图,梯形ABCD 中,AD ∥BC,∠BAD=90°,CE ⊥AD 于点E,AD=8cm ,BC=4cm,AB=5cm 。
从初始时刻开始,动点P,Q 分别从点A,B 同时出发,运动速度均为1 cm /s, 动点P 沿A--B--C--E 的方向运动,到点E 停止;动点Q 沿B--C--E--D 的方向运动,到点D 停止,设运动时间为x s , PA Q 的面积为y cm 2,(这里规定:线段是面积为0的三角形) 解答下列问题:
(1) 当x=2s 时,y=_____ cm 2;当x = 2
9 s 时,y=_______ cm 2; (2)当5 ≤ x ≤ 14 时,求y 与x 之间的函数关系式。
2.如图,直线AB 与坐标轴分别交于点A 、点B ,且OA=2、OB=4,点C 在y 轴上,且 OA ︰AC=2︰5,直线CD 垂直于直线AB 于点P ,交x 轴于点D 。
(1)请求出直线CD 的解析式;
(2)若点M 为坐标平面内任意一点,在坐标平面内是否存在这样的点M ,使以点B 、P 、
D 、M 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。
3.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。
当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。
初二数学培优练习题推荐
初二数学培优练习题推荐数学是一门重要而又关键的学科,对于初中生来说,打好数学基础非常重要。
为了帮助初二学生提高数学水平,本文将介绍一些培优练习题,旨在让学生更好地理解数学知识,提高解题能力。
一、整数运算整数运算是数学中的基础内容之一,熟练掌握整数的四则运算对于后续学习其他数学知识至关重要。
以下是一道整数运算的练习题:题目:计算以下表达式的值:-8 + 5 - (-3) - 2解析:在这道练习题中,我们需要按照运算的优先级进行计算。
首先,计算括号内的表达式-(-3),由于减负得正,所以结果为3。
然后,按照从左到右的顺序进行计算,得到的结果为-8 + 5 + 3 - 2 = -2。
二、代数方程代数方程作为数学中的重要概念,在初二数学中也占据着重要地位。
通过解代数方程,学生能够培养逻辑思维和解决实际问题的能力。
以下是一道代数方程的练习题:题目:解方程2x - 5 = 7解析:将方程转化为x的形式,得到2x = 7 + 5,即2x = 12。
再将方程两边都除以2,得到x = 6。
因此,方程的解为x = 6。
三、几何图形初二数学中,学生开始接触几何图形的性质和计算方法。
几何图形的学习可以培养学生的观察力和空间想象力。
以下是一道几何图形的练习题:题目:已知ABCD为矩形,且AB = 6 cm,BC = 4 cm,求矩形的面积。
解析:矩形的面积等于矩形的长乘以宽。
已知长为AB = 6 cm,宽为BC = 4 cm,因此矩形的面积为6 cm × 4 cm = 24 cm²。
四、比例与相似比例与相似作为初中数学中的重要内容之一,是后续学习代数和几何的基础。
熟练运用比例与相似的概念和计算方法,有助于学生解决实际问题。
以下是一道比例与相似的练习题:题目:已知一支杆的长度为3 m,投影在地面上的长度为2 m,求杆与地面的夹角。
解析:根据比例关系,杆的长度与其投影在地面上的长度的比值等于杆与地面间的夹角的正弦值。
初二数学学霸提优大试卷
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -52. 若a > 0,b < 0,则下列不等式中错误的是()A. a > bB. a + b > 0C. a - b > 0D. a - b < 03. 下列方程中,解为x = 3的是()A. x + 2 = 5B. 2x - 4 = 6C. 3x + 1 = 8D. x - 3 = 44. 在等腰三角形ABC中,若底边BC的长度为6cm,腰AB的长度为8cm,则三角形ABC的周长为()A. 16cmB. 18cmC. 20cmD. 22cm5. 下列函数中,图象为一条直线的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = √x6. 若一个数x满足不等式x - 2 > 3,则x的取值范围是()A. x > 5B. x ≥ 5C. x < 5D. x ≤ 57. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)8. 若一个数x的平方等于4,则x的值是()A. ±2B. ±4C. 2D. -29. 下列各数中,能被3整除的是()A. 12B. 15C. 18D. 2010. 在三角形ABC中,若∠A = 45°,∠B = 90°,则∠C的度数是()A. 45°B. 90°C. 135°D. 180°二、填空题(每题5分,共50分)11. 若a > b > 0,则a - b的符号是______。
12. 已知x + y = 7,y - x = 3,则x的值是______。
13. 在直角坐标系中,点M(-2,4)到原点的距离是______。
14. 若一个数的平方等于36,则这个数是______。
苏科版八年级数学上册数学提优练习题
初二数学提优训练班级 姓名 学号 成绩 1 .某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为( )A.11元/千克B.11.5元/千克C.12元/千克D.12.5元/千克2 .数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图),根据图表,全班每位同学做对题数中位数和众数分别为 ( )A.8,8B. 8,9C.9,9D. 9,83 .甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A.100分B. 95分C. 90分D. 85分4 .八年级(1)班50名学生的年龄统计结果如右表所示:则此班学生年龄的众数、中位数分别为( )A.14,14B.15,14C.14,15D.15,165.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD运动至点D 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图象如图2所示,则BCD △的面积是( ) A .3 B .4 C .5 D .66.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )A .12分钟B .15分钟C .25分钟D .27分钟 7.在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,刚跑出200m 后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图像解答下列问题:(1)甲摔倒前,________的速度快(填甲或乙); (2)甲再次投入比赛后,在距离终点多远处追上乙?图1 AB D 图28.某市为增强学生的法律意识,开展了对全市学生的普法教育活动.为检验活动效果,组织全市八年级学生参加法律知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制了如下“频数分布直方图”.请回答:(1)参加全市法律知识测试的学生有______名同学.(2)中位数落在______分数段内.(3)若用各分数段的中间值(如5.5~10.5试成绩全市均分约是多少?9.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当0.5x ≥时,求储气罐中的储气量y (立方米)与时间x (小时)的函数解析式;(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.10.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)(分)) 1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升. 15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录 (万升)。
初二数学全等三角形角平分线辅助 易错题难题提优专项训练试题
初二数学全等三角形角平分线辅助 易错题难题提优专项训练试题一、全等三角形角平分线辅助1.如图1,在ABC 中,AF ,BE 分别是BAC ∠和ABC ∠的角平分线,AF 和BE 相交于D 点.(1)求证:CD 平分ACB ∠;(2)如图2,过F 作FP AC ⊥于点P ,连接PD ,若45ACB ∠=︒,67.5PDF ∠=︒,求证:PD CP =;(3)如图3,若23180BAF ABE ∠+∠=︒,求证:BE BF AB AE -=-.2.阅读理解如图1,ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重叠部分;……;将余下部分沿∠n n B A C 的平分线1n n A B +折叠,点n B 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称BAC ∠是ABC 的好角.情形一:如图2,沿等腰三角形ABC 顶角BAC ∠的平分线1AB 折叠,点B 与点C 重合;情形二:如图3,沿ABC 的BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下的部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与点C 重合.探究发现(1)ABC 中,2B C ∠=∠,经过两次折叠,问BAC ∠ ABC 的好角(填写“是”或“不是”);(2)若经过三次折叠发现BAC ∠是ABC 的好角,请探究B 与C ∠(假设B C ∠>∠)之间的等量关系 ;根据以上内容猜想:若经过n 次折叠BAC ∠是ABC 的好角,则B 与C ∠(假设B C ∠>∠)之间的等量关系为 ;应用提升:(3)小丽找到一个三角形,三个角分别为15︒,60︒,105︒,发现 是此三角形的好角;(4)如果一个三角形的最小角是10︒,且满足该三角形的三个角均是此三角形的好角; 则此三角形另外两个角的度数 . 3.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=90°,且EF 交正方形的外角∠DCM 的平分线CF 于点F .(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否一定成立?说出你的理由;②在如图2所示的直角坐标系中抛物线y=ax 2+x+c 经过A 、D 两点,当点E 滑动到某处时,点F 恰好落在此抛物线上,求此时点F 的坐标.4.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.5.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,①当∠ABO=60°时,求∠AEB的度数;②点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB的大小;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO 的度数.6.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AC+CD.7.如图,已知等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于点D ,试说明:BF =2CD .8.阅读下面材料:小明遇到这样一个问题:如图一,△ABC 中,∠A=90°,AB=AC ,BD 平分∠ABC ,猜想线段AD 与DC 数量关系.小明发现可以用下面方法解决问题:作DE ⊥BC 交BC 于点E :(1)根据阅读材料可得AD 与DC 的数量关系为__________.(2)如图二,△ABC 中,∠A=120°,AB=AC ,BD 平分∠ABC ,猜想线段AD 与DC 的数量关系,并证明你的猜想.(3)如图三,△ABC 中,∠A=100°,AB=AC ,BD 平分∠ABC ,猜想线段AD 与BD 、BC 的数量关系,并证明你的猜想.9.如图所示,90B C ∠=∠=,E 是BC 的中点,DE 平分ADC ∠.(1)求证:AE 是DAB ∠的平分线;(2)若2cm,BAD=60CD =∠,求AD 的长.10.如图,OA=OB ,∠AOB=90°,BD 平分∠ABO 交OA 于点D ,AE ⊥BD 于E ,求证:BD=2AE.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)过D 点分别作三边的垂线,垂足分别为G 、H 、K ,根据角平分线的定义可证得DG=DH=DK ,从而根据角平分线的判定定理可证得结论;(2)作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠,通过证明SQD TFD △≌△和QDP FDP △≌△得到22.5PDC PCD ∠=∠=︒,从而根据等角对等边判断即可;(3)延长AB 至M ,使BM BF =,连接FM ,通过证明AFC AFM △≌△得到AC AM =,再结合CE EB =即可得出结论.【详解】(1)证明:如图所示,过D 点分别作三边的垂线,垂足分别为G 、H 、K ,∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线,∴DG DH DK ==,∴CD 平分ACB ∠;(2)证明:如图,作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠. ∵CD 平分ACB ∠,∴DS DT =,∵67.5QDP FDP ∠=∠=︒,45ACB ∠=︒,∴13545180QDF ACB ∠+∠=︒+︒=︒,在四边形QDFC 中,180CQD DFC ∠+∠=︒,又∵180DFT DFC ∠+∠=︒,∴CQD DFT ∠=∠,在SQD 和TFD △中,90CQD DFT DS DT DSQ DTF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴SQD TFD △≌△,∴QD FD =,在QDP △和FDP 中QD FD QDP FDP DP DP =⎧⎪∠=∠⎨⎪=⎩∴QDP FDP △≌△,∴45QPD FPD ∠=∠=︒又∵QPD PCD PDC ∠=∠+∠,22.5PCD ∠=︒,∴22.5PDC PCD ∠=∠=︒,∴CP PD =;(3)证明:延长AB 至M ,使BMBF =,连接FM . ∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线, ∴22180BAF ABE C ∠+∠+∠=︒,又∵23180BAF ABE ∠+∠=︒,∴C ABE CBE ∠=∠=∠,∴CE EB =,∵BM BF =,∴BFM BMF ABE CBE C ∠=∠=∠=∠=∠,在AFC △和AFM △中,C BMF CAF BAF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AFC AFM △≌△,∴AC AM =,∴AE CE AB BM +=+,∴AE BE AB BF +=+,∴BE BF AB AE -=-.【点睛】本题考查角平分线的性质与判断,以及全等三角形的判定与性质,灵活结合角平分线的性质构造辅助线是解题关键.2.(1)是;(2)3∠=∠B C ;∠=∠B n C ;(3)60︒和105︒;(4)另外两个角的度数分别为160︒和10︒【分析】(1)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,且1111AA B C A B C ∠=∠+∠,沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,可得11AB C C ∠=∠,即可证2B C ∠=∠.(2)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,由将余下部分沿11B AC ∠的平分线12A B 折叠,得11122A B C A A B ∠=∠,最后沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,得22C A B C ∠=∠,由11B A B C C ∠=∠+∠,可证3∠=∠B C ;由小丽展示的情形一当B C ∠=∠时;由探究(1)当2B C ∠=∠时;由探究(2)当3∠=∠B C 时,它们的BAC ∠均是ABC 的好角;可推经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C .(3)由(2)得∠=∠B n C ,可计算60,105︒︒是ABC 的好角.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,已知中一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数),依题意列式101010180m mn ++=,可求解得.【详解】(1)ABC 中,2B C ∠=∠,经过两次折叠,BAC ∠是ABC 的好角; 理由如下:沿BAC ∠的平分线1AB 折叠,11B AA B ∴∠=∠;将余下部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,11A B C C ∴∠=∠;1111AA B C A B C ∠=∠+∠;2B C ∴∠=∠,故答案是:是;(2)在ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重复部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重复部分,将余下部分沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,则BAC ∠是ABC 的好角.证明:11B AA B ∠=∠,22,C A B C ∠=∠,122222A A B C A B C C ∴∠=∠+∠=∠,11B A B C C ∠=∠+∠11122A B C A A B ∠=∠,2C B C ∠∴=+∠∠,3B C ∴∠=∠,由小丽展示的情形一知,当B C ∠=∠时,BAC ∠是ABC 的好角;由探究(1)知,当2B C ∠=∠时,BAC ∠是ABC 的好角;由探究(2)知,当3∠=∠B C 时,BAC ∠是ABC 的好角;故若经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C . 故答案为:3;B C B n C ∠=∠∠=∠.(3)由(2)知,∠=∠B n C ,60415︒=⨯︒,105715︒=⨯︒,60,105∴︒︒是ABC 的好角.故答案为:60,105︒︒.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数).依题意得101010180m mn ++=,化简得(1)17m n +=,,m n 都是正整数,∴,1m n +都是17的整数因子,∴1m =,117n +=,∴1m =,16n =,∴1010m ︒=︒,10160mn ︒=︒,即该三角形的另外两个角是:10︒和160︒.故答案为:10,160︒︒.【点睛】本题考查的是折叠的性质应用、三角形的外角等不相邻的两个内角之和,并涉及一些数学归纳法思想来推导结论,一道比较综合知识点的新颖考题,在第(4)小题中不需要去解出根,而是根据这种限定条件来确定解,这是一种不同于以往的解题思路.3.(1)见解析;(2)①见解析;②点F 的坐标为F (,)【解析】试题分析:(1)由于∠AEF=90°,故∠FEC=∠EAB ,而E 是BC 中点,从而只需取AB 点G ,连接EG ,则有AG=CE ,BG=BE ,∠AGE=∠ECF ,易得△AGE ≌△ECF ;(2)①由于AB=BC ,所以只要AG=EC 就有BG=BE ,就同样可得△AGE ≌△ECF ,于是截取AG=EC ,证全等即可;②根据A 、D 两点的坐标求出抛物线解析式,设出F 点的横坐标,纵坐标用横坐标表示,将F 点的坐标代入抛物线解析式即可求出坐标.解:(1)如图1,取AB 的中点G ,连接EG .△AGE ≌△ECF .(2)①若点E 在线段BC 上滑动时AE=EF 总成立.证明:如图2,在AB 上截取AG=EC .∵AB=BC,∴BG=BE,∴△GBE是等腰直角三角形,∴∠AGE=180°﹣45°=135°,∵CF平分正方形的外角,∴∠ECF=135°,∴∠AGE=∠ECF,而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AGE≌△ECF,∴AE=EF.②由题意可知抛物线经过A(0,1),D(1,1)两点,∴,解得,∴抛物线解析式为y=﹣x2+x+1,过点F作FH⊥x轴于H,由①知,FH=BE=CH,设BH=a,则FH=a﹣1,∴点F的坐标为F(a,a﹣1),∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,∴a=(负值不合题意,舍去),点F的坐标为F(,).考点:二次函数综合题.4.(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;=90°,如果有一个角是另一个角的3倍,(3)由(2)的证明求解思路,不难得出EAF所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。
初二数学暑假作业提高题
八年级暑假 数学培优提高练习题一、数与式典型题目:1. 计算:(1)99163135115131++++ (2)(21+31+……+20021)(1+21+31+……+20011)-(1+21+31+……+20021)(21+31+……+20011)2. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.3. 已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a = .4.(1)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m = .(2)在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( ) 第1个图形第2个图形第3个图形第4个图形…A .()53--, B .()53, C .()53-, D .()53-,5.(1)化简:22221369x y x y x y x xy y+--÷--+=_______ ; (2) 若x 2-2y +6x +10+y 2=0,则223442xyy x x yx +--=__________; (3)设512a =,则5432322a a a a a a a+---+=-________. 6.(1)如果式子aa ---11)1( 根号外的因式移入根号内,化简的结果为( )A .a -1B .1-aC .1--aD .a --1 (2) 已知)0,0(02>>=+-y x y xy x ,则yxy x y xy x 4353-++-的值为 ( )A .31B .21 C .32 D .43(3) 如图,菱形ABCD 的对角线长分别为a b 、,以菱形ABCD 各边的中点为顶点作矩形1111A B C D ,然后再以矩形1111A B C D 各边的中点为顶点作菱形2222A B C D ,……,如此下去.则得到四边形2009200920092009A B C D 的面积用含a b 、的代数式表示为__________.同步练习 一、选择题1. 若的值为则2y -x 2,54,32==y x ( )A.53B.-2C.553D.562. 已知a -b=b -c=52,a 2+b 2+c 2=1则ab +bc +ca 的值等于( ) A.2513 B.2512 C.53 D.524=1+3 9=3+6 16=6+10…3.古希腊著名的毕达哥拉斯学派把1、3、6、10… 这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21 D .49 = 18+314.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对...称式..,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C . ②③ D .①②③ 二、填空题5.已知Rt △ABC 中,AC=3,BC= 4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…, 则CA 1= ,=5554C A A C . 6.已知25350x x --=,22152525x x x x --=-- .7. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示 的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3, …分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n 的坐标是______________. 三、解答题8. 若4x -3y -6z=0, x+2y -7z=0 (xyz ≠0),求代数式222222103225z y x z y x ---+的值. 9.对任意实数x 、y ,定义运算x *y 为x *y=ax+by+cxy 其中a 、b 、c 为常数,yxOC 1B 2A 2 C 3B 1 A 3B 3A 1 C 2等式右端运算是通常的实数的加法和乘法.现已知1*2=3,2*3=4,并且有一个非零实数d ,使得对于任意实数x,都有x *d=x ,求d 的值.10.如图所示,在矩形ABCD 中,AB =12,AC =20,两条对角线相交于点O . 以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1;再以A 1B 1、A 1C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形OBB 1C 、第2个平行四边形A 1B 1C 1C 和第6个平行四边形的面积.二、方程与方程组典型题目1.解关于x 的方程: (1)4x+b=ax-8;(2)6,234()5() 2.x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩ (3)21124x x x -=-- 2.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x的解,求k 的值. 3. 符号“a b c d”称为二阶行列式,规定它的运算法则为:a b ad bc c d=-,请你根据上述规定求出下列等式中x 的值:2111111xx =-- . 4.设a 是方程0120062=+-x x 的一个根,求代数式20061200722++-a a a 的值.O1 AB D2A 2B 2A 1B 1O 15.求出二元一次方程2x+3y=20的非负整数解.6.小明计划将今年春节期间得到的压岁钱的一部分作为自己一年内购买课外书籍的费用,其余的钱计划买这些玩具去看望市福利院的孩子们.某周日小明在商店选中了一种小熊玩具,单价是10元,按原计划买了若干个,•结果他的压岁钱还余30%,于是小明又多买了6个小熊玩具,这样余下的钱仅是压岁钱的10%. (1)问小明原计划买几个小熊玩具,小明的压岁钱共有多少元?(2)为了保证小明购书费用不少于压岁钱的20%,•问小明最多可比原计划多买几个玩具?7.某超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠; (3)若一次购物超过500元,其中500元以下部分(包括500元)给予九折优惠,超过500元部分给予八折优惠.小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买同样多的物品,他需付多少元?8.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?9.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷 顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人....的工作效率比原计划提高了25%,结果提前2图1如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700如果人数不超过25人,人均旅游费用为1000元.天完成了生产任务.求该公司原计划安排多少名工人生产帐篷? 同步练习1、若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为__________.2、已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为____________. 3、已知x a y b =⎧⎨=⎩是方程组||223x x y =⎧⎨+=⎩的解,则a+b 的值等于 .4、若x 与y 互为相反数,且532=-y x ,则=+332y x _________.5、一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为 元.6、已知方程组325(1)7x y kx k y -=⎧⎨+-=⎩的解x ,y ,其和x+y=1,则k =_____7、篮球巨星姚明在一场比赛中24投14中,拿下28分,其中三分球三投全中,那么姚明两分球投中 球,罚球投中 球. 8、 用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 9、一条船顺流航行是逆流航行的速度的3倍,则船在静水中航速与水的流速之比为( )A 、3:1B 、2:1C 、1:1D 、5:2 11.方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =12.方程4x+y=20的正整数解有( )组. A .2B.3C.4D.5132()x y =+,则x -y 的值为( )A .-1B .1C .2D .3 14.两位数的大小恰好等于其个位与十位数字之和的4倍,这样的两位数共有( )个 A.3B.4C.5D.615.方程12x ⨯+23x ⨯+…+19951996x⨯=1995的解是( ) A.1995 B.1996 C.1997 D.1998【能力拓展】16.已知关于x ,y 的方程组⎩⎨⎧=+=+12by ax y x 与⎩⎨⎧=-=-452by ax y x 的解相同,求a ,b 的值.17. 已知等腰三角形两边长分别是方程28150x x -+=的两根,求此等腰三角形的周长.18.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.19.已知a,b 是方程x 2-x -1=0的两个根,求代数式3a 2+2b 2-3a -2b 的值. 20.如图,在Rt △ABC 中,∠C=90°,AC=6cm ,BC=8cm .点P 、Q 同时由A 、B 两点出发,分别沿AC 、BC 方向都以1cm/s 的速度匀速移动,几秒后△PCQ 的面积是△ABC 面积的一半?QPCBA三、不等式与不等式组同步练习1、下列四个命题①若a >b ,则a +1>b+1;②若a >b ,则a -l >b -1;③若a >b ,则-2a <-2b ; ④若a >b ,则2a <2b .其中正确的有 ( ) A .l 个 B .2个 C .3个 D .4个2、如果2m 、m 、1-m 这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .m >0B .m >0.5C .m <0D .0<m <0.53、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <4、如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为 ( ) A .2x <-B .21x -<<-C .20x -<<D .10x -<<5、不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .6、如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .7、已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是 .(2)若0b >,且225a b +=,则a b += .8、已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是.9、已知关于x 、y 的方程组⎩⎨⎧-=++=+134123m y x m y x 的解满足x<y<0,求m 的范围.10、小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是2849456□(□表示忘记的数字).若□位置的数字是不等式组2110142x x x ->⎧⎪⎨+⎪⎩,≤的整数解,求□可能表示的数字.11、已知不等式组⎪⎩⎪⎨⎧-<-+>-a a a a 237121)1(315的整数解a 满足⎩⎨⎧=+-=-43272y x y ax ,求(x+y)(x 2-xy+y 2)的值.12、我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种AB C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元) 685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.四、一次函数与不等式一、填空与选择1.已知一次函数()22m -1-+=m x y ,函数y 随着x 的增大而减小,且其图象不经过第一象限,则m 的取值范围是 ( ) A.21>m B.2≤m C.221<<m D.221≤<m 2.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最2后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( ) A .12分钟 B .15分钟C .25分钟D .27分钟3.如图,点A 、B 、C 、D 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是( ) A .1 B .3 C .3(1)m - D.3(2)2m -4.函数y 1=x+1与y 2=ax+b 的图象如图所示,这两个函数图象如图所示,那么使y 1,y 2的值都大于零的x 的取值范围是5.若直线y=mx+4,x=l ,x=4和x 轴围成的直角梯形的面积是7,则m 的值是( ) A .-12 B .- 23 C .-32D .-26.如图,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 .y xOAB ① ②③ ④ 481216 4 (第6题图)(第7题图)(第2题图)(第3题图)(第4题图)yxO ABxy B APM 07.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2 007次,点P 依次落在点P 1, P 2, P 3, P 4, …,P 2 007的位置,则P 2 007 的横坐标x 2 007=_ .8.已知直线y 1=ax+b 和y 2=mx+n 的图象如图所示, 根据图象填空.⑴ 当x_ _时,y 1>y 2;当x___ _时,y 1=y 2; 当x___ ___时,y 1<y 2.⑵ 方程组12y =ax+b y =mx+n ⎧⎨⎩ 是 .9.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .二、解答题 10.如图,直线3分别与X 轴,Y 轴交于B ,A. (1)求B ,A 的坐标;(2)把△AOB 以直线AB 为轴翻折,点O 落在点C , 以BC 为一边做等边三角形△BCD,求D 点的坐标.11.如图直线y= 4-3x+8与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点P 处,求直线AM 的解析式.(第8题图)(第9题图)P DCBA五.直线型几何综合题典型题目1.如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B→C→D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是( )2.如图,在矩形ABCD中,BC =20cm ,P ,Q ,M ,N 分别从A ,B ,C ,D 出发沿AD ,BC ,CB ,DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ =x cm(0x ),则AP =2x cm ,CM =3x cm ,DN =x 2cm .(1)当x 为何值时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形; (3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.4.如图,在等腰梯形ABCD 中,AB ∥DC ,∠A=45°,AB=10cm ,CD=4cm ,等腰直角三角形PMN 的斜边MN=10cm ,A 点与N 点重合,MN 和AB 在一条直线上,设等腰梯形ABCD 不动,等腰直角三角形PMN 沿AB 所在直线以1cm/s 的速度向右移动,直到点N 与点B 重合为止。
初二数学提优训练含答案
A DBCEF(第2题图)B A CDEF(第1题图)第6题DOC A Py x初二数学提优训练一.选择题:1.如图,点E 在正方形ABCD 外,连接AE 、BE 、DE ,过点A 作AE 的垂线交DE 于点F .若A E =AF =1,BF =错误!.则下列结论:①△AFD ≌△AEB ;②点B 到直线AE 的距离为错误!;③EB ⊥ED ;④S △AFD +S △AFB =1+错误!;⑤S正方形ABCD=4+错误!.其中正确结论的序号是…………………………………………………………………( ) A .①③④B .①②⑤C .③④⑤D .①③⑤2、函数y =错误!和y =错误!在第一象限内的图象如图,点P 是y =错误!的图象上一动点,PC ⊥x 轴于点C ,交y =错误!的图象于点A 。
PD ⊥y 轴于点D ,交y =错误!的图象于点B.。
下面结论:①△ODB 与△OCA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA = 错误!AP 。
其中正的面积相等;②PA 确结论是 A.①②③B. ①②④ C 。
①③④ D 。
②③④二.填空题: 1.如图,菱形ABCD中,E 、F 分别为BC 、CD 上的点,⊿ACF 经旋转后能与⊿ABE 重合,且∠BAE =20º,则∠FEC 的度数是 。
2.如图,Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .将△ABC 绕点D 按顺时针旋转角α(0<α<180°)后,如果点B 恰好落在初始Rt △ABC 的边上,那么α= °.3.如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为 . 4.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点E 的坐标为(0,2).点F (x ,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2 : 1两部分,则x 的值为 .5.设函数2y x =与1y x =-的图像的交点坐标为(a ,b ),则11a b-的值为__________. 6.如图,在∆AOB 中,已知C 是AB 的中点,反比例函数ky x= (k >0)在第一象限的图像经过A 、C两点,若∆OAB 面积为6,则k 的值为 .三.解答题:1.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF交边BC 于点G ,连结AG 、CF .(1)求证:①△ABG ≌△AFG ; ②BG =GC ;(2)求△FGC 的面积。
数学学霸提优大试卷初二
一、选择题(每题5分,共25分)1. 下列数中,绝对值最小的是()A. -3B. 2C. 0D. -22. 已知方程 x^2 - 5x + 6 = 0 的两个根分别是 x1 和 x2,则 x1 + x2 的值为()A. 5B. 6C. -5D. -63. 若 a > b,且 c > d,则下列不等式中成立的是()A. ac > bdB. ac < bdC. -ac > -bdD. -ac < -bd4. 在直角坐标系中,点 P(2, -3) 关于 y 轴的对称点坐标是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)5. 下列函数中,是反比例函数的是()A. y = x^2 + 1B. y = 2x + 3C. y = 1/xD. y = 3x^2 - 4二、填空题(每题5分,共25分)6. 若 a = 2,b = -3,则 a^2 + b^2 = _______。
7. 一个等腰三角形的底边长为 8,腰长为 10,则该三角形的周长为 _______。
8. 若等差数列的首项为 2,公差为 3,则第 10 项为 _______。
9. 若 x + y = 5,xy = 6,则 x^2 + y^2 的值为 _______。
10. 在梯形 ABCD 中,AD // BC,AD = 6,BC = 10,梯形的高为 4,则梯形 ABCD 的面积为 _______。
三、解答题(每题10分,共40分)11. (10分)解下列方程:(1)2x - 5 = 3x + 1(2)5(x - 2) - 3(2x + 1) = 012. (10分)已知等差数列的前三项分别为 a, b, c,且 a + b + c = 12,求该数列的公差。
13. (10分)在直角坐标系中,点 A(3, 4),点 B(m, n) 在直线 y = 2x + 1 上,求 m 和 n 的值。
初二数学上册培优练习题
初二数学上册培优练习题一、选择题1. 下列选项中,不是图像的几何变换的是()。
A. 平移B. 旋转C. 缩放D. 折射2. 以下哪个式子代表了一个比例关系?()A. 3x + 4 = 10B. 2x - 7 = 5C. 5x = 20D. x + 2 = 33. 铅垂线是指()。
A. 与水平线垂直的线B. 与直线平行的线C. 与某线段垂直的线D. 与某线段平行的线4. 下列等式中,哪一个属于二元一次方程?()A. 2x - 3 = 0B. 4x^2 + 5 = 0C. 3x - 2y = 5D. 2x - 3y + 4z = 105. 在平行四边形中,对角线互相平分对方的是()。
A. 对立边B. 相邻边C. 对称边D. 反对称边二、填空题1. 已知AB是⊙O的直径,如果∠ACB = 45°,则∠ABC =___________度。
2. 三个数的比是3:5:7,如果最小的数是15,则最大的数是__________。
3. 直线l与平面P交于点A,若点A在线段BC的中点上,则BC的位置关系是__________。
4. 等边三角形的内角度数是__________度。
5. 在一组数据中,若减去最大的数后,剩下的数的平均数是15,那么在这组数据中最大的数是__________。
三、解答题1. 如下图所示,在△ABC中,AD是边BC的中线,若AD = 6cm,BC = 10cm,求AB的长度。
2. 用两个相同的正方形拼成一个长方形,其中正方形的边长为2cm,长方形的周长是多少?3. 某商品的原价是200元,现以8折的优惠活动进行促销,求打折后的价格是多少?4. 找出满足下列等式的x与y的值:3x + 5y = 23,x - 2y = 45. 甲、乙两个人一起种了一块地,甲种的速度是每小时15亩,乙种的速度是每小时12亩,如果两人同时种,种完这块地需要多少时间?文章结尾。
以上是初二数学上册的培优练习题,包括选择题、填空题和解答题。
初二数学提高最好练习题
初二数学提高最好练习题数学是一门重要的学科,也是绝大部分学生感到困惑的学科之一。
而在初二阶段,学生们需要打下牢固的数学基础,为将来更深入的学习奠定基础。
为了帮助初二学生提高数学水平,本文将介绍一些最好的练习题。
通过反复练习这些题目,学生们可以在数学上取得更好的成绩。
1. 整数与分数运算整数与分数运算是初二数学中的重要内容之一。
以下是一个适合初二学生练习的整数与分数运算题目:1) 计算:$(-3)\times \frac{7}{2} + (-5)$2) 计算:$8 \div \frac{3}{4} - 2$3) 计算:$(-2)\times (-\frac{1}{3}) \div 4$2. 代数方程代数方程是初二数学中的重点内容,也是学生们容易出错的地方。
以下是一些适合初二学生练习的代数方程题目:1) 解方程:$3x + 5 = 17$2) 解方程:$2(x + 3) - 4 = 10$3) 解方程:$\frac{x - 1}{3} = \frac{x + 2}{4}$3. 几何图形几何图形是初二数学中的重要内容,也是学生们需要掌握的基本知识。
以下是一些适合初二学生练习的几何图形题目:1) 已知正方形ABCD的边长为8cm,求其对角线的长度。
2) 一个圆的半径为5cm,求其周长和面积。
3) 已知三角形ABC,其中∠C = 90°,AC = 7cm,BC = 24cm,求AB的长度。
4. 数据统计数据统计是初二数学中的重要内容,也是学生们需要掌握的技巧之一。
以下是一些适合初二学生练习的数据统计题目:1) 某班级共有40名学生,其中男生占总人数的$\frac{5}{8}$,求男生人数。
2) 某商场某天销售了120部手机,其中iPhone占总销量的$\frac{1}{4}$,求销售了多少部iPhone。
3) 某班级学生的身高数据如下:160cm,165cm,170cm,155cm,160cm,150cm,165cm,162cm,155cm,求平均身高。
初二数学《全等三角形》提优卷(含解析)
初二数学《全等三角形》提优卷一三角形全等证明中常见的辅助线一、连线构造全等1.如图,在R△ABC中,∠A=90°,点D为斜边BC上一点,且BD=BA,过点D作BC的垂线交AC于点E.求证:点E在∠ABC的平分线上.2.如图,AB=AE,∠C=∠D,BC=ED,点F是CD的中点,则AF平分∠BAE,试说明理由.二、倍长中线构造全等3.如图,在△ABC中,AD为BC边上的中线.求证:AB+AC>2AD.三、做取构造全算4.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于点E,连接CE并延长交AP于点D.求证:AD+BC=AB.四、作量战段构造全等5.(1)如图1,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E,求证:CD=BE.(2)如图2,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?若相等,请证明;若不相等,请举反例说明.6.如图,已知AD平分∠BAC,∠BAC+∠BDC=180°,若∠C是钝角;求证:BD=CD.二动态问题中全等三角形一、平移型6.如图①,点A,E,F,C在一条直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,若AB=CD.(1)求证:BD平分EF(即EG=FG);(2)若将DE向右平移、将BF向左平移,得到图②所示图形,在其余条件不变的情况下,(1)中的结论是否仍然成立?请说明理由.二、旋转型7.如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求证:AC=BD,∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD= a,则AC与BD间的等量关系为_________,∠APB的度数为_________.8.如图,C是线段AB上一点,△ACD和△BCE都是等边三角形,AE交CD于点M,BD交CE于点N,交AE于点O,求证:(1)∠AOB=120°;(2)CM=CN.9.如图①,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)在图①中,线段AC,BD的数量关系是_________;直线AC,BD相交成的角的度数是_________.(2)将图①的△OAB绕点O顺时针旋转90°角,在图②中画出旋转后的△OAB.(3)将图①中的△OAB绕点O顺时针旋转一个锐角,连接AC,BD得到图③,这时(1)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.三、动点问题10.如图①,AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm点P在线段AB上以1 cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,△ACP与△BPQ是否全等?请说明理由,并判断此时线段PC和线段PQ的位置关系.(2)如图②,将图①中的“AC⊥AB,BD⊥AB″改为”∠CAB=∠DBA=60°,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由.答案与解析1.【分析】可通过证明Rt△ABE≌Rt△DBE从而得到结论.【解答】证明:连接BE,∵ED⊥BC,∴∠BDE=∠A=90°.在Rt△ABE和Rt△DBE中∵,∴Rt△ABE≌Rt△DBE(HL).∴∠ABE=∠DBE.∴点E在∠ABC的角平分线上.2.【分析】连接AC、AD.根据SAS易证△ABC≌△AED,得AC=AD.根据等腰三角形三线合一性质可证结论.【解答】解:AF⊥CD理由如下:如图,连接AC、AD.在△ABC与△AED中,∴△ABC≌△AED(SAS)∴AC=AD.∵点F是CD的中点,∴AF⊥CD;3.【分析】根据三角形三边关系分别得出BD+AD>AB、CD+AD>AC,再根据中线的性质即可得出AD+BD>(AB+AC).【解答】证明:∵BD+AD>AB,CD+AD>AC,∴BD+AD+CD+AD>AB+AC.∵AD是BC边上的中线,BD=CD,∴AD+BD>(AB+AC).4.【分析】首先在AB上截取AF=AD,由AE平分∠PAB,利用SAS即可证得△DAE≌△FAE,继而可证得∠EFB=∠C,然后利用AAS证得△BEF≌△BEC,即可得BC=BF,继而证得AD+BC=AB.【解答】证明:在AB上截取AF=AD,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∵,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE,∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C,∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∵,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.5.(1)【分析】根据垂直的定义可得∠BDC=∠CEB=90°,根据等腰三角形的性质可得∠ABC=∠ACB,再有公共边BC,利用AAS可得△BCD≌△CBE,据此可得BD=CE.【解答】证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCD和△CBE中,∠BDC=∠CEB,∠DBC=∠ECB,BC=CB,∴△BCD≌△CBE(AAS),∴BD=CE.(2)【分析】分别作CF⊥AB,BG⊥AC,先证得△FBC≌△GCB,得出CF=BG,进而证得△CFD≌△BGE即可证得CD=BE.【解答】解:CD=BE.证明如下:如图2,分别作CF⊥AB,BG⊥AC,∴∠CBF=90°,∠BGC=90°.∵AB=AC,∴∠ABC=∠ACB,在△FBC和△GCB中,,∴△FBC≌△GCB(AAS).∴CF=BG,∵∠ADC+∠AEB=180°,又∵∠BEG+∠AEB=180°,∴∠ADC=∠BEG,在△CFD和△BGE中,,∴△CFD≌△BGE(AAS),6.【分析】(1)根据四边形的内角和为360°,∠BAC+∠BDC=180°,可得∠B+∠C=180°,求出∠C的度数,利用等腰三角形的性质,求出∠DAC=∠ADC=25°,根据AD平分∠BAC,所以∠BAC=2∠DAC=50°,得到∠BDC=130°,根据∠ADB=∠BDC﹣∠ADC,即可解答;(2)过点D作DM⊥AB于M,DN⊥AC交AC延长线于N,证明△DMB≌△DNC,即可得出结论.【解答】解:(1)∵∠BAC+∠BDC=180°,∴∠B+∠C=180°,∵∠B=50°,∴∠C=130°,∵∵AC=CD,∠C=130°,∴∠DAC=∠ADC=(180°﹣∠C)÷2=25°,∵AD平分∠BAC,∴∠BAC=2∠DAC=50°,∵∠BAC+∠BDC=180°,∴∠BDC=130°,∴∠ADB=∠BDC﹣∠ADC=130°﹣25°=105°.(2)如图,过点D作DM⊥AB于M,DN⊥AC交AC延长线于N,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN,∠DMB=∠DNC=90,∵∠ACD+∠B=180,∠ACD+∠DCN=180,∴∠B=∠DCN,在△BDM与△CDN中,,∴△DMB≌△DNC(AAS),7.【分析】(1)△OAB绕点O顺时针旋转90°角应该在△COD的右边;(2)的结论容易得到,AC=BD,AC与BD相交成90°的角;(3)结论仍然成立,利用等腰直角三角形的性质可以得到全等条件证明△COA≌△DOB,然后利用全等三角形的性质可以证明结论仍然成立.【解答】解:(1)如图(a)【A,B字母位置互换扣(1分),无弧扣(1分),不连接AB扣(1分),扣完为止)】(2分)(2)AC=BD;90(90°)(每空1分)(4分)(3)成立.如图(b).∵∠COD=∠AOB=90°,∴∠COA+∠AOD=∠AOD+∠DOB,即:∠COA=∠DOB(或由旋转得∠COA=∠DOB),(5分)∵CO=OD,OA=OB,∴△COA≌△DOB,(6分)∴AC=BD,(7分)延长CA交OD于E,交BD于F,(下面的证法较多)∵△COA≌△DOB,∴∠ACO=∠ODB,(8分)∵∠CEO=∠DEF,∴∠COE=∠EFD=90°,∴AC⊥BD.(9分)旋转更大角时,结论仍然成立.(10分)8.【分析】(1)根据等边三角形的性质得到AC=CD,CE=CB,∠ACD=∠BCE=60°,则可得到∠ACE=∠DCB,根据全等三角形的判定方法可得到△ACE≌△DCB,于是有∠CAM=∠CDN,由于∠ACD=DAC=∠BCE=∠CBE=60°,可得∠DCE=60°,则AD∥CE,DC∥BE,利用平行线的性质得到∠DAM=∠AEC,∠NDC=∠EBO,得出∠EBO=∠CAM,根据三角形的外角的性质即可求得;(2)根据全等三角形的判定方法可得到△ACM≌△DCN,则CM=CN;(3)根据等边三角形的判定方法即可得到△MCN为等边三角形,得出∠MNC=∠ECB=60°,根据内错角相等两直线平行得出MN∥AB.【解答】证明:(1)∵△ACD和△BCE都是等边三角形,∴AC=CD,CE=CB,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN,∵∠ACD=DAC=∠BCE=∠CBE=60°,∠ACB是一个平角,∴∠DCE=60°,∴AD∥CE,DC∥BE,∵AD∥CE,∴∠DAM=∠AEC,∵DC∥BE,∴∠NDC=∠EBO,∴∠EBO=∠CAM∴∠AOB=∠OEB+∠EBO=∠AEC+∠CEB+∠EBO=∠DAE+∠CEB+∠CAM=∠DAC+∠CEB =60°+60°=120°;(2)在△ACM和△DCN中,,∴△ACM≌△DCN(ASA),∴CM=CN;(3)∵CM=CN,∠DCE=60°,∴△MCN为等边三角形,∴∠MNC=60°,∴∠MNC=∠ECB=60°,∴MN∥AB.9.【分析】(1)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.(2)根据∠AOB=∠COD=α求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.【解答】证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:∵∠AOB=∠COD=α,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:相等,α.10.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∵∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.【点评】本题主要考查了全等三角形的判定与性质,注意分类讨论思想的渗透.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学提优训练 班级 姓名 学号 成绩 1 .某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为( )
A.11元/千克
B.11.5元/千克
C.12元/千克
D.12.5元/千克 2 .数学老师布置10道选择题作为课堂练习,课代表将全班同
学的答题情况绘制成条形统计图(如图),根据图表,全班每
位同学做对题数中位数和众数分别为 ( )
A.8,8
B. 8,9
C.9,9
D. 9,8
3 .甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、
x 分、80分,若这组数据的众数与平均数恰好相等,则这组数
据的中位数是( )
A.100分
B. 95分
C. 90分
D. 85分
4 .八年级(1)班50名学生的年龄统计结果如右表所示:则此班学
生年龄的众数、中位数分别为( )
A.14,14
B.15,14
C.14,15
D.15,16
5.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD
运动至点D 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图象如图2所示,则BCD △的面积是( ) A .3 B .4 C .5 D .6
6.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡
路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的
关系如图所示.下班后,如果他沿原路返回,且走平路、上坡
路、下坡路的速度分别保持和去上班时一致,那么他从单位到
家门口需要的时间是( )
A .12分钟
B .15分钟
C .25分钟
D .27分钟
7.在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,
刚跑出200m 后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图像解答下列问题:
(1)甲摔倒前,________的速度快(填甲或乙); (2)甲再次投入比赛后,在距离终点多远处追上乙?
年龄 13 14 15 16 人数 4 22 23 1 图1 2 O 5 x A
B C P
D 图2
O y (m) x (s) 800
200 40 120 125 C D A B P
8.某市为增强学生的法律意识,开展了对全市学生的普法教育活动.为检验活动效果,组织全市八年级学生参加法律知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制了如下“频数分布直方图”.请回答:
(1)参加全市法律知识测试的学生有______名同学.
(2)中位数落在______分数段内.
(3)若用各分数段的中间值(如5.5~10.5
试成绩全市均分约是多少?
9.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图所示.
(1)8:
00~8:30,燃气公司向储气罐注入了多少立方米的天然气?
(2)当0.5x ≥时,求储气罐中的储气量y (立方米)与时间x (小时)的函数解析式;
(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.
10.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量x 为多少时,销售利润为4万元;
(2)分别求出线段AB 与BC 所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
(分)
) 1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/
升. 15日:进油4万升,成本价4.5元/升.
31日:本月共销售10万升. 五月份销售记录 (万升)。