合成孔径雷达(SAR)

合集下载

合成孔径雷达概述(SAR)

合成孔径雷达概述(SAR)

合成孔径雷达概述1合成孔径雷达简介 (2)1.1 合成孔径雷达的概念 (2)1.2 合成孔径雷达的分类 (3)1.3 合成孔径雷达(SAR)的特点 (4)2合成孔径雷达的发展历史 (5)2.1 国外合成孔径雷达的发展历程及现状 (5)2.1.1 合成孔径雷达发展历程表 (6)2.1.2 世界各国的SAR系统 (9)2.2 我国的发展概况 (11)2.2.1 我国SAR研究历程表 (11)2.2.2 国内各单位的研究现状 (12)2.2.2.1 电子科技大学 (12)2.2.2.2 中科院电子所 (12)2.2.2.3 国防科技大学 (13)2.2.2.4 西安电子科技大学 (13)3 合成孔径雷达的应用 (13)4 合成孔径雷达的发展趋势 (14)4.1 多参数SAR系统 (15)4.2 聚束SAR (15)4.3极化干涉SAR(POLINSAR) (16)4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16)4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17)4.6 性能技术指标不断提高 (17)4.7 多功能、多模式是未来星载SAR的主要特征 (18)4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18)4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18)4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19)4.11 军用和民用卫星的界线越来越不明显 (19)5 与SAR相关技术的研究动态 (20)5.1 国内外SAR图像相干斑抑制的研究现状 (20)5.2 合成孔径雷达干扰技术的现状和发展 (20)5.3 SAR图像目标检测与识别 (22)5.4 恒虚警技术的研究现状与发展动向 (25)5.5 SAR图像变化检测方法 (27)5.6 干涉合成孔径雷达 (31)5.7 机载合成孔径雷达技术发展动态 (33)5.8 SAR图像地理编码技术的发展状况 (35)5.9 星载SAR天线方向图在轨测试的发展状况 (37)5.10 逆合成孔径雷达的发展动态 (38)5.11 干涉合成孔径雷达的发展简史与应用 (38)合成孔径雷达概述1合成孔径雷达简介合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。

合成孔径雷达

合成孔径雷达

欧空局(ESA)
欧空局分别于1991年7月和1995年4月,发射了欧洲遥感卫星(European Remote Sensing Satellite, ERS) 系列民用雷达成像卫星:ERS-1和ERS-2,主要用于对陆地、海洋、冰川、海岸线等成像。卫星采用法国Spot-I和 Spot-Ⅱ卫星使用的MK-1平台,装载了C波段SAR,天线波束指向固定,并采用VV极化方式,可以获得30 m空间分辨率 和100 km观测带宽的高质量图像。Envisat是ERS计划的后续,由欧空局于2002年3月送入太空的又一颗先进的近 极地太阳同步轨道雷达成像卫星。Envisat上所搭载的ASAR是基于ERS-1/2主动微波仪(AMI)建造的,继承了ERS-1 /2 AMI中的成像模式和波束模式,增强了在工作模式上的功能,具有多种极化、可变入射角、大幅宽等新的特性, 它将继续开展对地观测和地球(ESA)
意大利 德国
俄罗斯 加拿大航天局(CAS)
日本 以色列
美国宇航局(NASA)
在Seasat-A取得巨大成功的基础上,利用航天飞机分别于1981年11月、1984年10月和1994年4月将Sir-A、 Sir-B和Sir-C/X-SAR3部成像雷达送入太空。Sir-A是一部HH极化L波段SAR,天线波束指向固定,以光学记录方式 成像,对1000 ×104 km2的地球表面进行了测绘,获得了大量信息,其中最著名的是发现了撒哈拉沙漠中的地下古 河道,显示了SAR具有穿透地表的能力,引起了国际学术界的巨大震动。产生这种现象的原因,一方面取决于被观测 地表的物质常数(导电率和介电常数)和表面粗糙度,另一方面,波长越长其穿透能力越强。Sir-B是Sir-A的改进型, 仍采用HH极化L波段的工作方式,但其天线波束指向可以机械改变,提高了对重点地区的观测实效性。Sir-C/X-SAR 是在Sir-A, Sir-B基础上发展起来的,并引入很多新技术,是当时最先进的航天雷达系统:具有L、C和X3个波段, 采用4种极化(HH, HV, VH和VV),其下视角和测绘带都可在大范围内改变。

合成孔径雷达(SAR)去噪

合成孔径雷达(SAR)去噪

进行滤波,
cJ , n
gn
h n
再把获得的数据序列中奇数下表的数据全部拿掉。把正交投影
分解为

P ;f ( x)
P f
Q f
J 1
最终得到各个
示。
空间
Wj
V1
V0
W0
J 2
J 2
( j J , J 1, J 内的小波系数
2, )
V1
W1
V2
W2
。这个过程如图所
1.2.2 进行小波分解
细节小, 图像中的像素的退化相互独立时,斑点噪声可以被建模成乘性噪
声,即SAR图像的图像强度可描述为地面物体实际的后向散射信号和与之
不相关的噪声的乘积。SAR 图像强度可表示为如下乘性模型:
I ( x, y) R( x, y) u( x, y)
(1)
其中 ( x, 是分辨单元的图像空间坐标,表示一个分辨单元;
这样一幅图像在一次小波分解后将
分解为一个低频子图像LL1 和垂直、水
平、对角线3个方向的高频子图像LH1、
HL1、HH1, L 表示低通滤波, H 表示高
通滤波。
1.2.2 进行小波分解
小波去噪
由于边缘和噪声属于图像的高频信息, 而信号基本上属于低频信息,
故其LH 1、HL1、HH1 图像中包含了图像在垂直、水平、对角线方向上的边
缘和噪声,而LL1 图像是原图的低频近似。
图像的多尺度分解(即对图像的多分辨率分析)就是对在上一阶得到的
低频近似图像LLJ- 1进行迭代分解。
让图像的大部分能量投影到下一级分辨率的近似图像中去,所以,需
要为待处理图像选择最佳小波母函数。
如何实现对信号

合成孔径雷达sar孔径合成原理

合成孔径雷达sar孔径合成原理

合成孔径雷达sar孔径合成原理合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用雷达原理进行成像的技术。

它通过利用雷达的回波信号进行数据处理,实现高分辨率、大覆盖面积的地面成像。

而SAR的核心技术之一就是孔径合成原理。

孔径合成原理是利用雷达的运动产生的多个回波信号进行合成,从而得到高分辨率的成像。

与传统雷达不同,SAR的发射器和接收器不是静止不动的,而是在飞机、卫星等平台上运动。

正是因为这种运动,SAR能够利用多个回波信号进行合成,达到提高分辨率的效果。

SAR的孔径合成原理可以通过以下几个步骤来解释:1. 发射信号:SAR首先向地面发射一束射频信号。

这个信号在空中传播并与地面物体相互作用后,会产生回波信号。

2. 接收信号:接下来,SAR接收器会接收到地面反射回来的回波信号。

这些信号包含了地面物体的散射特性,可以提供有关地面物体的信息。

3. 信号处理:接收到回波信号后,SAR会对这些信号进行处理。

首先,对回波信号进行时域压缩处理,以减小信号的时延。

然后,对压缩后的信号进行频域处理,通过傅里叶变换等算法,将信号转换为频域数据。

4. 孔径合成:在信号处理的过程中,SAR会利用雷达平台的运动信息,将多个回波信号进行合成。

SAR的雷达平台在运动过程中,相当于一个虚拟的大孔径天线,可以接收到多个不同位置的回波信号。

通过对这些信号进行合成处理,可以得到高分辨率的成像结果。

5. 成像显示:最后,SAR将合成后的信号进行成像显示。

利用合成的回波信号,SAR可以得到高分辨率、清晰度高的地面图像。

这些图像可以用于地质勘探、军事目标识别、环境监测等领域。

需要注意的是,SAR的孔径合成原理要求雷达平台在运动过程中保持稳定,并且要有较高的精度。

这样才能保证合成后的图像质量。

此外,SAR的孔径合成原理也要求对回波信号进行准确的处理和合成算法。

只有在合适的处理和算法下,才能获得理想的成像结果。

第6章 合成孔径雷达(SAR)

第6章 合成孔径雷达(SAR)
o o o
第6章合成孔径雷达SAR
简介
• 简介(续)
– 相参积累无需多个阵元同时发射和接收
– 合成孔径天线:运动小天线多脉冲相参积累, 能获得沿运动轨迹的等效长线阵的方位(切向) 分辨力。采用该技术的机载(空载)雷达称为 合成孔径雷达(SAR) – 微波成像雷达 SAR:雷达移动,被测目标固定 ISAR:雷达固定,被测目标运动
x(t)
(a)
(b)
y
3 dB
r ,3 dB
Rl 0.44 L
y瑞利 r ,瑞利
1l R 2L
– 合成孔径长度 L = vpT
– 孔径边缘双程相位差
L R ( R DR) 2 2
2
2
L 1 DR 2 2R
1 l 1 R Rl 2 Lmax 2
第6章合成孔径雷达SAR
SAR工作原理
• SAR工作原理
– SAR工作方式:正侧视、斜侧视、多普勒波束 锐化、聚束定点照射等
– 正侧视SAR 天线波束指向垂直于平台运动方向 – 角度分辨力:
• 定义1:天线方向图的半功率(3dB)宽度
• 定义2:天线方向图的 2/p 强度处(4dB)宽 度,也称瑞利分辨力
2
– 允许的双程相位差为p /2 => DR l/8
Lmax Rl r ,瑞利
第6章合成孔径雷达SAR
非聚焦处理
R+
0
l/8
Le
R0
T
第6章合成孔径雷达SAR
聚焦处理
• 聚焦处理:球面波相参积累
– 阵列边缘产生的平方项可在信号处理中补偿, 合成孔径长度 波束宽度覆盖的长度
– 瑞利切向分辨力(切向覆盖宽度)

合成孔径雷达原理

合成孔径雷达原理

合成孔径雷达原理
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用计算机合成宽波束照片质量的雷达。

合成孔径雷达工作原理是通过天线阵列或天线上的高速振动装置连续发射短脉冲,然后接收被地面或目标反射回来的雷达信号。

接收的信号会通过相位稳定的混频器进行频率转换后,经过有限带宽宽余滤波器滤波。

滤波后的信号通过采样器进行模数转换,并送往数字信号处理单元。

接收到的一系列回波信号通过复杂的信号处理算法进行时频分析,并利用相位、幅度和频率信息进行高精度的距离测量和目标成像处理。

由于合成孔径雷达所接收到的信号来自不同的角度和瞬时位置,经过处理后就能够形成一个综合的、高分辨率的二维或三维雷达图像。

合成孔径雷达工作的基本原理是以一个相对较小的发射天线,通过采集和处理多个脉冲零散的数据,综合形成一个较长的虚拟天线,从而获得较高的方位分辨率。

这种虚拟天线的长度等于所有采集的零散数据的长度之和。

合成孔径雷达在成像质量方面优于传统雷达,主要因为它能够获得较高的方位分辨率。

通过相位偏移校正技术,合成孔径雷达能够消除多普勒频移引起的模糊和模糊,从而获得高质量的雷达图像。

此外,合成孔径雷达还具有对目标进行全天候、全地形、长距离的监测能力。

综上所述,合成孔径雷达通过计算机处理和合成多个零散数据,形成一个虚拟天线,从而获得高分辨率和高质量的雷达图像。

这使得合成孔径雷达在航空、航天、地质勘探等领域具有重要应用价值。

合成孔径雷达介绍

合成孔径雷达介绍

合成孔径雷达介绍
合成孔径雷达(SyntheticApertureRadar,SAR)是一种以微波回波形成高分辨率图像的雷达系统。

与传统雷达不同的是,SAR具有较高的分辨率和较强的穿透力,并且可以在夜晚、阴雨天等恶劣环境中工作。

SAR系统通过存储多个雷达回波信号,并在计算机中对信号进行处理和合成,从而形成高分辨率的图像。

它的分辨率与天线的孔径大小有关,因此采用“合成孔径”的技术,在雷达系统运动中不断积累雷达回波数据,并将其合成为一个大的孔径,从而获得更高的分辨率。

SAR系统广泛应用于地球观测、军事侦察、海洋监测、气象预报、资源调查等领域。

它可以探测地表的形态、植被覆盖、水文地质情况、海洋波浪、船只活动等信息。

同时,SAR系统还可以探测地球表面的微小变化,如地震、火山喷发等自然灾害的迹象。

总之,合成孔径雷达是一种高分辨率、高穿透力的雷达系统,具有广泛的应用前景。

随着技术的不断进步和应用领域的扩大,它的应用价值和意义将越来越受到重视。

- 1 -。

合成孔径雷达SAR课件

合成孔径雷达SAR课件
战场环境侦查
利用SAR系统的高分辨率特性 ,对敌方活动进行侦查,提供
详细情报。
目标识别与跟踪
通过SAR图像的纹理、形状等特征 提取,实现对敌方目标的识别与方导弹发射的早 期预警,引导己方导弹进行拦截。
SAR在环境监测领域的应用
大气环境监测
通过对SAR图像的分析,监测大 气污染源、污染物扩散等情况。
合成孔径雷达sar课件
目录
• SAR系统概述 • SAR成像算法 • SAR图像处理 • SAR系统性能评估 • SAR系统应用与发展趋势
01
SAR系统概述
SAR定义及特点
定义
SAR,全称合成孔径雷达,是一种雷达成像技术,利用飞行 器平台携带的雷达在空间中扫描,通过合成孔径技术对地面 目标进行成像。
反射信号
地面目标反射信号回到雷 达接收机。
数据处理
雷达接收机将反射信号进 行处理,生成图像。
02
SAR成像算法
距离-多普勒算法
线性调频(Linear Frequency Modulation,LFM)信号:用于产生具有大带宽的 信号,通过改变频率增量来实现目标距离和速度的测量。
成像处理步骤:收发雷达信号、信号接收、信号处理、图像生成等。
分辨率和速度分辨率
算法对目标和速度具有较高的分辨率和速度分辨率。
成像处理中的其他关键技术
成像处理中的数字波束形成(DBF)技术
通过对多个接收天线接收到的信号进行加权和相位调整,实现波束指向控制和目标信号增强。
成像处理中的动目标检测与跟踪技术
通过对回波信号进行频谱分析和目标跟踪,实现动目标的检测和跟踪。
成像处理中的杂波抑制技术
通过采用滤波器、空域滤波等技术,抑制杂波干扰,提高图像质量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合成孔径雷达(SAR)
合成孔径雷达(SAR)数据拥有独特的技术魅力和优势,渐成为国际上的研究热点之一,其应用领域越来越广泛。

SAR数据可以全天候对研究区域进行量测、分析以及获取目标信息。

高级雷达图像处理工具SARscape,能让您轻松将原始SAR数据进行处理和分析,输出SAR 图像产品、数字高程模型(DEM)和地表形变图等信息,应用永久散射体PS、短基线处理SBAS等方法快速准确地获取大范围形变信息,并可以将提取的信息与光学遥感数据、地理信息集成在一起,全面提升SAR数据应用价值。

基本概念
合成孔径雷达就是利用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达,也称综合孔径雷达。

合成孔径雷达的特点是分辨率高,能全天候工作,能有效地识别伪装和穿透掩盖物。

所得到的高方位分辨力相当于一个大孔径天线所能提供的方位分辨力。

分类
合成孔径雷达可分为聚焦型和非聚焦型两类。

用在飞机上或空间飞行器上可有几种不同的工作模式,最常见的是正侧视模式,称为合成孔径侧视雷达;此外还有斜视模式、多普勒波束锐化模式和定点照射模式等。

如果雷达保持相对静止,使目标运动成像,则成为逆合成孔径雷达,也称距离-多普勒成像系统。

合成孔径雷达在军事侦察、测
绘、火控、制导,以及环境遥感和资源勘探等方面有广泛用途。

发展概况
合成孔径的概念始于50年代初期。

当时,美国有些科学家想突破经典分辨力的限制,提出了一些新的设想:利用目标与雷达的相对运动所产生的多普勒频移现象来提高分辨力;用线阵天线概念证明运动着的小天线可获得高分辨力。

50年代末,美国研制成第一批可供军事侦察用的机载高分辨力合成孔径雷达。

60年代中期,随着遥感技术的发展,军用合成孔径雷达技术推广到民用方面,成为环境遥感的有力工具。

70年代后期,卫星载合成孔径雷达和数字成像技术取得进展。

美国于1978年发射的“海洋卫星”A号和80年代初发射的航天飞机都试验了合成孔径雷达的效果,证明了雷达图像的优越性。

空中SAR概况
1. 1951年, Carl Wiley 首次提出利用频率分析方法改善雷达的角分辨率.
2. 1953年, 伊利诺依大学采用非聚焦方法使角度分辨率由4.13度提高到0.4度,并获得第一张SAR图像.
3. 1957年, 密西根大学采用光学处理方式, 获得了第一张全聚焦SAR图像.
4. 1978年, 美国发射了第一颗星载Seasat-1.
5. 1991年, 欧洲空间局发射了ERS-1.
6. 1995年, 加拿大发射了Radarsat-1.
7. 2000年, 欧洲空间局发射了ASAR.
8. 2006年, 日本发射ALOS PALSAR.
9. 2007年, 德国发射TerraSAR-X
10. 2007年底, 加拿大发射Radarsat-2
展出的小型机载合成孔径雷达
工作方式
合成孔径雷达工作时按一定的重复频率发、收脉冲,真实天线依次占一虚构线阵天线单元位置。

把这些单元天线接收信号的振幅与相对发射信号的相位叠加起来,便合成一个等效合成孔径天线的接收信号。

若直接把各单元信号矢量相加,则得到非聚焦合成孔径天线信号。

在信号相加之前进行相位校正,使各单元信号同相相加,得到聚焦合成孔径天线信号。

地物的反射波由合成线阵天线接收,与发射载波作相干解调,并按不同距离单元记录在照片上,然后用相干光照射照片便聚焦成像。

这一过程与全息照相相似,差别只是合成线阵天线是一维的,合成孔径雷达只在方位上与全息照相相似,故合成孔径雷达又可称为准微波全息设备。

合成孔径雷达:利用遥感平台的移动,将一个小孔径的天线安装
在平台侧方,以代替大孔径的天线,提高方位分辨率的雷达。

应用
在航空方面,合成孔径雷达的分辨率可达到1米以内。

航天器上的合成孔径雷达因作用距离远,为获得高分辨率,技术较为复杂。

1972年发射的“阿波罗”17号飞船、1978年发射的“海洋卫星”和1981年发射的“哥伦比亚”号航天飞机上都装有合成孔径雷达。

合成孔径雷达主要用于航空测量、航空遥感、卫星海洋观测、航天侦察、图像匹配制导等。

它能发现隐蔽和伪装的目标,如识别伪装的导弹地下发射井、识别云雾笼罩地区的地面目标等。

在导弹图像匹配制导中,采用合成孔径雷达摄图,能使导弹击中隐蔽和伪装的目标。

合成孔径雷达还用于深空探测,例如用合成孔径雷达探测月球、金星的地质结构。

各国星载SAR系统
美国: Seasat-1, Sir-A, Sir-B, Sir-C, LACROSSE SAR, LightSAR, Medsat SAR
欧洲: ERS-1, ERS-2, XSAR, ASAR
加拿大: Radarsat-1, Radarsat-2
俄罗斯: Almaz-1
日本: JERS-1, ALOS/PALSAR
德国: TerraSAR-X
意大利: Cosmo-SkyMed
编辑本段图书
基本信息
书名: 合成孔径雷达
作者:匡纲要
出版社:国防科技大学出版社
出版时间:2007年11月
ISBN: 9787810994545
开本:16开
定价: 38.00 元
内容简介
本书主要介绍了合成孔径雷达(SAR)目标检测所涉及的基本概念、理论和应用技术,以及近年来国际上有关的最新研究成果。

具体内容包括SAR图像中的杂波统计建模、RCS重构、目标检测的基础理论和算法、目标鉴别、边缘及线目标检测以及极化SAR系统中的目标检测,最后给出典型的应用示例。

本书适用于遥感信息处理、图像
判读专业的研究人员、工程技术人员、高等院校教师等阅读参考,亦可作为高等院校遥感信息处理等相关专业的研究生课程教材。

SARscape由瑞士sarmap公司研发,是国际知名的雷达图像处理软件。

该软件架构于专业的ENVI遥感图像处理软件之上,提供图形化操作界面,具有专业雷达图像处理和分析功能。

同时可为客户自有的雷达数据格式定制接口。

为推广和传播干涉雷达技术和应用,Esri中国信息技术有限公司、中国地震局地壳应力研究所及瑞士sarmap公司将联合举办为期四天的“SARscape干涉雷达国际高级技术培训班”。

培训班的日程安排为:第一天由Esri中国公司工程师培训SARscape软件的快速入门操作,后面三天由sarmap公司技术总监Paolo Pasquali博士讲授原理,并配合上机练习。

相关文档
最新文档