换热器设计开题报告

合集下载

换热器设计开题报告

换热器设计开题报告

换热器设计开题报告一、项目背景换热器是一种用于将热量从一个媒介传递到另一个媒介的设备。

在化工、石油、电力、食品等众多领域中都有广泛的应用。

由于换热器的设计直接影响到传热效率和能源利用效率,因此对换热器的设计进行优化研究具有重要的意义。

二、项目目标本项目旨在设计一种高效、节能且符合工艺要求的换热器。

三、内容和方法1.热力计算:首先需要进行热力计算,根据工艺流程确定换热器的热负荷、传热介质和流量,以及换热传递的温度差。

2.换热器选型:根据热力计算结果,选择合适的换热器类型,例如壳管式换热器、板式换热器、管束式换热器等。

3.换热器结构设计:根据选定的换热器类型,进行具体的结构设计。

主要包括换热面积的确定、管束布局的优化、流体通道的设计等。

4.材料选择:根据工艺要求和介质特性,选择合适的材料来制作换热器。

需要考虑材料的热传导性能、耐腐蚀性以及成本等因素。

5.流体分配:设计合理的流体分配系统,确保流体能够均匀地通过换热器,充分利用换热器的传热面积。

6.附件设计:包括防腐层的设计、支撑结构的设计、清洗排污装置的设计等。

7.换热器容量计算:根据换热器的设计参数,进行容量计算,确保换热器在工作条件下能够满足热负荷要求。

8.性能预测:利用计算机辅助仿真软件对换热器的传热效率、压力损失等性能进行预测和优化。

四、预期成果1.具备基本理论知识的掌握:通过对换热器原理、传热机制和流体力学的学习,掌握换热器设计的基本理论和方法。

2.具备热力计算和选型的能力:能够根据工艺要求进行热力计算,并根据计算结果选取合适的换热器类型。

3.具备换热器结构设计的能力:能够根据工艺要求和换热器类型,进行换热器的结构设计。

4.具备换热器容量计算和性能预测的能力:能够根据设计参数进行换热器容量计算,以及利用计算机辅助仿真软件进行性能预测和优化。

五、项目计划1.研究文献资料,了解换热器的基本原理和设计方法。

预计完成时间:1个月。

2.学习热力学和流体力学相关知识,掌握热力计算和流体分配的方法。

换热器开题报告正文.doc

换热器开题报告正文.doc

一、选题的依据及意义:换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。

固定管板式换热器的两头管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。

当壳体和管制热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引发的热膨胀。

特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必需是干净不易结垢的物料。

固定管板式换热器主要有外壳、管板、管制、封头压盖等部件组成。

固定管板换热器的结构特点是在壳体中设置有管制,管制两头用焊接或胀接的方式将管子固定在管板上,两头管板直接和壳体焊接在一路,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一路,管制内按照换热器的长度设置了若干块折流板。

这种换热器管程能够用隔板分成任何程数。

固定管板式换热器结构简单,制造本钱低,管程清洗方便,管程能够分成多程,壳程也能够分成双程,规格范围广,故在工程上普遍应用。

壳程清洗困难,对于较脏或有侵蚀性的介质不宜采用。

当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。

本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,依照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。

熟悉压力容器设计的大体要求,掌握固定管板式换热器的常规设计方式,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。

二、国内外研究概况及进展趋势(含文献综述):换热器的概念及意义在化工生产中为了实现物料之间能量传递进程在、需要一种传热设备。

这种设备统称为换热器。

在化工生产中,为了工艺流程的需要,往往进行着各类不同的换热进程:如加热、冷却、蒸发和冷凝。

换热器就是用来进行这些热传递进程的设备,通过这种设备,以便使热量从温度较高流体传递到温度较低的流体,以知足工艺上的需要。

换热器开题报告范文

换热器开题报告范文

换热器开题报告范文开题报告一、选题背景与意义换热器是一种用于在流体之间传递热量的设备,广泛应用于化工、电力、石油等工业领域。

在能源消耗日益增加和环境保护意识提高的背景下,高效节能的换热器成为各行各业关注的焦点。

因此,本次课题的选题背景建立在对换热器性能优化和节能减排的需求之上。

目前,一次能源的高效利用一直是国家和社会关注的重要课题。

换热器作为能源系统中的重要组成部分,其热传导效率直接影响到能源的利用效率。

因此,通过改进换热器的结构和优化传热工艺,可以提高能源利用效率,降低能源消耗,实现绿色环保的目标。

二、研究目标和内容本次课题的研究目标是设计和制造一种高效节能的换热器,并通过实验和数值模拟的方法对其性能进行评估和优化。

具体而言,本研究将重点从以下几个方面展开:1.设计一种新型的换热器结构:通过改变传热面积、流体流动方式等参数,设计一种能够提高传热效率的换热器结构。

2.优化热交换流程:通过数值模拟和实验,研究流体在换热器中的流动特性,优化热交换流程,提高传热效率。

3.对比实验和数值模拟结果:通过对比实验和数值模拟结果,验证设计的换热器结构的性能,并对其进行优化。

三、研究方法和步骤本次研究将综合运用实验和数值模拟的方法,通过仿真分析和实际试验,系统地研究和分析新型换热器的性能。

具体的研究步骤如下:1.查阅文献和资料,了解目前换热器研究的最新进展,为研究工作奠定理论基础。

2.设计和制造新型换热器,考虑其结构、尺寸、材料等因素,并进行必要的模拟和优化设计。

3.进行实验,通过改变操作条件、记录和分析实验数据,评估换热器的性能。

4.运用数值模拟软件,建立数学模型,模拟新型换热器的传热特性。

5.对比实验结果和数值模拟结果,分析其差异,并对模型进行优化。

6.对优化后的换热器性能进行评估,给出相应的结论和建议。

四、预期结果和意义通过本次研究,预期可以设计和制造出一种高效节能的换热器,并通过数值模拟和实验验证其性能。

热管式换热器毕业设计开题报告

热管式换热器毕业设计开题报告

热管式换热器毕业设计开题报告《热管式换热器毕业设计开题报告》一、选题背景随着工业技术的不断发展和进步,热管式换热器作为一种高效换热装置逐渐受到广泛关注和应用。

热管式换热器以其高效的传热性能、紧凑的结构设计和广泛适用的换热介质等特点,在航天、船舶、军工等领域得到广泛应用。

然而,热管式换热器在实际应用中还存在着一些问题,如传热性能的提升、运行稳定性的改善等方面仍有待解决。

因此,通过对热管式换热器进行深入研究,对其性能进行优化和改进,具有重要的现实意义和理论价值。

二、选题目的和意义本课题旨在通过对热管式换热器进行理论研究和实验探究,揭示其传热机理,深入了解其性能特点,进一步优化其传热性能和流动性能。

通过研究热管式换热器的工作原理和性能特点,可以为热管式换热器的设计、制造和应用提供重要的理论和实验基础。

此外,研究热管式换热器的传热特性和流动特性,对于提高工业过程中的热能利用效率、降低能源消耗,具有重要的经济和环境效益。

研究成果还可为热管式换热器的新型结构设计和优化提供理论指导,为工程应用提供技术支持。

三、选题内容和研究方法本课题主要研究热管式换热器的传热机理、性能特点和流动性能。

具体内容包括:1.研究热管式换热器的工作原理和传热机理,探究其传热性能及影响因素;2.搭建热管式换热器的实验平台,进行温度场和流动场的测试;3.通过实验,对比不同参数下的热管式换热器的传热效果,得出结论;4.基于实验数据,建立数值模型,对热管式换热器进行模拟计算,验证实验结果;5.提出优化方案并进行实验验证,改善热管式换热器的传热性能和流动性能。

研究方法主要包括文献调研、理论分析、实验研究和数值计算等。

通过文献调研,了解热管式换热器的研究现状和发展趋势;通过理论分析,推导热管式换热器的传热机理和性能特点;通过实验研究,搭建实验平台,进行传热性能和流动性能的测试;通过数值计算,建立数学模型,模拟热管式换热器的工作过程,验证实验结果。

换热器毕业设计开题报告

换热器毕业设计开题报告

生毕业论文(设计)开题报告表论文(设计)名称年产5000吨合成氨厂变换工段列管式换热器设计论文(设计)来源生产和社会实践论文(设计)类型c 指导教师学生姓名学号03 班级一、研究或设计的目的和意义:换热器作为节能设备之一,在国民经济中起到非常重要的作用。

同时,“节能”已经是国家的政策要求,是企业生存和发展的重要影响因素。

二、研究或设计的国内外现状和发展趋势:国内换热器的研究状况:对于各型换热器的强化换热技术的研究,主要集中在对换热器内流体流态变化以及对各部件的参数优化研究两方面,而对换热器部件参数的主要研究对象就是换热管(板)排列方式(顺排或叉排)、换热管(板)排数、换热管(板)间距大小、肋片布置间距、肋片形状等。

通常的研究方法包括:数值模拟计算、实验方法研究、理论研究三类。

换热器研究的发展前景换热器肋片换热的研究应该注重基础性的理论研究创新,寻求建立能支撑肋片设计选型的系统化的理论,同时要结合实验研究,寻求实际应用中最节能的肋片参数值。

换热器制造商和设计人员对于换热器肋片外型、布置仍然没有可靠的理论依据,传统的肋片布置方式在换热效率上不如换热管表面设置的针状或圆台状肋,而对于针状肋片在换热管表面的最佳换热的散布规律仍然还不明晰,理论研究非常薄弱;对替代传统的平板和环状肋片的高效换热肋片研究甚少。

新型换热管的形状研究过少,目前的研究仅局限于传统的圆形或矩形换热管上,对更高效的换热管型的探索研究比较缺乏。

对换热管排数和排列方式对换热器整体换热性能的影响研究的理论体系还没形成,目前对于此方面的研究多以实验研究为主,然后从实验中提取经验公式,关于管排数的纯理论的换热理论还没有得到建立。

作为衡量换热器性能时的换热效率,已不能作为换热器设计选型的标准,换热效率高并不意味着制造成本的节省以及换热效果最佳化;传热因子和摩擦因子是比较合适的衡量换热器整体性能的指标,但是需要综合考虑此两种因素后建立换热器最优化换热的统一理论,单一的考虑换热因子或者摩擦因子的大小对于衡量换热器换热性能没有任何意义。

开题报告(换热器)

开题报告(换热器)

四、论文的创新之处(设计类不需填写)
2
五、主要参考文献(不少于 6 个)
[1] GB150-2012《压力容器》 ; [2] GB151-1999《管壳式换热器》 [3] SH3074-2007《石油化工钢制压力容器》 [4] SH3075-2009《石油化工钢制压力容器材料选用标准》 [5] R0004-2009《固定式压力容器安全技术监察规程》 [6] JB4700~4707-2000《压力容器法兰》 [7]郑津洋.《过程设备设计》 (第三版)化学工业出版社
固定管板式换热器具有结构简单紧凑能承受较高的压力可靠性高易于制造处理能力大造价低选用的材料范围广管程清洗方便能承受较高的操作压力和温度管子损坏时易于堵管或更换等优点在高温高压和大型换热器中管壳式换热器占有绝对优势研究与开发此类新型的换热器对工业发展与经济增长具有重大意义
辽 宁 石 油 化 工 大 学
指导教师意见:
指导教师签名: 所属系(部)意见:
20 年


主任签字:
20 计(论文)开题报告
题 目 :
学 班 姓 学
院 : 级 : 名 : 号 :
指 导 教 师 :
2013 年 3 月
一、选题背景(含题目来源、选题目的、应用性及国内外研究现状)
二、设计(研究)方案简述
1
三、进程安排
第 1,2 周:结合课题或者所学专业查阅和收集有关英文资料,查阅设计参考文献;结合课 题或者所学专业选择英文资料并进行翻译,撰写开题报告; 第 3 周:了解和掌握毕业设计课题内容及要求,初步确定设备的结构形式,确定设计方案; 完成开题报告和英文资料翻译; 第 4—8 周:确定设备各元件的基本尺寸、强度计算方法,确定各元件强度设计参数及设计 数据;确定设备结构尺寸和设备的强度计算;确定设备的最终尺寸; 第 9—12 周:计算机绘制总装配图、零件图; 第 13、14 周:修改、整理基本完成设计说明书、设计图纸,交指导教师初步审查;打印图 纸、设计说明书,撰写答辩自述材料;准备答辩; 第 15 周:答辩,整理全部设计文件。

列管式换热器设计的开题报告

列管式换热器设计的开题报告

列管式换热器设计的开题报告开题报告一、选题背景和意义:列管式换热器是一种常用的传热设备,广泛应用于化工、石油、制药、食品等工业领域。

其主要作用是将热量从一个介质转移到另一个介质中。

然而,现有的列管式换热器设计存在一些问题,如传热效率低、压力损失大等。

因此,通过对列管式换热器的设计进行研究,可以进一步提高其传热效率和节约能源。

二、研究目标:本研究的目标是设计一种优化的列管式换热器,使其具有较高的传热效率和较低的压力损失。

具体目标包括:1.通过改变列管式换热器的结构参数,提高其传热效率;2.设计一种新的流体流动方式,减小流体的压力损失;3.借助计算机仿真和实验验证,对设计方案进行有效性验证。

三、研究内容和方法:1.研究内容:本研究将重点研究列管式换热器的结构参数对传热效率的影响,包括管道间距、列管数目等。

此外,还将研究流体流动方式对压力损失的影响,包括并行流、逆流等。

2.研究方法:a.文献调研:对列管式换热器的设计原理、结构参数、流体流动方式等进行系统的文献调研和阅读,了解已有的研究成果和方法。

b.数值模拟:借助计算机软件,对列管式换热器的传热特性进行模拟分析。

通过改变结构参数和流体流动方式,得出不同设计方案的传热效率和压力损失。

c.实验验证:设计并制作实验装置,用于验证数值模拟结果的准确性。

通过测量不同设计方案下的传热效率和压力损失,对比实验结果与模拟结果的一致性。

四、预期成果和创新点:1.预期成果:本研究将通过改进列管式换热器的设计方案,提高其传热效率和节约能源。

设计出的列管式换热器将具有较高的传热效率和较低的压力损失。

2.创新点:本研究的创新点在于对列管式换热器设计进行优化,提出一种新的流体流动方式,以及借助实验验证优化设计方案的可行性。

五、进度安排:1.第一阶段:完成文献调研,了解列管式换热器的基本原理和已有的研究成果,并确定研究方法和计划。

2.第二阶段:进行数值模拟,利用计算机仿真软件,对列管式换热器的传热特性进行模拟分析。

热管换热器设计开题报告

热管换热器设计开题报告

热管换热器设计开题报告热管换热器设计开题报告一、引言热管换热器作为一种高效的换热设备,在工业和科学领域得到了广泛的应用。

它利用热管内的工作介质在高温和低温区域之间传递热量,实现了高效的换热过程。

本文旨在探讨热管换热器的设计原理、性能优化以及应用前景,为后续的实验和研究提供理论依据。

二、热管换热器的工作原理热管换热器由热管和外壳组成。

热管内充满了工作介质,通常是液态或气态。

当热管的一端暴露在高温区域,工作介质受热蒸发,形成高压蒸汽。

高压蒸汽在热管内传递到低温区域,然后通过冷凝转变为液态。

液态工作介质在热管内的毛细作用下返回高温区域,完成一个循环。

通过这个循环过程,热管换热器实现了高效的热量传递。

三、热管换热器的性能优化为了提高热管换热器的性能,需要从几个方面进行优化。

首先,选择合适的工作介质对热管换热器的性能至关重要。

不同的工作介质具有不同的热物性参数,如导热系数和汽化潜热等,这些参数直接影响热管的换热效果。

其次,热管的尺寸和结构也需要进行优化。

热管的长度、内径和壁厚等参数会影响热管内的工作介质流动和传热特性。

最后,热管换热器的外壳设计也需要考虑。

合理的外壳结构可以提高热管的稳定性和耐压性,确保热管在高温和高压环境下正常工作。

四、热管换热器的应用前景热管换热器在许多领域都有广泛的应用前景。

首先,在航天领域,热管换热器可以用于航天器的温度控制和热管理,提高航天器的工作效率和寿命。

其次,在电子设备领域,热管换热器可以用于散热,保证电子设备的正常运行。

此外,热管换热器还可以应用于核能和新能源领域,提高能源利用效率和环境保护水平。

随着科学技术的不断发展,热管换热器的应用前景将更加广阔。

五、结论本文探讨了热管换热器的设计原理、性能优化以及应用前景。

热管换热器作为一种高效的换热设备,在工业和科学领域具有重要的应用价值。

通过选择合适的工作介质、优化热管的尺寸和结构,以及合理设计外壳结构,可以进一步提高热管换热器的性能。

换热器设计开题报告(DOC)

换热器设计开题报告(DOC)

毕业设计开题报告论文题目: 抽余液塔底换热器设计学院化工装备学院专业:过程装备与控制工程学生姓名:**指导教师:翟英明 (高级工程师)开题时间: 2015年 3月 16日一、选题目的1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。

2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。

3、培养分析和解决工程实际问题的能力。

4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。

5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。

二、选题意义在不同温度的流体间传递热能的装置称为热交换器,简称换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。

换热器是实现传热过程的基本设备。

而此设备是比较典型的传热设备。

二十世纪20年代出现板式换热器,并应用于食品工业。

30年代初,瑞典首次制成螺旋板换热器。

接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。

30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。

在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。

60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。

此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。

70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。

化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。

随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。

换热器设计开题报告

换热器设计开题报告

换热器设计开题报告换热器设计开题报告一、引言换热器是工业生产中常用的设备,用于传递热量的过程。

它在化工、能源、制药等领域具有重要的应用价值。

本文将探讨换热器设计的相关问题,包括换热器的原理、设计方法和优化方向。

二、换热器原理换热器的基本原理是通过两种流体之间的热量传递来实现能量转移。

常见的换热方式有对流换热、辐射换热和传导换热。

对流换热是指通过流体的对流传热来实现能量转移;辐射换热是指通过热辐射来传递热量;传导换热是指通过物体内部的分子传递热量。

三、换热器设计方法换热器设计的目标是在满足换热要求的前提下,尽可能减小设备的体积和能耗。

设计换热器时,需要考虑以下几个方面:1. 热传导问题:换热器的材料选择和结构设计需要考虑热传导的特性,以确保热量能够有效地传递。

2. 流体流动问题:流体在换热器中的流动状态对换热效果有着重要影响。

设计时需要考虑流体的流速、流量和流动方式等因素。

3. 热阻和压降问题:换热器中存在热阻和压降,设计时需要平衡两者之间的关系,以达到最佳的换热效果和能量利用率。

4. 温度分布问题:换热器中的温度分布对换热效果有着重要影响。

设计时需要考虑流体的进出口温度、壁面温度和温度梯度等因素。

四、换热器设计优化方向为了提高换热器的性能,设计过程中可以采取一些优化措施:1. 材料选择优化:选择具有良好热传导性能和耐腐蚀性的材料,以提高换热器的传热效率和使用寿命。

2. 流体流动优化:通过优化流体的流速、流量和流动方式等参数,以提高流体在换热器中的传热效果。

3. 结构优化:通过改变换热器的结构,如增加换热面积、改变管道布局等,以提高换热器的传热效率。

4. 温度控制优化:通过控制流体的进出口温度、壁面温度和温度梯度等参数,以提高换热器的传热效果和能量利用率。

五、结论换热器设计是一个复杂而重要的工程问题。

通过合理选择材料、优化流体流动、改进结构和控制温度等方面的优化措施,可以提高换热器的性能和效率。

未来的研究方向可以包括更加精确的换热器模型建立、更加智能化的控制方法和更加环保的材料应用等。

换热器的开题报告

换热器的开题报告

换热器的开题报告换热器的开题报告摘要:本文旨在研究和分析换热器的工作原理、应用领域以及未来发展方向。

通过对换热器的研究,可以提高能源利用效率,减少能源浪费,推动可持续发展。

本文将从换热器的定义开始,深入探讨其工作原理和分类,然后介绍其在不同领域的应用,并提出未来发展的建议。

1. 引言换热器是一种重要的热传递设备,广泛应用于工业生产、能源利用和环境保护等领域。

它通过将热量从一个物质传递到另一个物质,实现能量的转移和利用。

换热器的性能对于提高能源利用效率、减少能源消耗具有重要意义。

2. 工作原理换热器的工作原理基于热传导和传热过程。

热量从高温区域传递到低温区域,通过流体的流动实现热量的交换。

换热器通常由两个流体流经的管道组成,分别为热源流体和被加热流体。

热源流体通过管道,将热量传递给被加热流体,使其升温。

3. 换热器的分类根据换热器的结构和工作原理,可以将其分为多种类型,如管壳式换热器、板式换热器、螺旋板式换热器等。

每种类型都有其独特的特点和适用范围。

例如,管壳式换热器适用于高温高压的工况,而板式换热器则适用于对换热效率要求较高的场合。

4. 应用领域换热器在许多领域都有广泛的应用。

在工业生产中,换热器被用于冷却和加热各种介质,如石油、化工品和食品。

在能源利用方面,换热器被应用于核能、太阳能和地热能等领域,提高能源的利用效率。

此外,换热器还被应用于环境保护领域,用于废气处理和污水处理等过程。

5. 未来发展方向随着科技的不断进步和能源需求的增加,换热器在未来将面临更高的要求和挑战。

为了提高换热器的性能和效率,需要不断进行研究和创新。

一方面,可以通过改进换热器的结构设计,提高换热效率和传热面积。

另一方面,可以利用新材料和新技术,提高换热器的耐腐蚀性和抗压性能。

此外,还可以结合智能控制技术,实现换热器的自动化运行和优化控制。

6. 结论换热器是一种重要的热传递设备,对于提高能源利用效率和减少能源浪费具有重要意义。

换热器设计开题报告

换热器设计开题报告

换热器设计开题报告一、选题背景及意义换热器作为一种重要的传热设备,广泛应用于各个行业中。

其主要功能是通过热传导和对流传热的方式,将热量从一个物体传递到另一个物体,实现热能的转换和利用。

在工业生产和生活中,换热器被广泛运用于锅炉、空调、冷却系统等设备中,起到调节温度和保持设备正常运作的关键作用。

然而,目前市场上的换热器种类繁多,质量良莠不齐,存在着换热效率低、能耗高、维护成本大等问题。

因此,对于换热器的设计和改进研究具有重要的意义。

通过对换热器的结构、材料等进行优化设计,可以提高其换热效率,降低能耗,减少维护成本,提高设备的可靠性和使用寿命,从而促进工业生产的发展和提高生活质量。

二、研究目标和内容本次设计研究的目标是设计一种高效、节能、可靠的换热器,提高其换热效率,并降低能耗和维护成本。

具体的研究内容包括:1.研究不同材料的导热性能,选取合适的材料用于换热器的制作;2.分析不同结构对换热效率的影响,设计合理的换热器结构;3.研究对流传热的机理,提高对流传热效率;4.优化换热器的工艺参数,提高其热交换效率;5.建立换热器的数学模型,进行仿真和实验验证。

三、研究方法和技术路线本次设计研究采用综合实验和数值模拟的方法进行。

具体的技术路线包括:1.调研前期相关文献,了解换热器的基本原理、常用材料和结构,为设计提供理论基础;2.设计实验方案,选取相应的材料和工艺参数,进行实验研究;3.建立换热器的数学模型,利用计算机仿真软件对其进行仿真分析;4.对实验结果和仿真数据进行对比分析,确定最佳的换热器设计方案;5.撰写设计报告,总结研究成果,提出改进意见和建议。

四、论文的创新点和预期成果本次设计研究的创新点和预期成果主要体现在以下几个方面:1.通过选择合适的材料和结构,设计一种高效、节能的换热器,提高其换热效率;2.利用数值模拟的方法,对换热器进行仿真分析,进一步优化设计方案;3.提供改进意见和建议,为换热器的实际应用提供技术支持。

换热器开题报告怎么写

换热器开题报告怎么写

换热器开题报告怎么写换热器开题报告怎么写换热器是一种常见的热交换设备,广泛应用于化工、能源、制药等行业。

开题报告是进行研究项目的第一步,它的编写对于整个研究过程至关重要。

本文将从几个方面介绍如何写一份高质量的换热器开题报告。

一、选题背景和意义在开题报告的开头,需要明确选题的背景和意义。

可以从以下几个方面进行阐述:1. 行业需求:介绍换热器在相关行业中的应用情况,以及市场需求的增长趋势。

2. 现有问题:分析目前换热器存在的问题和不足,以及对行业发展的影响。

3. 研究意义:说明开展该研究项目的重要性,以及可能带来的经济、环境和社会效益。

二、研究目标和内容在开题报告中,需要明确研究的目标和内容。

可以从以下几个方面进行阐述:1. 研究目标:明确研究的总体目标,例如改善换热器的传热性能、提高能源利用率等。

2. 研究内容:列举具体的研究内容,例如材料选择、结构设计、传热性能测试等。

3. 研究方法:介绍采用的研究方法和实验手段,例如数值模拟、实验验证等。

三、研究计划和进度安排在开题报告中,需要详细描述研究的计划和进度安排。

可以按照时间顺序分阶段进行描述,例如:1. 第一阶段:文献综述和理论分析,对换热器的相关研究进行梳理和总结。

2. 第二阶段:材料选择和结构设计,根据研究目标进行材料和结构的筛选和优化。

3. 第三阶段:传热性能测试和数据分析,通过实验和数值模拟对研究内容进行验证和分析。

4. 第四阶段:结果总结和报告撰写,对研究结果进行总结和归纳,并撰写研究报告。

四、预期成果和创新点在开题报告中,需要明确研究的预期成果和创新点。

可以从以下几个方面进行阐述:1. 预期成果:说明研究项目的预期成果,例如新型换热器的设计方案、传热性能的提升等。

2. 创新点:强调研究项目的创新点和研究价值,例如新材料的应用、结构的优化等。

3. 可行性分析:对研究项目的可行性进行分析,包括技术可行性、经济可行性等。

五、参考文献和引用格式在开题报告的最后,需要列出参考文献和引用格式。

换热器设计开题报告讲解

换热器设计开题报告讲解

换热器设计开题报告讲解一、选题背景和意义换热器是化工、制药、电力等行业中常见的设备,用于进行热量的传递和调控。

根据国家相关政策的要求,节能减排成为当前工业生产中的重要方向,而换热器的性能对工业生产的能耗和资源利用效率起到至关重要的作用。

因此,设计一种高效的换热器,提高热量传递效率,对于促进工业生产的可持续发展具有重要意义。

二、选题依据和综述换热器的设计依据包括工作条件、工质性质和设计要求等。

工作条件主要包括进出口温度、压力和流量等;工质性质包括物理和化学性质,如介质流动性质、粘度性质和传热系数等;设计要求包括热效率、压降、结构材料和工艺工况等。

根据以上依据,综合研究目前常见的换热器设计方法和技术,分析其优缺点,总结不同设计方法的适用范围和限制条件。

目前,常见的换热器设计方法包括热力学分析法、传热计算法和经验公式法等。

其中,热力学分析法主要基于换热器内部热力学平衡的原理,通过数学模型对热量传递及流体力学特性进行分析;传热计算法主要基于换热器传热方程,利用数值计算方法对传热器进行优化;经验公式法则基于大量的试验数据和实际运行经验,通过确定合适的经验参数进行设计。

三、选题目的和研究内容本设计旨在设计一种高效的换热器,提高热量传递效率。

具体研究内容包括:1.分析不同换热器设计方法的优缺点,确定适合该设计的设计方法。

2.基于选定的设计方法,确定换热器的结构参数和工艺参数。

3.利用数值模拟等方法,对设计的换热器进行性能评估和优化。

四、研究方法和技术路线1.文献综述法:通过查阅相关文献,对不同的换热器设计方法进行梳理和总结,分析其优缺点和适用范围。

2.数值模拟方法:利用计算机软件,建立换热器的数值模型,模拟流体流动和热传递过程,评估设计的换热器性能。

3.实验验证方法:选择合适的试验参数,设计并搭建实验装置,对设计的换热器进行实验验证。

技术路线:1.确定研究方法和技术路线。

2.进行文献综述,收集和整理相关资料。

换热器开题报告

换热器开题报告
三、参考文献
[1] 余国棕, 化工机械工程手册(下卷), 化学工业出版社, 2002.
[2] 吴金星, 高效换热器及其节能应用, 化学工业出版社, 2009
[3]马晓驰。国内外新型高效换热器[J]。化工进展, 2001,(01): 49-51
[4]李世玉.压力容器工程师设计指南[M].北京:化学工业出版社.1996
二、国内外研究综述
换热器是一种高效紧凑的换热设备, 它的应用几乎涉及到所有的工业领域, 而且其类型、结构和使用范围还在不断发展。近年来, 各种新型换热器的紧凑性、制冷性能好、运行成本低等优越性已越来越被人们所认识。随着我国经济的发展, 换热器技术的发展, 特别是各种大型的工业制冷装置和空调用制冷装置发展迅速, 这为各种换热器的应用提供了广阔的市场。
对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。对传统换热设备的强化传热研究逐渐兴起,并主要集中在两大方向上: 一是开发新品种的换热器,如板式、螺旋板式、振动盘式、板翅式等,这些换热器的设计思想都是尽可能地提高换热器的紧凑度和换热效率;二是对传统的管壳式换热器采取各种有效的强化传热措施。
应用所学基础理论知识和专业知识,对浮头式换热器进行结构设计、机械设计计算、应用计算机CAD、Solidworks等绘图软件进行辅助设计和造型。利用图书馆及网上资源获取设计所需参考资料,在指导教师的帮助下完成毕业设计。
五、指导教师指导意见
指导教师签名:年月日
指导教师签名:年月日
六、学院毕业设计领导小组审核意见
毕业设计开题报告
设计题目

换热器开题报告

换热器开题报告

换热器开题报告换热器开题报告引言:换热器作为热力工程中的重要设备,广泛应用于各个领域,如化工、能源、制药等。

它的作用是通过传导、对流和辐射等方式,将热量从一个介质传递到另一个介质。

本文将对换热器的原理、分类、设计和优化等方面进行探讨,以期深入了解这一关键设备。

1. 换热器的原理换热器的工作原理基于热量传递的基本原理,即热量从高温区域传递到低温区域。

换热器通过将两个介质分别流经不同的管道或表面,使它们之间产生热量交换。

这种热量交换可以通过传导、对流和辐射来实现。

2. 换热器的分类换热器可以根据不同的分类标准进行分类。

按照传热方式的不同,可以分为传导换热器、对流换热器和辐射换热器。

按照结构形式的不同,可以分为管壳式换热器、板式换热器和螺旋板式换热器。

按照工作原理的不同,可以分为直接换热器和间接换热器。

3. 换热器的设计换热器的设计是根据具体的工艺要求和热力参数进行的。

设计时需要考虑换热面积、传热系数、流体速度、管道直径等因素。

同时,还需要根据介质的性质选择合适的材料,并考虑换热器的可维护性和清洁性。

4. 换热器的优化换热器的优化是为了提高换热效率和降低能源消耗。

优化的方法包括改进换热器的结构、提高传热系数、优化流体流动方式等。

此外,还可以通过改变换热器的工艺参数,如流体流速和流量,来实现优化。

5. 换热器的应用换热器在各个行业中都有广泛的应用。

在化工行业中,换热器用于加热、冷却、蒸发和浓缩等过程。

在能源领域,换热器用于发电厂的锅炉和汽轮机中。

在制药行业,换热器用于药物生产过程中的温度控制。

结论:换热器作为热力工程中的重要设备,起着至关重要的作用。

通过研究换热器的原理、分类、设计和优化等方面,可以更好地理解和应用这一设备。

未来,我们将进一步研究换热器的新型结构和材料,以提高其性能和效率,推动热力工程的发展。

容积式换热器设计开题报告

容积式换热器设计开题报告

容积式换热器设计开题报告容积式换热器设计开题报告一、研究背景换热器是工业生产中广泛应用的设备,用于将热能从一个流体传递给另一个流体。

容积式换热器是一种常见的换热器类型,其特点是具有较大的热交换面积和较高的换热效率。

本设计开题报告旨在研究容积式换热器的设计原理和优化方法,以提高其性能和应用范围。

二、研究目的1. 分析容积式换热器的工作原理和热力学特性,探索其在不同工况下的换热效率。

2. 优化容积式换热器的结构设计,提高其传热效果和节能性能。

3. 研究容积式换热器在不同流体介质中的应用情况,探索其适用性和局限性。

4. 探讨容积式换热器与其他换热器类型的比较,分析其优缺点。

三、研究内容1. 容积式换热器的工作原理和热力学特性容积式换热器通过增加流体的停留时间来提高传热效果。

其工作原理是将两种流体分别注入换热器的两个相邻的容积体中,通过容积体之间的壁面传热来实现热能的传递。

热力学特性包括传热系数、温度差、流体速度等参数,通过分析这些参数的变化规律,可以优化换热器的设计。

2. 容积式换热器的结构设计优化容积式换热器的结构设计包括容积体形状、壁面材料和壁面结构等方面。

通过改变容积体的形状和尺寸,可以增加换热面积,提高传热效果。

选择合适的壁面材料和结构,可以降低传热阻力,提高传热效率。

本研究将通过理论分析和数值模拟,寻找最佳的结构设计方案。

3. 容积式换热器的应用情况和适用性分析容积式换热器广泛应用于化工、能源、制药等领域。

不同的流体介质对容积式换热器的适用性有一定的影响。

本研究将通过实验和实际应用案例,分析容积式换热器在不同流体介质中的应用情况,并探讨其适用性和局限性。

4. 容积式换热器与其他换热器类型的比较容积式换热器与管壳式换热器、板式换热器等其他换热器类型相比,具有一定的优势和劣势。

本研究将通过对比分析,评估容积式换热器的优缺点,为工程设计和应用提供参考。

四、研究方法1. 理论分析:通过建立换热器的数学模型,推导换热器的传热方程和热力学特性方程,分析换热器的工作原理和性能。

开题报告U形管换热器

开题报告U形管换热器

开题报告U形管换热器开题报告题目:U形管换热器的设计与优化一、选题背景和研究目的换热器是一种用于传递热量的设备,广泛应用于化工、电力、冶金等领域。

U形管换热器是一种常见的换热器类型,具有结构简单、传热效果好等优点,因此在工业中得到了广泛的应用。

本课题旨在通过对U形管换热器的设计与优化,提高其传热效率和工作稳定性。

具体研究目的如下:1.研究U形管换热器的结构与工作原理,了解其基本原理和优缺点。

2.了解U形管换热器的传热性能评价指标,分析现有的研究成果和经典设计理论。

3.设计一种新的U形管换热器结构,通过数值模拟和实验验证,优化其传热性能。

4.研究U形管换热器的运行稳定性,分析其在不同工况下的性能变化和适应性。

5.提出U形管换热器的进一步改进方案,提高其传热效率和工作稳定性。

二、研究内容和方法本课题的研究内容主要包括U形管换热器的结构设计、传热性能评价和优化研究。

具体研究方法如下:1.文献调研:通过查阅相关文献和专利资料,了解U形管换热器的结构和工作原理,分析其传热性能评价指标和现有优化方法。

2.数值模拟:使用计算流体力学(CFD)软件,建立U形管换热器的数值模型,并对其传热性能进行模拟计算,分析不同工况下的传热特性。

3.实验验证:设计并制作U形管换热器的样机,通过实验验证数值模拟结果的准确性和可行性。

4.数据处理与分析:对数值模拟和实验结果进行数据处理和分析,得到U形管换热器的传热性能参数,评价其传热效果。

5.优化方案设计:根据数值模拟和实验结果,提出U形管换热器的优化方案,包括结构参数的优化和流体参数的调整。

三、预期结果和创新点通过对U形管换热器的设计与优化,预期可以得到以下结果:1.建立了U形管换热器的数值模型,并对其传热性能进行模拟计算,推导出传热性能评价指标。

2.通过实验验证了数值模拟结果的准确性和可行性,验证了U形管换热器的传热性能。

3.提出了一种新的U形管换热器结构,通过优化设计,提高了其传热效率和工作稳定性。

换热器设计开题报告创新点

换热器设计开题报告创新点

换热器设计开题报告创新点换热器设计开题报告创新点摘要:换热器是热工设备中的重要组成部分,广泛应用于工业生产和日常生活中。

本文旨在探讨换热器设计的创新点,以提高能源利用效率和减少环境污染。

通过分析现有换热器设计的不足之处,提出了一种新的换热器设计方案,该方案采用了新型材料和结构,能够提高换热效率和降低能耗。

本文还将对该方案进行实验验证,以验证其可行性和有效性。

1. 引言换热器是将热能从一个介质传递到另一个介质的设备,广泛应用于化工、电力、制药等领域。

传统的换热器设计主要关注换热效率和材料的耐腐蚀性能,然而,随着能源危机和环境污染问题的日益严重,传统换热器设计已经不能满足实际需求。

因此,寻找新的换热器设计创新点,提高能源利用效率和减少环境污染,成为了迫切需要解决的问题。

2. 现有换热器设计的不足传统的换热器设计存在一些不足之处。

首先,传统换热器的换热效率较低,不能充分利用热能,造成能源的浪费。

其次,传统换热器的材料选择有限,难以适应各种介质的特性,容易发生腐蚀和磨损。

此外,传统换热器的结构复杂,维护和清洗困难,增加了使用成本和操作难度。

3. 新型材料的应用为了解决现有换热器设计的不足,我们提出了一种新的换热器设计方案,该方案采用了新型材料。

这种新型材料具有良好的导热性能和耐腐蚀性能,能够提高换热效率和延长换热器的使用寿命。

此外,新型材料还具有较低的成本和较小的环境污染,符合可持续发展的要求。

4. 结构创新除了新型材料的应用,我们还对换热器的结构进行了创新。

传统换热器的结构复杂,容易积灰和结垢,降低了换热效率。

为了解决这个问题,我们设计了一种可拆卸式结构,方便清洗和维护。

此外,我们还引入了流体力学的原理,优化了换热器的内部结构,提高了流体的流动性能,进一步提高了换热效率。

5. 实验验证为了验证新的换热器设计方案的可行性和有效性,我们进行了一系列实验。

实验结果表明,新型材料的应用能够显著提高换热效率,降低能耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理工学院毕业设计(论文)开题报告题目:气-液介质专用换热器设计学生姓名:石静学号:09L*******专业:过程装备与控制工程指导教师:郭彦书(教授)2013年4月8日1文献综述1.1 绪论换热设备是化工、炼油、动力、能源、冶金、食品、机械、建筑工业中普遍应用的典型设备。

一般换热设备在化工、炼油装置中的建设费用比例达20%~50%因此无论从能源利用,还是从工业的投资来看,合理地选择和设计换热器,都具有重要意义。

在各种换热器中,由于管壳式换热器具有单位体积内能够提供较大的传热面积、传热效果好、适应性强、操作弹性大、易制造、成本低、易于检修和清洗等特点,因此应用最广泛。

管壳式换热器按结构特点分为固定管板式、U型管式、浮头式、双重管式、填涵式和双管板等几种形式。

不同的结构各有优缺点,适用于不同的场合。

本文介绍的是板式换热器[1]。

1.2 管壳式换热器的特点管壳式换热器是由一系列具有一定波纹形状的的金属片叠装而成的一种高效换热器。

换热器的各板片之间形成许多小流通断面的流道,通过板片进行热量交换,它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多。

板式换热器的广泛应用,加速了我国板式换热器行业的迅速发展,但我国板式换热器设计与发达国家之间仍存在着不小的差距。

板式换热器是以波纹为传热面,在流道中布满网状触电,流体沿着板间狭窄弯曲、犹如迷宫式的通道流动,其速度大小和方向不断改变,形成强烈的湍流,从而破坏边界层,减少界面膜热阻,并使固体颗粒悬浮,不易沉积,有效地强化了传热,因此,它比管壳式等其他类型换热器具有很多独特的优点。

第一,传热系数高,由于换热器的特殊结构及组装方式,使介质在流经相邻两板片间的流道时,流动方向和流速不断变化,在低流速下,形成急剧湍流,强化换热;第二,温差小,由于板式换热器具有较高的传热系数及强烈的湍流,可使热交换器的一、二次流体温度十分接近,温差趋近1~3℃;第三,热损失小,由于板片边缘及密封垫暴露在大气中,所以热损失极小,一般为1%左右,不需采取保护措施。

在相同换热面积情况下,板式换热器的热损失仅为管壳式换热器的五分之一,而重量则不到管壳式的一半;第四,结构紧凑,换热板片由薄的不透钢板压制而成,板片间距一般为4mm,板片表面的波纹大大增加了有效换热面积,这样单位容积中可容纳很大的传热面积(每立方米体积可布置250㎡的传热面积),占地面积仅为管壳式的五分之一到十分之一。

因此,体积小,节省安装空间。

第五,适应性强,可根据产量及工艺要求,方便地增加或减少传热板片,亦可将板片重新排列,改变流程组合;第六,用途广泛,目前已广泛应用于化工、石油、机械、冶金、电力、食品、热水供应、集中供暖等工程领域,完成加热、冷却、蒸发、冷凝、余热回收等工艺过程中截止间的热交换;第七,操作灵活,维修方便,传热板片及活动压紧板均悬挂在机器的横梁上,压紧板上方设有滚动装置,可方便地打开设备,进行清洗,并能取出一板片,进行检查或更换垫片[2]。

一般来说,人字形波纹板片的传热效率高、流体阻力大、承压能力好。

人字形波纹片之所以换热效率高,流体阻力降大,其原因是板间流道截面变化十分复杂,易诱发湍流,同时流体在这种多变得流道中流动会更多地消耗能量;而水平平直波纹板片的流道变化则类似于正玄曲线,所以传热系数和流体阻力降都较低[3]。

1.3 管壳式换热器的发展及现状1.31国内情况尽管我国在部分重要换热器产品领域获得了突破,但我国换热器技术基础研究仍然薄弱。

与国外先进水平相比较,我国换热产业最大的技术差距在于换热器产品的基础研究和原理研究,尤其是缺乏介质物性数据,对于流场、温度场、流动状态等工作原理研究不足。

在换热器制造上。

我国目前还以仿制为主,虽然在整体制造水平上差距不大,但是在模具加工水平和板片压制方面与发达国家还有一定的差距。

在设计标准上,我国换热器设计标准和技术较为滞后。

目前,我国的管壳式换热器便准的最大产品直径还仅停留在2.5米,而随着石油化工领域的大型化要求,目前对管壳式换热器直径已经达到4.5米甚至5米,超出了我国换热器设计标准范围,使得我国换热器设计企业不得不按照美国TEMA标准设计[4]。

板式换热器的优化选型是根据换热器的用途和工艺过程中的参数和传热单元数NTU、温差比、选择板片形状、板式换热器的类型和结构。

换热器中常使用换热器的“传热面积”和“传热系数”术语,这是一种习惯的有特定含义的名称。

因为换热器间壁两侧的表面积可能不同,所谓“换热器的传热面积”实际上是指约定的某一侧的表面积,习惯上一般把换热系数较小的一侧的流体所接触的壁面表面积称为该换热器的传热面积,相对于该传热面积,单位时间、单位面积、在单位温差下所传递的热流量,称为该换热器的传热系数,因此传热系数也是相对于约定的某一侧的表面积而言的[5]。

目前板式换热器生产厂家均未提供凝结换热和沸腾换热的准则式,在进行板式换热器的设计选型计算时应注意以下一些问题:一般冷凝和沸腾均可在一个流程中完成,因此,相变一侧经常布置成单流程,液体侧可根据需要布置成单程或多程。

在暖通空调制冷领域,水侧一般也是单流程为多。

对板式冷凝器,设计时一般不要使冷凝段与过冷段并存,因为过冷段的换热效率低,如果需要过冷,原则上应单独设过冷器。

板式冷凝器及蒸发器设计同样存在一个允许压降问题。

冷凝器内压降大,会使蒸汽的冷凝温度降低,造成对数平均温差小;蒸发器内压降大,会造成出口蒸汽过热度加大,两者都会使换热器面积加大,对换热是不利的。

因此,在选择板式蒸发器时,应尽量选阻力较小的板片,且每台板片数不宜过多;尽量使供液分配均匀。

板式冷凝器应采用中间隔板向两边分液的方法。

在选型时,在无合适型号时可选常用的一般板式换热器。

对使用在制冷空调设备上的板式换热器,由于制冷剂压力高,渗透能力强,宜采用钎焊板式换热器。

对于可拆卸板式换热器,垫片的密封性决定了整个换热器的性能。

垫片经多次松开和压紧容易破坏,需要更换。

板式换热器属于压力容器,必须定期检查,检查腐蚀状态,如有腐蚀,一经发现,必须修理;当腐蚀严重,不可能修复,必须更换新件。

板件拆装时顺序不要搞错。

此外,板式换热器应定期清洗[6]。

一般情况下,两侧流体的流量及四个进、出口温度中的任意三个已给定,板式换热器的设计包括确定板型、板片尺寸、流程与通道的组合、传热面积等。

在作设计计算时,设计者应具备以下资料;选范围以内的各种板片的主要几何参数,如单板有效换热面积、当量直径或板间距、通道横截面以及通道长度等;适用介质种类与使用温度,压力范围;传热及压降关联式或以图形式提供的板片性能资料;所用流体在平均工作温度下的有关物性数据,主要包括密度、比热容、导热系数及粘度[7]。

1.32国外情况近年来,国外板式换热器发展的趋势是向大型化和多品种方向发展,如最大单片换热面积达4.75㎡;单台最大换热面积已达2500㎡;最多板数700片/台,最大单台处理能力为3635m³/h;最高使用压力为2.8Mpa;最高工作温度为250℃;最低工作温度采用合成橡胶为-25℃,采用压缩石棉纤维垫片为-40℃,最高传热系数为7500W/㎡.K。

板式换热器有效传热的关键是板片和通道的设计。

阿法拉伐公司采用GDA/CAM和数学模型,提供了新的板片技术。

导流区位于板片顶部和底部,新设计的导流区保证了流体均匀分布通过板片整个宽度,没有死点。

对板片结构如通道的深度和形状、板厚和强度的改进,在板片主要传热区采用新设计的波形,使冲压均匀,且允许采用较薄的板材,同时在要求的压力降下产生最大的湍流,从而提高了传热效果。

由于板面积极利用率高,所需板片数量减少,以及板片的减薄,显然降低了换热器的成本[8]。

Muley和Manglik 通过实验分析了多种板式换热器的数据,得到了一系列传热及流阻的综合关系式[9]。

Mir-AkbarHesami通过两种板片从层流到紊流区的实验,在不改变波纹高度和波纹距离的条件下,比较60°和45°的波纹,指出对于60°波纹人字形板片的努谢尔数和摩擦系数是45°的2倍左右[10]。

板式换热器中流体的分布不均匀是影响板式换热器性能的一个主要因素。

B Prabhakara Rao等人对板式换热器中不均匀流动做了分析研究。

研究表明,在板式换热器流道中流速相等的假设与实验情况有很大出入。

他们在实验基础上考虑了非均匀流动分布因素,建立了新的传热与流动阻力公式,其结果与实验吻合较好[11]。

1.4 管壳式换热器的发展方向近些年板式换热器主要研究方向之一是创新板型以及研究板的几何参数对流换热及流动的影响。

板式换热器的板片结构千差万别,其设计的最终目的是要强化板片的换热效果、增加板面刚度、提高板式换热器的承压能力。

理想的板型设计,不仅具有较大的传热面积、较低的压力降、较高的传热系数,而且还应具有较好的刚性,以使很薄的板片在固定压紧板和活动压紧板夹紧力的作用下相互支承,以抵抗通道内不平衡压力对其产生冲击。

为此,在板型设计中还要考虑支承点的合理分布以及加强筋的布置等。

一块管板按功能可以分成导流部分、换热部分、密封部分、边缘支承以及悬挂定位等五个部分,其中换热部分是板片结构的核心,其结构形式主要取决于换热介质的性质,要根据传热学和流体力学设计确定[12]。

目前,板式换热器设计、运行还是主要依靠实验研究。

早在132年前,德国发明了板式换热器,直到1932年才开始成批生产铸铜沟道板片的板式换热器。

1930年,研究出不锈钢波纹板型板式换热器,从此为现代板式换热器奠定了基础。

通过实验研究和应用实验表明,人字形的传热性和流阻特性效果优良,人字形的传热性和流阻特性效果优良,所以近几十年板式换热器大都采用人字形板片。

板式换热器实物实验投资大,时间长,花费大量的人力,一些大型换热器及复杂工况条件下的换热器难以进行实验。

故近年来,人们越来越热衷于采用计算流体力学手段对板式换热器进行数值模拟,而将CDF(计算流体力学)与实验有机结合在一起研究板式换热器是一种高效、经济的研究手段[13]。

1.5 结语作为一种高效紧凑式换热器,在加热、冷却、冷凝、蒸发和热回收过程中,除了高温、高压和特殊介质条件外,板式换热器均已替代管壳式换热器。

经试验证明在板式换热器使用范围内,绝大多数工况时,用不锈钢板式换热器与管壳式换热器的竞争会更加激烈。

此外,我国板式换热器在实验研究和理论研究方面与国外先进水平相比仍然存在较大差距,所以仍需进一步加强板式换热器的研究。

目前,我国换热器产业的市场规模大概360亿人民币。

基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。

相关文档
最新文档