2 kW有源功率因数校正电路设计
功率因数校正

功率因数校正摘要:提高功率因数是开关电源一个重要指标,由UC3854构成的控制电路有电路简单、成本低、功率密度高,在中小功率场合得到了广泛应用。
关键词:功率因数乘法器UC3854引言国际标准IEC555――2中关于谐波限制标准和电磁兼容(EMC 法规对传统采用的桥式整流和大电容量滤波电路从工频市电变换为直流电源的方法提出了限制。
这是因为该交流/直流变换方式不仅输出电压极不稳定,效率很低,负载功率被限制在2KW以下,而且更主要的是会导制交流输入电流波形出现严重畸变,功率因数在0.7以下。
随着绿色电子产品的发展,近年来功率因数校正(PFC)技术获得了广泛的应用。
象开关电源、电子镇流器和变频调速器等产品,采用PFC技术日益成为强制性的要求。
第一章有源功率因数校正技术1.1:有源功率因数校正电路组成有源功率因数校正APFC是抑制电流谐波,提高功率因数最有效的方法,其原理框图如图1所示。
交流输入电压经全波整流后,再经DC/DC变换,通过相应的控制使输入电流的平均值自动跟随全波整流电压基准,同时保持输出电压稳定。
APFC电路有两个反馈控制环:输入电流环使DC/DC变压器的输入电流与全波整流电压波形相同,输出电压环使DC/DC变换器的输出电压稳定。
1.2: 主电路的拓扑结构APFC的主电路拓扑结构采用DC/DC开关变换器。
其中升压式(BOOST)变换器由于电感连续、储能电感也作滤波器抑制RFI和EMI噪声、电流波形失真小、输出功率大及共源极使驱动电路简单等优点,常常作为主电路的拓扑形式。
第二章1800W 100KH PFC 电路设计(原理图见附图)2.1: 性能指标输入:AC220V±15% 50±2HZ输出功率:POUT=1800W输出电压:V OUT=400V开关频率:F S=100KH。
2.2: 主电路的设计1.电感的设计电感在PFC电路设计中相当重要,它决定了输入电流中高频纹波电流的多少。
有源功率因数校正电路的研究与实现

有源功率因数校正电路的研究与实现有源功率因数校正电路是一种用于改善电力系统功率因数的电路。
在传统的电力系统中,负载电流与电网电压不同步的情况会导致功率因数下降,这不仅会造成电网能量的浪费,还会对电力设备的正常运行造成影响。
因此,有源功率因数校正电路的研究与实现具有重要的意义。
有源功率因数校正电路主要由功率因数校正控制器、整流器和逆变器组成。
其中,整流器将交流电转换为直流电,并通过功率因数校正控制器控制逆变器的工作方式,使其能够提供与负载的需求相匹配的电流和功率因数。
逆变器将直流电转换为交流电,并输出给负载。
第一,功率因数校正控制器的设计与实现。
功率因数校正控制器是有源功率因数校正电路的核心部分,负责监测电网电压和负载电流,并控制逆变器的工作方式。
为了实现精确的功率因数校正,功率因数校正控制器需要具备高精度的测量和计算能力。
第二,整流器的设计与实现。
整流器负责将交流电转换为直流电,并为逆变器提供稳定的直流电源。
为了实现高效的能量转换和低谐波扰乱,整流器需要具备高效的功率调整和滤波功能。
第三,逆变器的设计与实现。
逆变器负责将直流电转换为交流电,并输出给负载。
为了实现高质量的交流电输出,逆变器需要具备高精度的调制和滤波功能。
第四,性能评估与实验验证。
为了验证有源功率因数校正电路的性能,需要进行实验验证。
通过对电路的输出波形、功率因数等参数进行测试和分析,可以评估电路的性能,并对其进行优化改进。
在研究与实现有源功率因数校正电路的过程中,需要考虑电路的稳定性、可靠性和成本效益等因素。
实现高精度的功率因数校正需要采用高性能的电子元器件和控制算法,这会增加电路的成本。
因此,在设计电路时需要进行合理的选型和优化,以实现性能与成本的平衡。
总的来说,有源功率因数校正电路的研究与实现对于提高电力系统的能效和稳定性具有重要的意义。
通过优化设计和控制算法,可以有效地改善电力系统的功率因数,提高电网能量的利用率,并减少对电力设备的影响。
有源功率因数校正

有源功率因数校正编辑锁定本词条由“科普中国”百科科学词条编写与应用工作项目审核。
有源功率因数校正是指通过有源电路(主动电路)让输入功率因数提高,控制开关器件让输入电流波形跟随输入电压波形,相对于无源功率因数校正电路(被动电路)通过加电感和电容要复杂一些,功率因数的改善要好些,但成本要高一些,可靠性也会降低。
中文名有源功率因数校正性质技术优点功率因数的改善要好些缺点成本要高一些,可靠性也会降低目录1. 1校正电路分类2. 2工作原理有源功率因数校正校正电路分类编辑常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。
其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分。
[1]有源功率因数校正工作原理编辑升压型PFC电路升压型PFC主电路如图所示,其工作过程如下:当开关管Q导通时,电流IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当Q截止时,L两端产生自感电动势VL,以保持电流方向不变。
这样,VL与电源VIN串联向电容和负载供电。
升压型PFC主电路这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输入电流,容易调节;(3)开关管栅极驱动信号地与输出共地,驱动简单;(4)输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适用于电网电压变化特别大的场合。
主要缺点是输出电压比较高,且不能利用开关管实现输出短路保护。
降压型PFC电路降压型PFC电路如图所示,其工作过程如下:当开关管Q导通时,电流IL流过电感线圈,在电感线圈未饱和前,电流IL线性增加;当开关管Q关断时,L两端产生自感电动势,向电容和负载供电。
什么是功率因数校正电路如何设计一个功率因数校正电路

什么是功率因数校正电路如何设计一个功率因数校正电路功率因数校正电路的设计是为了改善电力系统中的功率因数,通过使功率因数接近1来提高电力系统的效率。
本文将介绍功率因数校正电路的概念和原理,并提供一个设计功率因数校正电路的步骤。
概述功率因数是衡量电路中有功功率与视在功率之比的指标。
功率因数越接近1,表示电路中的有用功率越高,无用功率(如无功功率)越低。
而功率因数校正电路的作用,则是通过改变电路中的电流波形,以提高功率因数的数值。
功率因数校正电路的设计步骤如下:1. 确定校正电路的类型在设计功率因数校正电路之前,需要明确校正电路的类型。
常见的功率因数校正电路有无源LC滤波器和有源电路两种。
无源LC滤波器主要由电感和电容组成,通过调整滤波器中的元件数值和结构来实现功率因数的校正。
有源电路则需借助电子元器件如运放、晶体管等来完成。
2. 计算电路参数根据所选类型的校正电路,需要计算电路参数。
对于无源LC滤波器,需要计算所需的电感和电容数值,以及它们的布局和连接方式。
而对于有源电路,则需计算运放或晶体管的增益和频率响应等参数。
3. 选择合适的元件根据所计算得到的电路参数,选择合适的电感、电容和其他元件。
这些元件的质量、容值和频率响应等都会直接影响校正电路的性能和效果。
4. 电路的连接和布局在连接和布局电路时,要遵循电路设计的原则,如尽量缩短信号路径和降低电路的损耗等。
对于有源电路,要保证电子元器件的正确连接,并注意电路的绝缘和屏蔽。
5. 进行测试和优化完成电路的连接后,需要进行测试和优化。
通过使用示波器等测试设备,检测电路的功率因数和性能,并根据测试结果对电路进行调整和优化。
总结功率因数校正电路的设计是为了提高电路的功率因数,并优化电力系统的效率。
通过选择合适的校正电路类型、计算得到电路参数、选择合适的元件、正确连接和布局电路,并进行测试和优化,可以设计出效果良好的功率因数校正电路。
以上是关于功率因数校正电路如何设计的简要介绍。
有源功率因数校正

有源功率因数校正(APFC)原理说明本次设计采用boost升压式电路,并采用平均电流控制法(CCM),基于功率因数校正芯片UC3854设计的。
首先看下流程图:这个电路的主要部分是在元件UC3854和BOOST电路。
上图是UC3854的内部结构图。
其主要参数是它的乘法器。
乘法器是功率因素校正器的核心电路。
乘法器电路同时具有三个输入信号:控制电流,输入端电压,输出端电压。
最后,乘法器会输出一个电流。
BOOST电路:有储能电感,高频功率开关管,二极管和电容组成。
Boost 升压型变换器具有电感电流连续、储能电感能抑制RFI 和E.MI 噪声、流波形失真小、输出功率大及驱动电路简单等优点,因此常被用来作为有源功率因数正主电路拓扑。
工作原理:主电路由二极管桥式整流电路与Boost升压型DC-DC变换器组成,控制电路主要由UC3854芯片组成,包括基准电压Ur、电压误差放大器V A、电路误差放大器CA、乘法器M、脉宽调制器PWM及驱动器。
首先,交流电通过全波整流后变成直流电,为双半波正弦信号。
其次,输入电压Uo与基准电压Ur比较后,误差信号经过误差发达器放大后送入乘法器,与全波整流电压取样信号共同送到乘法器输入端,相乘后形成基波电流信号输出,基波电流信号与电流反馈信号经电流误差放大器CA相比较后输出信号,再与锯齿波信号相比较后形成PWM信号驱动功率开关管VT工作。
由于全波整流电压信号Udc为双半波正弦信号,稳定时电压误差放大器输出信号恒定,所以乘法器输出的基准电流信号波形和二极管桥式整流输出电压信号一致,也是双半波正弦信号,与高频的锯齿波信号比较后形成高频的PWM信号驱动开关管VT,可以迫使电感电流信号即输入电流信号在每个周期内按正弦规律变化,且与电路输入电压信号同相位,从而使输入电流跟踪输入电压,尽可能消除电流与电压的相位差,从而实现功率校正,提高功率因数,使功率因数近似为1。
本次设计参照原理图。
基于UC3854的两级有源功率因数校正电路的研究的开题报告

基于UC3854的两级有源功率因数校正电路的研究的开题报告一、研究背景随着电力消费的增加,电力系统中存在着越来越多的非线性负载设备,这些设备对电网带来了极大的影响。
其中,最严重的问题就是功率因数过低,不仅浪费了电能,而且还会对电网造成电压波动和设备损坏等问题。
为此,需要进行功率因数校正,以提高系统的效率和稳定性。
二、研究内容本文将基于UC3854芯片设计一种两级有源功率因数校正电路。
该电路采用交错方法,具有较高的效率和稳定性。
在设计过程中,首先需要对UC3854芯片进行深入研究,了解其特点和应用范围。
然后,根据系统需求,选择合适的器件和参数进行电路设计,并进行模拟分析和实验验证。
三、研究意义有源功率因数校正技术已经被广泛应用于各种电力系统中,可以有效提高系统的效率和稳定性,减少电能浪费。
本文的研究将基于UC3854芯片设计一种高效稳定的功率因数校正电路,为相关领域的研究和应用提供一定的参考和借鉴。
四、研究方法本研究将采用理论研究、软件仿真和实验验证相结合的方法,具体分为以下几个步骤:1. 理论研究:对UC3854芯片进行深入研究,了解其特点和应用范围,研究有源功率因数校正的原理和方法。
2. 软件仿真:根据系统需求,选择合适的器件和参数进行电路设计,在Multisim等软件中进行模拟分析,优化电路结构和参数。
3. 实验验证:将设计好的电路搭建成实验系统,进行性能测试,验证电路的可行性和效果。
五、预期结果本研究的预期结果是设计出一种高效稳定的有源功率因数校正电路,具有低成本、小体积、高精度、高可靠性等特点。
同时,将探讨该电路的拓扑结构和性能参数,为相关领域的研究和应用提供一定的参考和借鉴。
有源功率因数校正控制电路的设计

直流 电压 。 整流器 加 电容 滤波 电路 是一 种非 线性 组 件和储 能 组件 的结 合 , 因此 , 虽 然输 入交 流 电压是 正
弦的, 而输入交流 电流是一个时间很短 、 峰值很高的
周 期性 尖 峰 电流 , 波形 严重 畸 变 。 如 果去 掉输 入滤 波 电容 , 则 输 人 电流变 为 近似 的正 弦波 , 提 高 了输 入 侧 的功率 因数 并减 少 了输 入 电流 的谐波 ,但 是整 流 电
o n a d v a n c e d l i g h t p o w e r a p p l i c a t i o n , C a l T y o u t u l t r a - l o w s t a r t - u p c u r r e n t , l o w q u i e s c e n t a n d p o we r c u r r e n t . I C c o u l d w o r k i n p o we r c a v i n g mo d e . T h e d e s i g n h a s i n n e r mu l t i p l i e r , t h e o u t p u t v o l t a g e i s c o n  ̄ o H e d b y me ns a o f a
关键词 : 有源功率因数控制; 临界导电模式; 过压保护
中图分 类号 : T N 4 0 2 文献标 示 码 : A
Th e De s i g n o f c u r r e n t - mo d e P FC c o n t r o l l e r I C
NI E J i - p i n g
平 滑的直 流输 出 ,必须 在整 流 电路和 滤波 电容 之 间
有源功率因数校正电路设计

有源功率因数校正电路设计
有源功率因数校正电路是一种电路设计方案,用于调整电路功率因数,提高功率因数的数值。
传统的电路设备通常具有低功率因数,这会导致能
源浪费和电网负载过大。
有源功率因数校正电路的设计目的是使电路的功
率因数尽可能接近1,提高能源利用率和电力系统的稳定性。
直流母线电压检测模块用于检测直流母线的电压,并将其转化为电压
信号输出。
交流输入电压检测模块用于检测交流输入电压,并将其转化为
电压信号输出。
这两个模块的信号将作为输入信号输入到控制逻辑与驱动
模块。
这些输入信号将被控制逻辑模块分析处理,用于控制整流器和直流
-交流逆变器模块。
整流器模块的作用是将交流电转化为平滑的直流电,在此过程中,由
于非线性元件的存在,电流波形可能会出现畸变。
因此,需要使用滤波电
路对电流进行滤波,消除谐波,并将输出电流的波形调整为与输入电压同
频率的正弦波。
直流-交流逆变器模块的作用是将直流电转化为交流电,并将其输出。
为了使逆变器的工作更加稳定,需要使用滤波电路对输出电流进行滤波,
消除谐波,并将波形调整为与输入电压同频率的正弦波。
功率放大器输出滤波模块的作用是对功率放大器输出的电流波形进行
滤波,使其更加接近理想的正弦波,并消除谐波。
总的来说,设计有源功率因数校正电路需要综合运用电路和控制理论
的知识。
通过合理设计各个模块之间的关系和参数,可以实现对电路功率
因数的校正和调整,提高电路的能源利用率和稳定性。
有源功率因数校正电路设计

有源功率因数校正电路设计
首先,根据实际的电流和电压信号,使用运算放大器将信号放大到合
适的电压范围。
然后通过滤波电路对信号进行滤波,去除高频噪声。
接下来,将滤波后的信号输入到比较器中进行相位比较。
根据相位差
的方向和大小,通过控制电路的输出信号来调整功率因数。
在实际设计中,还需要考虑一些因素,以确保电路的稳定性和可靠性。
首先,选择合适的电流和电压采样电阻,以确保采样信号的准确性和稳定性。
其次,根据负载的特性和要求,选择合适的比较器和控制电路,以实
现所需的功率因数校正。
此外,还需要考虑电路的温度特性和工作环境的影响。
因为温度对电
阻和其他电子元件的性能有很大影响,所以在设计过程中需要采取适当的
温度补偿措施。
此外,还需要考虑电路的成本和功耗。
根据实际需求,选择合适的元
件和电路结构,以降低成本和功耗。
总之,有源功率因数校正电路的设计需要综合考虑电路的原理和性能
要求,以及实际应用的需求和经济因素。
只有在充分理解电路原理的基础上,才能设计出稳定可靠、性能优良的有源功率因数校正电路。
功率因数校正电路

功率因数校正电路功率因数校正电路是一种用于改善电力系统的功率因数的电路。
功率因数是衡量电路中有功功率与视在功率之比的指标,是一个无量纲的数值,通常用cosφ表示。
功率因数的大小表示了电路中有功功率(真实能量转换)和视在功率(总能量传输)的比例。
在电力系统中,有功功率是能够有效利用的功率,而视在功率则是电力供给的总功率。
在实际电力系统中,当负载处于感性(电感性)或容性(电容性)状态时,由于电感或电容的特性,电流与电压之间的相位差会导致功率因数的变化。
当负载处于感性状态时,电流会滞后于电压,功率因数为正。
当负载处于容性状态时,电流会超前于电压,功率因数为负。
一种常见的功率因数校正电路是利用谐振器的原理来实现的。
该电路由一个串联电容和一个并联电感组成。
在感性负载的情况下,电感产生的感抗可以与电容的电抗相消,从而实现相位校正。
同理,在容性负载的情况下,电容产生的电抗可以与电感的感抗相消。
另一种常见的功率因数校正电路是利用电路中的控制器进行相位校正。
该电路通过调节负载的电流和电压之间的相位差,实现功率因数的改善。
通常,控制器使用一种叫做PWM(脉宽调制)的技术来控制负载电流的相位。
PWM技术通过改变电压波形的占空比来调整电流与电压之间的相位差,从而改变功率因数。
此外,还有一些其他的功率因数校正电路设计方法,例如并联无功补偿电容器、有源功率因数校正器等。
这些方法都通过改变电路的特性,调整电流和电压之间的相位差,来实现功率因数的校正。
总的来说,功率因数校正电路是一种用于改善电力系统的功率因数的电路。
该电路可以通过改变电路的特性,调整电流和电压之间的相位差,实现功率因数的校正,提高系统的能效和电力质量。
开关电源有源功率因数校正电路的设计1

第一章绪论1.1课题研究的目的意义随着电子科学技术的发展和应用,电子设备的种类越来越多,其中电源应经成为这些电子设备不可缺少的一部分。
同时,他们对电源的要求也越来越高。
近年来,开关电源以效率高,功率密度高,电压调整度高,体积小,重量轻等诸多优点而在电源领域中占据主导地位。
然而,开关电源多数是通过整流器与电力网相接的,经典的整流器是由二极管或晶闸管组成的非线性电路。
这样就造成开关电源的输入阻抗呈容性,网侧输入电压和输入电流间存在较大相位差,输入电流严重非正弦,并呈脉冲状,故功率因数极低,谐波分量很高,给电力系统带来严重的谐波污染。
为此国际电工委员会为各种电子设备制定了相应的谐波标准,我国国内的有关委员会也提出了相应的谐波标准。
传统的整流电路因为谐波远远超标而面临前所未有的挑战[1-3]。
为了保证开关电源的输入电流谐波能够达到谐波标准的要求,绿化电网环境,功率因数校正(Power Factor Correction, PFC)技术已经成为当今电力电子学领域十分活跃和颇具研究价值的热点。
直接接入电网的开关电源应用已经非常普遍,一般来说其前置级AC/DC变换部分都采用图1-1所示的二极管桥式整流加大容量电路电容滤波电路。
其中整流器——电容滤波器电路是一种非线性元件和蓄能元件的组合,当输入交流电压的电位较低时,负载所需的电能由蓄能电容提供,交流电压源本身并不提供电流;当输入交流电压的电位较高时,交流电压源直接向蓄能电容充电。
因此,尽管输入的交流电压是正弦波,但是输入的交流电流却呈脉冲状,波形严重畸变,如图1-2所示。
由此可见,如果大量的应用这种整流电路,则要求电网提供严重畸变的非正弦电流。
若将这些脉冲状的输入电流做傅里叶级数分析,可得它的展开式如下:(1-1)式表明输入电流中含有大量的奇次谐波如图1-3所示,这反映了开关电源这类装置网测电流有较大的畸变。
两侧电流畸变越严重,开关电源功率因数也就越低,一般地,功率因数约为0.5—0.65.同时,如果大量的电流谐波分量倒流入电网,则一方面会使电网中的谐波噪声水平提高,造成电网的谐波“污染”,另一方面会产生“二次效应”,即电流流过线路阻抗形成谐波电压降,反应过来使得电网电压(原正弦波)也发生畸变。
(整理)功率因数校正电路分析.

第三章功率因数校正电路分析一: 引言有源功率因数校正的目的,是要使电源从输入端看就象一个简单的电阻。
有源功率因数校正器是靠控制输入电流随着输入电压变化来实现这个目的的。
当输入电压和电流之比是个常数,输入就是阻性的,功率因数就等于1.0。
当这个比值不是常数时,输入就包含相位移和/或谐波失真,功率因数就会下降。
功率因数最一般的定义是实功对视功之比其中P1是实功,P2是视在功率。
如果负载是纯阻性的,实功P1视在功率,功率因数就等于1.0。
如果负载不是纯阻性的,功率因数就低于1.0。
相位移是有源功率因数校正器输入阻抗的电抗的度量。
不论电抗是多大,也不管它是感性的还是容性的,都会引起输入电流波形对于输入电压波形的相位移。
这个电压和电流间的相位移是功率因数的经典定义,即正弦波电压和电流间的相位角的余弦电压和电流间的相位移的大小表明了负载的阻性程度。
如果电抗只占阻抗的一小部分,相位移就比较小。
如果有源功率因数校正器的前馈信号或控制环具有相位移,校正就会引入相位移。
交流母线电流滤波也会产生相位移。
谐波失真是有源功率因数校正器输入阻抗非线性的度量。
输入阻抗随输入电压的任何变化都会引起输入电流的失真,这个失真是引起功率因数下降的另一主要因素。
这个失真会增加电流的方均根值,但不会增加传递的总功率。
一个非线性负载的功率因数之所以低,是因为电流的方均根值大,而所传递的总功率又小。
如果非线性成分较小,谐波失真就小。
对于有源功率因数校正器来说,谐波失真来自几个方面,包括前馈信号,反馈环,输出电容、电感,以及输入整流器。
有源功率因数校正器能很容易地获得高输入功率因数,一般都大于0.9。
但功率因数并不能精确度量电流波形的失真或相位移。
因此往往都直接考虑这些量,而不是通过功率因数。
例如,当谐波失真为3%时,功率因数仍可高达0.999。
电流的总谐波失真达30%时,功率因数还可达0.95。
电流对于电压的相位移为25℃时,功率因数还可达0.90。
有源功率因数校正电路设计

有源功率因数校正电路设计一、摘要:由于电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。
介绍了有源功率因数校正电路的工作原理,提出了基于.. UC3854芯片的一种有源功率因数校正电路方案。
经.. PSpice软件仿真证明电路合理可行。
关键词:有源功率因数校正;Booost变换器;UC3854;PSpice仿真1、引言将交流2 2 0 V电网电压经整流再提供直流是实际单相电源应用中最为广泛的变流方案,但电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。
另外,硬件电路中电压和电流的急剧变化,使得电力电子器材承受很大的电应力,并给周围的电气设备及电波造成严重的电磁干扰。
有源功率因数校正技术可将开关电源等电子负载变换成等效的纯电阻,从而提高电路功率因数,减小低频谐波。
在各种单相功率因数校正电路中,单相B o o s t电路因具有效率高、电路简单、成本低等优点而得到广泛应用。
随着软开关技术的发展和AP F C电路的广泛应用,针对A P F C电路提出了多种软开关方法,用来降低器件的开关损耗、减小电磁干扰、提高开关频率,使电力电子装置系统在响应时间、频率范围、噪声和模块体积等方面的性能都得到很大的提高,满足其高频化、数字化、环保化和模块化的未来发展要求。
现提出了一种基于U C 3 8 5 4的零电压控制A P F C电路的控制方案,并由仿真结果证明达到了技术要求。
2、功率因数校正原理功率因数( P F ) 是指交流输入有功功率( P ) 与输入视在功率( S ) 的比值。
所以功率因数可以定义为输入电流失真系数与相移因数的乘积。
式中:输入基波电流有效值;输入电流有效值;输入电流失真系数。
可见功率因数由电流失真系数和基波电压、基波电流相移因数决定,低则表示用电电器设备的无功功率大,设备利用率低,导线、变压器绕组损耗大。
功率因数校正电路设计

功率因数校正电路设计功率因数校正电路(Power Factor Correction Circuit)是一种用于改善电源功率因数的电路。
在交流电源中,设备的功率因数是指其消耗的有用功率与总功率的比值。
功率因数接近1时,表示设备有效地利用了电能,减少了无功功率的浪费。
而功率因数低于1时,会导致无功功率的增加,降低能源利用效率,增加电网的负荷。
无源型功率因数校正电路是通过电感元件和电容元件的串联或并联组合实现的。
串联结构一般采用谐振方式,通过调整电感和电容元件的数值以及频率,使输入电流与输入电压保持相位一致,从而提高功率因数。
并联结构则通过在输入电压和电流之间添加电感和电容元件,形成谐振回路,使电流保持相位一致。
无源型功率因数校正电路的优点是结构简单,成本低,但受到电源电压变化的影响较大,功率因数校正效果相对较差。
有源型功率因数校正电路是通过电子器件(如晶体管或功率集成电路)进行控制实现的。
控制器(Controller)通过检测输入电流和电压,生成相应的控制信号,控制电子器件的导通与关闭,实现对输入电流波形的调整和控制。
通过精确控制电流波形的相位和振幅,使输出电流与输入电压保持相位一致,从而提高功率因数。
有源型功率因数校正电路的优点是校正效果好,稳定性高,能够适应不同的输入电压和负载变化,但成本相对较高。
在实际设计中,选择合适的功率因数校正电路取决于具体的应用场景和需求。
常见的应用场景包括办公室、工厂、家庭等,需要根据电源的特点、负载的类型和要求来选择合适的校正电路。
同时还需要考虑到成本、效率、可靠性等因素进行综合评估和权衡。
总之,功率因数校正电路的设计是一项复杂的任务,需要综合考虑电源特性、负载需求和实际应用场景等多种因素,以达到提高功率因数、降低无功功率浪费的目的。
通过合理选择无源型或有源型电路,可以实现对输入电流的调整和控制,从而提高能源利用效率,减少电网的负荷,为节能和可持续发展做出贡献。
有源功率因数校正电路(APFC)

固定的导通时间,可变的开关 频率。峰值电流模式控制,适用 于小和中等功率输出的场合 <200W,工作在临界模式
有源功率因数校正电路(APFC)
二、峰值电流控制APFC控制器L6561/6562 (一) L6561/6562芯片的特点
有源功率因数校正电路(APFC) (二) L6561/6562芯片的结构框图及引脚功能
ቤተ መጻሕፍቲ ባይዱ
有源功率因数校正电路(APFC)
2. 功率因数
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
设基波电流i1落后Vi,相位差为α,如下图所示。
Vi 、Ii 波形
有源功率因数校正电路(APFC) AC-DC电路输入功率因数与谐波的关系: 定义总谐波畸变(THD):
THD
I
2 2
APFC结构框图
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
APFC的工作原理:
◆主电路的输出电压Vo和基准电压Vr比较后,输入给电压误差
放大器VA,整流电压Vdc检测值和VA的输出电压信号共同加到
乘法器M的输入端,乘法器M的输出则作为电流反馈控制的基 准信号,与开关电流is检测值比较后,经过电流误差放大器CA 加到PWM及驱动器,以控制MOS管的导通与关断; ◆使输入电流(即电感电流)il的波形与整流电压Vdc的波形基本 一致,使电流谐波大为减小,提高了输入端功率因数,可达到 0.99以上,谐波失真THD=3%-5%,由于功率因数校正器同时保持
I
2 3
I I1
2 4
.... I
2 n
100 %
有源功率因数校正电路(APFC)
从上式可以看出,欲提高线路功率因数.就必须最大 限度地抑制输入电流的波形畸变,同时还必须尽可能 地使电流基波与电压基波之间的相位差趋于零。对于 未采取功率因数校正措施酌电子镇流器,由于THD一 般不低于110%, 不超过0.65。 4. 提高AC-DC电路输入端功率因数和减小输入电流谐 波的主要方法:使输入电流与输入电压同相位,减小 两者的相位差,采用APFC功率因数校正电路。
有源功率因数校正电路的研究与实现

有源功率因数校正电路的研究与实现通过研究和实现有源功率因数校正电路,可以实现对电源质量的改善,降低电能的消耗,减少损耗和对环境的负面影响。
1.功率因数校正原理研究:了解功率因数校正的基本原理和数学模型。
功率因数是指电源在供给有功负荷时,有时在供给无功性负载的比值,也可以看做是电源输出有用功率与总输入功率的比值。
功率因数的值在0到1之间,当功率因数接近1时,表示电源的供电效率高,能够更好的满足负载的需要。
2.有源功率因数校正电路设计:根据功率因数校正原理,设计出相应的电路结构和参数,包括调整电流和电压的相位角,提高功率因数的控制算法等。
3.电路元件选型与电路拓扑设计:选用合适的电子元件,如功率电子器件、电容器、电感器等,根据实际需求和电路模型,设计电路的结构和电路拓扑。
4.电路实现与验证:根据设计方案,利用仿真软件进行电路模拟,优化电路参数和结构;然后进行电路实现,包括电路板的设计和制作,元件的焊接等;最后,对实现的电路进行测试和验证,确保功率因数校正电路的稳定性和可靠性。
5.有源功率因数校正电路的应用:将研究和实现的有源功率因数校正电路应用于实际电源供应中,比如家庭电源、工业电源、照明电源等,以提高电能利用效率,减少能源浪费和环境污染。
值得注意的是,要对有源功率因数校正电路进行合理的设计和实现,需要综合考虑电源的负载特性,电压和电流的波形,电路的成本和可靠性等因素。
此外,对于有源功率因数校正电路的研究,还需要关注电路的应用环境和具体的需求,以满足电源供应的要求。
总结起来,有源功率因数校正电路的研究和实现是一个综合性的工作,在电路设计、电子元件选型和电路实现等方面都需要考虑。
研究和实现有源功率因数校正电路有助于提高电源效率和稳定性,减少电能的消耗和损耗,对于节能减排和环境保护具有重要意义。
有源功率因数校正电路

有源功率因数校正电路的设计摘要将交流220V电网电压经整流后再提供直流是现实单相电源应用中较为广泛的变流方案,由于传统的二极管或晶闸管整流器会对电网产生谐波电流而危害电网,引起输入端功率因数下降,对电网造成污染;因此有源功率因数校正(APFC)技术得到了迅速的发展.它是在桥式整流器与输出电容器之间加入一个功率因数校正变换电路,它将整流器的输入电流校正成为与电网电压同相位的正弦波,消除了谐波和无功电流,因而能将电网功率因数提高到近似为 1.交流输入电压经桥式整流后,得到全波整流电压,经DC/DC变换后,再经过控制器使线路电流的平均值能自动跟随全波整流电压基准的变化,并获得稳压的直流高电压输出,最终给负载提供直流电压源.本文通过对功率因数校正电路的现状与发展进行简单的介绍,然后讨论了什么是功率因数以及功率因数的计算、功率因数校正的原理、功率因数校正电路的种类、有源功率因数校正电路的原理以及元器件L6562的简单介绍;最后设计出基于L6562升压式有源功率因数校正电路.关键词:有源功率,升压式,L6562Active power factor correction circuit designAuthor:Wei DongLiangTutor:Pang BaoTangAbstractWill ac 220 V power grid voltage after rectifying the to provide dc is one single phase power application in reality a wide range of variable current solution because the traditional thyristor rectifier diode or will to power produce harmonic current and harm power grid, cause the input power factor drops, to power cause pollution; So active power factor correction (APFC) technology obtained a rapid development. It is in the bridge rectifiers and output capacitors to join a power transformation between circuit, it will become the input current correction rectifier voltage and the sine wave with phase, eliminate the harmonic and reactive current, so the power grid power factor improvement to approximate to 1. Exchange the input voltage bridge rectifier, have the rectifier voltage wave, then the DC/DC transform, after controller make the average of the current line can automatically follow all the wave rectifier voltage change of benchmark, and won the high voltage DC voltage output, eventually provide DC voltage source to load.This article through to power factor correction circuit of the current situation and development of simply introduced, and then discuss what the power factor and power factor of calculation, power factor correction, the principle of the power factor correction circuit, the kinds of active power factor correction circuit principle and L6562 components of simple introduction; Finally designed based on L6562 booster type active power factor correction circuit.Keywords: Active power, Boost type, L6562目录1 绪论 (1)1.1背景课题及意义 (1)1.2功率因数校正的现状及发展 (2)1.2.1功率因数校正的现状 (2)1.2.2无桥PFC电路 (2)1.2.3软开关功率因数校正电路 (3)1.3论文主要安排 (3)2 设计原理 (4)2.1功率因数 (4)2.2有源功率因数校正电路 (5)2.2.1有源功率因数校正电路的原理 (5)2.2.2有源功率因数校正电路的分类 (6)2.2.3升压式有源功率因数校正电路的分析 (10)3.元器件的选择 (14)3.1L6562简介 (14)3.2L6562芯片电路图 (16)4.电路的设计 (17)4.1基于L6562的B OOST-APFC电源电路 (17)4.2B OOST-APFC电感的设计 (18)结论 (20)致谢 (21)参考文献 (22)1 绪论1.1背景课题及意义伴随着我国经济的发展,现代工业得到快速发展,各种各样的换电流设备使用越来越多、容量也越来越大,再加上一些非线性电设备也接入到电网,将其产生的谐波电流注入到电网中,使公用电网的电压波形发生畸变,严重地污染了电网的环境,造成电能质量下降,也严重地威胁着电网中各种电气设备的安全运行,因此必须限制高次谐波污染,国内外电气组织先后制定了相关标准,我国国家技术监督局1993年颁布GB/T14549-93电能质量公用电网谐波,国际电工委员会1998年也制定了IEC6100-3-2标准.目前常用的解决电力电子设备谐波污染问题的方法有两种:1.对电网采用滤波补偿;2.对电力电子设备本身进行改造,即进行功率因数校正.两者相比较,功率因数校正能够更有效地消除整流装置的谐波,具有更广泛的前景,已经成为电力电子技术的一个重要的研究方向.谐波对电网的影响:1、谐波会导致电源的有功功率降低,功率因数会降低,负载上的实际功率也会随着降低;2、谐波会引起电磁干扰和射频干扰,导致一些精密电子设备(包括电子式电能表),不能正常工作,甚至会毁坏;3、谐波将引起线路欧姆热,导致整流器过热效率下降,也会引起设备老化,缩短设备使用寿命,甚至损坏设备;4、谐波电流的存在会引起电网电压的畸变,并可能引发振荡,引起电网和用电设备的安全;5、谐波将会引起继电保护装置误动或拒动,从而直接危及电网的安全运行;6、为了弥补谐波的存在造成的附加损耗,必须增加电器、导线等的容量,从而增加了投资费用;为了减少谐波的污染,提高功率因数,设计基于L6562升压式有源功率因数校正电路,使功率因数大于0.95.1.2 功率因数校正的现状与发展1.2.1 功率因数校正的现状目前功率因数校正主要有两种方法:无源功率因数校正和有源功率因数校正.无源功率因数校正技术是指在整流电路中用LC滤波器来增大整流桥导通角,从而降低电流谐波来提高功率因数.无源功率因数校正达到的功率因数没有有源功率因数校正的高,但是比较简单,与有源功率因数校正相比比较经济,因而这种技术在中小容量的电子设备中被广泛采用.有源功率因数校正是就是通过功率因数调节装置,使电网输入电流波形完全跟踪电网输入电压波形的变化,并且保持输入电流和电压波形同相位.有源功率因数校正有体积小、重量轻、功率因数可接近1等优点.无缘功率因数和有源功率因数有不同的优势,本文的技术要求比较高,因此本文主要针对有源功率因数校正进行论述.1.2.2 无桥PFC电路无桥PFC电路用单个的变换器代替传统的由四个二极管组成的前级整流桥+升压式PFC电路,实现AC-DC和PFC两个任务.这个电路实际上是一个双升压式电路.无桥是目前高性能功率因数校正电路研究的一个方向,图1.1为无桥PFC拓扑图.图1.1无桥PFC电路无桥PFC电路有两种工作模式:1. 开关管S1和S2同时开通或关断.电压源有正半波和负半波组成,在电源的负半波,S2导通时,电源通过S2和S1的寄生二极管对电感LB充电,S2关断时,电感通过D2、RL和S1的寄生二极管放电,该电路变成一升压式电路.当电压源在正半波时,S1导通时,电源通过S1和S2的寄生二极管对电感LB充电,S1关断时,电感通过D1、RL和S2的寄生二极管放电,该电路变成另外一升压电路.在电源的负半波,S2导通时,电源通过S2和S1的寄生二极管对电感LB充电,S2关断,电感通过D2、RL和S1的寄生二极管放电,这是另一升压式电路.2.当工作模式是:在电源的正半波,S1高频工作,S2则直通.电感LB,S1,D1和负载构成一个升压式电路.在电源的负半波,S2处于高频工作,S1处于直通.S2,D2和负载构成另一个升压式电路.第二种工作模式与第一种相比较模式控制较为简单.1.2.3 软开关功率因数校正电路改进大功率升压式电路的性能近几年在国内是比较热门的,主要集中在如何减少升压式boost电路中的二极管的反向恢复损耗和MOSFET的开通损耗,从而达到提高转换效率和减少电磁干扰的目的.升压式boost电路,输出电压总是比输入电压要大,假如输入电压为100-270V时,则输出为370-420V.在高频电力电子PFC电路中,功率二极管一般采用快恢复二极管,快恢复二极管是一种具有开关特性好、反向恢复时间较短的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用. 快恢复二极管的内部结构与普通PN结二极管不同,属于PIN结型二极管,即在P型硅材料与N型硅材料中间增加了基区I,构成PIN硅片.因基区很薄,反向恢复电荷很小,所以快恢复二极管的反向恢复时间较短,正向压降较低,耐压值较高.软开关功率因数校正电路有很多的拓扑电路,将存在的电路统一整理,并区分不同拓扑电路的优缺点,将是研究的方向.1.3论文主要安排本文首先分析了目前国家电网存在谐波,功率低等问题,及功率因数的现状及发展,在第二章中提出功率因数校正电路的原理及分类,第三,四章介绍了元器件和提出技术指标,并最终设计出基于L6562升压式有源功率因数校正电路.2 设计原理2.1 功率因数功率因数(PF )是指交流输入有功功率(P )与输入视在功率(S )的比值.1111cos cos ms msU I COS I P PF S U I I φφγφ==== (2.1) (2.1)式中:U 1:单位为伏特,表示电网电压有效值;γ:表示输入电流失真系数;I ms :单位为安培(A ),表示为输入电流有效值;I 1:单位为安培(A ),表示输入基波电流有效值;cos φ:表示基波电流和基波电压之间的相移因数;由式子(2.1)可知功率因数也可以定义为输入电流失真系数(γ)和基波电压与基波电流相移(cos φ)的乘积,功率因数的高低跟γ、cos φ有关系,增大γ,cos φ可以提高功率因数.由式子(2.1)可知,PF 由电流失真系数γ和cos φ决定.当γ值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,会对电网造成谐波污染.当cos φ低时,则表示用电气设备的无功功率大,设备利用率低,导线、变压器绕组损耗大.PF 与总的谐波畸变率THD 的关系如下:1111cos cos ms ms V I I P PF S V I I φφ==== (2.2)1THD =(2.3)= (2.4)PF φ=即 (2.5)有式子(2.5)可知,THD 对功率因数的影响,THD 越大,功率因数越低,THD 越小,功率因数越高,提高功率因数可以通过减小 THD 来达到.功率因数校正技术分为无源和有源两种,无源功率因数校正的性能比较差,达不到很好的效果,本文技术要求是功率因数大于等于0.95,因此本文只针对有源功率因数校正APFC 技术做探讨.有源功率因数校正APFC 技术的基本思想:将输入的交流进行全波整流,在整流电路与滤波电容之间加入DC/DC 变换,通过适当控制使输入电流的波形自动跟随输入电压的波形,即使整流器的输出电流跟随它输出直流脉动电压波形,且要保持贮能电容电压稳定,从而实现稳压输出和单位功率因数输入.有源功率因数校正APFC 技术,从其实现方法上来讲,就是通过功率因数调节装置,使电网输入电流波形完全跟踪电网输入电压波形的变化,并且保持输入电流和电压波形同相位,从而使得无论负载性质如何,从输入端看,负载取用的都是有用功率,是功率因数能够接近于1.由于APFC 使得电网端的功率因数接近1,减小了输入电流,降低了配电输入线的损耗,消除了用电装置的谐波分量对电网的污染,本身的工作会产生非线性,引起电网电压、电流畸变的电力电子装置,增加功率因数校正部分对电网带来的效益是明显的,但是用电器本身则会增大体积提高成本.2.2 有源功率因数校正电路2.2.1 有源功率因数校正电路的原理有源功率因数校正主要是在整流滤波和DC/DC 功率级之间串入一个有源PFC 作为前置级,用于提高功率因数和实现DC/DC级输入的预稳,用作PFC电路的功率级基本上是升压型Boost变换器,它具有效率高、电路简单、适用电源功率高等优点.有源功率因数校正电路的思想为:选择输入电压作为参考信号,使得输入电流跟踪参考信号,实现输入电流的低频分量与输入电压为一个近似的同频同相的正弦波,以提高功率因数和抑制谐波.有源功率因数校正电路原理图为图2.1.主电路由单相桥式整流器和DC—DC变换器组成,包括电压误差放大器V A,基准电压,电流误差放大器CA,乘法器M及驱动器等部分,负载可以是开关电源,也可以为电器.图2.1 有源功率因数校正电路的原理主电路的输出电压V o与基准电压比较后,再输入给V A,整流电压V dc的检测值和V A的输出电压V o信号共同加到乘法器M的输入端.M的输出作为电流反馈控制的基准信号,与开关电流i S检测值比较后,经过CA加到逻辑及驱动器上,用以控制开关VT r 的通断,使输入电流i i与V dc的波形基本一致,从而大大减少了电流谐波,提高了输入功率因数,从而保持了V o的恒定.2.2.2 有源功率因数校正电路的分类有源功率因数校正电路按电流模式可以分为连续电流模式控制型与非连续电流模式控制型两类.其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)三种;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)两种;它们有不同的优缺点,通过对不同类型的分析,最后选择升压式做为重点研究对象,下面对上述电流模式的工作原理做简单的介绍.1、升压型PFC电路图2.2为升压型PFC主电路,工作过程主要分两种:1.开关管Q导通时,电流I L流过电感线圈L,电感线圈处于未饱和状态时,此时的电感开始以磁能的形式储存电能,电容放电给负载提供能量,图中的R为负载;2.开关管Q截止时,L自感电动势V L与电源V IN 的电流方向相同,此时V L与电源V IN 串联给电容以及负载供电.图2.2升压型PFC主电路该电路的优点是:(1)输入电流是指电感电流,操作上容易调节,在工作过程中处于连续的状态,在整个输入电压的正弦周期内都可以调制,可以得到很高的功率因数.(2)开关管栅极驱动信号地与输出共地,驱动起来比较简单;(3)开关管的电流峰值较小,对输入电压变化具有很强的适应性,适合用在电压变化比较大的电网场所.主要缺点:输出电压比较高,开关管对输出不能实现短路保护的功能.2、降压型PFC电路图2.3是降压型PFC电路,工作过程主要有两种:1.当开关管Q导通时,二极管D 处于截止状态,电流I L流过电感线圈,电感线圈处于未饱和状态时,电流I L线性增加,储存电能;2.当开关管Q关断时,L将会产生自感电动势,向电容和负载供电.因为变换器输出电压总是小于电源电压,故称为降压变换器.图2.3降压型PFC主电路该电路的主要优点是:开关管具有很弱的电压适应能力,假如后面的电路发生短路,可以起到一定的短路保护,该优点是升压式PFC没有的.该电路的主要缺点是:只有输人电压高于输出电压时,降压式PFC电路才能参加工作,在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出电压较低,在相同功率等级时,后级DC/DC变换器电流应力较大;与升压式PFC相比,开关管门极驱动信号与输出地端不同,驱动较为复杂,再加上输人电流存在断续的情况,功率因数不是很高,应用较少.3、升降压型PFC电路图2.4为升降压型PFC电路,其工作过程有两种状态:1.当开关管Q处于导通时,电流IIN流过电感线圈,二极管处于截止状态,电容C放电为负载提供能量,电感L 处于储能状态;2.当开关管Q处于断开时,IL有减小趋势,L中产生的自感电动势使二极管D处于导通状态,L开始释放其储存的能量,对电容C和负载供电.图2.4升降压型PFC主电路该电路的优点:可以对输人电压升压和降压,适用范围比较广,集合了升压式和降压式PFC的一些优点;电路输出电压选择范围较大,可根据一级的不同要求设计;电路中的开关管可实现输出短路保护的功能.该电路的主要缺点有:开关管要有很强的电压应力,因为开关管的电压为输入电压与输出电压的和;由于在每个开关周期中,输入电流只有在开关管处于导通状态下才会有,峰值电流变的比较大;因此驱动起来比较复杂;因为输出电压极性与输入电压的极性是相反的,后级逆变电路比较难设计,因此在现实应用中比较少.4、正激型PFC电路图2.5为正激型PFC电路,工作状态有两种:1.当开关管Q处于导通时,二级管D1处于正偏导通,D2处于截止状态,电源向负载提供能量,输出电感L处于储能状态.当开关管Q处于关断时,电感L储存的能量通过二极管D2,向负载释放电能,电容C 处于充电状态.该电路的磁通是单向累积的,在电路中需要设计磁复位.图2.5正激型PFC主电路这种电路的优点是功率级的电路设计比较简单,缺点是电感中的能量要通过磁复位回路来释放.5、反激型PFC电路图2.6为反激型PFC电路,工作状态有两种:1.当开关管Q处于导通时,输入电压加到高频变压器B1的原边绕组上,由于B1副边整流二极管D1反接,副边绕组中没有电流流过,此时,电容C放电向负载提供能量.当开关管Q关断时,绕组上的电压极性反向,二极管D1正偏导通,储存在变压器中的能量通过二极管D1向负载释放.这种电路的优点是功率级电路简单,且具有过载保护功能.图2.6反激型PFC主电路2.2.3 升压式有源功率因数校正电路的分析有源功率因数校正技术的思路,主要是通过控制整流后的电流,在对滤波大电容充电之前,能够与整流后的电压波形相位相同,避免引起电流脉冲的形成,达到提高功率因数的目的.1、升压式Boost电路的基本原理升压式Boost电路按电流区分有三种工作模式分别为:连续模式、断续模式、临界模式.图2.7为升压式Boost电路拓扑.图中的Vcont是指功率开关MOSFET的控制信号,VI是指MOSFET两端的电压,ID是指流过二极管D的电流.MOSFET有两种状态;1.当开关管T处于导通时,电流IL流过电感线圈L,在电感线圈处于未饱和状态时,电流线性逐渐增加,电感线圈以磁能的形式储存电能,二极管D处于截止状态,电容Cout 储存的能量将会释放,为负载提供能量.2.当开关管T处于断开时,线圈储存的磁能将改变线圈L两端的电压VL,以保持其电流IL不发生突变.电源Vin与线圈L转化的电压相串联,以高于输出的电压向电容和负载供电.如图2所示是其电压和电流的关系图.图2.7 Boost 电路拓扑电压和电流的关系如图2.8所示.图2.8 Boost 电路的电压与电流的关系分析图2.8,可得:in 1111()()L out in I V t V V T t L L ∆==-- (2.6) (2.7) 升压式Boost 连续模式和临界模式下的基本公式为式(2.7) .2、临界状态下的Boost-APFC 电路设计基于L6562的临界工作模式下的Boost-APFC 电路的典型拓扑结构如图2.9所示,图2.10所示是其APFC 工作原理波形图.图2.9 Boost—APFC控制框图图2.10 临界APFC工作原理波形图升压式Boost实现高功率因数的原理是让整流后的输入电流跟踪输入电压,使能够获得期望的输出电压.控制电路所需的参量有即时输入电压、输入电流以及输出电压.乘法器与输入电流控制部分和输出电压控制部分相连接,使输出的信号为正弦信号.假如输出电压偏离了期望值,如输出电压发生跌落时,电压控制环节的输出电压将会增加,使乘法器的输出也相应随着增加,从而达到使输入电流有效值也相应地随着增加,使能够提供足够的能量.在临近状态控制模型中,输入电流的有效值是由输出电压控制环节实现调制,而输入电流控制环节使输入电流能够保持正弦规律变化,从而达到跟踪输入电压的目的.本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法.3 元器件的选择3.1 L6562简介图3.1是L6562芯片的元器件,图3.2是L6562芯片的引脚图.DIP-8图3.1 L6562芯片INV ZCDCOMP GNDMULT GDCS V CC图3-2 L6562引脚图1脚(INV):误差放大器反向输入端.PFC输出电压分压电阻分压后送入该引脚.2脚(COMP):误差放大器输出端.补偿网络设置在该脚与INV端(1脚),以完成电压控制环路的稳定性和保证有高的PF值与低的谐波失真(THD).3脚(MULT):乘法器输入端.该引脚通过分压电阻分压,连接到整流器整流电压提供基准的正弦电压给电流环.4脚(CS):输入到PWM比较器.MOSFET管电流流过取样电阻,在电阻产生电降,该电压与内部的正弦电压形成基准信号,与乘法器比较来决定MOSFET的关闭.5脚(ZCD):升压电感去磁侦测输入端.工作在临界传导模式,用负极性信号的后沿来触发MOSFET的导通.6脚(GND):控制电路的地端.栅极驱动和信号回路的通路都应该汇集到该地引脚端.7脚(GD):栅极驱动输出.图腾柱输出能直接驱动MOSFET管或IGBT管,对源极峰值推动电流是600mA,吸收电流时800mA.该脚的驱动电压被钳制在12V左右,避免因CCU电压过高而使驱动电压也升高.8脚(VCC):电压供给IC内部信号与栅极驱动,供电电压能够被限制在22V以下.L6562是在临界电流模式状态下工作的.升压电感L的电流逐渐减小到零时,能够检测到电感两端的电压极性同时发生变化变号,零电流检测器才能够打开外部的MOSFET.为了防止发生虚假触发,电路提供了0.5V的滞后电压.ZCD端输入电压的门限值设为1.8~2.3V,输入电流为2μA ,禁止阈值为200mV,箝位电压为5.7V.为了改进THD的恶化,在L6562的内部乘法器单元中,专门嵌入了TD最优化电路.改进后的电路能够处理AC线路电压过零附近时积聚的能量,从而使桥整流器后的高频滤波器电容能够充分放电,达到减小交越失真,从而降低THD的目的.综合高线性乘法器中的THD最优化电路,L6562允许在误差放大器反相输入端INV 脚和输出端COMP脚之间连接RC串联补偿网络,减小放大器输出波纹和乘法器输出的高次谐波的误差.L6562性能与L6561,L6560相比较有明显的提升,但制作的成本并没有增加.3.2 L6562芯片原理框图图3.3为芯片L6562的原理框图.图3.3 L6562芯片原理框图4 电路的设计4.1基于L6562的Boost-APFC电源电路本文的设计是基于临界状态下,采用的是ST公司的L6562作为控制芯片,设计出升压式有源功率因数校正电路.图4.1给出了由L6562构成的APFC的电路图.图中的C1、C2、L1构成双π抗电磁干扰滤波器,输入的交流电经整流桥整流后变换为正弦全波直流脉动,作为升压式Boost 电路的输入;电容C3的作用是为了滤除电感电流中的高频信号,降低输入电流中存在的谐波含量;整流后的正弦全波直流电压经过电阻R1和R2构成的电阻分压网络,然后通过3脚输入到乘法器,是用来确定输入电压的波形与相位,电容C4的大小为0.01uF,是用以滤除3号脚的高频干扰信号;PFC的变换器直流输出电压V0经过R8、R9分压反馈到1号脚误差放大器的反相端.升压式Boost电感L的一个副绕组,用作初级电感的高灵敏度的传感器,将初级电感的高频电流传送到R4转换为电压信号,给5号脚以过电流检测信号.芯片的驱动信号通过电阻R5连接到MOS管的栅极;电阻R7作为电感电流的检测电阻,用以采样电感电流的上升沿MOS管的电流,电阻R7一端接地,另一接在MOS管的源极,同时经电阻R6连接到芯片的4号脚;电阻R9和R8不仅构成电阻分压网络,也形成输出电压的负反馈回路;电容C6连接于芯片1、2脚之间,组成电压环的补偿网络.图4.1 基于L6562的Boost-APFC 电源电路4.2 Boost-APFC 电感的设计 升压式Boost 电感,采用AP 法则,原理是首先根据设计要求计算所需电感:20(min)0(2)2ims ims sw i V V V L f p V -= (4.1)式中,Virms 为输入电压有效值;Vo 为输出电压,fsw(min)为MOS 管的最小工作频率,通常在20kHz 以上;Pi 为输入功率.计算要求的AP 值为:6()()max 10_L rms L pk u C LI I AP req k B J δ-⨯=(4.2)式中,Ku 为磁芯窗口利用率,Jc 为电流密度,IL(pk)为电感电流峰值.有式子(4.2)式的计算结果可选择磁芯的AP 值(大于AP_req ,AP=AeAw ,单位为m ^4).然后根据所选磁芯来计算原边匝数及所需气隙.副边匝数一般按10:1的比例选取.。
有源功率因数校正电路

有源功率因数校正电路
嘿,咱来说说有源功率因数校正电路是啥玩意儿。
有一次我去一个电子厂参观,看到一堆奇奇怪怪的电路板。
有个工程师就给我介绍了有源功率因数校正电路。
这有源功率因数校正电路呢,简单来说就是让电器用起电来更高效、更环保的一个东西。
比如说你家里的电脑、电视啥的,要是没有这个电路,可能就会浪费很多电,还会对电网造成不好的影响。
就像一个人吃饭,要是吃得乱七八糟,浪费粮食还弄脏桌子。
有源功率因数校正电路就是让电器像个乖孩子一样,好好吃饭,不浪费,也不捣乱。
这个电路可以把电流和电压调整得更好,让电器用起电来更顺畅。
就像给电器铺了一条平坦的路,让电能够顺利地跑过去。
在生活中,有源功率因数校正电路可重要了。
它能帮我们省电,还能让电网更稳定。
就像我在电子厂的那次参观,让我对有源功率因数校正电路有了更直观的认识。
嘿嘿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 kW 有源功率因数校正电路设计
概述:有源功率因数校正可减少用电设备对电网的谐波污染,提高电器
设备输入端的功率因数。
详细分析有源功率因数校正APFC(active power factor corrector)原理,采用平均电流控制模式控制原理,设计一种2 kW 有源功率因数校正电路。
实验结果表明:以TDA16888 为核心的有源功率因数校
正器能在90~270 V 的宽电压输入范围内得到稳定的380 V 直流电压输出,功率因数达O.99,系统性能优越。
1 引言
目前家用电器的功率前级多采用二极管全桥整流方式,这会造成电网谐波
污染,功率因数下降,无功分量主要为高次谐波,其中三次谐波幅度约为基
波幅度的95%,五次谐波幅度约为基波幅度的70%.七次谐波幅度约为基波幅度的45%。
高次谐波会对电网造成危害,使用电设备的输入端功率因数
下降,而且产生很强的电磁干扰(EMI),对电网和其他用电设备的安全运行造
成潜在危害。
有源功率因数校正电路(Active Power Factor Corrector,APFC)可将电源的输入电流变换为与输入市电同相位的正弦波,从而提高电器设备的功率因数,
减少对电网的谐波污染。
理论上,降压式(Buck)、升压式(Boost)、升/降压式(Boost-Buck)以及反激式(Flyback)等变换器拓扑都可作为APFC 的主电路。
其中,Boost APFC 是简单电流型控制,功率因数值高,总谐波失真小,效率高,但输出电压高于输入电压,适用于75~2 000 W 功率电源,应用广泛。
因为升压式APFC 的电感电流连续,储能电感可作为滤波器抑制射频干扰(RFI)和EMI 噪声,并防止电网对主电路的高频瞬态冲击.电路有升压斩波电路,输出电压大于输入电压峰值,电源允许的输入电压范围扩大,通常可达。