随机过程第5章课件
随机过程课程第五章 平稳过程
(1)均值函数为常数: m(t) E[X (t)] m
(2)相关函数仅是时间差 t1 t2 的函数:
记
B( ) R(t1,t2 )
证 只对连续型的情况
m(t) E[ X (t)] xf (t;x)dx
xf (x)dx m
首页
R(t1,t2 ) E[ X (t1) X (t2 )]
而与时间起点无关。
证
首页
一对维任意的 ,必有 f (t;x) f (t ;x) 若令 t ,得
f (t;x) f (0;x) f (x) 即一维概率密度 f (t;x) 与 t 无关。
同理有一维分布函数也与t无关,
即 F(t;x) F(0;x)
证 二维 对于二维概率密度,有
f (t1,t2;x1, x2 ) f (t1 ,t2 ;x1, x2 )
首页
返回
第三节 平稳正态过程与正交增量过程
一、平稳正态过程
定义1 若正态随机过程{ X (t) ,t (,) },满足
E[X (t)] m
R(t1,t2 ) E[ X (t1) X (t2 )] B( )
则称 X (t)为平稳正态过程。
t1 t2
注 平稳正态过程一定是严平稳过程。
证
由于
第五章 平稳过程
第一节 基本概念 第二节 平稳过程相关函数的性质 第三节 平稳正态过程与正交增量过程 第四节 遍历性定理
第一节 基本概念
一、严平稳过程
定义1 设随机过程{ X (t) ,t T }, 若对任意n,任意 t1,t2 , , tn T t1 t2 tn 当t1 ,t2 ,…,tn T 时,有 F (t1, t2 , , tn;x1, x2 , , xn ) P{X (t1) x1, X (t2 ) x2 , , X (tn ) xn )}
《随机信号分析》第五章-窄带随机过程
独立
2020/10/24
06-9-27 28
5.3.2 结论1
对于均值为零的窄带平稳高斯过程
其同相分量和正交分量同样是平稳高斯过程, 而且均值都为零,方差也相同;
在同一时刻上的同相分量与正交分量是不相 关的或统计独立的。
2020/10/24
29
5.3.2
Rc Rs R cos 2 fc Rˆ sin 2 fc
15
2.随机信号的复信号表示
X (t) X (t) jXˆ (t)
R X
(
)
E
X
(t
)
X
*
(t)
E{[ X (t ) jXˆ (t )][ X (t) jXˆ (t)]}
RX ( ) RXˆ ( ) j[RXˆX ( ) RXXˆ ( )]
RX ( ) RXˆ ( ) RXˆX ( ) Rˆ X ( ) RXXˆ ( )
2020/10/24
2
希尔伯特变换 (Hilbert Transform)
1.定义
正变换定义:
H[x(t)] xˆ(t) 1 x( ) d
t
xˆ(t) x(t) 1
t
反变换:
H 1[xˆ(t)] x(t) 1 xˆ( ) d
t
H 1[xˆ(t)] xˆ(t) 1
第5章 窄带随机过程
Narrow-band Random Process
希尔伯特变换 信号的复信号表示 窄带随机过程的统计特性 窄带正态随机过程包络和相位的分布
2020/10/24
1
希尔伯特,D.(Hilbert,David,1862~ 1943)德国著名数学家。
希尔伯特领导的数学学派是19世纪末20 世纪初数学界的一面旗帜,希尔伯特被称 为“数学界的无冕之王”。
北大随机过程课件:第 5 章 第 1 讲 高斯随机变量
∫ ∫ =
∞∞
"
−∞ −∞
⎡⎣( 2π
1
)n
B
⎤1/ 2 ⎦
exp
⎛ ⎜⎝
juT x
−
1 2
(x
− μ)T
B−1 (x
− μ)⎞⎟⎠dx
∫ ∫ ( ) ∞ ∞
="
−∞
−∞
⎡ ⎣
1
2π
⎤n 1/ 2 ⎦
exp[ juT μ X
− ST S / 2]
exp[−(y − jS)T (y − jS) / 2]dy
N n=1
an
(ξ
N
n− μ n) ⋅ am (ξ
m=1
m
−
μ
m
)
⎫ ⎬ ⎭
NN
∑ ∑ =
anamE {(ξ m− μ m) ⋅ (ξ n− μ n)}
n=1 m=1
NN
∑ ∑ =
an ambnm
n=1 m=1
= aT Ba
4.2 高斯随机变量的线性变换
设ξ=(ξ1,ξ2, ,ξN)是 N 维随机矢量,其数学期望是μ=(μ1,μ2, ,μN), 协方差矩阵是 B。 线性变换 C,是 M*N 的矩阵,ξ经过线性变换 C 得到η=Cξ, 均值:
= exp[ juT μ X − ST S / 2] = exp[ juT μ X − uT LLT u / 2] = exp[ juT μ X − uT Bu / 2]
4
Φξ
(u)
=
exp⎜⎛ ⎝
juT μ X
−
1 uT Bu⎟⎞
2
⎠
当协方差矩阵是非负定的,可以证明若它的秩为 r<n,它的概率分布集中在 r 维子空间
北大随机过程课件:第 5 章 第 4 讲 高斯随机过程通过非线性系统
高斯随机过程通过非线性系统(续1)高斯随机过程通过半波整流器的研究半波整流非线性函数关系:,0,bx x y x ≥⎧=⎨<⎩1.输入是窄带平稳实高斯随机过程输入随机过程的概率密度⎟⎟⎠⎞⎜⎜⎝⎛−=222;2exp 21)(ξξξσπσx x f t 输出随机过程的概率密度2;1()()()2t t t f y y U y ηδ⎛⎞=+⋅ 各阶矩、方差偶数阶矩,考虑到输入窄带平稳实高斯随机过程的概率密度函数是偶函数,[][]13)12(212122222⋅−=="m b E b E m m m m m σξη 奇数阶矩[]135)12(22!1212212⋅⋅−=+++"m b m E m m m m ξσπη均值[]ξσπηb t E 21)(=方差[][][]{}()πσσπσηηηξξξ/11212121)()()(2222222−=⎟⎟⎠⎞⎜⎜⎝⎛−=−=b b b t E t E t D相关函数2100222122212122221))(1(2)(2exp ))(1(2),()(dx dx x x x x x x b t t R R ∫∫∞∞⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==τρστρτρπστξξηηηη 其中,122{}()t t E x x ξρτσ=,利用典型的积分变换1,得:222222211()()()244()()b R b b R R R ηηξξξξξξξξξτσττππστσρτ≈++=功率谱∫∫∞∞−∞∞−′′−′++==f d f f P f P b f P b f b d eR f P f j )()(4)(41)(21)()(222222ξξξξξξξξτπηηηηπσδσπττ2.输入信号是矩形带通窄带实平稳随机过程输入的功率谱密度:⎪⎩⎪⎨⎧Δ+<<Δ−=otherwise,022,2/)(000ff f f f N f P ξξ 20f N ξσΔ⋅=非线性器件输出信号的功率谱密度:直流分量:())(21)(210222f N f b f b δπδσπξ⋅Δ= 低频分量f f Δ≤≤0⎟⎟⎠⎞⎜⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ⎟⎠⎞⎜⎝⎛f fN b f f f N b 1241224022022ππσξ 带通信号分量2/2/f f f f f c c Δ+≤≤Δ−24102N b二倍频分量f f f f f c c Δ+≤≤Δ−22⎟⎟⎠⎞⎜⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ⎟⎠⎞⎜⎝⎛f fN b f f f N b 128124022022ππσξ 低通滤波器输出信号的功率谱密度:直流分量:())(21)(210222f N f b f b δπδσπξ⋅Δ= 低频分量f f Δ≤≤0⎟⎟⎠⎞⎜⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ⎟⎠⎞⎜⎝⎛f fN b f f f N b 1241224022022ππσξ典型的坐标变换1原积分:2100222122212122221))(1(2)(2exp ))(1(2),()(dx dx x x x x x x b t t R R ∫∫∞∞⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==τρστρτρπστξξηηηη 其中,[]221/)()()(ξστρt x t x E =变换))(1(2))(1(2222221τρστρσξξ−=−=x v x u))(1(2),(),(2221τρσξ−=∂∂v u x x积分()[]d udv uv v u uv b dx dx x x x x x x b t t R R ∫∫∫∫∞∞∞∞−+−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==00222/3222210022212221212/122221)(2exp ))(1(2))(1(2)(2exp ))(1(2),()(τρπτρστρστρτρπστξξξηηηη 典型的坐标变换2积分之间的关系:()[]()[]()[]dwdI dudv wuv v u uv dudv wuv v u uv dw dIdudvwuv v u I 212exp 2exp 22exp 002200220022=−+−⋅−+−⋅=−+−=∫∫∫∫∫∫∞∞∞∞∞∞典型的坐标变换3原积分:()[]d udv wuv v u I ∫∫∞∞−+−=00222exp积分变换:从v u ,平面到θ,r 平面,参数()παα,0,1cos ∈≤=wαθααθαsin 2cos sin 2cos ⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛+=r v r u , 注意到下列关系:⎟⎠⎞⎜⎝⎛−−==−=⎟⎠⎞⎜⎝⎛−==+=22,22,022,22,0απθπθααπθπθαv uααθααθααθααθαθθsin sin 2sin sin 2sin sin 2cos sin 2cos r r r r v u r v r u =⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=∂∂∂∂∂∂∂∂ ()()()()()(()())222222222222222cos 2cos 12cos 2cos 12cos 1sin 22cos cos 2cos cos 22cos 12cos 1sin 2sin 2cos sin 2cos cos 2sin 2cos sin 2cos )(2r r r r r r uvv u =−−+−−−−++++=−−−++++=⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+=−+θαθααθαθααθαααθαθαααθααθαααθααθατρ 原积分:()[]210222002212sin 2/sin 2exp sin 2exp w w drd r rdudvwuv v u I −+=−=−=−+−=−∞−−−∞∞∫∫∫∫πααπθααπαπww1sin 2/cos −−==παα原积分:()()()()()w ww w w w www w w w dw d dw dI 12/3222212221sin 2/12121121sin 2/11112sin 2/−−−+−+−=−−++−−=−+=πππ原积分:()[]()()()ww ww dwdIdudv wuv v u uv 12/3220022sin2/14141212exp −∞∞+−+−==−+−⋅∫∫π原积分:()()[]⎥⎦⎤⎢⎣⎡+++++⋅=⎥⎦⎤⎟⎠⎞⎜⎝⎛⋅⋅⋅+⋅+++⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅⋅−⋅−−⋅=++−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−+−⋅−==−∞∞∫∫"")(801)(241)(21)(2121)(54231)(321)(2)()(6421)(421)(21121)(sin 2/)()(121))(1(2)(2exp ))(1(2),()(84222536422212/1222100222122212122221τρτρτρτρπσπτρτρτρπτρτρτρτρσπτρπτρτρσπτρστρτρπστξξξξξηηηηb b b dx dx x x x x x x b t t R R由于1)(≤τρ)()()(4)(4121)(2222222τρσττπστσπτξξξξξξξξξηη=++=R R b R b b R。
第5章 Markov链
������, ������ ∈ ������; ∀������ ∈ ������ 为随机矩阵 ,若 ������������������ ≥ 0(������, ������ ∈ ������) ,且对
定义 5.1.4 称矩阵 ������ = ������������������ ∀ ������ ∈ ������,有
0 0 0 0
11
5.1 基本概念
例 5.1.8 (Wright-Fisher 遗传模型)基因控制着生物的特征,它们是成 对出现的.控制同一特征的不同基因称为等位基因,记这对等位基因为 ������和������ , 分别称为显性的与隐性的.在一个总体中基因������和������ 出现的频率称为基因频率, 分别记为������和1 − ������. 设总体中的个体数为2������,每个个体的基因按基因������的基因频率的大小,在下 一代中转移成为基因 ������.即如果在第 ������ 代母体中基因������出现了 ������ 次,基因 ������ 出现了
6
5.1 基本概念
例 5.1.3 在任意给定的一天,加里的心情或者是快乐的(cheerful,C),或 者是一般的(so-so,S),或者是忧郁的(glum,G). 如果今天他是快乐的,则明天 他分别以概率 0.5,0.4,0.1 是 C,S,G.如果今天他感觉一般,则明天他分别 以概率 0.3,0.4,0.3 为 C,S,G.如果今天他是忧郁的,则明天他分别以概率 0.2,0.3,0.5 为 C,S,G. 以 ������������ 记加里在第 ������ 天的心情, 则 ������������ , ������ ≥ 0 是一个三个状态的马尔可夫链 (状态 0=C,状态 1=S,状态 2=G),具有转移概率矩阵 0.5 ������ = 0.3 0.2 0.4 0.4 0.3 0.1 0.3 0.5
研究生课程 随机过程 课件第五章2
µ −λ
p 'ij (t ) = λi pi +1, j (t ) − (λi + µi ) pij (t ) + µi pi −1, j (t ) 向后方程: p '0 j (t ) = λ0 p0 j (t ) + λ0 p0 j (t )
类似向前方程,绝对概率也有如下方程: p′ (t ) = −(µ j + λ j ) p j (t ) + λ j −1 p j −1 (t ) + µ j +1 p j +1 (t ) j ′ p0 (t ) = − p0 (t )λ0 + µ1 p1 (t )
λ λ −λ −µ 2µ − λ − 2µ
λ
sµ
状态转移图如下:
λ
0
λ
1 2
λ
⋯⋯
3µ
λ
S
λ
S+1
λ
sµ
µ
2µ
sµ
sµ
平稳分布: − λπ 0 + µπ 1 = 0 λπ k −1 − (λ + kµ )π k + (k + 1)µπ k +1 = 0 1 ≤ k ≤ s − 1 λπ − (λ + sµ )π + sµπ = 0 k ≥ s k −1 k k +1
qi ,i +1 = λ iµ , i < s qi ,i −1 = sµ , i ≥ s − λ − iµ , i < s qii = − λ − sµ , i ≥ s qij = 0,
− λ µ Q=
i− j ≥2
− λ − sµ λ ⋯
随机过程第5章(Galton-Waston分支过程)
存在性
对于给定的生育概率函数, Galton-Watson分支过程存在。
唯一性
对于给定的生育概率函数, Galton-Watson分支过程是唯一 的。
灭绝概率
定义
灭绝概率是指种群最终消亡的概率。
计算方法
通过递归方式计算每一代种群数量的概率分布, 最终得到灭绝概率。
应用
灭绝概率在生态学、遗传学等领域有广泛应用, 如评估种群稳定性、预测种群发展趋势等。
计算机科学
在计算机科学中,GaltonWatson分支过程可用于模拟网络 流量、路由协议等。
统计学
在统计学中,Galton-Watson分 支过程可用于估计事件的概率分 布和参数估计。
02
Galton-Watson分支过程的 数学模型
模型建立
01
02
03
定义
初始条件
繁殖规则
Galton-Watson分支过程是一个 离散时间的马尔可夫链,描述了 一代代繁殖的种群数量变化。
01
02
03
无重叠世代
每一代种群与下一代种群 没有重叠,即每一代种群 中的个体不会在下一代中 出现。
无移民和迁出
种群中没有新的个体加入 或离开,即种群数量只受 繁殖和死亡的影响。
独立同分布
每一代种群中个体的繁殖 数量独立且服从相同的概 率分布。
03
Galton-Watson分支过程的 性质与定理
存在性与唯一性
生物多样性研究
通过模拟不同环境下的物种繁殖和灭 绝过程,可以研究生物多样性的形成 和维持机制,为保护生物多样性提供 理论支持。
遗传学中的应用
基因传递模型
Galton-Watson分支过程可以用于描述基因在世代之间的传 递过程,帮助遗传学家理解基因突变和进化的机制。
北京交通大学硕士研究生课程《随机过程》5.3-1
5.3.1 分类的准备知识
一、分类的准备知识 1)可达:
i , j E, n 0,使得p
( n) ij
0,称状态i可达
状态j,记为i j;若不可达,记为i j.
2)互通:
若i j,且j i,则称 i , j互通,记为 i j.
定理5-4:可达关系与互通关系都具有传递性.
5.3.2 状态的类别
例子: 1
7 8
1
9
1 2/3
1
1/3 1
2
1
3
1
6
4,8,12,16, 点1:D 6,12,18,24, d 1 2, 10,14,16,20,
1
5
4
1
p
( 2) 11
0
4k 6l : (6) 点2:D d 2 2 , p 22 0 k 1,2; l 0,1, 4k 6l : (4) 点7:D d 7 2 , p 77 0 k 0,1,; l 1,2
5.3.4 互通等价类
补例2:
1 2 1 2 1 4 1 2 1 2 1 4
设E 1,2,3,4
1/2
1
0 0 0 0 P 1 1 4 4 0 0 0 1 解:
分类的准备知识 状态类别 分类属性 互通等价类 常返性的判定
5.3 状态的分类
0、前言 1)研究内容 主要研究马氏链的状态按其概率特性进行分类,并 研究这些分类的判断准则. 2)例证—例5-5 1
1
1/3
2
1/3 1/3
3
1/3
4
1/3 1
1/3
观察得到: 状态 2 、 3 、 4 有进有出,而 且经过有限次转移都能到 达状态 1 ;而一旦到达 1 后 ,则会永远停止在 1 上,不 再转移出来;由此可见各 状态的概率性质是不同的.
《随机过程教程》PPT课件幻灯片PPT
主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象
《随机过程》第5章-布朗运动
随机过程
第五章 布朗运动
1 布朗运动的基本概念 2 布朗运动的首中时及最大值 3 布朗运动的应用
1 基本概念
• 最初由英国生物学家布朗(Brown)于1827年提出这种物理现 背 象; 景 • 1905年爱因斯坦首次对这一现象的物理规律给出数学描述; 定 • 1918 年维纳(Wiener) 运用数学理论严格描述这种无规则运 动,并用随机过程理论和概率理论建立了数学模型。因此 义 布朗运动又称维纳过程; 性 • 是具有连续时间参数和连续状态空间的一类随机过程; 质 • 在金融领域的证券市场中(如债券、期权等),有着极其 重要的应用。将布朗运动与股票价格行为联系在一起,进 推 而建立起维纳过程的数学模型是本世纪的一项具有重要意 广 义的金融创新,在现代金融数学中占有重要地位。
中南民族大学经济学院
平 移 不 变 性 : 设 *������ ������ , ������ ≥ 0+ 为 布 朗 运 动 , 则 *������ ������ + ������ −
������ ������������ 0+为布朗运动,则* ������
, ������ ≥ 0, ������ >
������ 2 − ������ 2(������2 −������1 )
中南民族大学经济学院
5
《随机过程》第5章-布朗运动
1 基本概念
有限维联合分布
背 景 (������ ������1 , ⋯ ������ ������������ )的联合概率密度函数为 定 义
������
设 *������ ������ , ������ ≥ 0+ 为标准布朗运动,对 ∀0 = ������0 < ������1 < ⋯ < ������������ ,
第5章-窄带随机过程
RXXˆ () RXXˆ ()
RXXˆ (0) 0
互相关函数是奇函数
ˆ (t )正交 意味着 X (t )与 X
17
(9)偶函数的希尔伯特变换为奇函数,奇函数的希 尔伯特变换为偶函数 2015/6/2
Hilbert变换
常用变换
xt
cos 2 f0 t sin 2 f0 t
X () X () j ( j sgn()) X () (1 sgn()) X () =2 X ( w)U ( w) 2 X ( w), W 0 W 0 0, 即,解析信号的频谱在负频率部分为0,在正频率部分是 是信号的两倍。
2015/6/2 22
解析信号的特点2:解析信号频谱与复包络频谱
2015/6/2
6
希尔伯特变换 (Hilbert Transform)
1. 定义 :
正变换定义:
ˆ (t ) H [ x(t )] x
反变换:
ˆ ( ) x ˆ (t )] x(t ) H [x d t 1 1 ˆ (t )] x ˆ (t ) H [x t
2015/6/2 20
解析信号的性质(2)
4) 解析信号 x(t ) 的能量为其实信号 x (t)能量的2倍
x1 t x 2 t 0 5) 提示:利用性质2)和3) x t x2 t 0 1 6) 已知实函数 x t , 求其解析信号的方法
x( t ) A( t )cos 2 f 0 t x( t ) A t e j 2 f0t
2015/6/2
注:A t 为低通信号,其带宽W f 0 .
卢正新《随机过程》第五章 布朗运动与鞅-全
解:B(2) ~ N (0, 2) P{B(2) 0} 0.5,则
PB(t) 0,t 1, 2 PB(1) 0, B(2) 0
PB(1) 0, B(1) B(2) B(1) 0
PB(1) 0, B(2) B(1) B(1)
5
布朗运动定义2:随机过程{B(t),t≥0}为布朗运动,如果满足: 1)(正态增量)B(t)-B(s)~N(0,t-s) ; 2)(独立增量)B(t)-B(s)独立于过去的状态B(v),0≤v ≤ s; 3)(轨道连续) {B(t),t≥0}的轨道是t的连续函数。
注:并未强调B(0)=0,如果B(0)=x,可用B(t)-x进行变换。 定理:设{B(t),t≥0}是正态过程,轨道连续,B(0)=0,对任意的s, t>0,有EB(t)=0,E[B(s)B(t)]=min(s,t),则{B(t),t≥0}为布朗运动, 反之亦然。
2)设Y0=0,{Yn, n≥0}是随机变量序列, E|Yn|<∞, EYn= μn≠0, n≥1, 定义X0=0,则Xn =Y1Y2…Yn/ μ1 μ2… μn是鞅。
n
解:1)E | X n | | Yk | ,n 1, 2 k 1
E X n+1 | Yn Y0 E X n Yn+1 | Yn Y0
6
证: 1)充分性 若B(t),t 0是布朗运动,则其为正态过程。
设0 s t,则:
E B(s)B(t) E B(s)B(t) B(s) B(s) E B(s)B(t) B(s) E B(s)B(s) s
2)必要性,当B(t),t 0为正态过程,且 E B(s)B(t) min(s,t),则多s,t 0,有 E B(t) B(s) 0; E B(t) B(s)2 EB2(t) EB2(s) 2E B(t)B(s)
《随机信号分析基础》第5章 课件 _窄带随机过程
N (t) = Ac(t)cos w0t - As(t)sin w 0t
因此
X(t) = [acosq+Ac(t)]cosw0t -[asinq+As(t)] sinw0t = A(t)cos[w0t+F(t)]
Gx (w)
A
w 0
w0
W
解:(1)零均值平稳窄带高斯信号 X(t) 的正交表达式为
X(t) = Ac(t)cos w 0t - As (t)sin w 0t
ò 基于功率谱计算功率得 P
=
Rx (0)
=
s2
=
1 2p
¥
G X (w)dw
-¥
=
AW 2p
5‐ 6 / 7
X(t) 为 0 均值的高斯随机信号,所以 X(t) N (0, s 2)
Ps(w) = 2121p Pm(w) * p[d(w - wc ) + d(w + wc )]
=
1 4
[Pm
(w
-
wc)
+ Pmd(w
+
wc ]
功率
P
=
Rsm (0)
=
1 2
Rm
(0)
cos
0
=
1 2
或则
ò ò P
=
1 4
⋅
1 2p
¥ -¥
Ps
(w)d
w
=
1 2p
¥ -¥
[Pm
(w
-
wc )
+
Pm (w
fAcAs (ac,as ) = fAc(ac )fAs (a s ) =
第5章_随机过程通过线性系统_
∞
∫ h(τ )x ( t τ , ξ
∞
∞
i
)d τ
∫ h(τ )x ( t τ , ξ
0
i
)d τ
也只能是随机过程的一个样本且有界。 即,系统输出 y(t,ξi ) 也只能是随机过程的一个样本且有界。 其无法代表系统输出随机过程的全体。 其无法代表系统输出随机过程的全体。只有当每个输入样本
x(t , ξ ) 都是有界的,才有 都是有界的,
其中, 称为系统的功率传输函数 所以, 系统的功率传输函数。 其中,|H(ω)|2称为系统的功率传输函数。所以, 系统的输出功率=系统的输入功率 系统的输入功率× 系统的输出功率 系统的输入功率× |H(ω)| 2。
系统输出Y(t)的自相关函数 的自相关函数 系统输出
1 +∞ RY (τ ) = GY (ω )e jωτ dω 2π ∫ ∞ 1 +∞ 2 H (ω ) G X (ω )e jωτ dω = 2π ∫ ∞
x(t ) X (ω) h(t ) H (ω) y(t ) = x(t ) h(t ) Y (ω) = X (ω) H (ω)
问题:随机信号通过线性系统情况如何呢?其输入、 问题:随机信号通过线性系统情况如何呢?其输入、输出以 及与系统函数间的关系如何? 及与系统函数间的关系如何?
随机信号——函数值无法用数学式或列表形式确切的表述 。 函数值无法用数学式或列表形式确切的表述。 随机信号 函数值无法用数学式或列表形式确切的表述 其原因是: 其原因是: 随机性,即任何时刻点上的取值不能预先确定。 1.随机性,即任何时刻点上的取值不能预先确定。因为 随机过程( 信号) 随时间或依时序组成的每个时间点上 随机过程 ( 信号 ) 是 随时间或依时序组成的 每个时间点上 随机变量的集合 的集合, 的 随机变量 的集合 , 所以随机信号每个时间点上对应的函 数值都是一个随机变量 。 即便通过一个具体的实验所得到 数值都是一个 随机变量。 随机变量 的确定函数 也只能是该随机过程的一个样本函数 函数, x ( 函数 的确定函数,也只能是该随机过程的一个样本t , ξ i ) , 它也无法表征整个随机过程的行为 它也无法表征整个随机过程的行为 。 波及性, 2.波及性,随机过程可以认为是某个随机系统中某一个 端口的输出, 端口的输出 , 各时间点上随机变量的取值往往具有前后的 波及影响, 既不同时间点上随机变量间的关联性。 波及影响 , 既不同时间点上随机变量间的关联性 。 这种波 及或关联性是由随机系统的各种惯性决定的。 惯性决定的 及或关联性是由随机系统的各种惯性决定的。
随机过程第5章
第五章 离散参数Markov 链5.1 Markov 链的基本概念 1.Markov 链和转移概率矩阵 定义5-1考虑只取有限个或可数个值的随机过程{},0,1,2,nX n = .把过程所取可能值的全体称为它的状态空间,记之为E ,通常假{}0,1,2,E = .若n X i =就说“过程在时刻n 处于状态i ”.若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有11111001(|,,,,)(|)n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链.假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ijp ,即对任意时刻n ,有1(|)n nijP X j X i p +===,称过程具有齐次性.称矩阵00010201011121012j j i i i ij p p p p p p p p P p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦是一步转移概率矩阵,简称为转移矩阵. 由ijp 的定义可知,这是一种带有平稳转移概率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链.我们研究的均为齐次马氏链.2.例题例5-1(直线上的随机游动)考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =.于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率,1,10,jk p k j p q k j =+⎧⎪==-⎨⎪⎩其他当12p q ==时,称为简单对称随机游动.例5-6(排队模型)考虑顾客到服务台排队等候服务,在每个服务周期中只要服务台前有顾客在等待,就要对排队在队前的一位顾客提供服务,若服务台前无顾客时就不实施服务.设在第n 个服务周期中到达的顾客数为一随机变量n Y ,且序列{}nY 是独立同分布随机序列,即(),0,1,2,,n k P Y k p k === 且01k k p ∞==∑设n X 为服务周期n 开始时服务台前顾客数,则有11,1,0n n n n n n X Y X X Y X +-+≥⎧=⎨=⎩若若此时{},1nXn ≥为一Markov 链,其转移概率矩阵为01234012340123012000p p p p p p p p p p P p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦例5-8(生灭链)观察某种生物群体,以n X 表示在时刻n群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个数量单位的概率为i b ,减灭到i-1个数量单位的概率为i a ,保持不变的概率为1()i i i r a b =-+,则{},0nX n ≥为齐次马尔可夫链,{}0,1,2,E = ,其转移概率为,1,,1i ij i ib j i p r i ja j i =+⎧⎪==⎨⎪=-⎩ 0(0)a =,称此马尔可夫链为生灭链.3.定理5-1设随机过程{}nX 满足:(1)1(,)(1),n n n X f X n ξ-=≥其中:f E E E ⨯→,且n ξ取值在E 上; (2){},1nn ξ≥为独立同分布随机变量,且0X 与{},1n n ξ≥也相互独立,则{}n X 是Markov 链,而且其一步转移概率为,对于任意,i j E ∈,1((,))ij p P f i j ξ==证明:设1n ≥,由上面(1)、(2)可知,1n ξ+与12,,,nX X X 互相独立,所以有1110011100111001(|,,,)((,)|,,,)((,)|,,,)((,))n n n n n n n n n n n n n n P X j X i X i X i P f X j X i X i X i P f i j X i X i X i P f i j ξξξ+--+--+--+================同理111001(|,,,)(|)n n n n n n P X j X i X i X i P X j X i +--+=======即{}nX 是Markov 链,由时间齐次性,其一步转移概率为1((,))ij p P f i j ξ==于是定理5-1得证.4.定理5-2时齐次Markov 链{}nX 完全由其初始状态的概率分布0(),1,2,i p P X i i ===和其转移概率矩阵()ijP p =所确定.证明:对于任意12,,,n i i i E ∈ ,计算有限维联合分布,由概率的乘法公式及马氏性可知1001121001100111100111100111111001111(,,,)(,,,)(|,,,)(,,,)(|)(,,,)n n n nn n n n n n n n n n n n n n n n i i i i i i i i i P X i X i X i P X i X i X i P X i X i X i X i P X i X i X i P X i X i P X i X i X i p p p p p ------------======================定理5-2得证. 5.例题 例5-9(1)(二项过程的概念)设在每次试验中,事件A 发生的概率为(01)p p <<,独立地重复进行这项试验,以n Y 表示到第n 次为止事件A 发生的次数,则{},1,2,nY n = 是一个二项过程.说明:令n X 表示第n 次试验中事件A 发生的次数,则n X ~(0)1,(1),1,2,n n P X p P X p n ==-=== 且独立.(易知{},1nX n ≥为马氏过程)而1,1,2,n n Y X X n =++= 服从二项分布(,)B n p ,故称此{},1nY n ≥为二项过程.(2)二项过程具有独立平稳增量性. 证明:易知增量1n l n n n l Y Y X X +++-=++ ,1121n l k n l n l n l k Y Y X X ++++++++++-=++ ,等等相互独立;且~(,),1,2,n m n Y Y B m p n +-= ,即具有平稳性. 即{},1nY n ≥为一个独立平稳增量过程.(3)独立平稳增量过程为马氏过程.5.2 C-K 方程1.定理5-3 Chapman-Kolmogorov 方程 对任何整数,0m n ≥, 有()()()m n m n ijik kj k Epp p +∈=∑或()()()m n m n P P P +=⨯证明:这里只需要证明()(1)n n P PP -=成立,再依次递推即可证明本定理.(?)因为()0100100101010(1)(|)(,|)(|)(|,)(|)(|)(n ij n n k n k n k n ik kj k P P X j X i P X j X k X i P X k X i P X j X i X k P X k X i P X j X k p p ∞=∞=∞=∞-====================∑∑∑∑由马氏性)根据矩阵的乘法规则,知()(1)n n P PP -=.定理得证.注:定义m 步转移概率()(|)m ijn m n pP X j X i +===,()m ijp 表示给定时刻n 时,过程处于状态i ,间隔m 步之后过程在时刻n+m 转移到了状态j 的条件概率.还约定(0)1iip =,(0)0ijp =,i j ≠以()n ijp 表示第i 行、第j 列的元素矩阵()n P =(()n ijp ),称为Markov 链的n 步转移概率矩阵.2.例题(两状态Markov 链) 例5-10在重复独立贝努里(Bernoulli )试验中,每次试验有两种状态{}0,1E =,设{}nX 表示第n 次试验中出现的结果,且有(1),(0)1,1,2,n n P X p P X q p n =====-=其中01p <<,则{},1nX n ≥显然是独立同分布随机序列,从而它是Markov 链.于是经过计算有00100111,p p q p p p ====所以,一步转移概率矩阵为q p P qp ⎡⎤=⎢⎥⎣⎦而且有()n qp PP q p ⎡⎤==⎢⎥⎣⎦5.3 Markov 链的状态分类 1.互通 定义5-2称自状态i 可达状态j ,并记i j →,如果存在0n >,使()0n ijp >,称状态i 与j 互通(相同,互达),并记为i j ↔,如i j →且j i →2.定理5-4可达关系与互通关系都具有传递性,即如果i j →且j k →,则i k → 证:因为有i j →,j k →,所以存在1,1l m ≥≥,使()()0,0l m ij jk p p >>由C-K 方程()()()()()0l m l m l m ik is sk ij jk sp p p p p +=≥>∑这里1l m +≥,所以i k →成立.若将可达关系得证明正向进行,再反向进行,就可得出互通关系的传递性,证毕. 3.定义5-3 设{},1nXn ≥为齐次Markov 链,其状态空间为E 。
随机过程Ch5连续时间的马尔可夫链ppt课件
由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
则器件在0, t 正常工作,即寿命超过t的概率为: PX t exdx et
t
已知器件用了t小时,器件寿命超过t h,
即在t,t h器件不坏的概率为:
p00h PX t h / X t
PX
t h, X
PX t
t
PX t h PX t
e t h et
eh
1 h
5.2柯尔莫哥洛夫微分方程
一.连续性条件(正则性条件)
规定lim t 0
pij t ij
1 0
i j i j
或lim Pt I t 0
称此为连续性条件(正则性条件)
阐明:过程刚进入某状态不可能立即又 跳跃到另一状态,这恰好阐明一种物理系统要 在有限时间内发生无限屡次跳跃,从而消耗无 穷多旳能量这是不可能旳,亦即经过很短时间 系统旳状态几乎是不变旳。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
dt
t 0
lim
h0
pij h
h
pij 0
lim
h0
pij h ij
h
Hale Waihona Puke qij即: 1dpii t
dt
t 0
lim
h0
pii h 1
h
周荫清《随机过程理论》第5章 高斯随机过程
X s (t ) X c (t )
ˆ X (t ) X s (t ) sin 0t X c (t ) cos 0t
式中
ˆ X c (t ) X (t ) cos 0 (t ) X (t ) sin 0 (t ) ˆ X s (t ) X (t ) sin 0 (t ) X (t ) cos 0 (t )
2
0
exp{x cos }d
所以,相位的二维分布为
p (1 , 2 ) C
2 1 2
4 x
1
2
[
(1 cos )
2
1 2
cos
3 2
(1 cos )
2 2
] 0 1 , 2 2
式中 = cos
r ( ) cos(
1 )
i 2 D[ X (ti )] 2
二、高斯随机过程
高斯过程是二阶矩过程 严格平稳和广义平稳等价
E[ X 2 (t )]
相互独立和互不相关等价
特征函数
1 n n n n (v1 , v2 ,, vn ; t1 , t2 ,, tn ) exp j aivi CX (ti , tk )vivk 2 i 1 k 1 i 1
四、随机相位正弦波加窄带平稳高斯随机过程之和
设随机相位正弦波加窄带平稳高斯过程之和为
Y (t ) s(t ) N (t ) 式中 s(t ) B cos[0t ] B cos 0t cos B sin 0t sin
N(t)为窄带噪声,是一个平稳高斯过程
N (t ) An (t )cos[0t n (t )] Nc (t )cos 0t Ns (t )sin 0t
随机过程-第五章 马尔可夫链
0.95 0.02 0.02 0.01 0.3 0.6 0.06 0.04 P 0.2 0.1 0.7 0 0.2 0.2 0.1 0.5
P
jS
ij
1, i S 。则称该矩阵为随机矩阵。
显然,随机矩阵的各行元素之和都等于 1。
例 5.1 赌徒输光问题 :考虑一赌徒,在每局赌博中他以概率 p 赢得 1 元,以概率
q 1 p 输掉 1 元,假设各局赌博是相互独立的,赌徒开始有 i ( ቤተ መጻሕፍቲ ባይዱ i n )元,且他在赌
显然, Markov 链的统计特征由其初始分布 P{ X 0 i0 } 和转移概率 P{ X k i X k 1 ik 1} ( k 1, 2,, n )决定。
定义 5.3 时齐 Markov 链: 当 Markov 链的转移概率 P{ X n1 j X n i} 只与状态 i, j 有
m n m, n 0 使得 P ij 0, Pjk 0 ,利用 C-K 方程(1)可知
n n Pikm n Pirm Prk Pijm Pjk 0 rS
K 类似地可以证明存在 K 0 使得 Pki 0 。
称互通的两个状态属于同一个类,且由命题 5.1 可知,任何一个状态不能同时属于两个 不同的类,即任意两个不同的类不相交。 思考:对例 5.1 中的赌徒问题的状态分类? 定义 5.7 可约:若 Markov 链只存在一个类,则称它为不可约的;否则称为可约的。 在不可约的 Markov 链中,一切状态都是彼此互通的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-8-23
胡朝明
28-6
等价定理
定理 泊松过程的定义1与定义2是等价的。
证明 12:条件a)与1)相同。条件b)可由2)和3) 直接得到。 ( h ) h e P{N(h)=1}=P{N(h)-N(0)=1}=
1!
=h[1-h+o(h)]=h+o(h) 即c)。
( h )k h P{N(h) 2} e k! k 2
即d)。
2013-8-23
(h ) 2 o(h)[1 h o(h)] o(h) 2!
胡朝明 28-7
证明
21:条件1)与a)相同。条件2)由b)直接得到。只要证明: N(t)(t0)服从参数为t泊松分布。 P{N(h) i} 1 设pk(t)=P{N(t)=k},利用归纳法证明: i 0
1 e t , t 0 因此,T1的分布函数为 FT1 (t ) t0 0,
胡朝明
2013-8-23
28-15
e t , t 0 1 T1的概率密度为 f T1 (t ) E( T1 ) t0 0, 即T1服从参数为λ的(负)指数分布。 T2表示事件第1次出现至第2次出现的点间间距 P {T2>t|T1=s1}=P{在(s,s+t)内没有事件出现|T1=s1} = P{在(s1,s1+t)内没有事件出现} =P{ N(s1+t)-N(s1)=0} =P{ N(t)=0}=e-λt
一般地,C(s,t)=min(s,t),
R(s,t)=min(s,t)+2st。■
2013-8-23 胡朝明 28-13
泊松过程的性质1
泊松过程是平稳独立增量过程;
设N(t)表示区间[0,t)内事件出现的次数,{N(t), t0}是参数为的泊松过程,设1,2,…,n分别表示
事件第1、2、…、n次出现的时间,称k为事件第
( t )k t p k (t ) e , k 0,1,2, k! 独立增量 (1) k=0,p0(t+h)=P{N(t+h)=0} 过程 =P{N(t)=0,N(t+h)-N(t)=0} 平稳性 =P{N(t)=0}P{N(t+h)-N(t)=0} = P{N(t)=0}P{N(h)=0} =p0(t)[1-h+o(h)]
k次出现的等待时间;Tk(k1)表示事件第k-1次出
现到第k次出现的点间间距。
Tk=k-k-1,k=T1+T2+…+Tk,
k=1,2,…,n,0=0
2013-8-23 胡朝明 28-14
泊松过程的性质2
设{N(t),t0}是参数为的泊松过程,{Tn,n=1,2,…}为点 间间距序列,则T n ,n=1,2,…是相互独立同分布的随机变 量,且都服从参数为的(负)指数分布。 证明 因为T1表示事件第1次出现以前所需要的时间,所以 事件{T1>t}表示在[0,t)内泊松事件还没有出现,因此,事 件{T1>t}的发生当且仅当没有泊松事件在在[0,t)内出现, 于是对t≥0,有 P {T1>t}=P{N(t)=0}=e-λt P {T1≤t}=1- P {T1>t} =1- e-λt 对t<0,有 P {T1>t}=0
, k 0,1,2,。
再由平稳独立增量性质,对一切0s<t,
得出3)。■
2013-8-23
[(t s)]k ( t s ) P[N(t ) N(s) k ] P[N(t s) k ] e , k 0,1,2,。 k!
胡朝明 28-10
泊松过程的概率分布和数字特征
…}为等待时间序列,则 n~(n,),即概率密度
为:
n 1 t t e , t 0, f ( t ) (n ) 0, t 0。
n
即n阶爱而朗分布。
2013-8-23
胡朝明
28-18
非齐次泊松过程
如果计数过程{N(t),t0}满足下列条件: a) N(0)=0; b) {N(t),t0}是独立增量过程; c) P{N(t+t)-N(t)=1}=(t)t+0(t); d) P{N(t+t)-N(t)2}=0(t) 则称{N(t),t0}为参数(或平均率、强度)为(t)的非齐次泊 松过程。特别,当(t)=时,即为齐次泊松过程。 定理 若过程{N(t),t0}是非齐次泊松过程,则在时间间 距[t0,t0+t)内事件A出现k次的概率为:
[m(t 0 t) m(t 0 )]k [m(t 0 t)m(t 0)] P{N(t 0 t)-N(t 0 ) k} e , k 0,1,2, k! t 式中 m(t ) (s)ds
0
2013-8-23
胡朝明
28ቤተ መጻሕፍቲ ባይዱ19
例
某镇有一小商店,每日8:00开始营业。从8:00到 11:00平均顾客到达率线性增加,在8:00顾客平均 到达5人/小时;11:00到达率达最高峰20人/小时。 从11:00到13:00平均顾客到达率为20人/小时。从
等等,{N(t),t0}都是泊松过程的典型实例。
2013-8-23 胡朝明 28-4
泊松过程的定义1
如果取非负整数值的计数过程{N(t),t0}满足:
1) N(0)=0;
2) 具有独立增量; 3) 对任意0s<t,N(t)-N(s)服从参数为(t-s)泊松 分布,
[ (t s)] ( t s ) P{N(t)-N(s k} ) e , k 0,1,2, k!
(s) j s [(t s)]k j ( t s ) e e j! (k j)! k s j (t s)k j t e , 0st j! (k j)!
2013-8-23 胡朝明 28-12
泊松过程的概率分布和数字特征
4. 协方差函数和相关函数
1. 一维概率分布及均值和方差函数
1) 对任意t>0,N(t)~(t),
( t )k t P{N(t)=k}= e ; k!
2) 均值函数 3) 方差函数 m(t)=E[N(t)]=t; D(t)=D[N(t)]=t。
2. 一维特征函数
(u) E[eiuN ( t ) ] eiuk
因为
p 0 (t h ) p 0 (t ) o(h ) p 0 (t ) , h h
p 0 ' (t ) p 0 (t ) 令h 0得 , 解得:p0(t)=e-t。 p 0 (0) P{N(0) 0} 1
2013-8-23 胡朝明 28-8
证明(续1)
k
则称{N(t),t0}为参数(或平均率、强度)为的(齐 次)泊松过程。
2013-8-23 胡朝明 28-5
泊松过程的定义2
如果取非负整数值得计数过程{N(t),t0}满足下
列条件:
a) N(0)=0; b) 具有平稳独立增量; c) P{N(h)=1}=h+o(h); d) P{N(h)2}=o(h) 则称{N(t),t0}为参数(或平均率、强度)为的(齐次) 泊松过程。
13:00到17:00平均顾客到达率线性下降,17:00顾客
到达率为12人/小时。假设在不相交的时间间隔内 到达商店的顾客数是相互独立的,试问在8:30到 9:30时间内无顾客到达商店的概率为多少?在这段 时间机内到达商店的顾客的均值为多少?
2013-8-23 胡朝明 28-20
解
设8:00为t=0,11:00为t=3,13:00为t=5,17:00为t=9, 第二天8:00可以为t=9。于是,顾客到达率是周期为9的 函数:
j 0 j 0
j 0 k
k 2
=pk(t)[1-h+o(h)]+pk-1(t)[h+o(h)]+o(h),
p k (t h ) p k (t ) o(h) p k ( t ) p k 1 ( t ) , h h pk ' (t ) pk (t ) pk 1 (t ) 令h 0得, ,(k 1,2,3,) pk (0) P{N(0) k } 0
(2) k1 pk(t+h)=P{N(t+h)=k}
P{N(t) j, N(t h) N(t) k j}
j 0
k
k
P{N(t) j}P{N(h) k j}
p j(t)pk j(h) pk (t)p0(h) pk 1(t)p1(h) p j(t)pk j(h)
协方差函数 相关函数 C(s,t)=min(s,t), R(s,t)=min(s,t)+2st。
证明 R(s,t)=E[N(s)N(t)]
=E{N(s)[N(t)-N(s)+N(s)]} s<t =E[N(s)]E[N(t)-N(s)]+E[N2(s)] =s· (t-s)+s+(s)2=s+2st C(s,t)=R(s,t)-m(s)m(t)=s+2st-st=s
P{T2 t, T1 s}
T2 |T1 t s t t
s
f (x, y )dxdy
s
f
(x | y )f (y )dxdy P{T2 t | T1 y}f (y )dxdy
胡朝明
e f ( y )dy e t P{T1 s} P{T2 t} P{T1 s}
s
2013-8-23
28-16
当s=0时,可见T2也服从参数为λ的(负)指数分布且 T2与T1独立同分布。
类似地,可用数学归纳法证明当n>2时,Tn,n=1,2,…