九年级数学上册相似三角形的判定-讲义
《相似三角形》最全讲义(完整版)
相似三角形基本知识知识点一:放缩与相似形1. 图形的放大或缩小,称为图形的放缩运动。
2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似两个图形相似,其中一个图形可以看作是由另一个图形放大或缩到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。
a、 b 的长度分别是m、n,那么就说这两条线段am 的比是a:b=m:n(或 b n )2、比的前项,比的后项:两条线段的比a:b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
ac3、比例:两个比相等的式子叫做比例,如 b dac4、比例外项:在比例 b d(或a:b=c:d)中a、d叫做比例外项。
ac5、比例内项:在比例 b d(或a:b=c:d)中b、c 叫做比例内项。
ac6、第四比例项:在比例 b d(或a:b=c:d)中, d 叫a、b、 c 的第四比例项。
ab7、比例中项:如果比例中两个比例内项相等,即比例为 b a(或a:b =b:c 时,我们把b叫做 a 和 d 的比例中项。
8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 a c(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线bd 段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)2)比例性质acad bc1. 基本性质 :bd(两外项的积等于两内项积)a cb d2. 反比性b d a c ( 把比的前项、后项交换 )3.更比性质 (交换比例的内项或外项 ) :a b,(交换内项 ) cdcd c,(交换外项 ) db a d b.(同时交换内外项 ) ca4.合比性质 :a c abc d(分子加(减)分母 ,分母不变) b d b d注意 :实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间注意:(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立.AC1)定义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和BC (AC>BC ),如果AB2)黄金分割的几何作图 :已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点发生同样和差变化比例仍成立.如:acbd5. 等比性质: 如果badc a ab c cd abcd分子分母分别相加,比值不变.)e m(b d f fnn 0) ,那么知识点三: 黄金分割BC ,AC,AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割2即 AC 2=AB ×BC ,那么称线段点,AC 与 AB 的比叫做黄金比。
相似三角形的判定全课件
两个三角形如果一个对 应角和一组对应边成比 例,则这两个三角形相似。
两个三角形如果一组对 应边和一个对应角成比 例,则这两个三角形相似。
02
CATALOGUE
三角形相似的判定条件
角角角(AAA)判定条件
总结词
不满足相似三角形的判定条件
详细描述
AAA条件仅表明三个角度相等,但边长不一定成比例,因此不能判定三角形相似。
在解决实际问题中的应用
建筑设计
在建筑设计中,可以利用相似三 角形来计算建筑物的尺寸和比例。
机械设计
在机械设计中,可以利用相似三角 形来计算零件的尺寸和比例。
物理学
在物理学中,可以利用相似三角形 来解释和计算物理现象,如光学、 力学等。
04
CATALOGUE
三角形相似的证明方法
直接证明法
定义法
根据相似三角形的定义,证明两 个三角形三边对应成比例,且三 角对应相等,从而判定两个三角
题目2
两个等腰三角形,一个 底角为30°,另一个底 角为45°,如果一个三 角形的顶角为120°,另 一个三角形的顶角为 90°,则这两个三角形 是否相似?
进阶练习题
总结词
考察三角形相似的复杂判定方法和综合应用
题目1
两个等腰三角形,一个底角为45°,另一个底角为60°,如果一个三角形的顶角为90°,另 一个三角形的顶角为120°,则这两个三角形是否相似?
相似比
两个相似三角形的对应边 之间的比例称为相似比。
相似三角形的性质
相似三角形对应角相等, 对应边成比例,面积比等 于相似比的平方。
相似三角形的判定定理
角角判定定理
两个三角形如果两个对 应角相等,则这两个三
角形相似。
相似三角形判定讲课逐字稿
相似三角形判定讲课逐字稿同学们,今天我们要一起探讨一个非常有趣的几何学话题——相似三角形的判定。
相似三角形是几何学中一个重要的概念,它不仅在数学领域有着广泛的应用,而且在日常生活中也随处可见。
那么,我们如何判断两个三角形是否相似呢?这就是我们今天要学习的重点内容。
首先,让我们来看第一个判定相似三角形的方法——角角相似(AA)。
如果两个三角形有两个角相等,那么这两个三角形就是相似的。
这个判定方法的依据是三角形内角和定理,即任何一个三角形的内角和都是180度。
如果两个三角形有两个角相等,那么第三个角也必然相等,因为它们必须加起来等于180度。
这样,两个三角形的所有对应角都相等,所以它们是相似的。
接下来,我们来看第二个判定方法——边边边相似(SSS)。
如果两个三角形的三边对应成比例,那么这两个三角形就是相似的。
这个方法的依据是相似三角形的性质,即相似三角形的对应边是成比例的。
通过测量两个三角形的边长,我们可以判断它们是否相似。
第三个判定方法是边角边相似(SAS)。
如果两个三角形有两边对应成比例,并且这两边夹角相等,那么这两个三角形就是相似的。
这个方法结合了边的比例关系和角的相等关系,是一种非常实用的判定方法。
现在,让我们通过几个例子来加深对这些判定方法的理解。
我会在黑板上画出几个三角形,然后我们一起来分析它们是否相似。
(此处可以展示几个三角形的例子,让学生参与讨论和判断)通过这些例子,我们可以看到,相似三角形的判定并不是那么困难。
只要我们掌握了角角相似、边边边相似和边角边相似这三个方法,就能够轻松地判断两个三角形是否相似。
最后,我想强调的是,相似三角形的判定不仅仅是一个理论问题,它在实际生活中也有很多应用。
比如在建筑设计、地图制作、甚至在艺术创作中,都需要用到相似三角形的知识。
所以,希望大家能够认真学习这部分内容,将来在实际应用中能够得心应手。
好了,今天的课就到这里,希望大家能够有所收获。
下课。
相似三角形的判定及性质 课件
条.
错解:如图,过点 D 作 DE1∥BC,此时∠AE1D=∠B,∠A=∠A,所以△ABC
∽△AE1D;过点 D 作 DE2∥AB,此时∠CE2D=∠B,∠C=∠C,所以△ABC∽
△DE2C.
答案:2
错因分析:本题为探索性题目,由于对应元素不确定,因而存在多种情况,
形相似,因此共有 4 条直线符合要求.
答案:4
思路分析:由于这两个三角形都是直角三角形,且已知条件是线段间的
关系,故考虑证明对应边成比例,即只需证明
=
即可.
证明:在正方形 ABCD 中,
∵Q 是 CD 的中点,∴ =2.
∵ =3,∴ =4.
又 BC=2DQ,∴ =2.
在△ADQ 和△QCP 中,
两角对应相等,两
个三角形相似
两边对应成比例
且夹角相等Hale Waihona Puke 两个三角形相似作用
判定
两个
三
角形
相似
判定
两个
三角
形
相似
引
理
如果一条直线截三角形的两边(或两边的延
长线)所得的对应线段成比例,那么这条直线
平行于三角形的第三边
判定
定理
3
对于任意两个三角形,如果一个三角形的三
条边和另一个三角形的三条边对应成比例,
那么这两个三角形相似
=
=2,∠C=∠D=90°,
∴△ADQ∽△QCP.
探究三 证明两直线平行
常利用引理来证明两直线平行,其关键是证明其对应线段成比例,这样
相似三角形的判定PPT课件
3.4.1 类似三角形判定的基本定理
复习导入
定义
全等三
角形
三角、三边对应相等
的两个三角形全等
类似三 三角对应相等, 三边对应
角形
成比例的两个三角形类似
判定方法
边
角
边
角
边
角
角
角
边
边
边
边
斜边与直角边
(直角三角形)
探究新知
如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.
∴
=
=
∠EAO=∠BAC,
∠AEO=∠B,
∠AOE=∠ACB,
当堂练习
2. 如图,已知点O在四边形ABCD的对角线AC上,OE∥CB,OF∥CD.试判
断四边形AEOF与四边形ABCD是否类似,并说明理由.
∵OF∥CD,∴△AFO∽△ADC,
∴
=
=
∠FAO=∠DAC,
DE至点F,使DE=EF. 求证:△CFE∽△ABC.
证明 ∵DE∥BC,点D为△ABC的边AB的中点,
∴AE=CE.
又∵DE=FE,∠AED=∠CEF,
∴△ADE≌△CEF.
∵DE∥BC,
∴△ADE∽△ABC.
∴△CFE∽△ABC.
知识要点
平行于三角形一边的直线与其他两边相交,截得的三角形与原
三角形类似.
求证:只要DE//BC,△ADE与△ABC始终类似.
证明:在△ADE与△ABC中,∠A=∠A.
∵DE∥BC,
分析:根据类似三角形的定
义去证明,三角对应相等,
三边对应成比例。
九年级数学相似三角形的判定及证明技巧讲义
相似三角形是中学数学中的一个重要内容,对于九年级学生来说,掌握相似三角形的判定及证明技巧是必不可少的。
本文将详细讲解相似三角形的判定及证明技巧,帮助学生更好地理解和运用这一知识点。
一、相似三角形的判定:1.AAA相似判定法:如果两个三角形的对应角度相等,则这两个三角形是相似的。
例如,在△ABC和△DEF中,∠A=∠D,∠B=∠E,∠C=∠F,那么这两个三角形相似。
2.AA相似判定法:如果两个三角形的一个角对等于另一个角,且两个角的对边成比例,则这两个三角形是相似的。
例如,在△ABC和△DEF 中,∠A=∠D,∠C=∠F,且AB/DE=BC/EF,那么这两个三角形相似。
3.SSS相似判定法:如果两个三角形的对应边成比例,则这两个三角形是相似的。
例如,在△ABC和△DEF中,AB/DE=BC/EF=AC/DF,那么这两个三角形相似。
4.平行线判定法:如果两个三角形的对应边平行,则这两个三角形是相似的。
例如,在△ABC和△DEF中,AB∥DE,BC∥EF,AC∥DF,那么这两个三角形相似。
二、相似三角形的证明技巧:1.用平行线证明相似:如果两个三角形的对应边平行,则这两个三角形是相似的。
证明时,可以使用平行线的性质,如同位角相等、内错角互补等。
2.用角度证明相似:如果两个三角形的对应角度相等,则这两个三角形是相似的。
证明时,可以根据已知信息,使用角度的性质进行推导。
3.用边长比证明相似:如果两个三角形的对应边长比相等,则这两个三角形是相似的。
证明时,可以根据已知的边长比,通过等式推导得出结论。
4.用等腰三角形证明相似:如果两个三角形分别为等腰三角形,且对应的顶角相等,则这两个三角形是相似的。
以上是常用的相似三角形的判定及证明技巧,希望对九年级的数学学习有所帮助。
在学习过程中,要多加练习,掌握不同方法的应用,提高解题能力。
同时,要注重理论与实践相结合,灵活运用知识,培养自己的思维能力和推理能力。
祝每位同学在数学学习中取得优异成绩!。
相似三角形的判定 课件
2.预备定理
平行于三角形一边的直线和其他 文字
两边(或两边的延长线)相交,所构 语言
成的三角形与原三角形相似 图形 语言
在△ABC 中,D,E 分别是 AB, 符号
AC 边上的点,且 DE∥BC,则 语言
△ADE∽△ABC
3.相似三角形的判定定理
(1)判定定理 1:两角对应相等,两三角形相似. (2)判定定理 2:两边对应成比例,且夹角相等,两三 角形相似. (3)判定定理 3:三边对应成比例,两三角形相似.
4.直角三角形相似的判定
(1)两直角三角形有一个锐角相等,两直角三角形相 似.
(2)两直角三角形的两直角边对应成比例,两直角三 角形相似.
(3)两直角三角形的斜边和一条直角边对应成比例, 两直角三角形相似.
温馨提示 在证明直角三角形相似时,要特别注意直 角三角形这一隐含条件的利用.
类型 1 相似三角形的判定(互动探究)
类型 2 利用三角形相似证明比例式或等积式
[典例 2] 如图所示,EF 分别交 AB, AC 于点 F,E,交 BC 的延长线于点 D, AC⊥BC,且 AB·CD=DE·AC.
求证:AE·CE=DE·EF. 证明:因为 AB·CD=DE·AC, 所以DABE=CADC.
又因为 AC⊥BC, 所以∠ACB=∠DCE=90°. 所以△ACB∽△DCE,所以∠A=∠D. 又因为∠AEF=∠DEC, 所以△AEF∽△DEC, 所以DAEE=ECFE.所以 AE·CE=DE·EF.
相似三角形的判定
1.相似三角形的定义 (1)定义:对应角相等、对应边成比例的两个三角形 叫做相似三角形. (2)相似比(相似系数):相似三角形对应边的比值. (3)记法:两个三角形相似,用符号“∽”表示.例 如△ABC 与△A′B′C′相似,记作△ABC∽△A′B′C′.
相似三角形及判定
相似三角形及其判定一、知识导航1、相似三角形定义2、相似三角形判定二、典例精讲:精讲一、相似三角形定义:定义:对应角相等、对应边成比例的三角形,叫做相似三角形.相似用符号“S”表示,读作“相似于”,相似三角形对应边的比值叫做相似比(或相似系数).①记两个三角形相似时,和记两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上②全等是特殊的相似,相似比是1:1.全等要求形状相同与大小相等,而相似只是形状相同③由相似的定义,得相似三角形对应角相等,对应边成比例.④相似三角形有传递性:若AABC s AABC,AABC s AABC,则AABC AABC111222222333111333精讲二、相似三角形的判定:1、预备定理:平行于三角形一边的直线与另外两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、相似三角形的判定定理★判定定理1、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.例1、(1)如图,B,C,D三点共线,且AB丄BD,DE丄BD,AC丄CE.求证:A ABC s A CDE.D(2)如图B,C,D三点共线,且ZB=ZD=ZACE,求证:AABC s ACDE.变式:1、如图,A ABC中,Z ACB=60。
,点P是A ABC内一点,使得Z APB=Z BPC=Z CPA,求证:AAPC s ACPB.2、已知A PQR是等边三角形,ZAPB=120。
,指出图中的相似三角形并证明.例2、(1)已知:如图,A ABC的高AD,BE相交于点F,求证:AF-FD=BF-FE.⑵如图,已知在RtAABC中,ZACB=90°,CD是RtAABC的高.求证:CD2=AD-BD;BC2=AB-BD;AC2二AD-AB.变式:如图,已知在RtAABC中,ZACB=90°,CD是RtAABC的高.若E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF2=BF-CF.★判定定理2、如果一个三角形的两边与另一个三角形的两边对应成比例,且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.例3、(1)如图,已知AD-AB二AE-AC.贝y:①AADE s AACB;②AAEB s AADC正确的是;相似依据是.(2)如图,四边形ABEG、GEFH、HFCD都是边长为2的正方形.①求证:AAEF s ACEA;②求ZAFB+ZACB的值.(3)如图,A ABC是等边三角形,D为CB延长线上一点,E为BC延长线上点.①当BD、BC和CE满足什么条件时,A ADB s A EAC?②当A ADB s A EAC时,求Z DAE的度数.A变式:1、如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.OA-OC二OB-OD,则①②③④哪些对应相似,请写出.2、如图,已知Z BAE=Z CAD,AB=18,AC=48,AE=15,AD=40.3、如图,在A ABC和A ADB中,Z ABC=Z ADB=90。
九年级数学相似三角形的判定
目
CONTENCT
录
• 相似三角形的定义与性质 • 相似三角形的判定方法 • 相似三角形的应用 • 相似三角形的变式与拓展
01
相似三角形的定义与性质
相似三角形的定义
02
01
03
两个三角形如果对应角相等,则它们是相似的。
相似三角形对应边的比值相等,即它们的边长比例相 等。 相似三角形的对应角相等,对应边成比例。
物理学
在物理学中,相似三角形经常被 用来解决与力、运动相关的问题 。
80%
工程设计
在工程设计中,相似三角形可以 帮助设计师确定建筑物的结构稳 定性。
在数学竞赛中的应用
奥林匹克数学竞赛
在奥林匹克数学竞赛中,相似 三角形是解决几何问题的重要 工具之一。
数学竞赛培训
在数学竞赛培训中,相似三角 形是培训内容的重要组成部分 ,用于提高学生的几何思维能 力。
具体来说,如果$angle A = angle A'$、且$frac{AB}{A'B'} = frac{AC}{A'C'} = k$ ($k$为常数),则$triangle ABC sim triangle A'B'C'$。
03
相似三角形的应用
在几何图形中的应用
确定未知量
通过相似关系,我们可以确定一些未知量,如角度 、长度等。
相似三角形的性质
相似三角形的对应角相等,对 应边成比例。
相似三角形的面积比等于相似 比的平方。
相似三角形对应高的比等于相 似比,对应中线的比也两组对应角分别相等,则这两个 三角形相似。
如果两个三角形的两组对应边的比值相等,则这两 个三角形相似。
相似三角形的判定-完整版PPT课件
课程讲授
1 三边成比例的两个三角形相似
A′ A
B
C
B′
C′
AB A'B'
=
BC B'C'
= CA C'A'
△ABC∽△A'B'C'
课程讲授
1 三边成比例的两个三角形相似
问题2:运用所学知识,证明你的结论.
已知:如图,△ABC和△A'B'C'中,AB = BC = CA A'B' B'C' C'A'
BD BC DC 3 A
∴ △ABD∽△BDC, ∴∠ABD=∠BDC,
∴AB∥DC.
14 B
D
31.5 21
42
C
课堂小结
判定定理1
三边成比例的两个三角形相似.
相似三角形 的判定
判定定理2
两边成比例且夹角相等的两个三 角形相似.
练一练:如图,在△ABC与△ADE中,∠BAC=∠D,
要使△ABC与△ADE相似,还需满足下列条件中的( C )
A. AC AB
AD AE
B. AC BC
AD DE
C. AC AB
AD DE
D. AC BC
AD AE
随堂练习
1.已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一 边长为4 cm,当另两边的长是下列哪一组时,这两个三角形
=
AB AD
=
BC DE
,
∴△ABC∽△ADE.
随堂练习
5.如图,已知AD·AC=AB·AE. (1)求证:△ADE∽△ABC;
证明:∵AD·AC=AB·AE,
相似三角形的判定及性质 课件
AC=BD∶AD,转证 BD∶AD=DF∶
AF , 变 为 证 △ FAD ∽ △ FDB. 其 中
BD∶AD 正是两对相似三角形的中
间比.
图 1-3-3
【自主解答】 ∵∠BAC=90°,AD⊥BC, ∴∠C=∠BAD,Rt△ADB∽Rt△CDA. ∴AB∶AC=BD∶AD. 又∵E 是 AC 的中点, ∴AE=DE=EC, ∴∠DAE=∠ADE,
如图 1-3-5,D 为△ABC 的边 AB 上一点,过 D 点作 DE∥BC,DF∥AC,AF 交 DE 于 G,BE 交 DF 于 H, 连接 GH.
求证:GH∥AB.
图 1-3-5
【思路探究】 结合图形的特点可以先证比例式EEGD= EEHB成立,再证△EGH∽△EDB,由此得∠EHG=∠1
判定 定理 2
判定 定理 3
定理内容
简述
对于任意两个三角形,如果一个三角形 的两个角与另一个三角形的两个 角对应相等 ,那么这两个三角形相似.
两角对应相等,两三 角形相似
对于任意两个三角形,如果一个三角形 两边对应成比例且夹
的两边和另一个三角形的两
角相等,两三角形相
边对应成比例,并且夹角相等,那么这 似.
2.判定两个三角形相似时,关键是分析已知哪些边对 应成比例,哪些角对应相等,根据三角形相似的判定定理, 还缺少什么条件就推导出这些条件.
如图 1-3-3,已知△ABC 中,∠BAC=90°,
AD⊥BC 于 D,E 是 AC 的中点,连接 ED 并延长与 AB 的延
长线交于 F.求证:AACB=DAFF. 【思路探究】 由条件知:AB∶
所 以 ∠ BAC = ∠ EAD , ∠ BAC - ∠ DAC = ∠ EAD - ∠ DAC,即∠DAB=∠EAC.
3.4.1 相似三角形的判定课件(共33张PPT)湘教版 数学九年级上册
感悟新知
2-1. [ 模拟·株洲荷塘区 ] 如图,在 ▱ABCD中, 点 E
在 AD 上,且 BE 平分∠ ABC,交AC 于点 O,若
AB=3,BC=4,则
AOOC=
3 ___4___.
课堂新授
知识点 2 角的关系判定三角形相似定理
1. 相似三角形的判定定理1:两角分别相等的两个三角形 相似.
∴ AB=CD, AB∥CD,AD∥BC,∴△BEF ∽△CDF,
△BEF ∽ △AED. ∴△CDF ∽△AED.
∵ AB=CD,AB=3BE,∴ CD=3BE,AE=4BE. ∴△BEF ∽△CDF,相似比k1=CBDE=13; △BEF ∽△AED,相似比k2=BAEE=14; △CDF ∽△AED,相似比k3=CADE=34.
∵
12=
2= 2
10= 5
2,
∴图3.4-11 ②中的三角形与图3.4-10 中的△ABC相似.
感悟新知
5-1.如图,网格中的每个小正方形的边长都是1,每个 小正方形的顶点叫做格点. △ ACB 和△ DCE 的 顶点都在格点上, ED 的延长线交AB 于点 F.
求证: (1) △ ACB ∽△ DCE; 证明:∵DACC=32,BECC=64=32, DABE=32 55=32,∴DACC=BECC=DABE. ∴△ACB∽△DCE.
课堂新授
解题秘方:利用网格的特征用勾股定理求三角形 三边的长,紧扣“三边成比例的两个 三角形相似”判断.
课堂新授
解:易知AC= 2,BC=2,AB= 10 . 图3.4-11 ①中,三角形的三边长分别为1, 5,2 2; 图3.4-11 ②中,三角形的三边长分别为1, 2 , 5 ; 图3.4-11 ③中,三角形的三边长分别为 2, 5,3; 图3.4-11 ④中,三角形的三边长分别为2, 5, 13 .
沪教版九年级上学期-相似三角形讲义(含解析) (1)
一、比和比例一般来说,两个数或两个同类的量a与b相除,叫做a与b的比,记作:a b(或表示为ab );如果::a b c d=(或a cb d=),那么就说a、b、c、d成比例.二、比例的性质(1)基本性质:如果a cb d=,那么ad bc=;相似三角形知识结构模块一:比例线段知识精讲2 / 34如果a cb d =,那么b d ac =,a b cd =,c d a b=. (2) 合比性质: 如果a cb d =,那么a bc db d++=; 如果a cb d =,那么a bc db d--=. (3) 等比性质: 如果a c kb d ==,那么ac a c k bd b d+===+.三、比例线段的概念对于四条线段a 、b 、c 、d ,如果::a b c d =(或表示为a cb d=),那么a 、b 、c 、d 叫做成比例线段,简称比例线段. 四、黄金分割如果点P 把线段AB 分割成AP 和PB (AP PB >)两段(如下图),其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 称为线段AB 的黄金分割点.其中,510.6182AP AB -=≈,称为黄金分割数,简称黄金数.五、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线l // BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.APBlAB CDEAB C DEAB CDE ll六、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点D 、E 分别在ABC ∆的边AB 、AC 上, 如果DE // BC ,那么DE AD AE BC AB AC==. 七、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 八、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.九、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在ABC ∆中,直线l 与AB 、AC 所在直线交于点D 和点E ,如果ADAEDB EC=,那么l //BC .ABCD EA BCDEAB CDEABCD E4 / 34十、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例. 如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l所截,那么DF EGFB GC=.十一、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上 截得的线段也相等.【例1】 如图,点D 、E 分别在ABC ∆的边AB 和BC 上.下列所给的四个条件中,不一定能得到DE // AC 的条件是( ) A .BE BCBD BA =B .CE ADBE BD =C .BD DEBA AC=D .BC CEAB AD=【难度】★ 【答案】C .例题解析A BCDEF BC D E F G【解析】如图,作DF DE =,则DF DE AC AC =,∴BD DEBA AC=不能判定DE // AC ,故选C . 【总结】本题考查了平行线分线段成比例定理,找准对应关系,避免错选.【例2】 在比例尺为1 : 40000的一张地图上,量得A 、B 两地的距离是37 cm ,那么A 、B两地的实际距离是______km .【难度】★ 【答案】14.8.【解析】设A 、B 两地的实际距离是x km ,则51371040000x -⨯=,解得:14.8x =. 【总结】本题考查了比例尺的有关计算,注意单位的换算.【例3】 如图,已知1l //2l //3l ,DE = 4,DF = 6,那么下列结论正确的是( )A .BC : EF = 1 : 1B .BC : AB = 1 : 2 C .AD : EF = 2 : 3 D .BE : CF = 2 : 3 【难度】★ 【答案】B .【解析】::1:2BC AB EF DE ==,故B 正确. 【总结】本题考查了平行线分线段成比例定理的运用.【例4】 如果线段a = 4 cm ,b = 9 cm ,那么它们的比例中项是______cm . 【难度】★ 【答案】6.【解析】设它们的比例中项是x cm ,则由题意得249x =⨯,解得:6x =. 【总结】本题考查了比例中项的概念及计算.6 / 34BC DE FGA【例5】 四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交边AD 于点F ,交对角线BD 于点G .求证:CG 是EG 与FG 的比例中项. 【难度】★ 【答案】详见解析.【解析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴CG BG FG GD =,EG BGCG GD=, ∴CG EGFG CG=, ∴CG 是EG 与FG 的比例中项. 【总结】本题考查了平行线分线段成比例定理的运用.【例6】 已知线段AB = 10,P 是线段AB 的黄金分割点(AP > PB ),则AP =______. 【难度】★ 【答案】555.【解析】由题意得51AP AB -=555AP =. 【总结】本题考查了黄金分割的有关计算.【例7】 已知23a c eb d f ===,18ac e =--,0bd f ++≠,求b d f ++的值. 【难度】★★ 【答案】27.【解析】∵23a c eb d f ===,0b d f ++≠,∴23a c e b d f ++=++, ∵18a c e =--,∴18a c e ++=,∴27b d f ++=.【总结】本题考查了等比性质的应用.【例8】 如果直角三角形的斜边长为18,那么这个三角形的重心到直角顶点的距离为______.【难度】★★ 【答案】6.【解析】如图,易得192CD AB ==,∴263CG CD ==. 【总结】本题考查了重心的性质及直角三角形斜边上的中线等于斜边的一半.【例9】 如图,已知AD // EF // BC ,AE = 3BE ,AD = 2,EF = 5,那么BC =______.【难度】★★ 【答案】6.【解析】作AN ∥DC 分别交EF 、BC 于点M 、N ,由题意得2NC MF AD ===,EM AEBN AB=, 即334BN =,∴4BN =,∴6AB =. 【总结】本题考查了平行线分线段成比例定理的运用.【例10】 如图,点E 、F 分别在正方形ABCD 的边AB 、BC 上,EF 与对角线BD 交于点G ,如果BE = 5,BF = 3,那么FG : EF 的比值是_______.【难度】★★A BCDEF M NA BCDEFGH【答案】38.【解析】作GH AB⊥于点H,易得GH BH=,∵GH EHBF EB=,535GH GH-=,解得:158GH=,∴38 FG BHEF BE==.【总结】本题考查了平行线分线段成比例定理的运用,注意比和比值的区别.【例11】如图,BD是ABC∆的角平分线,点E、F分别在BC、AB上,且DE // AB,DEF A∠=∠.(1)求证:BE = AF;(2)设BD与EF交于点M,联结AE,交BD于点N,求证:BN MD BD ND=.【难度】★★【答案】详见解析.【解析】(1)∵DE // AB,DEF A∠=∠,∴AD∥EF,∴四边形AFED是平行四边形,∴AF DE=,ABD EDB∠=∠,∵BD是ABC∆的角平分线,∴ABD EBD∠=∠,∴EDB EBD∠=∠,∴BE DE=,∴BE AF=;(2)∵DE // AB,∴BN AB ND ED=,∵AD∥EF,∴BD ABMD AF=,MAFB E CDN8/ 34ABCDEFM∵ED AF =,∴BD AB MD ED =,∴BN BDND MD=, ∴BN MD BD ND ⋅=⋅.【总结】本题考查了平行四边形的判定及平行线分线段成比例定理.【例12】 如图,在直角梯形ABCD 中,AD // BC ,90DAB ABC ∠=∠=︒,E 为CD 的中点,联结AE 并延长交BC 的延长线于F ; (1)联结BE ,求证:BE = EF .(2)联结BD 交AE 于M ,当AD = 1,AB =2,AM = EM 时,求CD 的长. 【难度】★★【答案】(1)详见解析;(2)5CD =.【解析】(1)∵AD // BC ,DE EC =,易得ADE ∆≌FCE ∆, ∴E 为AF 的中点,∵90DAB ABC ∠=∠=︒, ∴BE EF =;(2)∵AM EM =,∴13AM MF =,∴13AD BF =, ∵1AD CF ==,∴3BF =,2BC =,∵2AB =,∴()225DC BC AD AB -+.【总结】本题考查了直角三角形的性质、平行线分线段成比例定理及勾股定理等.10 / 34一、 相似三角形的定义如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形.如图,DE 是ABC ∆的中位线,那么在ADE ∆与ABC ∆中, A A ∠=∠, ADE B ∠=∠,AED C ∠=∠;12AD DE AE AB BC AC ===.由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作ADE ∆∽ABC ∆,其中点A 与点A 、点D 与点B 、点E 与点C 分别是对应顶点;符号“∽”读作“相似于”.用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“∆”后相应的位置上.根据相似三角形的定义,可以得出:(1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数).(2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 二、 相似三角形的预备定理平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.模块二:相似三角形DABCE知识精讲AB C A 1B 1C 1如图,已知直线l 与ABC ∆的两边AB、AC 所在直线分别交于点D 和点E , 则ADE ∆∽ABC ∆.三、 相似三角形判定定理1如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似. 可简述为:两角对应相等,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ∆∽111A B C ∆.常见模型如下:ABCDEAB C DEAB CDE12 / 34AB C AB CABC A 1B 1C 1四、 相似三角形判定定理2如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ∆与111A B C ∆中,1A A ∠=∠,1111AB ACA B AC =,那么ABC ∆∽111A B C ∆.五、 相似三角形判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似. 可简述为:三边对应成比例,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果111111AB BC CAA B B C C A ==,那么ABC ∆∽111A B C ∆.六、 直角三角形相似的判定定理如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似.可简述为:斜边和直角边对应成比例,两个直角三角形相似. 如图,在Rt ABC ∆和111Rt A B C ∆中,如果190C C ∠=∠=︒,1111AB BCA B B C =, 那么ABC ∆∽111A B C ∆.七、 相似三角形性质定理相似三角形性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都 等于相似比.相似三角形性质定理2:相似三角形周长的比等于相似比. 相似三角形性质定理3:相似三角形的面积的比等于相似比的平方.例题解析ABCA 1B 1C 114/ 34AB CDEF【例13】在下列44⨯的正方形网格图中,每个小正方形的边长都是1,三角形的顶点都在格点上,那么与图1中ABC∆相似的三角形所在的网格图是()A.B.C.D.【难度】★【答案】B.【解析】由图易得ABC∆为直角三角形,且:1:2BC AB=,故选B.【总结】本题考查了相似三角形的判定.【例14】已知ABC∆∽DEF∆,且相似比为3 : 4,2ABCS∆=cm2,则DEFS∆=______ cm2.【难度】★【答案】329.【解析】由题意得234ABCDEFSS∆∆⎛⎫= ⎪⎝⎭,∴329DEFS∆=cm2.【总结】本题考查了相似三角形的性质.【例15】如图,已知点D是ABC∆中的边BC上的一点,BAD C∠=∠,ABC∠的平分线交边AC于点E,交AD于F,那么下列结论中错误的是()A.BAC∆∽BDA∆B.BFA∆∽BEC∆图1ABCDABCD EF C .BDF ∆∽BEC ∆ D .BDF ∆∽BAE ∆【难度】★ 【答案】C .【解析】∵BAD C ∠=∠,ABD CBA ∠=∠,∴BAC ∆∽BDA ∆; ∵BAD C ∠=∠,ABF CBF ∠=∠,∴BFA ∆∽BEC ∆;∵BAE BDF ∠=∠,ABF CBF ∠=∠,∴BDF ∆∽BAE ∆;故C 错误.【总结】本题考查了相似三角形的判定.【例16】 如图,已知点D 在ABC ∆的边AB 上,且ACD B ∠=∠,:1:3ACD DBC S S ∆∆=.求AC AB的值. 【难度】★【答案】12.【解析】∵ACD B ∠=∠,CAD BAC ∠=∠,∴CAD BAC ∆∆,∴22::CAD BAC S S AC AB ∆∆=,∵:1:3ACD DBC S S ∆∆=,∴:1:4CAD BAC S S ∆∆=,∴12AC AB =. 【总结】本题考查了相似三角形的判定及性质.【例17】 如图,已知点E 、F 分别在矩形ABCD 的边BC 和CD 上,EF AE ⊥,BE = 3 cm ,AB = 6 cm ,矩形ABCD 的周长为28 cm ,求CF 的长.【难度】★16 / 34ABCDEAMG【答案】52CF =cm . 【解析】∵AB = 6 cm ,矩形ABCD 的周长为28 cm , ∴8BC =cm ,∴5EC =cm ,∵EF AE ⊥, 易证ABE ∆∽ECF ∆,∴AB BE EC CF =,即635CF =,解得:52CF =cm . 【总结】本题考查了一线三等角基本模型的运用.【例18】 如图,已知点D 、E 分别在ABC ∆边AB 、AC 上,DE // BC ,BD = 2AD ,那么:DEB EBC S S ∆∆等于( )A .1 : 2B .1 : 3C .1 : 4D .2 : 3【难度】★★ 【答案】B .【解析】∵BD = 2AD ,∴2BDE ADE S S ∆=,∵DE // BC ,∴9ABC ADE S S ∆∆=,∴6EBC ADE S S ∆∆=,∴:DEB EBC S S ∆∆1:3=.【总结】本题考查了相似三角形的性质及同底等高模型的综合运用.【例19】 如图,ABC ∆中,如果AB = AC ,AD ⊥BC 于点D ,M 为AC 中点,AD 与BM 交于点G ,那么:GDM GAB S S ∆∆的值为_______.【难度】★★ABCDEF【答案】14. 【解析】∵AB = AC ,AD ⊥BC , ∴BAD CAD ∠=∠,BD DC =, ∵M 为AC 中点,∴DM AM =,∴BAD MDA ∠=∠, ∴GDM ∆∽GAB ∆,∵点G 为ABC ∆的重心,∴214GDM GAB S GD S GA ∆∆⎛⎫== ⎪⎝⎭. 【总结】本题考查了相似三角形的判定及性质,同时考查了重心的性质.【例20】 如图,已知ABC ∆中,AB = AC ,CD 是边AB 上的高,且CD = 2,AD = 1,四边形BDEF 是正方形.CEF ∆和BDC ∆相似吗?试证明你的结论.【难度】★★【答案】相似,详见解析.【解析】由题意,可得:5AC AB =∴51BD DE EF ===,∴35CE =∴51BD DC -=355151CE EF --==-,∴BD CEDC EF=,∵BDC CEF∠=∠,∴CEF∆∽BDC∆.【总结】本题考查了相似三角形的判定.【例21】已知:如图,点E是四边形ABCD的对角线BD上一点,且BAC BDC DAE∠=∠=∠.(1)求证:ABE∆∽ACD∆;(2)求证:BC AD DE AC=.【难度】★★【答案】详见解析.【解析】(1)∵BAC BDC DAE∠=∠=∠,∴BAE CAD∠=∠,∵BEA EDA DAE∠=∠+∠,CDA EDA BDC∠=∠+∠,∴BEA CDA∠=∠,∴ABE∆∽ACD∆;(2)由(1)知AB AEAC AD=,∴AB ACAE AD=,又∵BAC EAD∠=∠,∴ABC∆∽AED∆,∴BC ACED AD=,∴BC AD DE AC=.【总结】本题考查了相似三角形的判定及性质的综合运用.EDCBA18/ 34ABCD EFGHA BCD EF 【例22】 如图,已知:四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交AD于点F ,ECA D ∠=∠. (1)求证:ECA ∆∽ECB ∆; (2)若DF = AF ,求AC : BC 的值. 【难度】★★【答案】(1)详见解析;(22. 【解析】(1)∵四边形ABCD 是平行四边形, ∴B D ∠=∠,∵ECA D ∠=∠,∴ECA B ∠=∠, 又∵E E ∠=∠, ∴ECA ∆∽ECB ∆; (2)∵DF AF =,易证DC AE AB ==,∴2EB EA =,由(1)得AC EC EA BC EB EC ==,即2EC EAEA EC=,∴2EC EA =, ∴22AC EA BC EC ==. 【总结】本题考查了相似三角形的判定及性质的应用.【例23】 如图,BD 是平行四边形ABCD 的对角线,若45DBC ∠=︒,DE BC ⊥于E ,BF CD ⊥于F ,DE 与BF 相交于H ,BF 与AD 的延长线相交于G .求证:(1)CD = BH ; (2)AB 是AG 和HE 的比例中项. 【难度】★★ 【答案】详见解析.【解析】(1)∵45DBC ∠=︒,DE BC ⊥, ∴ED EB =,∵BF CD ⊥,∴EBH CDE ∠=∠,∴EDC ∆≌EBH ∆,20 / 34∴CD BH =;(2)∵四边形ABCD 是平行四边形,∴C A ∠=∠,∴BHE A ∠=∠,∵EBH BGA ∠=∠,∴EBH ∆∽BGA ∆,∴AG ABHB HE=, ∵HB CD AB ==,∴AG ABAB HE=,∴AB 是AG 和HE 的比例中项. 【总结】本题考查了全等及相似三角形的判定.【例24】 如图,已知等腰ABC ∆中,AB = AC ,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E .(1)求证:CAD ECB ∠=∠;(2)点F 是AC 的中点,联结DF ,求证:2BD FC BE =.【难度】★★ 【答案】详见解析.【解析】(1)∵AD ⊥BC ,CE ⊥AB , ∴BAD ECB ∠=∠, ∵AB = AC ,∴BAD CAD ∠=∠, ∴CAD ECB ∠=∠; (2)由题意得12ED BC BD ==,∴DBE DEB ∠=∠, ∵点F 是AC 的中点,∴12DF AC FC ==,∴DCF FDC ∠=∠, ∵DBE DCF ∠=∠,∴CDF ∆∽BED ∆, ∴CD FC BE BD =,∵CD BD =,∴BD FCBE BD=, ∴2BD FC BE =.CBADEFABC D E F G【总结】本题考查了直角三角形的性质及相似三角形的判定.【例25】 如图,已知在梯形ABCD 中,AD // BC ,90A ∠=︒,AB = AD .点E 在边AB 上,且DE CD ⊥,DF 平分EDC ∠,交BC 于点F ,联结CE 、EF . (1)求证:DE = DC ;(2)如果2BE BF BC =,求证:BEF CEF ∠=∠. 【难度】★★ 【答案】详见解析.【解析】(1)作CH AD ⊥的延长线于点H , ∵AD // BC ,90A ∠=︒,AB = AD ,∴CH AD =,∵DE CD ⊥,∴ADE HCD ∠=∠, ∴ADE ∆≌HCD ∆,∴DE DC =;(2)∵2BE BF BC =,B B ∠=∠,∴BEF ∆∽BCE ∆,∴BEF BCE ∠=∠, ∵DF 平分EDC ∠,DE DC =,∴DEF ∆≌DCF ∆,∴DEF DCF ∠=∠,∵DEC DCE ∠=∠,∴CEF BCE ∠=∠,∴BEF CEF ∠=∠.【总结】本题考查了一线三直角模型及相似和全等三角形的综合应用.【例26】 已知:如图,在ABC ∆中,AB = AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:2AD DG BD =;(2)联结CG ,求证:ECB DCG ∠=∠. 【难度】★★ 【答案】详见解析.【解析】(1)∵AB = AC ,点D 、E 分别是边AC 、AB 的中点,A BCDEFH∴ACE∆≌ABD∆,∴ABD ACE∠=∠,∵DF⊥AC,∴FAD FCD∠=∠,∴ABD FAD∠=∠,∴DAG∆∽DBA∆,∴AD DG BD AD=,∴2AD DG BD=;(2)∵AD DC=,∴DC DG BD DC=,∵CDG BDC∠=∠,∴CDG∆∽BDC∆,∴DBC DCG∠=∠,∵ABC ACB∠=∠,∴ABD GCB∠=∠,∴ACE GCB∠=∠,∴ECB DCG∠=∠.【总结】本题考查了相似三角形的判定及性质.ABCD EFG【例27】 如图,直角梯形ABCD 中,90B ∠=︒,AD // BC ,BC = 2AD ,点E 为边BC 的中点.(1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且EAF CAD ∠=∠.求证:AEC ∆∽ADF ∆;(3)在(2)的条件下,当45ECA ∠=︒时,求:FG : EG 的比值. 【难度】★★【答案】(1)详见解析;(2)详见解析;(3)45.【解析】(1)∵BC = 2AD ,点E 为边BC 的中点, ∴AD EC =,∵AD // BC ,∴四边形AECD 为平行四边形;(2)∵EAF CAD ∠=∠,∴EAC DAF ∠=∠, ∵四边形AECD 为平行四边形,∴AEC D ∠=∠, ∴AEC ∆∽ADF ∆;(3)∵45ECA ∠=︒,∴AB BC =,设1AD =,则1BE EC ==,2AB =,∴5AE =∵AEC ∆∽ADF ∆,∴AD DFAE EC=,解得5DF =,∴45FC , ∴45FG FC EG AE ==.24 / 34【总结】本题考查了平行四边形的判定、勾股定理、相似三角形的判定及性质的综合运用,综合性较强,解题时注意进行分析.【例28】 如图,已知在ABC ∆中,P 是边BC 上的一个动点,PQ // AC ,PQ 与边AB 相交于点Q ,AB = AC = 10,BC = 16,BP = x ,APQ ∆的面积为y . (1)求y 关于x 的函数解析式;(2)试探索:APQ ∆与ABP ∆能否相似?如果能相似,请求出x 的值,如果不能相似,请说明理由.【难度】★★★【答案】(1)()23301616y x x x =-<<;(2)能相似,394x =. 【解析】(1)作AH BC ⊥于点H ,ABCPQ H∵AB = AC = 10,BC = 16,∴6AH =,∴1482ABC S BC AH ∆=⋅⋅=,132ABP S BP AH x ∆=⋅⋅=, ∵PQ // AC ,∴BPQ ∆∽BCA ∆,∴22256BPQ BCAS BP x S BC ∆∆⎛⎫== ⎪⎝⎭,∴2316BPQ x S ∆=,∴23316APQ ABP BPQ S S S x x ∆∆∆=-=-,即()23301616y x x x =-<<; (2)能相似,此时394x =,详解如下: ∵BPQ ∆∽BCA ∆,∴BQ BP BA BC =,∴58BQ x =,∵AQP B ∠>∠,∴AQP APB ∠=∠,∴APQ ∆∽ABP ∆,∴AP PQ AB BP =,即5810xAP x =,解得:254AP =,∵AQ PQ AP BP =,即551088254x xx -=,解得:394x =, 综上,APQ ∆与ABP ∆能相似,此时394x =. 【总结】本题考查了相似三角形的性质及相似三角形的存在性问题.26 / 34ABCMN【习题1】 如果两个相似三角形的面积的比为4 : 9,那么它们对应的角平分线的比是______. 【难度】★ 【答案】2:3.【解析】相似三角形面积比等于相似比的平方. 【总结】本题考查了相似三角形的性质.【习题2】 如图,ABC ∆和AMN ∆都是等边三角形,点M 是ABC ∆的重心,那么AMNABCS S ∆∆的值为( ) A .23B .13C .14D .49【难度】★★ 【答案】B .【解析】∵点M 是ABC ∆的重心,设2AM =,则可得23AB =,∴AMN ABC S S ∆∆213AM AB ⎛⎫== ⎪⎝⎭,故选B . 【总结】本题考查了相似三角形及重心的性质的综合运用.【习题3】 如图,AB // DC ,DE = 2AE ,CF = 2BF ,且DC = 5,AB = 8,则EF =______. 【难度】★★随堂检测CDMABCDEF O P【答案】7.【解析】延长AD 、BC 交于点M ,∵AB // DC ,∴MD MCDA CB=, ∵DE = 2AE ,CF = 2BF ,∴MD MCDE CF=,∴EF // DC , 过点D 作DH ∥CB ,易求7EF =.【总结】本题考查了本题考查了平行线分线段成比例定理的运用.【习题4】 已知,如图,D 、E 、F 分别是ABC ∆的边BC 、AB 、AC 的中点,AD 与EF 相交于点O ,线段CO 的延长线交AB 于点P ,求证:AB = 3AP .【难度】★★【答案】详见解析.【解析】∵D 、E 、F 分别是ABC ∆的边BC 、AB 、AC 的中点, ∴EF ∥BC ,22BD CD OE OF ===,设PE k =,则14PE OE PB BC ==,∴4PB k =,3BE k =,∴3AE k =, ∴2AP k =,6AB k =,∴3AB AP =.【总结】本题考查了三角形一边平行线的性质定理及中位线性质定理的运用.【习题5】 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F .(1)求证:CD DF BC BE =;(2)若M 、N 分别是AB 、AD 中点,且60B ∠=︒,求证:EM // FN .ABCDEFMNG28 / 34ABCDEF【难度】★★ 【答案】详见解析.【解析】(1)∵四边形ABCD 是平行四边形, ∴B D ∠=∠, ∵AE ⊥BC ,AF ⊥CD ,∴ABE ∆∽ADF ∆,∴AB BEAD DF=,∵AB CD =,AD BC =, ∴CD DF BC BE =;(2)延长EM 、DA 交于点G ,∵M 、N 分别是AB 、AD 中点,AE ⊥BC ,AF ⊥CD ,∴EM BM =,FN ND =, ∵60B ∠=︒,∴BME ∆、DFN ∆为等边三角形, ∴60BEM DNF ∠=∠=︒,∵G BEM ∠=∠,∴G DNF ∠=∠,∴EM // FN .【总结】本题考查了相似三角形的判定及直角三角形的有关性质.【习题6】 如图,Rt ABC ∆中,90ACB ∠=︒,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF . (1)求证:CEF ∆≌AEF ∆;(2)联结DE ,当BD = 2CD 时,求证:DE = AF .【难度】★★【答案】详见解析.【解析】(1)∵90ACB∠=︒,点E、F分别是线段AB、AD中点,∴12CF AD AF==,12CE AB AE==,∵EF EF=,∴CEF∆≌AEF∆;(2)∵点E、F分别是线段AB、AD中点,∴EF∥BD,12EF BD=,∵BD = 2CD,∴EF CD=,∴四边形CFED是平行四边形,∴DE CF=,∵CF AF=,∴DE AF=.【总结】本题考查了直角三角形的性质、三角形全等及平行四边形的判定和性质的综合运用.【习题7】已知正方形ABCD的对角线相交于点O,CAB∠的平分线分别交BD、BC于点E、F,作BH AF⊥,垂足为H ,BH的延长线分别交AC、CD于点G、P.(1)求证:AE = BG;(2)求证:GO AG CG AO=.【难度】★★【答案】详见解析.【解析】(1)∵ABCD为正方形,∴OA OB=,AC BD⊥,∵BH AF⊥,∴BGO BEH∠=∠,∵AEO BEH∠=∠,∴BGO AEO∠=∠,∴AEO∆≌BGO∆,∴AE BG=;(2)∵AF为CAB∠的平分线,∴OAE BAF∠=∠,∵CBP BAF∠=∠,∴OAE∆∽CBP∆,∴OE PCAO BC=,∵AB BC=,GO OE=,∴GO PCAO AB=,A BCD PGOFHE30 / 34ABCDE F∵PC ∥AB ,∴CG PCAG AB=, ∴GO CGAO AG=,∴GO AG CG AO =. 【总结】本题考查了正方形的性质及相似三角形的判定.【作业1】 若ABC ∆∽111A B C ∆(其中点A 和1A 、B 和1B 、C 和1C 分别对应),且AB = 4,11A B= 6,则ABC ∆的周长和111A B C ∆的周长之比是( )A .9 : 4B .4 : 9C .2 : 3D .3 : 2【难度】★ 【答案】C .【解析】相似三角形的周长比等于相似比. 【总结】本题考查了相似三角形的性质.【作业2】 已知,如图,在Rt ABC ∆中,90ACB ∠=︒,点D 为AB 的中点,BE CD ⊥,垂足为点F ,BE 交AC 于点E ,CE = 1cm ,AE = 3 cm . 求证:(1)ECB ∆∽BCA ∆;(2)求斜边AB 的长.课后作业【难度】★【答案】详见解析.【解析】(1)∵BE CD⊥,90ACB∠=︒,∴ACD CBE∠=∠,∵点D为AB的中点,∴CD AD=,∴ACD DAC∠=∠,∴CBE A∠=∠,∴ECB∆∽BCA∆;(2)由(1)得CB CECA CB=,解得:2CB =cm,∴2225AB AC BC=+=cm.【总结】本题考查了相似三角形的判定及性质,注意观察母子形.【作业3】已知:如图,线段AB // CD,AC CD⊥,AC、BD相交于点P,E、F分别是线段BP和DP的中点.(1)求证:AE // CF;(2)如果AE和DC的延长线相交于点Q,M、N分别是线段AP和DQ的中点,求证:MN = CE.【难度】★★【答案】详见解析.【解析】(1)∵AB // CD,∴AP BP PC PD=,∵E、F分别是线段BP和DP的中点,A BCDEFPQNM32 / 34∴22AP PE PEPC PF PF==, ∴AE // CF ;(2)∵AC CD ⊥,E 、F 分别是线段BP 和DP 的中点,∴AE EP EB ==,∵EA EBEQ ED=,∴ED EQ =, ∵M 、N 分别是线段AP 和DQ 的中点,∴EM AC ⊥,EN DQ ⊥,∴四边形MNCE 是矩形,∴MN CE =.【总结】本题考查了平行线分线段成比例定理和矩形的判定及性质.【作业4】 如图,已知在四边形ABCD 中,AD // BC ,对角线AC 、BD 相交于点O ,BD 平分ABC ∠,过点D 作DF // AB ,分别交AC 、BC 于点E 、F . (1)求证:四边形ABFD 是菱形;(2)设AC AB ⊥,求证:AC OE AB EF =. 【难度】★★ 【答案】详见解析.【解析】(1)∵AD // BC ,DF // AB ,∴四边形ABFD 是平行四边形, ∵BD 平分ABC ∠,∴ABD DBC ∠=∠,∵ADB DBC ∠=∠, ∴ABD ADB ∠=∠,∴AB AD =,∴四边形ABFD 是菱形; (2)连接OF ,易证AOB ∆≌FOB ∆,∵AC AB ⊥,∴OF BC ⊥,∵DF // AB ,∴EF OC ⊥,∴CEF ∆∽FEO ∆,∴EF CEEO EF=, ∵CE EF AC AB =,即CE AC EF AB =,∴EF ACEO AB=,∴AC OE AB EF =. 【总结】本题考查了菱形的判定及相似三角形的判定及性质的综合运用.ABC DEFO【作业5】 已知:如图,四边形ABCD 是菱形,点E 在边CD 上,点F 在BC 的延长线上,CF = DE ,AE 的延长线与DF 相交于点G . (1)求证:CDF DAE ∠=∠;(2)如果DE = CE ,求证:AE = 3EG .【难度】★★ 【答案】详见解析.【解析】(1)∵四边形ABCD 是菱形,∴AD DC =,ADE DCF ∠=∠,∵CF = DE ,∴ADE ∆≌DCF ∆,∴CDF DAE ∠=∠;(2)延长AG 、BF 交于点M , ∵DE = CE ,易证ADE ∆≌MCE ∆,∴AE EM =,AD CM =, 设1DE =,则2AD DC CM ===,1CF FM ==,∴12MG MF AG AD ==,设MG k =,则2AG k =,1322AE AM k ==,∴12EG k =,∴3AE EG =.【总结】本题考查了全等三角形的判定及相似三角形的性质.【作业6】 已知:如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作AF BE ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE = BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠. 【难度】★★ 【答案】详见解析.EDCG FABMAB CDEFHO【解析】(1)∵四边形ABCD 是正方形,AF BE ⊥, ∴AB AD =,DAF ABE ∠=∠,∴DAF ∆≌ABE ∆,∴AE DF =,∴点F 为DC 中点,∴CBF ∆≌ABE ∆,∴BE BF =;(2)∵DE DF =,EDO FDO ∠=∠,DO DO =, ∴EDO ∆≌FDO ∆,∴DEO DFO ∠=∠,由(1)得AEB DFO ∠=∠,∴AEB DEO ∠=∠.【总结】本题考查了全等三角形的判定及正方形的性质的综合运用.。
北师大版九年级数学(上)第四章图形的相似:相似三角形讲义
相似三角形综合运用讲义【考点剖析】相似三角形是几何中较难的部分,也是每年中考的热点,相似三角形对圆的学习以及各种类型的综合性问题的解决都有很大的帮助。
在此,我们对相似三角形中经常出现的解答方法与技巧进行讲解。
【例题巧解点拨】一、运用三角形相似的条件进行解答。
例1.已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP =3PC ,Q 是CD 的中点.求证:△ADQ ∽△QCP .目标训练1.已知:如图,△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F .求证:BP 2=PE ·PF .2.如图,BD 、CE 为△ABC 的高,求证∠AED =∠ACB .二、相似与函数的运用。
例2.在△ABC 中,∠C =90°,P 为AB 上一点,且点P 不与点A 重合,过点P 作PE ⊥AB ,交AC 边于E 点,点E 不与点C 重合,若AB=10,AC=8,设AP 的长为x ,四边形PECB 的周长为y ,求y 与x 之间的函数关系式。
目标训练1.在△ABC 中,∠ACB =90°,AC=25,斜边AB 在x 轴上,点C 在y 轴的正半轴上,点A 的坐标为(2,0),求直角边BC 所在直线的解析式。
2.已知梯形ABCD 中,AD//BC (AD<BC ),AD=5,AB=DC=2。
(1)如图1,P 为AD 上一点,满足∠BPC=∠A 。
①求证:△ABP ∽△DPC ; ②求AP 的长。
(2)如图2,若点P 在AD 上移动(与A 、D 点不重合),且满足∠BPE=∠A ,PE 交BC 于点E ,交DC 的延长线于点Q ,设AP=x ,CQ=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围。
三、阅读理解类问题。
例3.阅读下列材料,补全证明过程:(1)已知:如图,矩形ABCD 中,AC 、BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点. (2)请你仿照(1)的画法,在原图上画出BC 的一个四等分点(要求保留画图痕迹,可不写画法及证明过程).目标训练1.如图1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.2.已知:△ABC 中,AB =10 ⑴如图①,若点D 、E 分别是AC BC 边的中点,求DE 的长; ⑵如图②,若点A 1、A 2把AC 边三等分,过A 1、A 2作AB 边的平行线,分别交BC 边于点B 1、B 2,求A 1B 1+A 2B 2的值; P A C E A B CO B A C D P B A C D P E D F O N D EF O N C OD ( F )⑶如图③,若点A 1、A 2、…、A 10把AC 边十一等分,过各点作AB 边的平行线,分别交BC 边于点B 1、B 2、…、B 10。
相似三角形的判定全ppt课件
2024/1/27
5
相似三角形性质总结
对应边成比例
相似三角形的对应边之比等于相似比。
对应高、中线、角平分线成比例
相似三角形的对应高、中线、角平分线之 比也等于相似比。
周长比等于相似比
相似三角形的周长之比等于相似比。
2024/1/27
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方 。
6
02
相似三角形的判定全ppt课件
2024/1/27
1
目 录
2024/1/27
• 相似三角形基本概念及性质 • 判定方法一:两边成比例且夹角相等 • 判定方法二:三边成比例 • 判定方法三:直角三角形中斜边和一直角边成
比例 • 综合运用及拓展延伸 • 课堂小结与作业布置
2
01
相似三角形基本概念及性质
2024/1/27
判定方法一:两边成比例且夹角 相等
2024/1/27
7
定理内容阐述
01
02
03
定理描述
如果两个三角形有两边成 比例,并且夹角相等,则 这两个三角形相似。
2024/1/27
定理条件
两个三角形中,任意两边 长度之比等于另两边长度 之比,且这两边所夹的角 相等。
定理
8
18
05
综合运用及拓展延伸
2024/1/27
19
不同判定方法之间的联系与区别
角角角(AAA)相似
三个内角分别相等,则两个三角形相 似。此方法简单易行,但需注意AAA 相似不能推出边长成比例。
边角边(BAB)相似
两边成比例且夹角相等,则两个三角 形相似。此方法结合了边的长度和角 的大小,较为常用。
相似三角形的判定课件优秀课件
相似三角形的对应边成比例,对应 角相等,面积比等于相似比的平方。
判定条件
02
01
03
两角分别相等的两个三角形相似。 两边成比例且夹角相等的两个三角形相似。 三边成比例的两个三角形相似。
相似比与相似度
相似比
相似三角形的对应边之间的比值称为 相似比。
相似度
用来衡量两个三角形相似的程度,通常 用相似比来表示。相似度越高,两个三 角形越相似。
THANK YOU
感谢聆听
构建相似三角形,利用比例关 系求解线段长度。
应用勾股定理和相似三角形的 性质,求解直角三角形中的线 段长度。
求解角度问题
利用相似三角形的对应角相等,通过已知角度求解未 知角度。
通过构建相似三角形,利用角度之间的和、差、倍、 半关系求解角度问题。
结合三角形的内角和性质,利用相似三角形求解复杂 的角度问题。
直角三角形相似判定
对于两个直角三角形,如果它们的一个锐角相等,则这两个三角形相似。这是因为直角三角 形的锐角决定了其余两个角的大小,因此一个锐角相等就意味着三个角都相等。
等腰三角形相似判定
对于两个等腰三角形,如果它们的顶角相等,则这两个三角形相似。这是因为等腰三角形的 顶角决定了其余两个底角的大小,因此顶角相等就意味着三个角都相等。
求解面积问题
利用相似三角形的面积比等于 相似比的平方,通过已知面积 求解未知面积。
通过构建相似三角形,利用面 积之间的比例关系求解面积问 题。
结合其他几何知识,如平行四 边形的面积公式等,利用相似 三角形求解复杂的面积问题。
04
相似三角形在代数问题中应用
利用相似三角形性质解方程
通过相似三角形的对 应边成比例,将几何 问题转化为代数方程。
《相似三角形的性质和判定》PPT课件
全等三角形是特殊的相似三角形,当相似比为1时性质探究
对应角相等
01
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似
。
02
性质
相似三角形的对应角相等,即 如果∠A = ∠A',∠B = ∠B',
则∠C = ∠C'。
03
示例
通过测量和比较两个三角形的 对应角度,可以判断它们是否
相似。
对应边成比例
03
定义
性质
示例
两个三角形如果它们的对应边成比例,则 称这两个三角形相似。
相似三角形的对应边成比例,即如果 AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
通过测量和比较两个三角形的对应边长, 可以判断它们是否相似。
面积比与边长比关系
01
平行线截割定理证明
平行线截割定理应用
在解决相似三角形问题时,可以利用 平行线截割定理来寻找相似三角形的 对应边。
通过相似三角形的性质,可以证明对 应线段之间的比例关系。
三角形中位线定理
三角形中位线定理内容
三角形的中位线平行于第三边,且等于第三边的一半。
三角形中位线定理证明
通过相似三角形的性质和平行线截割定理,可以证明三角形中位线 与第三边的关系。
01
更高层次相似三角形知识
02
相似多边形的性质和判定方 法
03
相似三角形与相似多边形之 间的关系和联系
拓展延伸:介绍更高层次相似三角形知识
• 相似三角形在几何变换中的应用,如平移、旋转、对 称等
拓展延伸:介绍更高层次相似三角形知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:76854125658544289374459234
学校:麻阳市青水河镇刚强学校*
教师:国敏*
班级:云云伍班*
学科:数学
专题:相似三角形的判定
重难点易错点解析
判断三角形是否相似,要注意思维的完整性.
题一
题面:如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.
金题精讲
题一
题面:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,
(1)求证:AC2=AD·AB;BC2=BD·BA;
(2)求证:CD2=AD·AD;
(3)求证:AC·BC=AB·CD.
三角形相似
题二
题面:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.
圆周角定理、相似三角形
满分冲刺
题一
题面:如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?
相似多边形、二次函数
题二
题面:已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.
利用平行线构造相似三角形
题三
题面:如图13-2,点P是边长为4的正方形ABCD内一点,PB=3,BF⊥BP于点B,试在射线BF上找一点M,使得以点B,M,C为顶点的三角形与△ABP相似,作图并指出相似比k的值.
图13-2
相似三角形的判定
讲义参考答案
重难点易错点解析
题一
答案:6对.
金题精讲
题一
答案:利用三角形相似证明.
题二
答案:提示:连结AE 、ED ,证△ABE ∽△ECD . 满分冲刺
题一
答案:25=
x 时,S 的最大值为252. 题二
答案:12
AF FB =. 题三
答案:如图13-3.
图13-3
∵AB ⊥BC ,PB ⊥BF ,
∴∠ABP =∠CBF .
当
AB BC BP BM =1,即=31BM 4
4,BM 1=3时,△CBM 1∽△ABP .相似比k =1. 当BP BC AB BM =2即316,34422==BM BM 时,△CBM 2∽△PBA .相似比43
k =. ∴当BM =3或316=BM 时,以点B ,M ,C 为顶点的三角形与△ABP 相似,相似比分别为1和
43
.。