人教版八年级下册数学 17.1 勾股定理 同步练习题 (含答案)

合集下载

人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)

人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)

17.1 勾股定理同步习题知识点1 勾股定理1.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1B.2C.3D.42.若一个直角三角形的两直角边的长分别为a,b,斜边长为c,则下列关于a,b,c的关系式中不正确的是()A.b2=c2-a2B.a2=c2-b2C.b2=a2-c2D.c2=a2+b23.一直角三角形的两边长分别为3和4,则第三边长为()A.5B. 7C.2D.5或74.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.105.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或106.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5知识点2 勾股定理与面积的关系7.如图,字母B所代表的正方形的面积是()A.12B.13C.144D.1948.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3B.4C. 5D.79.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.94易错点考虑问题不全面而漏解(分类讨论思想)11.若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25B.7C.7或25D.9或16提升训练考查角度1 利用勾股定理求直角三角形中的边长12.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AB的长.考查角度2 利用勾股定理求三角形的面积13.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形面积探究培优拔尖角度1 利用勾股定理解非直角三角形问题(倍长中线法)14.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)求△ABC中BC边上的高.拔尖角度2 利用勾股定理解四边形问题(补形法)15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求: (1)AB的长;(2)四边形ABCD的面积.参考答案解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据圆的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.2.【答案】C3.【答案】D解:当两直角边长分别为3和4时,斜边长为=5;当斜边长为4时,另一条直角边长为=.故选D.4.【答案】C5.【答案】C解:根据题意画出图形,如图①所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD+CD=8+2=10;如图②所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选C.6.【答案】A解:如图,过A点作AF⊥BC于F,连接AP,因为在△ABC中,AB=AC=5,BC=8,所以BF=4,所以在Rt△ABF中,AF2=AB2-BF2=9,所以AF=3,所以×8×3=×5×PD+×5×PE,即12=×5(PD+PE),解得PD+PE=4.8.7.【答案】C8.【答案】D解:利用勾股定理求出正方形的边长为10,阴影部分的面积为正方形面积与直角三角形面积之差.10.【答案】C11.错解:A诊断:容易忽略a,c为直角边长,b为斜边长这种情况,故很容易错选A.正解:C解题策略:解答此题要用分类讨论思想.此题有两种情况:a,b为直角边长,c为斜边长和a,c为直角边长,b为斜边长,利用勾股定理即可求解.12.解:(1)在Rt△BCD中,DC2=BC2-BD2=32-=,所以DC=.(2)在Rt△ACD中,AD2=AC2-CD2=42-=,所以AD=,所以AB=AD+BD=+=5.13.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,所以152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,AD===12.所以S△ABC=BC·AD=×14×12=84.14.解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3.(2)如图,延长BD至E,使DE=BD,连接AE.∵D是AC的中点,∴AD=DC.在△BDC和△EDA 中,∴△BDC≌△EDA(SAS),∴∠DAE=∠DCB,∴AE∥BC.∵BD⊥BC,∴BE⊥AE.∴BE为△ABC中BC边上的高,∴BE=2BD=6.15.解:(1)如图,延长AD,BC交于点E,在Rt△ABE中,∠A=60°,∴∠E=30°.在Rt△CDE中,CD=4,∴CE=2CD=8,∴BE=BC+CE=6+8=14.设AB=x,则有AE=2x,根据勾股定理得:x2+142=(2x)2,解得x=,则AB=.(2)在Rt△CDE中,∠CDE=90°,∴DE===4.∴S=S△ABE-S△CDE 四边形ABCD =·AB·BE-·CD·DE=××14-×4×4=.。

2022-2023学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.1勾股定理》同步练习题(附答案)一.选择题1.已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A.5B.25C.D.5或2.△ABC中,AB=20,AC=13,高AD=12,则△ABC的面积为()A.66B.126C.54或44D.126或663.如图,Rt△ABC中,∠BAC=90°,分别以边AB,CA,BC向外作正方形,正方形ABIH 的面积为25,正方形BDEC的面积为169,则正方形ACFG的面积是()A.194B.144C.122D.1104.下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个5.如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为13,则直角三角形较短的直角边a 与较长的直角边b的比的值是()A.B.C.D.6.如图是一正方体的平面展开图,若AB=6,则该正方体A、B两点间的距离为()A.2B.3C.4D.67.如图,在△ABC中,∠C=90°,分别以A、B为圆心画弧,所画的弧交于两点,再连接该两点所在直线交BC于点D,连接AD.若BD=2,则AD的长为()A.B.C.1D.28.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14B.13C.14D.149.如图,正方形ABCD的面积为15,Rt△BCE的斜边CE的长为8,则BE的长为()A.17B.10C.6D.710.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1条B.2条C.3条D.4条二.填空题11.把图1中长和宽分别6和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2的正方形,则图2中小正方形ABCD的面积为.12.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为.13.如图,已知OA=13,点A到射线OM的距离为5,点B是射线OM上的一个动点,当△AOB为等腰三角形时,线段OB的长度为.14.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点E,且AC=8,BC=5,则△BEC的周长是.15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,AC=6,则BD的长是.16.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…,依此法继续作下去,得OP2022=.三.解答题17.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.18.已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,△ACQ的面积是△ABC面积的;(3)当点Q在边CA上运动时,t为何值时,PQ将△ABC周长分为23:25两部分.19.如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?20.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做可爱三角形.(1)根据可爱三角形的定义,等边三角形是可爱三角形吗?请说明理由;(2)若某三角形的三边长分别为2、、3,试判断该三角形是否为可爱三角形,请说明理由.21.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?22.已知:在平面直角坐标系中,两点的横向(或纵向)距离可以用两点横坐标(或纵坐标)的差的绝对值来表示.(1)如图,平面内点A坐标为(2,3),点B坐标为(﹣1,﹣1),则AB两点的横向距离BC=,纵向距离AC=,最后,可得AB=;(2)平面内有点M(1,),点N(m,﹣)(m>0),请参考(1)中方法求线段MN的长.(用含m的式子表示)23.如图,在平面直角坐标系中有△ABC,AB=AC=13,BC=10,点C的坐标为(6,0),求A,B两点的坐标.24.如图,在平面直角坐标系中,点B,C的坐标分别为(﹣a,2a)、(3a,2a),其中a>0,点A为BC的中点,若BC=4,解决下列问题:(1)BC所在直线与x轴的位置关系是;(2)求出a的值,并写出点A,C的坐标;(3)在y轴上是否存在一点P,使得△P AC的面积等于5?若存在,求P的坐标;若不存在,请说明理由.25.如图是由边长为1个单位长度的小正方形组成的网格,△ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3)△ABC的面积为;(4)点P在y轴上,且△ABP的面积等于△ABC的面积,则点P的坐标为.参考答案一.选择题1.解:当3和4都是直角边时,第三边长为:;当4是斜边长时,第三边长为:.故选:D.2.解:如图1,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=20,AD=12,∴BD===16,又∵AC=13,∴CD===5,∴BC=BD+CD=21,∴△ABC的面积=×21×12=126;如图2,BC=BD﹣CD=11,∴△ABC的面积=×11×12=66;综上所述,△ABC的面积为126或66,故选:D.3.解:在Rt△ABC中,∠BAC=90°,∴AB2+AC2=BC2,∵正方形ABIH的面积为25,正方形BDEC的面积为169,∴AB2=25,BC2=169,∴AC2=BC2﹣AB2=169﹣25=144,∴正方形ACFG的面积=AC2=144,故选:B.4.解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=(a+b)(a+b)=2××ab+c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b﹣)(a+)=ab+c c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.5.解:∵大正方形的面积是13,设边长为c,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,∴a+b=5.∵小正方形的面积为(b﹣a)2=1,∴b=3,a=2,∴.故选:B.6.解:∵AB=6,∴该正方体的棱长为3=,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,所以该正方体A、B两点间的距离为3,故选:B.7.解:由作图可知,点D在线段AB的垂直平分线上,∴AD=BD=2,故选:D.8.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.9.解:∵正方形ABCD的面积为15,∴BC2=15,∠ABC=90°,∴∠EBC=90°,在Rt△BCE中,由勾股定理得:BE===7,故选:D.10.解:由勾股定理得,a=,b=.c=,d=2,∵无理数有,两个,故选:B.二.填空题11.解:6﹣4=2,2×2=4.故图2中小正方形ABCD的面积为4.故答案为:4.12.解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=a2+b2+2ab=25+24=49.故答案为:49.13.解:过A作AN⊥OM于N,则AN=5,∴ON===12,当△AOB为等腰三角形时,分三种情况:①当OA=AB时,如图1所示:∵AN⊥OM,∴ON=BN=12,∴OB=2ON=2×12=24;②OA=OB时,如图2所示:OB=13;③OB=AB时,如图3所示:设OB=AB=x,则BN=ON﹣OB=12﹣x,在Rt△ABN中,由勾股定理得:AN2+BN2=AB2,即52+(12﹣x)2=x2,解得:x=,∴OB=;综上所述,当△AOB为等腰三角形时,线段OB的长度为24或13或,故答案为:24或13或.14.解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案是:13.15.解:作DE⊥AB于E,在Rt△ABC中,由勾股定理得,BC=,∵AD平分∠BAC,AC⊥DC,DE⊥AB,∴CD=DE,∴S△ABC=+=,∴6CD+10CD=48,∴CD=3,∴BD=BC﹣CD=8﹣3=5,故答案为:5.16.解:∵OP=1,OP1=,OP2=,OP3=,∴OP2022=.故答案为:.三.解答题17.解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,∴S△ABC=AC•BC=×6×8=24,答:△ACB的面积24.18.解:(1)当t=2s时,点Q在边BC上运动,则AP=2cm,BQ=2t=4(cm),∵AB=8cm,∴BP=AB﹣AP=8﹣2=6(cm),在Rt△BPQ中,由勾股定理可得PQ===2(cm),∴PQ的长为2cm;(2)∵S△ACQ=CQ•AB,S△ABC=BC•AB,点Q在边BC上运动时,△ACQ的面积是△ABC面积的,∴CQ=BC=×6=2(cm),∴BQ=BC﹣CQ=6﹣2=4(cm),∴t==2,∴当点Q在边BC上运动时,t为2时,△ACQ的面积是△ABC面积的;(3)在Rt△ABC中,由勾股定理得:AC===10(cm),当点P达到点B时,t==8,当点Q达到点A时,t=+=,∵当其中一个点到达终点时,另一个点也随之停止,∴0≤t≤8,∵AP=tcm,∴BP=(8﹣t)cm,点Q在CA上运动时,CQ=1.5×(t﹣)=(1.5t﹣4.5)(cm),∴AQ=10﹣(1.5t﹣4.5)=(﹣1.5t+14.5)(cm),∴BP+BC+CQ=8﹣t+6+1.5t﹣4.5=(0.5t+9.5)(cm),AP+AQ=t+(﹣1.5t+14.5)=(﹣0.5t+14.5)(cm),分两种情况:①=,即=,解得:t=4,经检验,t=4是原方程的解,∴t=4;②=,即=,解得:t=6,经检验,t=6是原方程的解,∴t=6;综上所述,当点Q在边CA上运动时,t为4或6时,PQ将△ABC周长分为23:25两部分.19.解:(1)∵∠ACB=90°,∴△ABC是直角三角形,在Rt△ABC中,由勾股定理得:AB===13,∴AB的长为13;(2)当点P在AC上时,CP=CB=5,t=5(s);当点P在AB上时,分三种情况:①当BP=BC=5,如图1所示:则AP=13﹣5=8,t=12+8=20(s);②当CP=CB=5时,过点C作CM⊥AB于M,如图2所示:则BM=PM=BP,∵AC•BC=AB•CM,∴CM===,在Rt△BCM中,由勾股定理得:BM===,∴BP=2BM=,∴AP=13﹣=,∴t=12+=(s);③当PC=PB时,如图3所示:则∠B=∠BCP,∵∠B+∠A=90°,∠BCP+∠ACP=90°,∴∠A=∠ACP,∴AP=PC,∴AP=PB=AB=,∴t=12+=(s);综上所述,当t=5s或20s或s或s时,△BCP为等腰三角形.20.解:(1)等边三角形是可爱三角形,理由:设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形是可爱三角形;(2)该三角形不是可爱三角形,理由:∵22=4,()2=17,32=9,∴22+()2≠2×32,22+32≠2×()2,()2+32≠2×22,∴该三角形不是可爱三角形.21.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.22.解:(1)BC=2﹣(﹣1)=3,AC=3﹣(﹣1)=4,由勾股定理得,AB=,故答案为:3,4,5;(2)∵MN的横向距离为m﹣1,纵向距离为2,∴MN====|m+3|,∵m>0,∴MN=m+3.23.解:过A作AD⊥BC于D,∵AB=AC,∴DC=BD=BC=5,∵点C的坐标为(6,0),∴OC=6,∴OD=1,OB=4,∴B(﹣4,0),在Rt△ADC中,根据勾股定理得AD=12,∴A(1,12);答:A,B两点的坐标分别是(1,12)、(﹣4,0).24.解:(1)平行,∵B与C的纵坐标相同,∴BC∥x轴,故答案为:平行;(2)∵BC=4,∴3a﹣(﹣a)=4,∴a=1,∴B(﹣1,2),C(3,2),∵A为BC的中点,∴A(1,2);(3)存在,设P(0,m),∵AC=2,∴,∴m=﹣3或7,∴P(0,﹣3)或(0,7).25.解:(1)点A的坐标为(3,4),点B的坐标为(0,2);故答案为:(3,4),(0,2);(2)BC==;故答案为:;(3)S△ABC=4×3﹣×2×3﹣×1×4﹣×1×3=5.5;故答案为:5.5;(4)设P(0,m),∵△ABP的面积等于△ABC的面积,∴|m﹣2|×3=5.5,解得:m=或﹣,∴点P的坐标为(0,)或(0,﹣).故答案为:(0,)或(0,﹣).。

人教版《17.1 勾股定理》同步训练卷(3)

人教版《17.1 勾股定理》同步训练卷(3)

人教版《17.1 勾股定理》同步训练卷(3)一、选择题(共10小题)1.在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.82.在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想3.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3C.D.54.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.35.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.6.如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣17.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.8.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和9.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为()A.B.C.D.10.如图,A(8,0),C(﹣2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5)B.(5,0)C.(6,0)D.(0,6)二、填空题(共5小题)11.平面直角坐标系中,点M(﹣3,4)到原点的距离是.12.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.13.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=.14.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a﹣b)2的值是.15.如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是.三、解答题(共3小题)16.如图是“弦图”的示意图,“弦图”最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的,它标志着中国古代的数学成就.它由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形,每个直角三角形的两条直角边分别为a、b,斜边为c.请你运用此图形证明勾股定理:a2+b2=c2.17.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.18.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.(1)求CD的长:(2)求四边形ABCD的面积.。

人教版八年级下册17.1 勾股定理 练习题(含答案)

人教版八年级下册17.1 勾股定理 练习题(含答案)

17.1 勾股定理练习题一、选择题1.如图所示,某公司举行周年庆典,准备在门口长25m,高7m的台阶上铺设红地毯,已知台阶的宽为3m,则一共需购买________m2的红地毯. ( C)A. 21B. 75C. 93D. 962如图所示,若∠A=60°,AC=20 m,则BC大约是(结果精确到0.1m) ( B)A.34.64 mB.34.6 mC.28.3 mD.17.3 m3.如图所示,字母B所代表的正方形的面积是( C)A.12B.13C.144D.1944.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为( A )5.如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( C )A.3米B.4米C.5米D.6米6.湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )A.50米B.120米C.100米D.130米7.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为( D)A. 12 cmB. 10 cmC. 8 cmD. 6 cm二、填空题8.在ABC中,C=90°,(1)若c=10,a:b=3:4,则a=__6__,b=__8_.(2)若a=9,b=40,则c=___41___.9.在 ABC中, C=90°,若AC=6,CB=8,则ABC面积为__24__,斜边为上的高为___4.8__.10.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=5;(2)若b=6,c=10,则a=8;(3)若a=5,c=13,则b=12;(4)若a=1.5,b=2,则c= 2.5.11、已知:数7和24,请你再写一个整数,使这些数恰好是一个直角三角形三边的长,则这个数可以是2512.如图,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为____24____m.三、解答题13.如图所示,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长; (2)求△ADB的面积.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE.∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,14.如图,已知长方形ABCD中,AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,求CE的长.15、如图,在△ABC中,AB=AC,D点在CB延长线上,求证:AD2-AB2=BD·CD16、如图,小颍同学折叠一个直角三角形的纸片,使A 与B 重合,折痕为DE ,若已知AC=10cm ,BC=6cm,你能求出CE 的长吗?解:连结BE由已知可知:DE 是AB 的中垂线,∴AE=BE设AE=xcm ,则EC=(10-x)cm在Rt △ABC 中,根据勾股定理:BE 2=BC 2+EC 2x 2=62+ (10-x)2解得x=6.8∴EC=10-6.8=3.2cm解得x=6.8∴EC=10-6.8=3.2cm。

2021年人教版八年级下册17.1《勾股定理》同步培优卷(含答案)

2021年人教版八年级下册17.1《勾股定理》同步培优卷(含答案)

2021年人教版八年级下册17.1《勾股定理》同步培优卷一.选择题1.如图所示,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,以D为圆心,DC 长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A.B.+1C.﹣1D.不能确定2.如图,在Rt△ABC中,分别以三角形的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=9,S2=16,则S3的值为()A.7B.10C.20D.253.如图,在行距、列距都是1的的4×4方格网中,将任意连接两个格点的线段称作“格点线”,则“格点线”的长度不可能等于()A.B.C.D.4.如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N是射线OA上的一个动点若OM=4,OP=5,则PN的最小值为()A.2B.3C.4D.55.已知Rt△ABC中,∠C=90°.若a+b=14cm,c=12cm,则Rt△ABC的面积是()A.13cm2B.26cm2C.48cm2D.52cm26.直角三角形中,有两边的长分别为3和4,那么第三边的长的平方为()A.25B.14C.7D.7或257.如图,甲、乙、丙三个直角三角形中,斜边最长的是()A.甲B.乙C.丙D.一样长8.在直角三角形ABC中,∠C=90°,两直角边长及斜边上的高分别为a,b,h,则下列关系式成立的是()A.B.C.h2=ab D.h2=a2+b2二.填空题9.在平面直角坐标系中,已知点P的坐标为(1,﹣3),那么点P到原点O的距离OP的长度为.10.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=6,AD=3,那么BD =.11.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=20,AH=12,那么FG=.12.已知点A(3,3),B(0,t),C(7,0),且AB=AC,则t=.13.Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在AB边上,若△ACD为以AC为腰的等腰三角形,则DC的长为.14.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度由A向B运动,设运动时间为t秒(t>0).在运动过程中,当t为时,△BCP为等腰三角形.三.解答题15.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AB=5,AD=2.(1)求CD的长;(2)求四边形ABCD的面积.16.如图,已知△ABC中,∠ACB=90°,过点B作BD∥AC,交∠ACB的平分线CD于点D,CD交BC于点E.(1)求证:BC=BD;(2)若AC=3,AB=6,求CD的长.17.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.18.三角板是我们学习数学的好帮手.将一副直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,若AC=2,求CD的长.19.如图,△ABC中,AC=21,BC=13,点D是AC边上一点,BD=12,AD=16.(1)求证:BD⊥AC;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.20.如图,△ABC中,∠C=90°,CA=8cm,CB=6cm,D为动点,沿着C→A→B→C的路径运动(再次到达C点则停止运动),点D的运动速度为2cm/秒,设点D运动时间为t秒.(1)当点D在AC上运动时,若DC=BC,则t=;(2)若点D与△ABC某一顶点的连线平分△ABC的周长,求t的值.答案一.选择题1.解:由题意可得:BD=4,BC=1则CD==,A点对应的实数为:﹣1,选:C.2.解:在Rt△ABC中,AC2+AB2=BC2,由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∵S1=9,S2=16,∴S3=S1+S2=9+16=25.选:D.3.解:∵==,可能是“格点线”的长度,选项A不符合题意;∵==,可能是“格点线”的长度,选项B不符合题意;∵=3,可能是“格点线”的长度,选项C不符合题意;∵=,不可能是“格点线”的长度,选项D符合题意;选:D.4.解:∵PM⊥OB于点M,OM=4,OP=5,∴PM=3,当PN⊥OA时,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵PM=3,∴PN的最小值为3.选:B.5.解:∵∠C=90°,∴a2+b2=c2=144,∴(a+b)2﹣2ab=144,∴196﹣2ab=144,∴ab=26,∴S△ABC=ab=13cm2.选:A.6.解:分两种情况:①当3和4为两条直角边长时,由勾股定理得:第三边长的平方=斜边长的平方=32+42=25;②当4为斜边长时,第三边长的平方=42﹣32=7;综上所述:第三边长的平方是7或25.选:D.7.解:由勾股定理可知甲、乙、丙三个直角三角形中,斜边的平方分别为:甲:(2018+2019)2+20202;乙:(2018+2020)2+20192;丙:(2019+2020)2+20182.∵(2018+2019)2+20202﹣[(2018+2020)2+20192]=40372+20202﹣40382﹣20192=(40372﹣40382)+(20202﹣20192)=(4037+4038)(4037﹣4038)+(2020+2019)(2020﹣2019)=﹣8075+4039=﹣4036<0,∴甲的斜边的小于乙的斜边;∵(2018+2020)2+20192﹣[(2019+2020)2+20182]=40382+20192﹣40392﹣20182=(40382﹣40392)+(20192﹣20182)=(4038+4039)(4038﹣4039)+(2019+2018)(2019﹣2018)=﹣8077+4037=﹣4040<0,∴乙的斜边的小于丙的斜边,∴斜边最长的是丙.选:C.8.解:设斜边为c,根据勾股定理得出c=,∵ab=ch,∴ab=•h,即a2b2=a2h2+b2h2,∴=+,即.选:B.二.填空题9.解:∵点P的坐标为(1,﹣3),点O为坐标原点,∴OP==.答:点P到原点O的距离OP的长度为.答案为:.10.解:在Rt△ACD中,CD===3,在Rt△BCD中,BC==,在Rt△ABC中,BC==,∴=,解得,BD=9,答案为:9.11.解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,在直角三角形AHB中,由勾股定理得到:BH=.∴FG=GH=BH﹣BG=16﹣12=4,答案为:4.12.解:依题意,得=.解得t=7或t=﹣1.答案是:7或﹣1.13.解:①当AC=CD时,∵AC=6,∴CD=6时,△ACD是以AC为腰的等腰三角形;②当AC=AD′时,过点C作CE⊥AB于点E,∵∠ACB=90°,AC=6,BC=8,∴AB===10,∵•AC•BC=•AB•CE,∴EC=∴AE===,∴ED′=AD′﹣AE=6﹣=,∴CD′===,综上所述,CD的长为6或.答案为:6或.14.解:当P在AB上时,△BCP为等腰三角形,可分三种情况:①CP=PB,点P在BC的垂直平分线上,如图1,∵PC=PB,∴∠B=∠PCB,∵∠ACB=90°,∴∠PCB+∠ACP=90°,∠B+∠A=90°,∴∠A=∠ACP,∴AP=PC,∴PB=AB,即5﹣2t=,解得:t=,②PB=BC,即5﹣2t=3,解得:t=1,③PC=BC,如图3,过点C作CD⊥AB于点D,∵∠ACB=90°,AB=5cm,BC=3cm,∴AC===4(cm).∵S△ABC=×AB×CD,∴CD==,∴BD==,∵PC=BC,CD⊥AB,∴BD=BP,∴=×(5﹣2t),解得:t=,∴当t=1或或时,△BCP为等腰三角形.答案为:1或或.三.解答题15.解:(1)延长BA、CD交于点H,如图所示:∵∠B=∠ADC=90°,∠C=60°,∴∠ADH=90°,∠H=30°,∴HA=2AD=4,CH=2BC,∴DH===2,BH=HA+AB=4+5=9,∵BH===BC=9,∴BC=3,∴CH=2BC=6,∴CD=CH﹣HD=6﹣2=4;(2)四边形ABCD的面积=△BCH的面积﹣△ADH的面积=×3×9﹣×2×2=.16.(1)证明:∵∠ACB=90°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×90°=45°,∵BD∥AC,∴∠D=∠ACD=45°,∴∠D=∠BCD,∴BC=BD;(2)解:在Rt△ACB中,BC===3,∴BD=3,∵∠BCD=∠D=45°,∴∠CBD=90°,∴CD===3.17.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解得:x=9,∴AD=12,∴S△ABC=BC•AD=×14×12=84.18.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=2,∴∠ABC=30°,∴AB=2AC=4.∴BC===2,∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=,∴CM==3,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=,∴CD=CM﹣MD=3﹣.19.解:(1)∵AC=21,AD=16,∴CD=AC﹣AD=5,∵BD2+CD2=122+52=169=BC2,∴∠BDC=90°,∴BD⊥AC.(2)当DE⊥AB时,DE最短,∵AB==20,∵•AD•DB=•AB•DE,∴DE==9.6,∴线段DE使得最小值为9.6.20.解:(1)∵DC=BC=6,∴2t=6,解得:t==3,当点D在AC上运动时,若DC=BC,则t=3;答案为:3;(2)△ABC中,∠C=90°,CA=8,CB=6,∴AB==10,∴△ABC的周长=6+8+10=24,①当点D在CA上运动时,如图1,BC+CD=AB+AD,即6+2t=,解得:t=3;②当点D在AB上运动时,如图2,AC+AD=BD+BC,即2t=,解得:t=6;③当点D在BC上运动时,如图3,AB+BD=CD+AC,即2t﹣8=,解得:t=10;综上所述,t的值是3或6或10.。

人教版初中数学八年级下册《17.1 勾股定理》同步练习卷(含答案解析

人教版初中数学八年级下册《17.1 勾股定理》同步练习卷(含答案解析

人教新版八年级下学期《17.1 勾股定理》同步练习卷一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM=.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=时,才能使△ABC与△QPA全等.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.7.直角三角形的两条直角边分别为3和4,则斜边上的高为.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是cm.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.11.两边长分别为3和5的直角三角形的第三边长为.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是cm.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有个.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于cm2.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.25.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.26.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为.(2)若△DEF的三边DE、EF、DF长分别为,,,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为.(3)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD(D 与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为.28.如图,AD⊥AB,BC⊥AB,AB=20,AD=8,BC=12,E为AB上一点,且DE=CE,求AE.29.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D,(1)求BC的长;(2)求AD的长.30.如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D,(1)判断直线BE与AD的位置关系是;BE与AD之间的距离是线段的长;(2)若AD=6cm,BE=2cm,求BE与AD之间的距离及AB的长.31.如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.32.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.33.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(,);(2)点Q的坐标是(,);(3)x为何值时,△APQ是以AP为腰的等腰三角形?34.在如图的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为;(2)若连接AC,则以AC为一边的正方形的面积为;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为.35.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上;探索创新:(3)若△ABC中有两边的长分别为、(a>0),且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上.36.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.37.已知a、b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,求这个直角三角形的斜边长.38.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=.如果,其中b是整数,且0<c<1,那么b=,c=.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.39.如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.(1)设正方形MNPQ网格内的每个小方格的边长为1,求:①△ABQ,△BCM,△CDN,△ADP的面积;②正方形ABCD的面积;(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程.40.在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.41.如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a、b,斜边为c.你能利用这个图形验证勾股定理吗?42.在数轴上作出表示的点.43.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=6,BC=8,(1)求AB的长;(2)求CD的长.44.如图已知,每个小方格是边长为1的正方形,求△ABC的周长(结果用根号表示).45.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.46.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形BC边上的高.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形BC边上的高.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形BC边上的高.47.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.48.在图中,BC长为3,AB长为4,AF长为12,求正方形的面积.(其中∠FAC 和∠ABC都为直角.)49.用直尺和圆规在如图所示的数轴上作出的点.50.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的特殊四边形中是勾股四边形的两种图形的名称,.(2)如下图(1),请你在图中画出以格点为顶点,OA、OB为勾股边,且对角线相同的所有勾股四边形OAMB.(3)如图(2),以△ABC边AB作如图正三角形ABD,∠CBE=60°,且BE=BC,连接DE、DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.人教新版八年级下学期《17.1 勾股定理》同步练习卷参考答案与试题解析一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM= 1.5.【分析】本题要靠辅助线的帮助.根据题意画出图形,作出辅助线,根据各边的关系求解.【解答】解:如图,延长DM、AB,交于E,在AE上取中点F,连接DF.∵∠BAD=60°,∠ADC=120°,∴∠BAD+∠ADC=180°,∴AB∥CD,∴∠EBM=∠DCM;在△EMB和△DMC中,,∴△EMB≌△DMC,∴BE=CD;∵AB+CD=2,点F为EA的中点,∠BAD=60°,AD=AF=EF=,∴∠EDA=90°;根据勾股定理可得ED=AD,∴ED=3∵M为ED的中点∴MD=1.5.【点评】本题是一道根据三角形的中线定义结合勾股定理求解的综合题,有利于锻炼学生综合分析、解答问题的能力.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.【分析】根据等腰三角形的性质在表格中找出C点.【解答】解:以A为圆心,AB长为半径画圆,圆弧经过格点C2、C3;以B为圆心,AB长为半径画圆,圆弧经过格点C1,∴BC1=AC2=AC3=AB==,∵因为AB的中点不在格点上,因此AB的垂直平分线不会经过格点∴C1、C2、C3是所要找的点.【点评】心动不如行动,赶快拿起圆规,画出图形,根据数形结合思想,利用全等三角形的性质解答此题.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.【分析】设BC=x,AC=y,根据已知列方程组,从而可求得斜边的平方,即求得斜边的长.【解答】解:设BC=x,AC=y根据题意运用勾股定理,得整理得,=65,即x2+y2=52∴斜边的长是2.【点评】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组.求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=5或10时,才能使△ABC与△QPA全等.【分析】分两种情形分别求解即可.【解答】解:当AP=5时,Rt△ABC≌Rt△QPA,理由是:∵∠C=90°,AQ⊥AC,∴∠C=∠QAP=90°,当AP=5=BC时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),当AP=AC=10,AQ=BC=5时,△ABC≌△PQA,故答案为:5或10.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于18.【分析】可过P作AD、AB的平行线,将矩形ABCD分割成四个小矩形,然后根据勾股定理求出PA、PB、PC、PD四条线段的长度的数量关系,然后再代值计算.【解答】解:如图,过P作AD、AB的平行线,原矩形被分成四个小矩形;由勾股定理得:PA2=a2+b2,PC2=c2+d2;PB2=b2+c2,PD2=a2+d2;因此:PA2+PC2=PB2+PD2,即:32+52=42+PD2,解得,PD2=18.【点评】此题考查了矩形的性质和勾股定理的应用,正确地得到PA、PB、PC、PD四条线段之间的数量关系至关重要.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.【分析】分别求出图中所给直角三角形的斜边长,找出规律,即可解答.【解答】解:根据图形,运用勾股定理知,第一个直角三角形的斜边是,第二个直角三角形的斜边是,推而广之,则第n个直角三角形的斜边是,所以第10个直角三角形的斜边长为.故答案为:.【点评】熟练运用勾股定理,能够根据具体数据进行推广,发现规律.7.直角三角形的两条直角边分别为3和4,则斜边上的高为 2.4.【分析】根据勾股定理求出斜边的长,利用面积法求出三角形斜边上的高.【解答】解:由勾股定理知,斜边c==5,设斜边上的高为h,根据直角三角形的面积公式得:S△=×3×4=×5h,∴h==2.4.【点评】本题利用了勾股定理和直角三角形的面积公式求解.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为10或2.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2.故第三边长为10或2.故答案为:10或2.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是6cm.【分析】首先根据勾股定理求得CD的长,再根据角平分线上的点到角两边的距离相等,得D到AB得距离等于CD的长.【解答】解:∵AD=10cm,AC=8cm∴CD=6cm∵AD平分∠CAB∴D点到直线AB的距离=CD=6cm【点评】运用了勾股定理以及角平分线的性质.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为15cm2.【分析】设直角三角形ABC的两直角边是a和b,斜边是c,由勾股定理得出a2+b2=c2,求出以a b为边长的两个正方形的面积之和是a2+b2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2,代入求出即可.【解答】解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以a b为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.【点评】本题考查了勾股定理和正方形的面积,关键是得出c2=a2+b2=15cm2,题目具有一定的代表性,是一道比较好的题目.11.两边长分别为3和5的直角三角形的第三边长为4或.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当5是斜边时,第三边长==4;当5是直角边时,第三边长==.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是10或2cm.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:8是斜边时,第三边长=2cm;8是直角边时,第三边长=10cm.故第三边应该是10或2cm.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为7:3.【分析】过点A作AG⊥BC,垂足为G,根据DE⊥BC,F是AB中点,利用三角形中位线定理求出EG=BE=4,AG=2EF=6,再根据∠C=45°,DE⊥BC,求出DF,然后即可得出答案.【解答】解:过点A作AG⊥BC,垂足为G,∵DE⊥BC∴EF∥AG又∵F是AB中点∴E也为BG中点,==∴EG=BE=4 AG=2EF=6又∵∠C=45°∴AG=GC=6∴EC=EG+GC=10又∵∠C=45° DE⊥BC∴DE=EC=10∴DF=DE﹣EF=10﹣3=7∴DF:FE=7:3.故答案为:7:3.【点评】此题主要考查学生对勾股定理的理解和掌握,解答此题的关键是利用三角形中位线定理求出EG=BE=4,AG=2EF=6.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为2cm,面积为cm2.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2cm;直角三角形的面积=×=cm2.故填2cm,cm2.【点评】此题主要考查勾股定理及三角形的面积.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=12.【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.故答案为12.【点评】此题是勾股定理题目,解决本题的关键是根据勾股定理得到三个面积之间的关.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【解答】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.【点评】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.【分析】根据勾股定理求得AB的长,再根据三角形的面积公式求得CD即可.【解答】解:∵AC=4,BC=3,∴AB=5,∵S=×3×4=×5×CD,△ABC∴CD=.故答案为:.【点评】此题考查了直角三角形面积的不同表示方法及勾股定理的综合应用.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有8个.【分析】根据等腰三角形的性质和勾股定理分别求出以AB为腰的等腰三角形的个数和以AB为底边的等腰三角形的个数即可得出答案.【解答】解:如图所示:以AB为腰的等腰三角形共4个,其底边长为=2的共有4个;以AB为底边的等腰三角形共有4个,其中腰长为的2个,腰长为2的有2个.故答案为:8.【点评】此题主要考查学生对等腰三角形的性质和勾股定理的理解和掌握,此题难易程度适中,适合学生训练.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于5cm2.【分析】先根据角之间的关系以及正方形的性质证明两空白三角形全等,然后根据勾股定理即可解答.【解答】解:如图所示∵∠1+∠5=90°,∠1+∠2=90°,∴∠5=∠2,同理∠1=∠3,又FD=DE,∴△FGD≌△EDH,可得,FG=DH,由勾股定理的几何意义可知S A+S B=S C即2+3=S C.∴S C=5.【点评】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里边的平方的几何意义就是以该边为边的正方形的面积.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+;(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD=1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形.【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP 为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.【分析】(1)分别以点A,C为圆心,以大于AC为半径画弧,两弧相交于点C,D,过CD作直线l即可.(2)所求线段DE等于BC的一半,那么根据题中的数据利用三角函数求出BC 即可.【解答】解:(1)如图,(2)因为直线l垂直平分线段AC,所以CE=AE,又因为BC⊥AC,所以DE∥BC,所以DE=BC.因为在Rt△ABC中,AB=5,cosA=,所以AC=ABcosA=5×=3,由BC===4得DE=2.【点评】本题考查基本作图和利用三角函数来解决相关问题.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.【分析】根据大正方形面积=四个相同直角三角形面积+小正方形面积,得c2=4×ab+(a﹣b)2即得c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【解答】解:∵大正方形面积为:c2,直角三角形面积为ab,小正方形面积为:(a﹣b)2,所以c2=4×ab+(a﹣b)2,即c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【点评】本题主要考查了勾股定理的证明,要认真理解勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.【分析】根据题意,我们可在图中找等量关系,有中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即证在直角三角形中斜边的平方等于两直角边的平方和.【点评】本题考查了学生对定理的证明和对三角形和正方形面积公式的熟练掌握和运用.24.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.。

(精练)人教版八年级下册数学第十七章 勾股定理含答案

(精练)人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、在中,∠C=90°,sinA= ,则tanA=()A. B. C.1 D.2、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.3、如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=4,AB=1,F为AD的中点,则F到BC的距离是().A.1B.2C.4D.84、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.90B.120C.121D.不能确定5、如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16B.18C.24D.326、在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8). 以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为().A.(6,0)B.(4,0)C.(6,0)或(-16,0)D.(4,0)或(-16,0)7、如图,平面直角坐标系中,A点坐标为,点在直线上运动,设的值为,则下面能够大致反映w与m的函数关系的图象是()A. B. C.D.8、如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有()A.1条B.2条C.3条D.4条9、在直角三角形ABC中,斜边AB=1,则AB²+BC²+AC²=()A.2B.4C.6D.810、如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2B.C.D.11、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( )A.12米B.13米C.14米D.15米12、小明从一根长6m的钢条上截取一段后,截取的钢条恰好与两根长分别为3m、5m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.4mB. mC.4m或mD.6m13、如图,点E在y轴上,⊙E与x轴交于点A,B,与y轴交于点C,D,若C (0,9),D(0,﹣1),则线段AB的长度为()A.3B.4C.6D.814、小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米15、已知下列三角形的各边长:①3、4、5,②5、12、13,③3、4、6,④5、11、12其中直角三角形有()A.4个B.3个C.2个D.1个二、填空题(共10题,共计30分)16、已知,点O为数轴原点,数轴上的A,B两点分别对应,,以AB 为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为________.17、如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为________.18、如图,扇形中,. 为弧上的一点,过点作,垂足为,与交于点,若,则该扇形的半径长为________19、图中是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大的正方形E的边长为3则正方形的面积之和为________.20、如图,一扇卷闸门用一块宽18cm,长80cm的长方形木板撑住,用这块木板最多可将这扇卷闸门撑起________cm高.21、如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).22、如图,在等腰中,,,则边上的高是 ________ .23、如图,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S 3、S4,则S1+S2+S3+S4=________.24、学校操场边上一块空地(阴影部分)需要绿化,测出CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,那么需要绿化部分的面积为________.25、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长.28、证明:斜边和一条直角边对应相等的两个直角三角形全等.29、已知如图,.求四边形的面积.30、如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、A5、C6、D7、A8、B9、A10、D11、A12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

17.1.1 勾股定理 人教版数学八年级下册分层作业(含答案)

17.1.1 勾股定理 人教版数学八年级下册分层作业(含答案)

人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。

初中数学人教版八年级下册第十七章17.1勾股定理

初中数学人教版八年级下册第十七章17.1勾股定理

初中数学·人教版·八年级下册——第十七章勾股定理17.1 勾股定理基础闯关全练拓展训练1.在△ABC中,∠C=90°,2∠A=∠B,∠A,∠B,∠C的对边分别为a,b,c,则a∶b∶c等于()A.1∶2∶1B.1∶√2∶1C.1∶√3∶2D.1∶2∶√3答案C设∠A=x°,则∠B=2x°,∵△ABC中∠C=90°,∴∠A+∠B=90°,即x°+2x°=90°,解得x=30,∴∠A=30°,∠B=60°,设a=1,∴c=2,由勾股定理得b=√c2-a2=√4-1=√3,∴a∶b∶c=1∶√3∶2.故选C.2.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()A.4B.8C.16D.32答案C如图,根据勾股定理知④号正方形的边长为√12+12=√2,则②号正方形的边长为√(√2)2+(√2)2=2,⑤号正方形的边长为√22+22=2√2,则①号正方形的边长为√(2√2)2+(2√2)2=4,所以①号正方形的面积为4×4=16.故选C.3.(2016广西防城港期中)如图,长方体的长、宽、高分别为4cm,3cm,12cm,则BD'=.答案13cm解析连接BD,则BD=√42+32=5(cm),故BD'=√52+122=13(cm).4.(2016江西宜春高安期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.答案24cm2解析∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得a2+b2=c2,即(a+b)2-2ab=c2,∴196-2ab=100,即ab=48,则Rt△ABC的面积为1ab=24cm2.2能力提升全练拓展训练1.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是.答案76解析在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.2.(2014山东潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,所以该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.答案25解析由题意可知葛藤绕圆柱五周到达点B,故先把圆柱平均分成五段,将最下边一段圆柱的侧面展开图画出,并连接其对角线,则该对角线的长即为每段的最短长度,为√32+42=5(尺),所以葛藤的最短长度为5×5=25尺,故答案为25.3.(2016山东聊城莘县期中)如图,已知直角△ABC的两直角边长分别为6,8,分别以其三边为直径向外作半圆,则图中阴影部分的面积为.答案24解析在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB=√AC2+BC2=10,则S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB=322π+12×42×π+12×6×8-522π=24.4.如图,在长方形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF(点A、B、E在同一直线上),连接CF,则CF=.答案5√2解析△AEF是由△ADC旋转得来的,可得△AEF≌△ADC,所以∠EAF=∠DAC,AF=AC.则△CAF是等腰直角三角形,所以CF=√FA2+CA2,又AC=√DA2+DC2=√42+32=5,所以CF=√52+52=5√2.三年模拟全练拓展训练1.(2016广东深圳翰林学校第一次月考,15,★★☆)如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离为5 cm,一只蚂蚁如果沿着长方体的表面从A点爬到B点,需要爬行的最短距离是.答案25cm解析(1)当长方形NFGC与长方形CGAD展开在一个面上时,AB=√BD2+AD2=√152+202=25(cm);(2)当长方形NMDC与长方形CDAG展开在一个面上时,AB=√AG2+BG2=√102+252=5√29(cm);(3)当长方形NCGF与长方形FGAE展开在一个面上时,AB=√AC2+BC2=√302+52=5√37(cm).因为25<5√29<5√37,所以蚂蚁需要爬行的最短距离是25cm.2.(2016河北保定模拟,23,★★☆)(1)如图①所示,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间的关系(不必证明);(2)如图②,分别以Rt△ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系并证明;(3)如图③,分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.解析(1)S2+S3=S1.(2)S2+S3=S1.证明:S3=π8AC2,S2=π8BC2,S1=π8AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=π8(BC2+AC2)=π8AB2=S1,∴S2+S3=S1.(3)S2+S3=S1.证明:S1=√34AB2,S2=√34BC2,S3=√34AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=√34(BC2+AC2)=√34AB2=S1,∴S2+S3=S1.五年中考全练拓展训练1.(2016湖南株洲中考,8,★☆☆)如图,以直角三角形的边a、b、c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数为()A.1B.2C.3D.4答案D根据勾股定理可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积,然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.故满足S1+S2=S3的图形个数为4.2.(2016浙江杭州中考,9,★☆☆)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0B.m2-2mn+n2=0C.m2+2mn-n2=0D.m2-2mn-n2=0答案C根据题意画图,如图.在Rt△ABC中,n>m且△ABE和△AEC均为等腰三角形,∴AB=BE=m,则AE=EC=n-m,根据勾股定理可得AE=√2AB,即n-m=√2m,两边平方整理得,m2+2mn-n2=0,故选C.3.(2014广西钦州中考,12,★☆☆)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,从A点到B点只能沿图中的线段走,那么从A点到B点的最短路程的走法共有()A.1种B.2种C.3种D.4种答案C根据题意得出最短路径如图所示,最短路程为√22+22+1=2√2+1,则从A点到B点的最短路程的走法共有3种.故选C.4.(2013四川雅安中考,17,★★☆)在平面直角坐标系中,已知点A(-√5,0),B(√5,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.答案(0,2),(0,-2),(-3,0),(3,0)解析如图,①当点C位于y轴上时,设C(0,b).则√(√5)2+b2+√(√5)2+b2=6,解得b=2或b=-2,此时C(0,2)或C(0,-2).②当点C位于x轴上时,设C(a,0).则|-√5-a|+|a-√5|=6,即2a=6或-2a=6,解得a=3或a=-3,此时C(-3,0)或C(3,0).综上所述,满足条件的所有点C的坐标是(0,2),(0,-2),(-3,0),(3,0).核心素养全练拓展训练1.(2014浙江温州中考改编)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明.下面是小聪利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.图①图②证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab,又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a),∴12b2+12ab=12c2+12a(b-a).∴a2+b2=c2.请参照上述证法,利用图②完成下面的证明.将两个全等的直角三角形按图②所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连接.∵S五边形ACBED=,又∵S五边形ACBED=,∴.∴a2+b2=c2.证明连接BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b-a),∴12ab+12b2+12ab=12ab+12c2+12a(b-a),∴a2+b2=c2.2.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12-x)2+9的最小值.解析(1)√(8-x)2+25+√x2+1.(2)当A、C、E三点共线时,AC+CE的值最小.(3)如图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,且AB=2,ED=3,连接AE交BD于点C.设BC=x,AE的长即为代数式√x2+4+√(12-x)2+9的最小值.过点A作AF∥BD交ED的延长线于点F,得长方形ABDF,则AB=DF=2,AF=BD=12.所以AE=√122+(3+2)2=13.即√x2+4+√(12-x)2+9的最小值为13.。

人教版八年级下《17.1.1勾股定理》练习含答案

人教版八年级下《17.1.1勾股定理》练习含答案

《勾股定理》练习一、选择——基础知识运用1.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.42.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC 能作出()A.2个B.3个C.4个D.6个3.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.54.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c25.一个钝角三角形的两边长为3、4,则第三边可以为()A.4 B.5 C.6 D.76.如图所示,三个正方形中两个的面积分别为S1=169,S2=144,则S3=()A.50 B.25 C.100 D.30二、解答——知识提高运用7.在四边形ABCD中(见图),线段BC长5,∠ABC为直角,∠BCD为135°,AC=AD,而且点A到边CD的垂线段AE的长为12,线段ED的长为5,求四边形ABCD的面积。

8.画一个直角三角形,分别以它的三条边为边向外作等边三角形,要求:(1)画出图形;(2)探究这三个等边三角形面积之间的关系,并说明理由。

9.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC 和△ACD拼成一个凸四边形ABCD.(1)画出四边形ABCD;(2)求出四边形ABCD的对角线BD的长。

10.如图所示.从锐角三角形ABC的顶点B向对边作垂线BE.其中AE=3√3,AB=5√3,∠EBC=30°,求BC。

人教版初中八年级数学下册第十七章《勾股定理》经典练习题(含答案解析)

人教版初中八年级数学下册第十七章《勾股定理》经典练习题(含答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA 5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等8.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDC D .ED +AC >AD9.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:410.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 11.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1212.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 13.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 14.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个15.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题16.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.17.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .18.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .19.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .20.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.21.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.22.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .23.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.24.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,垂足为A ,B ,S △AOM =8cm 2,OA=4cm ,则MB=___.25.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.28.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.29.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.30.如图,一条河流MN旁边有两个村庄A,B,AD⊥MN于D.由于有山峰阻挡,村庄B 到河边MN的距离不能直接测量,河边恰好有一个地点C能到达A,B两个村庄,与A,B 的连接夹角为90°,且与A,B的距离也相等,测量C,D的距离为150m,请求出村庄B到河边的距离.。

人教版《17.1 勾股定理》同步训练卷(5)

人教版《17.1 勾股定理》同步训练卷(5)

人教版《17.1 勾股定理》同步训练卷(5)一、选择题1.如图,点C表示的数是()A.1B.C.1.5D.2.如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的面积是()A.12B.13C.144D.1943.如图,在Rt△ABC中,∠C=90°,AB=4cm,BC=cm,则AC的长为()A.3cm B.cm C.2cm D.1cm4.下列各组数中不能作为直角三角形的三边长的是()A.6,8,10B.5,12,13C.1,2,3D.9,12,155.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A.3B.4C.5D.66.下列说法正确的是()A.若a,b,c是△ABC的三边,则a2+b2=c2B.若a,b,c是Rt△ABC的三边,则a2+b2=c2C.若a,b,c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a,b,c是Rt△ABC的三边,∠C=90°,则a2+b2=c27.在Rt△ABC中,∠ACB=90°,BC=5cm,AC=12cm,三个内角的平分线交于点P,则点P到AB的距离PH为()A.1cm B.2cm C.cm D.cm二、填空题8.如图,是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线ABC所走的路程为m9.如图,已知点D为△ABC内一点,AD平分∠CAB,BD⊥AD,∠C=∠CBD.若AC=10,AB=6,则AD的长为.10.如图,分别以直角三角形的三边为直径在三角形外部画半圆,已知S1=18π,S3=50π,则S2=.11.如图,海中有一个小岛A,一艘轮船由西向东航行,在点B处测得小岛A在它的北偏东60°方向上,航行12海里到达点C处,测得小岛A在它的北偏东30°方向上,那么小岛A到航线BC的距离等于海里.12.在直角三角形ACB中,∠C=90°,AB=4,AC=2,现操作如下:过点C作CP1⊥AB 于点P1,得到Rt△CP1B,过点P1作P1P2⊥CB于点P2,得到Rt△P1P2B,按照相同的方法一直操作下去,则P1P2=;P n P n+1=.13.在Rt△ABC中,∠C=90°.(1)如果a=3,b=4,则c=;(2)如果a=6,c=10,则b=;(3)如果c=13,b=12,则a=;14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.三、解答题15.在△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)已知a=7,b=24,求c;(2)已知a=4,c=7,求b.16.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.17.如图,在Rt△ABC中,∠ACB=90°,AB=20cm,AC=16cm,点P从点A出发,以每秒1cm的速度向点C运动,连接PB,设运动时间为t秒(t>0).(1)求BC的长.(2)当P A=PB时,求t的值.。

人教版八年级数学下册17.1勾股定理同步测试(包含答案)

人教版八年级数学下册17.1勾股定理同步测试(包含答案)

绝密★启用前17.1 勾股定理 班级: 姓名:一、单选题1.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或342.在ABC ∆中,A ∠、B Ð、C ∠所对的边分别是a 、b 、c ,若90A C ∠+∠=︒,则下列等式中成立的是( )A .2222a b c +=B .222b c a +=C .222a c b +=D .222c a b -=3.如图所示,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,于点D ,则BD 的长为A .3B .22C .4D .3524.如图,在ABC ∆中,5AB AC ==,6BC =,点P 是BC 边上的动点,过点P 作PD AB ⊥于D ,PE AC ⊥于E ,则PD PE +的长是( )A .4.8B .4.8或3.8C .3.8D .55.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AC=23,BC=6,则CD 为( )A .2B .2C .3D .36.如图,在Rt ABC ∆中,90ACB ∠=︒,9AC =,12BC =,C 点到AB 的距离是( )A .365B .1225C .94D .347.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .808.如图,数轴上的点A 表示的数是-2,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A .13B .132+C .132-D .2二、填空题 9.如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,那么正方形ABCD 的面积为_.10.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.11.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为______. 12.《九章算术》勾股卷有一题目:今有垣高一丈.依木于垣,上于垣齐.引木却行四尺,其木至地,问木长几何?意即:一道墙髙一丈,一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长______尺(1丈=10尺).三、解答题13.如图,在Rt ⊿ABC 中,90ACB ∠=o ,CD AB ⊥于D ,,AC 20BC 15== .⑴.求AB 的长;⑵.求CD 的长.14.八年级二班的小明和小亮同学学习了“勾股定理”之后,为了测得如图所示风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为10米②根据手中剩余线的长度计算出风筝线BC 的长为26米.③牵线放风筝的小明身高1.6米,求风筝的高度CE?一、单选题1.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为()A.(2,0)B.(5-1,0)C.(101-,0)D.(5,0)2.若直角三角形的三边长为6,8,m,则m2的值为()A.10 B.100 C.28 D.100或283.如图,分别以直角三角形的三边为边向外作正方形,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.64 B.16 C.8 D.44.《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本六尺。

17.1 勾股定理(第一课时 勾股定理的证明)(练习)(解析版)八年级数学下册(人教版)

17.1 勾股定理(第一课时 勾股定理的证明)(练习)(解析版)八年级数学下册(人教版)

第十七章勾股定理17.1 勾股定理(第一课时勾股定理的证明)精选练习答案一、单选题(共10小题)1.(2020·山东青岛市·八年级期中)若实数m、n满足|m﹣3|+4n-=0,且m、n恰好是Rt的两条边长,则的周长是()A.5 B.57C.12 D.12或7【答案】D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】n-0,∵|m﹣4n-0,∴|m﹣3|=04∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当422+5,34则△ABC的周长=3+4+5=12,当422-7,43则△ABC的周长=7=7故选:D.2.(2020·吉林长春市·八年级期末)勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为()A .2B .3C .5D .6【答案】B【分析】 由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .3.(2020·广东清远市·八年级期末)下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12【答案】C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .4.(2020·福建福州市·八年级期末)在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10 B .4 C .22 D .2 【答案】A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=22(10)(30)10--+-=,故选A .5.(2020·吉林长春市·八年级期末)如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .3D 3【答案】C【分析】 根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.6.(2020·张掖市期中)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.C.12或D.以上都不对【答案】C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C7.(2020·江门市期中)在△ABC中,AB=10,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【详解】分两种情况:在图①中,由勾股定理,得==;BD8===;CD2∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得==;BD8===;CD2∴BC=BD―CD=8―2=6.故选C.8.(2020·河北张家口市·八年级期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【答案】C【详解】 如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .9.(2020·山东泰安市·八年级期中)如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11【答案】C【详解】 试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.10.(2020·伊宁市期中)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13119B.13或15 C.13 D.15【答案】C【分析】直角三角形中斜边最长,结合已知数据,利用勾股定理可求出第三边的长.【详解】当12,522+=12513.故第三边的长为13.故选:C.二、填空题(共5小题)11.(2020·南丹县期中)已知直角三角形的两边长分别为3、4.则第三边长为________.【答案】57【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22-=;437②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.∆的周12.(2020·黑龙江绥化市期中)在△ABC中,AB=15,AC=13,高AD=12,则ABC长为_______________.【答案】32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222CD AC AD=-=-=,13125∵∠D=90°,AB=15,AD=12,∴2222BD AB AD=-=-=,15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,13125CD AC AD∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.13.(2020·广西防城港市·八年级期中)如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.【答案】17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面积=49-8-10-14=17(cm2).14.(2020·山东菏泽市·八年级期中)已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.【答案】4.8cm【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==, 得6810CD ⨯=,解得CD =4.8(cm).故答案为4.8cm.15.(2020·广东韶关市·八年级期中)平面直角坐标系中,点()3,4P -到原点的距离是_____.【答案】5【分析】作PA x ⊥轴于A ,则4PA =,3OA =,再根据勾股定理求解.【详解】作PA x ⊥轴于A ,则4PA =,3OA =.则根据勾股定理,得5OP =.故答案为5.三、解答题(共2小题)16.(2020·湖南株洲市期末)如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.【答案】(1)DE=3;(2)ADB S 15∆=.【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 17.(2020·宿州期中)在四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =12,AD =13.(1)求AC 的长;11/1 (2)求四边形ABCD 的面积.【答案】(1)5;(2)36【分析】(1)由勾股定理可得:22AC AB BC =+,从而可得答案;(2)先证明ACD △是直角三角形,再利用四边形的面积等于两个直角三角形的面积和,从而可得答案.【详解】解:(1)∵∠B =90°,AB =4,BC =3,∴2222435AC AB BC =+=+=;(2)由(1)知,AC =5,∵CD =12,AD =13,∴AC 2+CD 2=22251216913+===AD 2,∴ACD △是直角三角形,∠ACD =90°,∵AB =4,BC =3,∠B =90°,AC =5,CD =12,∠ACD =90°,∴四边形ABCD 的面积是,即四边形ABCD 的面积是36.。

人教版数学八年级下册-17.1-勾股定理-同步练习

人教版数学八年级下册-17.1-勾股定理-同步练习

人教版数学八年级下册17.1 勾股定理 课堂练一、选择题1.如图,△ABC 中,AD ⊥BC 于D ,AB=5,BD=4,DC=2,则AC 等于(B )A.13B.C.D.52.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( D )A. 60海里B. 45海里3.一直角三角形的三边分别为2、3、x ,那么x 为( C )A. B. C.或 D.无法确定4. 右图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( C )A. 黄金分割B. 垂径定理C. 勾股定理D. 正弦定理5.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是10cm ,连接AB ,则AB 等于( B )A.120cmB.130cmC.140cmD.150cm6.如图,每个小正方形的边长为1,A,B,C 是小正方形的顶点,则∠ABC 的度数为( D )A. 90°B. 60°C. 30°D. 45°7.如图所示的图形中,所有四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形边长为7cm ,设正方形A 、B 、C 、D 、E 、F 面积分别为S A 、S B 、S C 、S D 、S E 、S F ,则下列各式正确有( D )个. ① S A +S B +S C +S D =49;② S E +S F =49;③ S A +S B +S F =49;④ S C +S D +S E =49A.1 B .2 C.3 D .48.如图,90ACB ∠=,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =(A ) A.7 B.8 C.9 D.109.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( C )A.51B.49C.76D.无法确定10.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15 m,则目测点到杆顶的距离为(设目高为1 m)( B ).A.20m B.25mC.30m D.35m11.如图,圆柱底面半径为cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( C )A.12cmB.cmC.15 cmD.cm12.直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( C )A. B. C. D.二、填空题:13.在△ABC中,∠B=90度,BC=6,AC=8,则AB= .【答案】2.14. 我国古代有这样一道数学问题:枯木一根直立地上高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.【答案】2515.如图所示,在数轴上点A所表示的数为a,则a的值为.【答案】﹣1﹣.16.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC 交于点E,若AD=BD,则折痕BE的长为________.【答案】417.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.【答案】2.218. 已知等腰三角形的一边长为10,面积为30,该三角形的周长为.【答案】10+2或20+2或20+6三、解答题:19.如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.解:过点B作BE⊥AC于E,则.设AE=x,则.∵BD=2CD=2,∴BD=2,CD=1,BC=3.∴.由AB2﹣BD2=AD2=AC2﹣CD2,得.∴,,9x4﹣36x2+36=9x2﹣3x44x4﹣15x2+12=0,∴.又,所以不合题意.故,从而.20.如图,圆柱形玻璃杯的高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为多少?【答案】如图:作A关于EF的对称点A',连接A'B,易知A'B的长为最短距离,由勾股定理得得A'B==20 (cm).21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=D E,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.22.在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.解:连接AM,根据题意△ACM,△AMD,△BMD为直角三角形,由勾股定理得:①;②;.∵M是BC的中点,∴CM=BM,∴③分别把②,③代入①整理得:,所以.23.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了1米即梯子距离地面的高度为OA′=12﹣5=7(米),根据勾股定理:OB′===2(米),∴BB′=OB′﹣OB=(2﹣5)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(2﹣5)米.。

最新人教版初中八年级数学下册第17章 勾股定理 课后同步练习题含答案解析

最新人教版初中八年级数学下册第17章 勾股定理 课后同步练习题含答案解析

第十七章勾股定理17.1 勾股定理(1)课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个 (B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.第11题第12题12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图),探究S1+S2与S3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图),探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图),探究S1+S2与S3的关系.参考答案1.a2+b2,勾股定理. 2.(1)13; (2)9; (3)2,; (4)1,.3.. 4.5,5. 5.132cm. 6.A. 7.B. 8.C.9.(1)a=45cm.b=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.10.B. 11. 12.4. 13.14.(1)S1+S2=S3;(2)S1+S2=S3;(3)S1+S2=S3.17.1 勾股定理(2)课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.第3题第4题4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ).325223.5.310(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).(A)(B) (C)(D)三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为______米. 2123105658第9题第10题10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.参考答案1.13或 2.5. 3.2. 4.10.5.C . 6.A . 7.15米. 8.米. 9. 10.25. 11. 12.7米,420元.13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .17.1 勾股定理(3)课堂学习检测一、填空题 1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______.二、选择题6.已知直角三角形的周长为,斜边为2,则该三角形的面积是( ).(A) (B) (C) (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)(B)或 (C) (D)或三、解答题 .11923⋅3310.2232-62+4143217741242478.如图,在Rt△ABC中,∠C=90°,D、E分别为BC和AC的中点,AD=5,BE=求AB的长.9.在数轴上画出表示及的点.综合、运用、诊断10.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.102101312.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.参考答案1. 2.16,19.2. 3.5,5. 4. 5.6,,. 6.C . 7.D8. 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB = 9.图略. 10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则 15.128,2n -1.17.2 勾股定理的逆定理课堂学习检测一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号);343415,342.432a 3633.132.1324422=+k m ,3213,31102222+=+=622=-AB AF .172,34=∴=AC AB4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)(C) (D)10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶169 11.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形(B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.3,2,1===c b a 43,1,45===c b a 6,3,2===c b a13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?CB 41拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3).4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17.9.D . 10.C . 11.C .12.CD =9. 13.14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0.18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数).51。

人教版八年级数学下册 17.1.2习题(有答案)

人教版八年级数学下册   17.1.2习题(有答案)

第17章勾股定理17.1 勾股定理第2课时 17.1勾股定理(二)测试题1.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要米.2.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.3.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是米.4.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).5.在一个广场上有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.6.如图,小明想知道学校旗杆的高度,他把升旗绳子一端挂在旗杆顶端,发现绳子垂到地面时还余1m;当他把绳子下端拉开5m后,绳子下端刚好接触到地面,则旗杆高度为m.7.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m,则旗杆的高度为.8.如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上点,测得BC=60m,AC=20m,则A,B两点问的距离m.9.如图,长方形的花圃中,有人避开拐角线A→B→C而直接走“捷径”AC,小明想在A处树立一个标牌“少走米,踏之何忍”,请根据图中数字计算完成标牌中未填的数字.10.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?11.小强想知道广场上旗杆的高度,他发现旗杆顶端的绳子垂到旗台上还多0.8米,当他把绳子的下端在旗台上拉开2米后,发现下端刚好接触旗台面,你能帮他算出来这根旗杆的高吗?12.如图,∠AOB=90°,OA=36cm,OB=12cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?13.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这跟芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?14.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴上原点右边于一点,则这个点表示的实数是.15.利用勾股定理,可以作出长为、、、…的线段,如图:在Rt△ABC中,AB=2,BC=1,则AC的长等于.在按同样的方法,可以在数轴上画出表示、、、…的点.(1)在数轴上作出表示﹣的点(尺规作图,保留痕迹).(2)在数轴上作出表示的点(尺规作图,保留痕迹).16.观察图形,分析、归纳,用含n的代数式表示第n个直角三角形的面积S n= (n为正整数).17.今年是农历羊年.如图所示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2、3、4、…,和2′、3′、4′、…,依此类推.若正方形10的边长为1cm,则正方形1的边长.18.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的等式S n= ;(2)推算出OA10= .(3)求出 S12+S22+S32+…+S102的值.19.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图 中画一条线段MN,使MN=;(2)在图 中画一个三边长均为无理数,且各边都不相等的直角△DEF.20.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按要求画图:(1)在图甲中画一条线段MN,使MN=;(2)在图乙中画一个三边长均为无理数,且各边都不相等的直角△ABC.21.在数轴上作出表示﹣的点(保留作图痕迹,不写作法).22.阅读下面的情景对话,然后解答问题:(1)①根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,请判断小红提出的命题是否正确,并填空(填“正确”或“不正确”)②若某三角形的三边长分别是2、4、,则△ABC是奇异三角形吗?(填“是”或“不是”);(2)①若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的边长为;且此直角三角形的三边之比为(请按从小到大排列)②在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;【参考答案】1 72 43 124 合格56 127 178 409 410 解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2.4米,在Rt△ECD中,AB=DE=2.5米,CD=(1.3+0.7)米,故EC===1.5米,故AE=AC﹣CE=2.4﹣1.5=0.9米.答:梯子下滑了0.9米.11 解:设这根旗杆的高为x米,则绳子的长为(x+0.2)米,依题意,得方程 x2+22=(x+0.2)2解得:x=9.9.答:这根旗杆的高为9.9米.12 解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,即BC=CA,设AC=x,则OC=36﹣x,∴由勾股定理可知OB2+OC2=BC2,又∵OA=36,OB=12,∴把它代入关系式122+(36﹣x)2=x2,解方程得出:x=20.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是20cm.13 解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.1415解:∵在Rt△ABC中,AB=2,BC=1,∴AC==;(1)如图所示:﹣所在的点的位置是D.(2)如图所示:①作一个等腰直角三角形,使其两直角边都是1,则斜边为;②作一个直角三角形,使其两直角边分别为1,,则斜边为;③在数轴上,以原点O为圆心,为半径画弧,与数轴正半轴交于点A.则点A就是所求的点.1617 16cm18解:(1)+1=n+1Sn=(n是正整数);故答案是:;(2)∵OA12=1,OA22=()2+1=2,OA32=()2+1=3,OA42=()2+1=4,∴OA12=,OA2=,OA3=,…∴OA10=;故答案是:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2=(1+2+3+ (10)=.即:S12+S22+S32+…+S102=.19解:如图所示:20解:(1)如图所示:MN==;(2)如图所示:AC==2,BC==3,AB==,则△ABC为所求的三角形.21解:如图所示:线段OD为所求.22解:(1)设等边三角形的一边为a,则a2+a2=2a2,∴符合奇异三角形”的定义;∵22+42=2×()2,∴符合奇异三角形”的定义.故答案为:是,是;(2)①∵22+(2)2=2×(2)2,∴第三边的边长为2;∴此直角三角形的三边之比为2:2:2=1::;②∵∠C=90°,则a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=a,c=a,∴a:b:c=1::.故答案为:2,1::;。

人教版八年级数学下册第17章《勾股定理》测试题含答案

人教版八年级数学下册第17章《勾股定理》测试题含答案

A B 第11题图人教版八年级数学下册第17章《勾股定理》测试题含答案一、选择题(30分)1. 在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且2()()a b a b c +-=,则( ) (A )A ∠为直角 (B )C ∠为直角 (C )B ∠为直角 (D )不是直角三角形 2.下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A )1、2、3 (B )2223,4,5 (C 1,2,3 (D 3,4,53. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形. 4. .已知△ABC 各边均为整数,且4AC =,3BC =,AC AB φ,则AB 的长为 ( )A .5B .6C .7D .5或6 5. 在Rt△ABC 中,∠A =90º,a=15,b=12,则第三边c 的长为( ) A .413 B .9 C .413或9 D .都不是6.有一块苗圃如图所示,已知AB =3米,BC =4米,CD =12米,DA =13米,且AB⊥BC,这块草坪的面积是( )A 、24平方米B 、36平方米C 、48平方米D 、72平方米7 如图所示,在一个由4×4个小正方形组成的正方形网格中,阴影部分与正方形ABCD 的面积比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:28. 如图所示,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长是无理数的边数是( )A 、0B 、1C 、2D 、39. 在△ABC 中,AB =20,AC =15,AD 为BC 边上的高,且AD =12,则△ABC 的周长为 ( ) A .42 B .60 C .42或60 D .2510如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( ) A .172 B .52 C .24 D .7二、填空题(30分)11. 在长、宽都是3,高是8的长方体纸箱的外部, 一只蚂蚁从顶点A 沿纸箱表面爬到顶点B 点,那么它所行的最短路线的长是12. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,DCB A第6题图 C 第7题图 CBA 第8题图第10题 l 1 l 2l 3ACB第13题图 则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .13. 如图,一棵大树在一次强台风中于离地面5m 处折断倒下,倒下后树顶落在树根部大约12m 处。

数学随堂小练人教版八年级下册:17.1勾股定理(有答案)

数学随堂小练人教版八年级下册:17.1勾股定理(有答案)

数学随堂小练人教版八年级下册:17.1勾股定理一、单选题1.如图是一棵美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角二角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则正方形的面积是( )A.13B.26C.47D.942.如图,在ABC ∆中,90,2C AC ∠=︒=,点D 在BC 上,2,5,ADC B AD ∠=∠=则BC 的长为( )A.1B.1C.1D.13.如图,一个长为2.5米的梯子,一端放在离墙角1.5米处,另一端靠墙,则梯子顶端距离墙角( )A.0.2米B.0.4米C.2米D.4米4.如图,以数轴的单位长为边长作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A. 112B. 1.4C. 3D. 25.下列说法正确的是( )A.若a 、b 、c 分别是ABC ∆中A ∠,B ∠,C ∠所对的边,则222a b c +=B.若a 、b 、c 分别是Rt ABC ∆中A ∠,B ∠,C ∠所对的边,则222a b c +=C.若a 、b 、c 分别是Rt ABC ∆中A ∠,B ∠,C ∠所对的边, 90?A ∠=,则222a b c +=D.若a 、b 、c 分别是Rt ABC ∆中A ∠,B ∠,C ∠所对的边, 90?C ∠=,则222a b c +=6.直角三角形三边的长分别为3、4、x,则x 可能取的值为( )A.5B. 7C.5或7D.不能确定7.如图,以直角三角形a 、b 、c 为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足123S S S +=图形个数有( )A.1B.2C.3D.48.如图所示,已知在三角形纸片ABC 中,3BC =,6AB =,90BCA ∠=︒,在AC 上取一点E ,以BE 为折痕,折叠ABC △,使A 与BC 延长线上的点D 重合,则DE 的长度为( )A.6B.3C.23D.39.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度为( )A.4米B.5米C.6米D.7米二、填空题 10.已知CD 是ABC △的边AB 上的高,若3CD =,1AD =,2AB AC =,则BC 的长为 .11.在Rt△ABC 中,三边长分别用a 、b 、c 表示,已知a=3、b=5,则c 2=__________.12.如图,学校有一块长方形草坪,少数同学会图方便走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了__________m 路却踩伤了花草.13.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D CE ,平分ACD ∠交AB 于E ,若21AC AE ==,,则BC = .三、解答题14.如图所示,在长方形ABCD 中, 8AB =,4BC =,将长方形沿AC 折叠,使点D 落在点D '处,求重叠部分AFC ∆的面积.参考答案1.答案:C由勾股定理易知2222352347E A B C D S S S S S =+++=+++=,故选C.2.答案:D在ADC ∆中,90,2,C AC ∠=︒=所以2222(5)21CD AD AC =-=-=, 因为2,,ADC B ADC B BAD ∠=∠∠=∠+∠所以,B BAD ∠=∠所以5,BD AD ==所以51,BC =故选D.考点:解直角三角形.3.答案:C由勾股定理得2222.5 1.542-==,∴梯子顶端距离墙角2米.4.答案:D 2,由作图得2OA =所以点A 25.答案:D勾股定理得出的结论“222a b c +=”表达的含义是直角三角形两条直角边的平方和等于斜边的平方,因此这个结论成立的前提条件有两个:一是这个三角形是直角三角形;二是a 、b 是直角边, c 是斜边,这两个条件缺一不可.6.答案:C当3和4为直角边时,则x=5;当3为直角边,4为斜边时,则5x =考点:直角三角形的勾股定理7.答案:D①214S a =,224S b =,234S c =, ∵222a b c +=,222+=, ∴123S S S +=; ②214S a π=,224S b π=,234S c π=, ∵222a b c +=, ∴222444a b c πππ+=, ∴123S S S +=; ③2114S a =,2214S b =,2314S c =, ∵222a b c +=, ∴222111444a b c +=, ∴123S S S +=;④21S a =,22S b =,23S c =,∵222a b c +=,∴123S S S +=.综上,可得:面积关系满足123S S S +=图形有4个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1 勾股定理同步练习题
[基础过关作业]
1.在Rt△ABC中,已知∠C=90°,a=40,b=9,则c=________。

2.在Rt△ABC中,∠C=90。

,已知c=25,b=15,则a=__________.
3.已知数1和2,请再写出一个数,使这三个数恰好是一个直角三角形三边的长,则这个数可以是___________。

4.在直角三角形ABC中,斜边AB=2,则AB2+BC2+CA2=__________.
5.在等腰三角形ABC中,AB=AC=13,BC=10,则S△ABC=___________.
6.若线段a,b,c能构成直角三角形,则它们的比为( )
A.2:3:4 B.3:4:6
C.5:12:13 D.4:6:7
7. 如果一个直角三角形的两条直角边长分别为n2-1、2n(n>0),那么它的斜边长为( )
A.2n B.n+1
C.n2-l D.n2+1
8.如图所示,AC=3cm,AB=4 cm,BD=12 cm,求CD的长。

[综合创新作业]
9.(综合题)如图,阴影部分是一个半圆,则这个半圆的面积是_________.
10.(创新题)如图,在△ABC中,AB=AC=13 cm。

AD是高,且AD=5 cm.
(1)图中还有相等的线段吗?如果有,请把它们写出来________;
(2)BC=_________cm;
(3)△ABC的面积是________cm2.
11.(综合题)如图,在矩形ABCD中,BC=13,DC=1,如果将该矩形沿对角线BD折叠,使点C落在点F处,那么图中阴影部分的面积是____________(保留根号).
12.(易错题)如果一个直角三角形的两条边长分别为3cm ,4cm ,则这个三角形的面积是多少?
13.(创新题)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点。

以格点为顶点,你能做出边长分别为3、22,5的三角形吗?与同伴交流你的做法.
14.(综合题)如图,在△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD 的长.
[名校培优作业]
15.(探究题)已知Rt △ABC 中,∠A ,∠B ,∠C 的对边分别为a 、b 、c ,设AABC 的面积为S ,周长为l .
(1)请你完成下面的表格:
(2)仔细观察上表中你填写的数据规律,如果a ,b ,c 为已知的正实数,且a+b-c=m ,那么猜想 l
S __________(用m 表示); (3)请说明你的猜想的正确性.
[参考答案]
1. 41 点拨:411681811600940c 22==+=+=
2. 20 点拨:20)1525)(1525(1525a 22=-+=-=
3. 53或
点拨:第三个数可以作斜边的长,已知的1、2作直角边的长,也可以把2当作斜边的长,第三个数与1作直角边的长。

4. 8 点拨:由勾股定理得4AB CA BC 222==+
5. 60 点拨:如图D14-1所示,作BC AD ⊥,垂足为点D ,因为△ABC 为等腰三角形,故利用三线合一的性质可得5BC 21BD ==
,又AB=13,所以高12513AD 22=-=,于是可求得面积为
60121021=⨯⨯。

6. C 点拨:222222)x 6()x 4()x 3(,)x 4()x 3()x 2(≠+≠+;222)x 7()x 6()x 4(≠+。

而222)x 13()x 12()x 5(=+,故选C 。

7. D
点拨:22224222)1n (n 41n 2n )n 2()1n (+=++-=+-,所以斜边的长为1n 2+。

选D 。

8. 解:在Rt △ABC 中,)cm (543AB AC BC 2222=+=+=。

在Rt △BDC 中,)cm (13125BD BC CD 2222=+=+=。

9. π881 点拨:依题意知半圆直径981121522==-=。

所以半圆面积为
π=π8
81)29(212。

10. (1)DC BD = (2)24 (3)60 点拨:)cm (241225132AD AB 2BD 2BC 2222=⨯=-=-==
△ABC 的面积为
)cm (6024521BC AD 212=⨯⨯=⋅ 11. 63 点拨:因为△BDF 是△BDC 沿着BD 折叠而形成的,所以3BC BF ==,
FD=DC=1,∠FBD=∠CBD 。

又AD//BC ,所以∠ADB=∠CBD ,所以∠FBD=∠ADB 。

设BF 与AD 的交点为E ,在△BED 中,BE=ED 。

又3EF ED ,3EF BE =+=+所以 设x 3ED ,x EF -==则
则6
313321S ,33x ,)x 3(1x EFD 222=⨯⨯==-=+∆解得,即阴影部分的面积是6
3。

12. 解:分两种情况:①当两直角边长分别为3cm 和4cm 时,)cm (64321
S 2=⨯⨯=;
②当斜边长为4cm 、一直角边长为3cm 时,则另一直角边长为)cm (73422=-。

所以面
积为)cm (72
37321S 2=⨯⨯=
点拨:由于题中未指明乙知的两条边是直角边长还是斜边,因此要分两种情况讨论:一种情况是两条直角边长分别为3cm 和4cm ,另一种情况是一条直角边长为3cm ,斜边长为4cm 。

13. 解:如图D14-2所示,△ABC 即为所求的三角形,其中5AB ,22AC ,3BC ===。

14. 解:x 14CD ,x BD -==则
在直角三角形ABD 中,
由勾股定理,得22213x AD =+
同理,在直角三角形ACD 中,222)x 14(15AD --=
所以2222)x 14(15x 13--=-,解得5x =。

在直角三角形ABD 中,
12513AD 22=-=
15. 解:(1)
(2)
4
m (3)222c b a =+Θ ab 2
1)c b a )(c b a (41lm 41=-+++=∴ 又4m l S ,lm 41S ,ab 21S ==∴=即。

相关文档
最新文档