matlab 有关GA优化的例子

合集下载

matlabga例子

matlabga例子

matlabga例子【篇一:matlabga例子】x = ga(fitnessfcn,nvars,a,b,aeq,beq)termfn,termops,selectfn,selectops,xoverfns,xoverops,mutfns, mutops)--遗传算法函数【输出参数】x--求得的最优解endpop--最终得到的种群bpop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalfn--适应度函数evalops--传递给适应度函数的参数startpop-初始种群opts[epsilonprob_opsdisplay]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。

如[1e-610] termfn--终止函数的名称,如[maxgenterm]termops--传递个终止函数的参数,如[100]selectfn--选择函数的名称,如[normgeomselect]selectops--传递个选择函数的参数,如[0.08]xoverfns--交叉函数名称表,以空格分开,如[arithxoverheuristicxoversimplexover]xoverops--传递给交叉函数的参数表,如[20;23;20]mutfns--变异函数表,如[boundarymutationmultinonunifmutationnonunifmutationunifm utation]mutops--传递给交叉函数的参数表,如[400;61003;41003;400]【注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0 =x =9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数。

基于MATLAB编程的PCA改进GA-BP回归分析

基于MATLAB编程的PCA改进GA-BP回归分析

基于MATLAB编程的PCA改进GA-BP回归分析PCA改进GA-BP回归分析是一种强大的工具,它结合了PCA分析、GA优化算法和BP神经网络算法。

其基本思想是,先用PCA分析提取出数据集的主成分,然后将主成分作为输入向量,通过GA优化算法优化BP神经网络的权值和偏置,以实现回归分析。

下面我们就来详细介绍一下PCA改进GA-BP回归分析的MATLAB编程实现。

首先,我们需要导入数据集并进行PCA分析。

假设我们的数据集是一个$N\times M$的矩阵,其中$N$表示样本数,$M$表示特征数。

我们可以使用MATLAB的pca函数来实现PCA分析,代码如下:``` matlab[coeff, score, latent] = pca(data);```其中,coeff为主成分系数矩阵,score为主成分得分矩阵,latent为主成分方差向量。

我们可以通过观察latent的大小来确定需要保留的主成分数,一般来说保留累计方差贡献率达到80%以上的主成分即可。

接下来,我们将保留下来的主成分作为输入向量,构建一个BP神经网络。

为了优化BP神经网络的权值和偏置,我们需要使用GA优化算法。

具体来说,我们将BP神经网络的权值和偏置作为基因,将神经网络的误差作为适应度函数,使用遗传算法来搜索最优解。

下面是实现遗传算法的MATLAB代码:``` matlabfunction [best_gen, best_fit] = genetic_algorithm(pop_size, bit_num, generation_num, pc, pm, eval_func)% 初始化种群pop = rand(pop_size, bit_num);% 遗传进化for gen = 1:generation_num% 计算适应度函数值scores = zeros(pop_size, 1);for i = 1:pop_sizescores(i) = eval_func(pop(i, :));end% 选择优秀个体[sorted_scores, sorted_indexes] = sort(scores, 'descend'); elite_num = round(pop_size * 0.1);elites = pop(sorted_indexes(1:elite_num), :);% 交叉操作for i = 1:2:pop_sizeparent1 = elites(randi(elite_num), :);parent2 = elites(randi(elite_num), :);if rand < pc[child1, child2] = crossover(parent1, parent2);pop(i, :) = child1;pop(i + 1, :) = child2;elsepop(i, :) = parent1;pop(i + 1, :) = parent2;endend% 变异操作for i = 1:pop_sizeif rand < pmpop(i, :) = mutation(pop(i, :));endendend% 返回最优个体和适应度函数值best_fit = eval_func(elites(1, :));best_gen = elites(1, :);end```其中,pop_size表示种群大小,bit_num表示染色体长度,generation_num表示迭代次数,pc表示交叉概率,pm表示变异概率,eval_func为适应度函数。

matlab中的遗传算法

matlab中的遗传算法

matlab中的遗传算法【原创版】目录一、引言二、遗传算法的基本原理1.种群概念2.适应度函数3.选择操作4.交叉操作5.变异操作三、MATLAB 中遗传算法的实现1.准备工作2.遗传算法的实现四、遗传算法的应用案例1.旅行商问题2.装载问题五、遗传算法的优缺点六、结论正文一、引言遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法,其主要思想是将进化过程中的自然选择、交叉和变异等遗传操作应用到问题的求解过程中,从而实现对问题的优化求解。

遗传算法在解决复杂问题、非线性问题以及大规模问题等方面具有较强的优势,因此在各个领域得到了广泛的应用。

本文将介绍遗传算法的基本原理以及在MATLAB 中的实现。

二、遗传算法的基本原理1.种群概念遗传算法以一个种群作为优化过程的载体。

种群中的个体代表问题的解,每个个体由一组参数表示。

在优化过程中,种群会不断进化,最终收敛到问题的最优解。

2.适应度函数适应度函数是遗传算法的核心部分,用于评价种群中个体的优劣。

适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。

在遗传算法的优化过程中,适应度函数用于选择优秀的个体,从而指导种群的进化。

3.选择操作选择操作是基于适应度函数的一种选择策略,用于选择下一代的父代个体。

常见的选择方法有轮盘赌选择、锦标赛选择等。

4.交叉操作交叉操作是遗传算法中产生新个体的主要方式,通过将选中的优秀个体进行交叉操作,产生具有更好适应度的新个体。

常见的交叉方法有单点交叉、多点交叉、均匀交叉等。

5.变异操作变异操作是在遗传算法中引入随机性的一种方式,通过随机改变某些基因的值,使新个体在进化过程中具有一定的多样性。

变异操作的强度由变异概率控制。

三、MATLAB 中遗传算法的实现1.准备工作在 MATLAB 中实现遗传算法,首先需要定义适应度函数、选择操作、交叉操作和变异操作等。

此外,还需要设置遗传算法的参数,如迭代次数、种群大小、交叉概率、变异概率等。

遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

在多目标优化问题中,GA也可以被应用。

本文将介绍如何使用Matlab实现遗传算法多目标优化,并提供源代码。

一、多目标优化1.1 多目标优化概述在实际问题中,往往存在多个冲突的目标函数需要同时优化。

这就是多目标优化(Multi-Objective Optimization, MOO)问题。

MOO不同于单一目标优化(Single Objective Optimization, SOO),因为在MOO中不存在一个全局最优解,而是存在一系列的Pareto最优解。

Pareto最优解指的是,在不降低任何一个目标函数的情况下,无法找到更好的解决方案。

因此,在MOO中我们需要寻找Pareto前沿(Pareto Front),即所有Pareto最优解组成的集合。

1.2 MOO方法常见的MOO方法有以下几种:(1)加权和法:将每个目标函数乘以一个权重系数,并将其加和作为综合评价指标。

(2)约束法:通过添加约束条件来限制可行域,并在可行域内寻找最优解。

(3)多目标遗传算法:通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

1.3 MOO评价指标在MOO中,我们需要使用一些指标来评价算法的性能。

以下是常见的MOO评价指标:(1)Pareto前沿覆盖率:Pareto前沿中被算法找到的解占总解数的比例。

(2)Pareto前沿距离:所有被算法找到的解与真实Pareto前沿之间的平均距离。

(3)收敛性:算法是否能够快速收敛到Pareto前沿。

二、遗传算法2.1 遗传算法概述遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

GA-BP神经网络应用实例之MATLAB程序

GA-BP神经网络应用实例之MATLAB程序

GA-BP神经网络应用实例之MATLAB程序% gap.xls中存储训练样本的原始输入数据 37组% gat.xls中存储训练样本的原始输出数据 37组% p_test.xls中存储测试样本的原始输入数据 12组% t_test.xls中存储测试样本的原始输出数据 12组% 其中gabpEval.m适应度值计算函数,gadecod.m解码函数%--------------------------------------------------------------------------nntwarn off;% nntwarn函数可以临时关闭神经网络工具箱的警告功能,当代码使用到神经% 网络工具箱的函数时会产生大量的警告而这个函数可以跳过这些警告但% 是,为了保证代码可以在新版本的工具箱下运行,我们不鼓励这么做pc=xlsread('gap.xls');tc=xlsread('gat.xls');p_test=xlsread('p_test.xls');t_test=xlsread('t_test.xls');p=pc';t=tc';p_test=p_test';t_test=t_test';% 归一化处理for i=1:2P(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:))); endfor i=1:4T(i,:)=(t(i,:)-min(t(i,:)))/(max(t(i,:))-min(t(i,:))); endfor i=1:2P_test(i,:)=(p_test(i,:)-min(p_test(i,:)))/(max(p_test(i,:))-min(p_test(i,:)));end%--------------------------------------------------------------------------% 创建BP神经网络,隐含层节点数为12net=newff(minmax(P),[12,4],{'tansig','purelin'},'trainlm'); %-------------------------------------------------------------------------- % 下面使用遗传算法对网络进行优化R=size(P,1);% BP神经网络输入层节点数S2=size(T,1);% BP神经网络输出层节点数S1=12;% 隐含层节点数S=R*S1+S1*S2+S1+S2;% 遗传算法编码长度aa=ones(S,1)*[-1,1];popu=100;% 种群规模initPop=initializega(popu,aa,'gabpEval');% 初始化种群gen=500;% 遗传代数% 下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPop,[1e-6 11],'maxGenTerm',...gen,'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%--------------------------------------------------------------------------% 绘收敛曲线图figure;plot(trace(:,1),1./trace(:,3),'r-'); hold on;plot(trace(:,1),1./trace(:,2),'b-'); xlabel('遗传代数');ylabel('平方和误差');figure;plot(trace(:,1),trace(:,3),'r-'); hold on;plot(trace(:,1),trace(:,2),'b-'); xlabel('遗传代数');ylabel('适应度');legend('平均适应度值','最优适应度值'); %-------------------------------------------------------------------------- % 下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.IW{1,1}=W1;net.LW{2,1}=W2;net.b{1}=B1;net.b{2}=B2;% 设置训练参数net.trainParam.epochs=3000;net.trainParam.goal=1e-6;% 训练网络net=train(net,P,T);w1=net.IW{1,1};w2=net.LW{2,1};b1=net.b{1};b2=net.b{2};% 测试网络性能temp=sim(net,P_test);yuce1=[temp(1,:);temp(2,:),;temp(3,:);temp(4,:)];for i=1:4yuce(i,:)=yuce1(i,:)*(max(t_test(i,:))-min(t_test(i,:)))+min(t_test(i,:));end%--------------------------------------------------------------------------% 测试输出结果之一figure;plot(1:12,yuce(1,:),'bo-');ylabel('切口外径 mm');hold on;plot(1:12,t_test(1,:),'r*-'); legend('测试结果','测试样本');figure;plot(1:12,yuce(1,:)-t_test(1,:),'b-');ylabel('误差 mm');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(1,:)-t_test(1,:))/t_test(1,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之二figure;plot(1:12,yuce(2,:),'bo-'); ylabel('切口内径 mm');hold on;plot(1:12,t_test(2,:),'r*-'); legend('测试结果','测试样本'); figure;plot(1:12,yuce(2,:)-t_test(2,:),'b-');ylabel('误差 mm');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(2,:)-t_test(2,:))/t_test(2,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之三figure;plot(1:12,yuce(3,:),'bo-'); ylabel('最大滚切力 N');hold on;plot(1:12,t_test(3,:),'r*-'); legend('测试结果','测试样本'); figure;plot(1:12,yuce(3,:)-t_test(3,:),'b-');ylabel('误差 N');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(3,:)-t_test(3,:))/t_test(3,:))*100,'b*');ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之四figure;plot(1:12,yuce(4,:),'bo-'); ylabel('切断时间 s');hold on;plot(1:12,t_test(4,:),'r*-');legend('测试结果','测试样本');figure;plot(1:12,yuce(4,:)-t_test(4,:),'b-');ylabel('误差 s');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(4,:)-t_test(4,:))/t_test(4,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');%--------------------------------------------------------------------------。

基于Matlab遗传算法工具箱的优化计算实现

基于Matlab遗传算法工具箱的优化计算实现

基于Matlab遗传算法工具箱的优化计算实现一、概述随着科技的发展和社会的进步,优化问题在众多领域,如工程设计、经济管理、生物科学、交通运输等中扮演着越来越重要的角色。

优化计算的目标是在给定的约束条件下,寻找一组变量,使得某个或某些目标函数达到最优。

许多优化问题具有高度的复杂性,传统的数学方法往往难以有效求解。

寻求新的、高效的优化算法成为了科研人员的重要任务。

遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索算法,通过模拟自然界的进化过程,寻找问题的最优解。

自20世纪70年代初由美国密歇根大学的John Holland教授提出以来,遗传算法因其全局搜索能力强、鲁棒性好、易于与其他算法结合等优点,被广泛应用于各种优化问题中。

1. 遗传算法简介遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的优化搜索算法。

该算法起源于对生物进化过程中遗传机制的研究,通过模拟自然选择和遗传过程中的交叉、突变等操作,在搜索空间内寻找最优解。

自20世纪70年代初由John Holland教授提出以来,遗传算法已在多个领域取得了广泛的应用,包括函数优化、机器学习、模式识别、自适应控制等。

遗传算法的基本思想是将问题的解表示为“染色体”,这些染色体在算法中通过选择、交叉和突变等操作进行演化。

选择操作模仿了自然选择中“适者生存”的原则,根据适应度函数对染色体进行筛选交叉操作则模拟了生物进化中的基因重组过程,通过交换染色体中的部分基因,生成新的个体突变操作则是对染色体中的基因进行小概率的随机改变,以维持种群的多样性。

在遗传算法中,种群初始化是算法的起点,通过随机生成一组初始解作为初始种群。

根据适应度函数对种群中的个体进行评估,选择出适应度较高的个体进行交叉和突变操作,生成新的种群。

这个过程不断迭代进行,直到满足终止条件(如达到最大迭代次数或找到满足精度要求的最优解)为止。

稀疏天线阵的GA优化 (MATLAB程序)

稀疏天线阵的GA优化 (MATLAB程序)
pc=0.8; %交叉概率
pm=0.05; %变异概率
%pcmin=0.5;
%pmmin=0.03;
%deltapc=(pc-pcmin)*100/eranum;
%deltapm=(pm-pmmin)*100/eranum;
T1=clock;
s=sprintf('程序正在运行中,请稍等......');
本程序运行需一个小时左右。优化准则是旁瓣电平最小。取栅格间距为lemda/2,阵元间距为栅格间距的整数倍。放阵元的位置放1,否则放0
initpop.m 种群初始化
function pop=initpop(popsize,indivlength,atennum)
pop=zeros(popsize,indivlength);
pop(i,a(j))=1;%每行对应的位置置1
end
end
calfitval.m计算适应度值
%popsize染色体个数,indivlength染色体长度,pop种群
function [fitvalue]=calfitval(popsize,indivlength,pop)
[Maxvalue,index2]=max(fitvalue);%将当前种群中最优解保存在MaxValue
bestchrom = pop(index2,:);%最佳染色体保存
pop(index1,:)=bestchrom;
index=[1:m];
index(index1)=0;
index=nonzeros(index);%使最优染色体坐在的位置为零,便于清空,使最优的染色体的原来位置不参与本次的选择、交叉、变异

MATLAB智能算法30个案例分析

MATLAB智能算法30个案例分析

MATLAB 智能算法30个案例分析第1 章1、案例背景遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。

遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。

在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。

基因组成的串就是染色体,或者叫基因型个体( Individuals) 。

一定数量的个体组成了群体(Population)。

群体中个体的数目称为群体大小(Population Size),也叫群体规模。

而各个个体对环境的适应程度叫做适应度( Fitness) 。

2、案例目录:1.1 理论基础1.1.1 遗传算法概述1. 编码2. 初始群体的生成3. 适应度评估4. 选择5. 交叉6. 变异1.1.2 设菲尔德遗传算法工具箱1. 工具箱简介2. 工具箱添加1.2 案例背景1.2.1 问题描述1. 简单一元函数优化2. 多元函数优化1.2.2 解决思路及步骤1.3 MATLAB程序实现1.3.1 工具箱结构1.3.2 遗传算法中常用函数1. 创建种群函数—crtbp2. 适应度计算函数—ranking3. 选择函数—select4. 交叉算子函数—recombin5. 变异算子函数—mut6. 选择函数—reins7. 实用函数—bs2rv8. 实用函数—rep1.3.3 遗传算法工具箱应用举例1. 简单一元函数优化2. 多元函数优化1.4 延伸阅读1.5 参考文献3、主程序:1. 简单一元函数优化:clcclear allclose all%% 画出函数图figure(1);hold on;lb=1;ub=2; %函数自变量范围【1,2】ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线xlabel('自变量/X')ylabel('函数值/Y')%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=20; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(2,MAXGEN); %寻优结果的初始值FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器Chrom=crtbp(NIND,PRECI); %初始种群%% 优化gen=0; %代计数器X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换ObjV=sin(10*pi*X)./X; %计算目标函数值while gen<MAXGENFitnV=ranking(ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异X=bs2rv(SelCh,FieldD); %子代个体的十进制转换ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群X=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=min(ObjV);trace(1,gen)=X(I); %记下每代的最优值trace(2,gen)=Y; %记下每代的最优值endplot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点grid on;plot(X,ObjV,'b*'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(2,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestY=trace(2,end);bestX=trace(1,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\n'])2. 多元函数优化clcclear allclose all%% 画出函数图figure(1);lbx=-2;ubx=2; %函数自变量x范围【-2,2】lby=-2;uby=2; %函数自变量y范围【-2,2】ezmesh('y*sin(2*pi*x)+x*cos(2*pi*y)',[lbx,ubx,lby,uby],50); %画出函数曲线hold on;%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=50; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(3,MAXGEN); %寻优结果的初始值FieldD=[PRECI PRECI;lbx lby;ubx uby;1 1;0 0;1 1;1 1]; %区域描述器Chrom=crtbp(NIND,PRECI*2); %初始种群%% 优化gen=0; %代计数器XY=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换X=XY(:,1);Y=XY(:,2);ObjV=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算目标函数值while gen<MAXGENFitnV=ranking(-ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异XY=bs2rv(SelCh,FieldD); %子代个体的十进制转换X=XY(:,1);Y=XY(:,2);ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群XY=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=max(ObjV);trace(1:2,gen)=XY(I,:); %记下每代的最优值trace(3,gen)=Y; %记下每代的最优值endplot3(trace(1,:),trace(2,:),trace(3,:),'bo'); %画出每代的最优点grid on;plot3(XY(:,1),XY(:,2),ObjV,'bo'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(3,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestZ=trace(3,end);bestX=trace(1,end);bestY=trace(2,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ), '\n']) 第2 章基于遗传算法和非线性规划的函数寻优算法1.1案例背景1.1.1 非线性规划方法非线性规划是20世纪50年代才开始形成的一门新兴学科。

MATLAB7.0 GA工具箱详细讲解及实例演示

MATLAB7.0 GA工具箱详细讲解及实例演示

minimize f ( x)
x
如果我们想要求出函数f(x)的最大值, 可以转而求取函数g(x)=-f(x)的最小值, 因为函数g(x) 最小值出现的地方与函数f(x)最大值出现的地方相同。
2 例如,假定想要求前面所描述的函数 f ( x1 , x2 ) x12 2x1 x2 6x1 x2 6x2 的最大值,这时,
137
显示参数描述
输入适应度函数 输入适应度函数 的变量数目
开始遗传算法
显示结果
图8.2
遗传算法工具
为了使用遗传算法工具,首先必须输入下列信息: Fitness function(适应度函数)——欲求最小值的目标函数。输入适应度函数的形式 为@fitnessfun,其中fitnessfun.m是计算适应度函数的M文件。在前面“编写待优化函数的M文 件”一节里已经解释了如何编写这种M文件。符号@产生一个对于函数fitnessfun的函数句柄。 Number of variables(变量个数)——适应度函数输入向量的长度。对于“编写待优化 函数的M文件”一节所描述的函数My_fun,这个参数是2。 点击Start按钮,运行遗传算法,将在Status and Results(状态与结果)窗格中显示出相应 的运行结果。 在Options窗格中可以改变遗传算法的选项。为了查看窗格中所列出的各类选项,可单击 与之相连的符号“+”。
8.1.2 编写待优化函数的M文件
134
为了使用遗传算法和直接搜索工具箱,首先必须编写一个 M 文件,来确定想要优化的函 数。这个 M 文件应该接受一个行向量,并且返回一个标量。行向量的长度就是目标函数中独 立变量的个数。本节将通过实例解释如何编写这种 M 文件。 8.1.2.1 编写 M 文件举例 下面的例子展示了如何为一个想要优化的函数编写M文件。 假定我们想要计算下面函数的 最小值:

遗传算法(GeneticAlgorithm,GA)及MATLAB实现

遗传算法(GeneticAlgorithm,GA)及MATLAB实现

遗传算法(GeneticAlgorithm,GA)及MATLAB实现遗传算法概述:• 遗传算法(Genetic Algorithm,GA)是⼀种进化算法,其基本原理是仿效⽣物界中的“物竞天择、适者⽣存”的演化法则,它最初由美国Michigan⼤学的J. Holland教授于1967年提出。

• 遗传算法是从代表问题可能潜在的解集的⼀个种群(population)开始的,⽽⼀个种群则由经过基因(gene)编码的⼀定数⽬的个体(individual)组成。

因此,第⼀步需要实现从表现型到基因型的映射即编码⼯作。

初代种群产⽣之后,按照适者⽣存和优胜劣汰的原理,逐代(generation)演化产⽣出越来越好的近似解,在每⼀代,根据问题域中个体的适应度(fitness)⼤⼩选择个体,并借助于⾃然遗传学的遗传算⼦(genetic operators)进⾏组合交叉和变异,产⽣出代表新的解集的种群。

这个过程将导致种群像⾃然进化⼀样,后⽣代种群⽐前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

• 遗传算法有三个基本操作:选择(Selection)、交叉(Crossover)和变异(Mutation)。

• (1)选择。

选择的⽬的是为了从当前群体中选出优良的个体,使它们有机会作为⽗代为下⼀代繁衍⼦孙。

根据各个个体的适应度值,按照⼀定的规则或⽅法从上⼀代群体中选择出⼀些优良的个体遗传到下⼀代种群中。

选择的依据是适应性强的个体为下⼀代贡献⼀个或多个后代的概率⼤。

• (2)交叉。

通过交叉操作可以得到新⼀代个体,新个体组合了⽗辈个体的特性。

将群体中的各个个体随机搭配成对,对每⼀个个体,以交叉概率交换它们之间的部分染⾊体。

• (3)变异。

对种群中的每⼀个个体,以变异概率改变某⼀个或多个基因座上的基因值为其他的等位基因。

同⽣物界中⼀样,变异发⽣的概率很低,变异为新个体的产⽣提供了机会。

遗传算法的基本步骤:1)编码:GA在进⾏搜索之前先将解空间的解数据表⽰成遗传空间的基因型串结构数据,这些串结构数据的丌同组合便构成了丌同的点。

matlab ga函数 结构体

matlab ga函数 结构体

matlab ga函数结构体摘要:1.MATLAB GA 函数介绍2.结构体的概念3.MATLAB GA 函数与结构体的结合应用4.实例解析正文:一、MATLAB GA 函数介绍MATLAB 是一种广泛应用于科学计算、数据分析、可视化等领域的编程语言。

在MATLAB 中,GA 函数是一种遗传算法(Genetic Algorithm)函数,用于解决优化问题。

遗传算法是一种模仿自然界生物进化过程的随机搜索算法,其主要思想是优胜劣汰,适者生存。

二、结构体的概念结构体是一种复合数据类型,用于将不同类型的数据组合在一起。

结构体主要包含以下几个要素:标签(Name)、值(Value)以及数据类型(Data Type)。

结构体可以描述一个复杂的系统,也可以描述一个简单的数据结构。

在MATLAB 中,结构体可以用于存储和处理数据,具有很大的灵活性。

三、MATLAB GA 函数与结构体的结合应用在解决实际问题时,我们可能需要用到遗传算法来优化某个结构体的参数。

例如,我们希望找到一个最优的结构体,使其在某些约束条件下达到最优解。

在这种情况下,我们可以使用MATLAB 的GA 函数来实现结构体的优化。

四、实例解析假设我们有一个结构体,用来描述一个机器人的性能参数,包括质量、速度、耐力等。

我们的目标是在满足某些约束条件下,找到一组最优的性能参数,使得机器人的性能达到最大。

我们可以使用MATLAB GA 函数来解决这个问题。

首先,我们需要定义一个适应度函数(Fitness Function),用于计算机器人的性能。

然后,我们需要设置遗传算法的参数,如种群大小、交叉概率、变异概率等。

最后,我们使用GA 函数来运行遗传算法,得到最优的性能参数。

通过结合MATLAB GA 函数和结构体,我们可以有效地解决这类优化问题。

智能优化算法及matlab实例

智能优化算法及matlab实例

智能优化算法及matlab实例1. Genetic Algorithm (遗传算法): 智能优化算法的一种,通过模拟自然选择和遗传机制来搜索问题的最优解。

在Matlab中,可以使用Global Optimization Toolbox中的gamultiobj和ga函数来实现遗传算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('ga','Display','iter');% 运行遗传算法x = ga(fitnessFunction, 2, [], [], [], [], [], [], [], options);2. Particle Swarm Optimization (粒子群优化): 一种启发式优化算法,模拟鸟群或鱼群等群体行为来搜索最优解。

在Matlab中,可以使用Global Optimization T oolbox中的particleswarm函数来实现粒子群优化算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('particleswarm','Display','iter');% 运行粒子群优化算法x = particleswarm(fitnessFunction, 2, [], [], options);3. Simulated Annealing (模拟退火): 一种基于概率的全局优化算法,模拟固体退火的过程来搜索最优解。

在Matlab中,可以使用Global Optimization Toolbox中的simulannealbnd函数来实现模拟退火算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('simulannealbnd','Display','iter');% 运行模拟退火算法x = simulannealbnd(fitnessFunction, zeros(2,1), [], [], options);以上是三种常见的智能优化算法及其在Matlab中的实例。

matlab实用教程实验十遗传算法与优化问题

matlab实用教程实验十遗传算法与优化问题

matlab实用教程实验十遗传算法与优化问题matlab实用教程实验十遗传算法与优化问题一、问题背景与实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景与实验目的遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位.本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).(1)遗传算法中的生物遗传学概念由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下:序号遗传学概念遗传算法概念数学概念1个体要处理的基本对象、结构也就是可行解2群体个体的集合被选定的一组可行解3染色体个体的表现形式可行解的编码4基因染色体中的元素编码中的元素5基因位某一基因在染色体中的位置元素在编码中的位置6适应值个体对于环境的适应程度,或在环境压力下的生存能力可行解所对应的适应函数值7种群被选定的一组染色体或个体根据入选概率定出的一组可行解8选择从群体中选择优胜的个体,淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解9交叉一组染色体上对应基因段的交换根据交叉原则产生的一组新解10交叉概率染色体对应基因段交换的概率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.9011变异染色体水平上基因变化编码的某些元素被改变12变异概率染色体上基因变化的概率(可能性大小)开区间(0,1)内的一个值, 一般为0.001~0.0113进化、适者生存个体进行优胜劣汰的进化,一代又一代地优化目标函数取到最大值,最优的可行解(2)遗传算法的步骤遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.下面给出遗传算法的具体步骤,流程图参见图1:第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;第二步:定义适应函数,便于计算适应值;第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;第四步:随机产生初始化群体;第五步:计算群体中的个体或染色体解码后的适应值;第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.图1 一个遗传算法的具体步骤遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.2.遗传算法的实际应用例1:设,求.注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.在此将细化地给出遗传算法的整个过程.(1)编码和产生初始群体首先第一步要确定编码的策略,也就是说如何把到2这个区间内的数用计算机语言表示出来.编码就是表现型到基因型的映射,编码时要注意以下三个原则:完备性:问题空间中所有点(潜在解)都能成为GA编码空间中的点(染色体位串)的表现型;健全性:GA编码空间中的染色体位串必须对应问题空间中的某一潜在解;非冗余性:染色体和潜在解必须一一对应.这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为,则必须将闭区间分为等分.因为所以编码的二进制串至少需要22位.将一个二进制串(b21b20b19…b1b0)转化为区间内对应的实数值很简单,只需采取以下两步(Matlab程序参见附录4):1)将一个二进制串(b21b20b19…b1b0)代表的二进制数化为10进制数:2)对应的区间内的实数:例如,一个二进制串a=<0111>表示实数0.637197.=(0111)2=2288967二进制串<0000>,<1111>,则分别表示区间的两个端点值-1和2.利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.首先我们来随机的产生一个个体数为4个的初始群体如下:pop(1)={<1110>, %% a1<0010>, %% a2<0000>, %% a3<0101>} %% a4(Matlab程序参见附录2)化成十进制的数分别为:pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 }接下来我们就要解决每个染色体个体的适应值问题了.(2)定义适应函数和适应值由于给定的目标函数在内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.对于本题中的最大化问题,定义适应函数,采用下述方法:式中既可以是特定的输入值,也可以是当前所有代或最近K代中的最小值,这里为了便于计算,将采用了一个特定的输入值.若取,则当时适应函数;当时适应函数.由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab程序参见附录3):f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 }然后通过适应函数计算出适应值分别如下(Matlab程序参见附录5、附录6):取,g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 }(3)确定选择标准这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:对于给定的规模为n的群体pop={},个体的适应值为,则其入选概率为由上述给出的群体,我们可以计算出各个个体的入选概率.首先可得,然后分别用四个个体的适应值去除以,得:P(a1)=2.226437 / 6.478330 = 0.343675 %% a1P(a2)=2.318543 / 6.478330 = 0.357892 %% a2P(a3)= 0 / 6.478330 = 0 %% a3P(a4)=1.933350 / 6.478330 = 0.298433 %% a4(Matlab程序参见附录7)(4)产生种群计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab 程序参见附录8、附录11).要说明的是:附录11的算法与这里不完全相同.为保证收敛性,附录11的算法作了修正,采用了最佳个体保存方法(elitist model),具体内容将在后面给出介绍.由初始群体的入选概率我们淘汰掉a3,再加入a2补足成与群体同样大小的种群得到newpop(1)如下:newpop(1)={<1110>, %% a1<0010>, %% a2<0010>, %% a2<0101>} %% a4(5)交叉交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体组,组成新的群体(Matlab程序参见附录9).我们把之前得到的newpop(1)的四个个体两两组成一对,重复的不配对,进行交叉.(可以在任一位进行交叉)<110101110 1001100011110>, <0010>交叉得:<100001100 1010001000010>, <1110><10000110010100 01000010>, <0101>交叉得:<01101010011011 10010101>, <0010>通过交叉得到了四个新个体,得到新的群体jchpop (1)如下:jchpop(1)={<0010>,<1110>,<0101>,<0010>}这里采用的是单点交叉的方法,当然还有多点交叉的方法,不过有些烦琐,这里就不着重介绍了.(6)变异变异也就是通过一个小概率改变染色体位串上的某个基因(Matlab程序参见附录10).现把刚得到的jchpop(1)中第3个个体中的第9位改变,就产生了变异,得到了新的群体pop(2)如下:pop(2)= {<0010>,<1110>,<0101>,<0010> }然后重复上述的选择、交叉、变异直到满足终止条件为止.(7)终止条件遗传算法的终止条件有两类常见条件:(1)采用设定最大(遗传)代数的方法,一般可设定为50代,此时就可能得出最优解.此种方法简单易行,但可能不是很精确(Matlab程序参见附录1);(2)根据个体的差异来判断,通过计算种群中基因多样性测度,即所有基因位相似程度来进行控制.3.遗传算法的收敛性前面我们已经就遗传算法中的编码、适应度函数、选择、交叉和变异等主要操作的基本内容及设计进行了详细的介绍.作为一种搜索算法,遗传算法通过对这些操作的适当设计和运行,可以实现兼顾全局搜索和局部搜索的所谓均衡搜索,具体实现见下图2所示.图2 均衡搜索的具体实现图示应该指出的是,遗传算法虽然可以实现均衡的搜索,并且在许多复杂问题的求解中往往能得到满意的结果,但是该算法的全局优化收敛性的理论分析尚待解决.目前普遍认为,标准遗传算法并不保证全局最优收敛.但是,在一定的约束条件下,遗传算法可以实现这一点.下面我们不加证明地罗列几个定理或定义,供读者参考(在这些定理的证明中,要用到许多概率论知识,特别是有关马尔可夫链的理论,读者可参阅有关文献).定理1 如果变异概率为,交叉概率为,同时采用比例选择法(按个体适应度占群体适应度的比例进行复制),则标准遗传算法的变换矩阵P是基本的.定理2 标准遗传算法(参数如定理1)不能收敛至全局最优解.由定理2可以知道,具有变异概率,交叉概率为以及按比例选择的标准遗传算法是不能收敛至全局最最优解.我们在前面求解例1时所用的方法就是满足定理1的条件的方法.这无疑是一个令人沮丧的结论.然而,庆幸的是,只要对标准遗传算法作一些改进,就能够保证其收敛性.具体如下:我们对标准遗传算法作一定改进,即不按比例进行选择,而是保留当前所得的最优解(称作超个体).该超个体不参与遗传.最佳个体保存方法(elitist model)的思想是把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中.此种选择操作又称复制(copy).De Jong 对此方法作了如下定义:定义设到时刻t(第t代)时,群体中a*(t)为最佳个体.又设A(t+1)为新一代群体,若A(t+1)中不存在a*(t),则把a*(t)作为A(t+1)中的第n+1个个体(其中,n为群体大小)(Matlab程序参见附录11).采用此选择方法的优点是,进化过程中某一代的最优解可不被交叉和变异操作所破坏.但是,这也隐含了一种危机,即局部最优个体的遗传基因会急速增加而使进化有可能限于局部解.也就是说,该方法的全局搜索能力差,它更适合单峰性质的搜索空间搜索,而不是多峰性质的空间搜索.所以此方法一般都与其他选择方法结合使用.定理3 具有定理1所示参数,且在选择后保留当前最优值的遗传算法最终能收敛到全局最优解.当然,在选择算子作用后保留当前最优解是一项比较复杂的工作,因为该解在选择算子作用后可能丢失.但是定理3至少表明了这种改进的遗传算法能够收敛至全局最优解.有意思的是,实际上只要在选择前保留当前最优解,就可以保证收敛,定理4描述了这种情况.定理4 具有定理1参数的,且在选择前保留当前最优解的遗传算法可收敛于全局最优解.例2:设,求,编码长度为5,采用上述定理4所述的“在选择前保留当前最优解的遗传算法”进行二、相关函数(命令)及简介本实验的程序中用到如下一些基本的Matlab函数:ones, zeros, sum, size, length, subs, double 等,以及 for, while 等基本程序结构语句,读者可参考前面专门关于Matlab的介绍,也可参考其他数学实验章节中的“相关函数(命令)及简介”内容,此略.三、实验内容上述例1的求解过程为:群体中包含六个染色体,每个染色体用22位0—1码,变异概率为0.01,变量区间为,取Fmin=,遗传代数为50代,则运用第一种终止条件(指定遗传代数)的Matlab程序为:[Count,Result,BestMember]=Genetic1(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,50)执行结果为:Count =50Result =1.0316 1.0316 1.0316 1.0316 1.0316 1.03161.4990 1.4990 1.4990 1.4990 1.4990 1.4990BestMember =1.03161.4990图2 例1的计算结果(注:上图为遗传进化过程中每一代的个体最大适应度;而下图为目前为止的个体最大适应度——单调递增)我们通过Matlab软件实现了遗传算法,得到了这题在第一种终止条件下的最优解:当取1.0316时,.当然这个解和实际情况还有一点出入(应该是取1时,),但对于一个计算机算法来说已经很不错了.我们也可以编制Matlab程序求在第二种终止条件下的最优解.此略,留作练习.实践表明,此时的遗传算法只要经过10代左右就可完成收敛,得到另一个“最优解”,与前面的最优解相差无几.四、自己动手1.用Matlab编制另一个主程序Genetic2.m,求例1的在第二种终止条件下的最优解.提示:一个可能的函数调用形式以及相应的结果为:[Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001)Count =13Result =1.0392 1.0392 1.0392 1.0392 1.0392 1.03921.4985 1.4985 1.4985 1.4985 1.4985 1.4985BestMember =1.03921.4985可以看到:两组解都已经很接近实际结果,对于两种方法所产生的最优解差异很小.可见这两种终止算法都是可行的,而且可以知道对于例1的问题,遗传算法只要经过10代左右就可以完成收敛,达到一个最优解.2.按照例2的具体要求,用遗传算法求上述例2的最优解.3.附录9子程序 Crossing.m中的第3行到第7行为注解语句.若去掉前面的%号,则程序的算法思想有什么变化?4.附录9子程序 Crossing.m中的第8行至第13行的程序表明,当Dim(1)>=3时,将交换数组Population的最后两行,即交换最后面的两个个体.其目的是什么?5.仿照附录10子程序Mutation.m,修改附录9子程序 Crossing.m,使得交叉过程也有一个概率值(一般取0.65~0.90);同时适当修改主程序Genetic1.m 或主程序Genetic2.m,以便代入交叉概率.6.设,求,要设定求解精度到15位小数.。

MATLAB中自带遗传算法函数GA的用法

MATLAB中自带遗传算法函数GA的用法

MATLAB中⾃带遗传算法函数GA的⽤法ga⽤遗传算法寻找函数的最优解语法规则x = ga(fitnessfcn,nvars)x = ga(fitnessfcn,nvars,A,b)x = ga(fitnessfcn,nvars,A,b,Aeq,beq)x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)%其中fitnessfc为函数的句柄或者为匿名函数nvars,表⽰⾃变量个个数(例如⾃变量为向量X,nvars代表X中的元素个数)A,b就是表达式A*X<=b;Aeq:表⽰线性等式约束矩阵,若是没有等式约束就写为[];Beq:表⽰线性等式约束的个数Beq=length(nvars);x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)x = ga(problem)[x,fval] = ga(...)例⼦A = [1 1; -1 2; 2 1]; b = [2; 2; 3]; lb = zeros(2,1); [x,fval,exitflag] = ga(@lincontest6,2,A,b,[],[],lb) %lb表⽰x的下界,up表⽰上界 Optimization terminated: average change in the fitness value less than options.TolFun. x = 0.7794 1.2205 fval = -8.03916 exitflag =z=f(x,y)1、编码(解决初始化种群),先创建⼀个数组pop(popsize stringlenth)有popsize表⽰染⾊体个数列stringlenth的前⼀部分代表x的染⾊体,后⼀部分代表y的染⾊体。

matlab 有关GA优化的例子

matlab 有关GA优化的例子

核心函数:(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。

如[1e-6 1 0]termFN--终止函数的名称,如[maxGenTerm]termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如[normGeomSelect]selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交*函数名称表,以空格分开,如[arithXover heuristicXover simpleXover]xOverOps--传递给交*函数的参数表,如[2 02 32 0]mutFNs--变异函数表,如[boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation]mutOps--传递给交*函数的参数表,如[4 0 06 100 34 100 34 0 0]注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交*概率为0.95,变异概率为0.08 【程序清单】编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1)eval=x+10*sin(5*x)+7*cos(4*x)把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],fitness)生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],fitness,[],initPop,[1e-6 1 1],maxGenTerm,25,normGeomSelect,...[0.08],[arithXover],[2],nonUnifMutation,[2 25 3]) 25次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。

matlab遗传算法ga工具箱调用gpu运算

matlab遗传算法ga工具箱调用gpu运算

matlab遗传算法ga工具箱调用gpu运算全文共四篇示例,供读者参考第一篇示例:Matlab是一个强大的科学计算工具,而遗传算法(Genetic Algorithm,GA)被广泛应用于优化问题的求解。

在大规模优化问题中,GA的求解速度往往是一个瓶颈,为了加速GA的求解过程,可以利用GPU进行并行计算。

在Matlab中,可以通过GPU进行加速的工具箱,称为Parallel Computing Toolbox。

本文将介绍如何利用Matlab的Parallel Computing Toolbox和GA工具箱结合起来,实现GPU加速GA的求解过程。

我们需要在Matlab中安装Parallel Computing Toolbox和GA 工具箱。

在安装完成后,就可以开始编写适用于GPU加速的GA程序了。

在编写程序时,需要注意以下几点:1. 设定GA参数:一般来说,可以设置GA的种群大小、迭代次数、交叉概率、变异概率等参数。

这些参数的设定将直接影响到GA的求解效果和速度。

2. 定义适应度函数:在GA中,适应度函数决定了个体的适应程度,从而影响被选择的几率。

在编写适用于GPU加速的适应度函数时,要注意将计算过程向量化,以便GPU并行计算。

3. 设置GPU运算环境:在Matlab中,可以通过parallel.gpu.GPUDevice函数获取当前可用的GPU设备列表,并选择一个合适的设备进行计算。

在进行GPU计算时,需要将待处理的数据转换为GPU数组,以便GPU并行计算。

4. 调用GA函数并启用GPU加速:在进行GA求解过程中,可以通过设置options参数启用GPU加速。

在调用GA函数时,可以通过设定eParallel参数为true,来启用GPU加速。

下面,我们来看一个简单的例子,演示如何利用Parallel Computing Toolbox和GA工具箱结合GPU加速GA的求解过程。

假设我们要求解一个简单的函数f(x) = x^2 + 5,在区间[-10, 10]内的最小值。

第6章 基于GA优化的BP网络算法分析与MATLAB实现

第6章  基于GA优化的BP网络算法分析与MATLAB实现
按照顺序排列是789,乙手上也有三个数字456,且按照顺序排列是456,指 定一个规则“如果抛一个骰子,如果得到数字1,则甲手上的7和乙手上的4
交换,此时甲的数字为489,乙的数字为756;如果为数字2,则甲手上的8
和乙手上的5 交换,此时甲的数字为 759,乙的数字为486;如果为数字 3, 则甲手上的9 和乙手上的6 交换,此时甲的数字为 786,乙的数字为459;如
MATLAB优化算法案例分析与应用
% 输
% 隐
藏层
outputnum = 1; 出层 % 输
%构建网络
nntwarn off 告消除 net=newff(input_train,output_train,hiddennum); % 警
第六章
MATLAB优化算法案例分析与应用
交叉操作具体又是什么含义呢?打个比方,甲手上有789这三个数字,且
得到相应的权值和阈值,从而可以稳定的控制 BP神经网络结构
,实现问题的快速高效求解,并且大大地提高算法稳定性。
第六章
MATLAB优化算法案例分析与应用
•6.1 遗传算法
• 遗传算法(GA)是模仿自然界生物进化理论发展而来的一 个高度并行,自适应检测算法。遗传算法通过仿真生物个体, 区别个体基因变化信息来保留高适应环境的基因特征,消除低 适应环境的基因特征,以实现优化目的。遗传算法能够在数据
0.08
MATLAB优化算法案例分析与应用
GA BP预 测 误 差 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 回归预测误差
0
5
10
15
20 25 误 差 error
30Leabharlann 354045图6- 18 GA_BP预测和回归预测工作面误差 比较

MATLAB优化问题实验SA 和GA以及混合算法

MATLAB优化问题实验SA 和GA以及混合算法

浙江工商大学计算机与信息工程学院2013/2014 学期上机实验报告4课程名称:数字建模与Matlab 姓名:学号:指导教师:李修琳班级:日期:【一】上机实验内容及要求:1.实验内容——Matlab优化问题求解;2.求解问题TSP Benchmark,算例为欧式平面eli51,eli101算例,对应最优解分别为426,629。

3.针对上述TSP问题分别采用模拟退火算法求解;4.针对TSP问题分别采用遗传算法求解;5.阅读相关参考文献,给出一种模拟退火与遗传算法混合的求解算法。

6.对eli101算例采用混合算法求解;注:(非常重要)1.分组进行,不超过4人一组;2.计算过程中对二者距离数据取四舍五入;3.每一种算法均要求连续计算十次,给出10次结果中的最优解以及平均值;4.合理设置参数;5.完成实验内容中的每一项;6.对实验数据进行分析,认真撰写实验报告。

【二】完成报告:一、算法设计与算例计算1.SA求解eli51(feng)(1)参数设置;(2)算法设计(编码方式,温度更新函数,个体更新函数等)(3)10次计算最优结果;(426)(4)10次计算平均结果;475.1202(5)10次计算平均耗时;(6)10次计算中最优结果的迭代图。

2.SA求解eli101(1)参数设置;(2)算法设计(编码方式,温度更新函数,个体更新函数等)(3)10次计算最优结果;(4)10次计算平均结果;701.3165(5)10次计算平均耗时;(6)10次计算中最优结果的迭代图。

3.GA求解eli51(feng)(1)参数设置;(2)算法设计(个体更新函数等)(3)10次计算最优结果;(4)10次计算平均结果;(5)10次计算平均耗时;(6)10次计算中最优结果的迭代图。

4.GA求解eli101(1)参数设置;(2)10次计算最优结果;(3)10次计算平均结果;(4)10次计算平均耗时;(5)10次计算中最优结果的迭代图;5.混合算法SA-GA求解eli101(shaonan)(1)参数设置;(2)算法设计(如何混合)先通过遗传算法产生初值,再通过模拟退火算法进行优化(3)10次计算最优结果;686(4)10次计算平均结果;705(5)10次计算平均耗时;3m 22.1520s(6)10次计算中最优结果的迭代图。

遗传算法优化的matlab案例

遗传算法优化的matlab案例

遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的搜索和优化算法,通过模拟生物的遗传、交叉和变异操作来寻找问题的最优解。

它以一种迭代的方式生成和改进解决方案,并通过评估每个解决方案的适应度来选择下一代解决方案。

在Matlab中,遗传算法优化工具箱提供了方便的函数和工具,可以帮助用户快速开发和实现遗传算法优化问题。

下面,我们以一个简单的最优化问题为例,演示在Matlab中如何使用遗传算法优化工具箱进行优化。

假设我们要优化一个简单的函数f(x),其中x是一个实数。

我们的目标是找到使得f(x)取得最小值的x值。

具体来说,我们将优化以下函数: f(x) = x² - 4x + 4首先,我们在Matlab中定义目标函数f(x)的句柄(用于计算函数值)和约束条件(如果有的话)。

代码如下:function y = testfunction(x)y = x^2 - 4*x + 4;end接下来,我们需要使用遗传算法优化工具箱的函数ga来进行优化。

我们需要指定目标函数的句柄、变量的取值范围和约束条件(如果有的话),以及其他一些可选参数。

以下是一个示例代码:options = gaoptimset('Display', 'iter'); % 设置显示迭代过程lb = -10; % 变量下界ub = 10; % 变量上界[x, fval] = ga(@testfunction, 1, [], [], [], [], lb, ub, [], options);在上面的代码中,gaoptimset函数用于设置遗传算法的参数。

在这里,我们使用了可选参数'Display',它的值设置为'iter',表示显示迭代过程。

变量lb和ub分别指定了变量的取值范围,我们在这里将其设置为-10到10之间的任意实数。

横线[]表示没有约束条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核心函数:(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。

如[1e-6 1 0]termFN--终止函数的名称,如[maxGenTerm]termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如[normGeomSelect]selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交*函数名称表,以空格分开,如[arithXover heuristicXover simpleXover]xOverOps--传递给交*函数的参数表,如[2 02 32 0]mutFNs--变异函数表,如[boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation]mutOps--传递给交*函数的参数表,如[4 0 06 100 34 100 34 0 0]注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交*概率为0.95,变异概率为0.08 【程序清单】编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1)eval=x+10*sin(5*x)+7*cos(4*x)把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],fitness)生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],fitness,[],initPop,[1e-6 1 1],maxGenTerm,25,normGeomSelect,...[0.08],[arithXover],[2],nonUnifMutation,[2 25 3]) 25次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2【问题】在-5<=Xi<=5,i=1,2区间内,求解f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交*率0.3【程序清单】%源函数的matlab代码function [eval]=f(sol)numv=size(sol,2)x=sol(1:numv)eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282适应度函数的matlab代码function [sol,eval]=fitness(sol,options)numv=size(sol,2)-1x=sol(1:numv)eval=f(x)eval=-eval遗传算法的matlab代码bounds=ones(2,1)*[-5 5][p,endPop,bestSols,trace]=ga(bounds,fitness)注:前两个文件存储为m文件并放在工作目录下,运行结果为p =0.0000 -0.0000 0.0055大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。

matlab命令行执行命令:fplot(x+10*sin(5*x)+7*cos(4*x),[0,9])evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。

xoverops是传递给交*函数的参数。

mutops是传递给变异函数的参数。

%遗传算法进行优化求多元函数(Griewank Function)最小解问题function ga;clearbn=30;%个体串长度inn=50;%初始种群大小gnmax=50;%最大代数pc=0.8;%交叉概率pm=0.6;%变异概率%产生初始种群fps=1200*(rand(inn,bn)-0.5*ones(inn,bn));%浮点数编码,使初始解在[-600,600]范围内由于是偶函数select=fps;gn=0;%第一代解n = 30;fr = 4000;while gn<gnmax,%分别将种群代入目标函数计算适应度q = 0;p = 1;for i = 1:50,for j = 1:30,x(j)=select(i,j:j);q = q+x(j)^2;p = p*cos(x(j)/sqrt(j));endy(i) = q/fr-p+1;q=0;p=1;end[pmin,i]=min(y);%将当前种群中最优解保存在pminpmin1=pmin;vari=mean(select(i,:));%计算最优染色体的平均值并送给vari,变异自适应调节域值l=i;%将最优染色体行坐标传送给l[pmax,z]=max(y);%求取适应度最差的染色体select(z,:)=select(l,:);%将最优染色体引入种群参与竞争%进行交叉,进一步选择优秀的解for i=1:2:50,pcc=pro(pc);%根据交叉概率判断是否进行交叉if pcc==1,if 0<=l-i<=1,%判断是不是最优染色体,如果是不进行交叉cross(i,:)=select(i,:);cross(i+1,:)=select(i+1,:);else%将30个变量分为五个范围,相临两个染色体分别从五位进行交叉crb1=round(rand*(bn/5-1))+1; %在[1,6]范围内随机产生一个交叉位cross(i,crb1:crb1)=0.1*select(i,crb1:crb1)+0.9*select(i+1,crb1:crb1);cross(i+1,crb1:crb1)=0.1*select(i,crb1:crb1)+0.9*select(i+1,crb1:crb1);cross(i,2*crb1:2*crb1)=0.1*select(i,2*crb1:2*crb1)+0.9*select(i+1,2*crb1:2* crb1);cross(i+1,2*crb1:2*crb1)=0.1*select(i,2*crb1:2*crb1)+0.9*select(i+1,2*crb1: 2*crb1);cross(i,3*crb1:3*crb1)=0.1*select(i,3*crb1:3*crb1)+0.9*select(i+1,3*crb1:3* crb1);cross(i+1,3*crb1:3*crb1)=0.1*select(i,3*crb1:3*crb1)+0.9*select(i+1,3*crb1: 3*crb1);cross(i,4*crb1:4*crb1)=0.1*select(i,4*crb1:4*crb1)+0.9*select(i+1,4*crb1:4* crb1);cross(i+1,4*crb1:4*crb1)=0.1*select(i,4*crb1:4*crb1)+0.9*select(i+1,4*crb1: 4*crb1);cross(i,5*crb1:5*crb1)=0.1*select(i,5*crb1:5*crb1)+0.9*select(i+1,5*crb1:5* crb1);cross(i+1,5*crb1:5*crb1)=0.1*select(i,5*crb1:5*crb1)+0.9*select(i+1,5*crb1: 5*crb1);endelsecross(i,:)=select(i,:);cross(i+1,:)=select(i+1,:);endend%变异操作for i=1:50;pmm=pro(pm);if pmm==1,if i==l,change(i,:)=cross(i,:);elsechange(i,:)=cross(i,:);chb=round(rand*(bn-1))+1; %在[1,bn]范围内随机产生一个变异位change(i,chb:chb)= vari*(rand-0.5);%变异为变化为一个[-600,600]的随机数endelsechange(i,:)=cross(i,:);endendselect=change;gn=gn+1;plot(gn,pmin,'g*')hold onendgn%进化代数pmin%最优解select%最终种群select(l,:)%最优染色体strt=['代数gn=' num2str(gn)]; text(80,200,strt);%根据交叉概率判断是否交叉函数function pcc=pro(pc);test(1:100)=0;b=round(100*pc);test(1:b)=1;n=round(rand*99)+1;pcc=test(n);endend。

相关文档
最新文档