第三章 不等式(测试题)含答案
高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2课时作业(含解析)新人教A版必修5-新人
课时作业24 基本不等式:ab ≤a +b 2时间:45分钟——基础巩固类——一、选择题1.下列不等式中正确的是( D )A .a +4a≥4 B .a 2+b 2≥4ab C.ab ≥a +b 2D .x 2+3x 2≥2 3 解析:a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b 2,故C 错;由基本不等式可知D 项正确. 2.若lg x +lg y =2,则1x +1y的最小值为( D ) A .10 B.110C .5 D.15解析:∵lg x +lg y =2,∴xy =100.且x >0,y >0.1x +1y ≥21xy =15. 3.已知f (x )=x +1x-2(x <0),则f (x )有( C ) A .最大值为0 B .最小值为0C .最大值为-4D .最小值为-4解析:∵x <0,∴-x >0.∴x +1x -2=-[(-x )+1(-x )]-2≤-2·(-x )·1(-x )-2=-4,等号成立的条件是-x =1-x ,即x =-1.4.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m 、n 的大小关系是( A ) A .m >n B .m <nC .m =nD .不确定解析:∵a >2,∴a -2>0,又∵m =a +1a -2=(a -2)+1a -2+2≥2(a -2)·1a -2+2=4, 当且仅当a -2=1a -2,即a =3时取等号. ∴m ≥4.∵b ≠0,∴b 2>0,∵2-b 2<2,∴22-b 2<4,即n <4,∴m >n .5.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( A )A .5 km 处B .4 km 处C .3 km 处D .2 km 处 解析:设仓库建在离车站x km 处,则土地费用y 1=k 1x(k 1≠0),运输费用y 2=k 2x (k 2≠0),把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45,故总费用y =20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时等号成立. 6.已知x >1,y >1且xy =16,则log 2x ·log 2y ( D )A .有最大值2B .等于4C .有最小值3D .有最大值4解析:因为x >1,y >1,所以log 2x >0,log 2y >0.所以log 2x ·log 2y ≤⎝ ⎛⎭⎪⎫log 2x +log 2y 22=⎣⎡⎦⎤log 2(xy )22=4,当且仅当x =y =4时取等号.故选D.二、填空题7.已知x 、y 都是正数,(1)如果xy =15,则x +y 的最小值是215;(2)如果x +y =15,则xy 的最大值是2254. 解析:(1)x +y ≥2xy =215,即x +y 的最小值是215;当且仅当x =y =15时取最小值.(2)xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1522=2254, 即xy 的最大值是2254. 当且仅当x =y =152时xy 取最大值. 8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是⎣⎡⎭⎫15,+∞. 解析:因为x >0,所以x +1x≥2. 当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x+3≤12+3=15即x x 2+3x +1的最大值为15,故a ≥15. 9.若a >0,b >0,a +b =2,则下列不等式①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a +1b≥2,对满足条件的a ,b 恒成立的是①③④.(填序号) 解析:因为ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,所以①正确;因为(a +b )2=a +b +2ab =2+2ab ≤2+a +b =4,故②不正确;a 2+b 2≥(a +b )22=2,所以③正确;1a +1b =a +b ab =2ab ≥2,所以④正确.三、解答题10.(1)已知0<x <12,求y =12x (1-2x )的最大值. (2)已知x <3,求f (x )=4x -3+x 的最大值. (3)已知x ,y ∈R +,且x +y =4,求1x +3y的最小值; 解:(1)∵0<x <12,∴1-2x >0. y =14·2x ·(1-2x )≤14⎝ ⎛⎭⎪⎫2x +1-2x 22 =14×14=116. ∴当且仅当2x =1-2x ,即x =14时,y 最大值=116. (2)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3 ≤-243-x ·(3-x )+3=-1, 当且仅当43-x=3-x ,即x =1时取等号, ∴f (x )的最大值为-1.(3)法一:∵x ,y ∈R +,∴(x +y )⎝⎛⎭⎫1x +3y=4+⎝⎛⎭⎫y x +3x y ≥4+2 3.当且仅当y x =3x y ,即x =2(3-1), y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 法二:∵x ,y ∈R +,且x +y =4, ∴1x +3y =x +y 4x +3(x +y )4y=1+⎝⎛⎭⎫y 4x +3x 4y ≥1+2y 4x ·3x 4y=1+32. 当且仅当y 4x =3x 4y, 即x =2(3-1),y =2(3-3)时取“=”号.∴1x +3y 的最小值为1+32. 11.设a ,b ,c ∈R +.求证:(1)ab (a +b )+bc (b +c )+ca (c +a )≥6abc ;(2)(a +b +c )⎝⎛⎭⎫1a +1b +c ≥4. 证明:(1)∵a ,b ,c ∈R +,∴左边=a 2b +ab 2+b 2c +bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc =右边,当且仅当a =b =c 时,等号成立.(2)∵a ,b ,c ∈R +,∴左边=[a +(b +c )]⎝ ⎛⎭⎪⎫1a +1b +c≥2a (b +c )·21a (b +c )=4=右边, 当且仅当a =b +c 时,等号成立.——能力提升类——12.若f (x )=⎝⎛⎭⎫12x ,a ,b 均为正数,P =f ⎝⎛⎭⎫a +b 2,G =f (ab ),H =f ⎝⎛⎭⎫2ab a +b ,则( A ) A .P ≤G ≤H B .P ≤H ≤GC .G ≤H ≤PD .H ≤G ≤P解析:因为a ,b 均为正数,所以a +b 2≥ab =ab ab ≥ab a +b 2=2ab a +b,当且仅当a =b 时等号成立.又因为f (x )=⎝⎛⎭⎫12x 为减函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,所以P ≤G ≤H . 13.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( C ) A .8 B .7C .6D .5解析:由已知,可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a时等号成立,所以9m ≤54,即m ≤6,故选C.14.设a ,b >0,a +b =5,则a +1+b +3的最大值为3 2. 解析:令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. 15.如图,如在公园建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现有44米铁丝网可供使用(铁丝网可以剩余),若利用x 米墙,(1)求x 的取值X 围;(2)求最少需要多少米铁丝网(精确到0.1米).解:(1)由于矩形草地的面积是144平方米,一边长是x 米,则另一边长为144x米, 则矩形草地所需铁丝网长度为y =x +2×144x. 令y =x +2×144x≤44(x >0), 解得8≤x ≤36,则x 的取值X 围是[8,36].(2)由基本不等式,得y =x +288x≥24 2. 当且仅当x =288x,即x ≈17.0时,等号成立, 则y 最小值=242≈34.0,即最少需要34.0米铁丝网.。
第3章 一元一次不等式综合测试试题(含解析)
第三章:一元一次不等式综合测试答案一.选择题:1.答案:C解析:解不等式3x ≤2(x -1)得:2-≤x ,故选择C2.答案:B解析:解不等式x -3≤3x +1得:2-≥x ,故选择B3.答案:C解析:解不等式3(x -1)≤5-x 得:2≤x , ∵非负整数解为:0,1,2共3个, 故选择C4.答案:B 解析:解不等式组⎩⎨⎧≤->+0421x ax 得:21≤<-x a∵不等式组⎩⎨⎧≤->+0421x ax 有解,∴3,21<∴<-a a ,故选择B5.答案:B解析:原不等式可化为323255104xx x -≤---, 去分母,得6(4x -10)-15(5-x )≤10(3-2x )去括号,得24x -60-75+15x ≤30-20x. 合并同类项,得59x ≤165. 系数化为1,得x ≤59165所以原不等式的非负整数解是0,1,2. 故选择B6.答案:C解析:设从第六天起平均每天至少要读x 页, 由题意得:4005≥x ,解得:80≥x ,故选择C解析:把方程组⎩⎨⎧=++=+3313y x k y x 转化为:444+=+k y x∴44+=+k y x ,∴1440<+<k 解得:04<<-k ,故选择A答案:B解析:∵x <0,y >0,x +y <0,y x >,∴x y y x >->>-,故选择B答案:B解析:解不等式①,得x >-52. 解不等式②,得x <2a .∵不等式组恰有三个整数解, 2<2a ≤3. 231≤<a ,故选择B10.答案:B解析:设最多可打x 折,由题意得:%5100010001500≥-x解得:7.0≥x ,故最多可打7折,故选择B二.填空题:11.答案:4解析:解不等式2(x+k)-2>k 得:22kx ->, ∵不等式2(x+k)-2>k 的解集是x >-1, 122-=-k,解得:4=k12.答案:26解析:设较大的偶数是x ,则较小的偶数是x -2. 根据题意,得x +x -2≥49. 解得x ≥25.5.所以x 的最小值是26,即较大的偶数最小是26.解析:解不等式组⎩⎨⎧>->+1312x a x 得:11-<<a x∵不等式组⎩⎨⎧>->+1312x a x 的解为1<x <3,∴4,31=∴=-a a14.答案:1<x +y <5解析:由x -y =3,得x =y +3. ∵x >2,∴y +3>2,解得y >-1. 又∵y <1,∴-1<y <1. 把x =y +3代入x +y , 得x +y =y +3+y =2y +3, 而1<2y +3<5, ∴1<x +y <5.15.答案:3解析:由题意,得a 1+a 2≤a 3,a 2+a 3≤a 4,a 3+a 4≤a 5, ∴当a 1=1时,a 2=2,a 3=3,a 4=5或6,a 5=9, ∴a 3=3.16.答案:152解析:设幼儿园共有小朋友x 人,共有玩具y 件,由题意得:⎩⎨⎧<--<=+4)1(50593x y yx解得:3230<<x ,∴31=x ,即小朋友为31人, 共有玩具15259313=+⨯=y三.解答题:17.解析:(1)去括号得:5x -10+8<6x -6+7. 移项得:5x -6x <10-8-6+7. 合并得:-x <3.系数化为1得:x>-3.(2)解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.18.解析:(1)解不等式3x +a 2<1得:32ax -<,解不等式031>-x 得:31<x ∴3132=-a ,∴1=a . (2)∵不等式123<+ax 的解都是不等式031>-x 的解,∴3132≤-a ,解得1≥a19.解析:关于x 的方程2x -3m =2m -4x +4的解为645+=m x 根据题意得:3187645mm --≥+ 去分母,得4(5m +4)≥21-8(1-m ).去括号,得20m +16≥21-8+8m. 移项、合并同类项,得12m ≥-3. 系数化为1,得m ≥-41 所以当m ≥-41时,方程的解不小于3187m --, 所以m 的最小值为-4120.解析:(1)由题意得:()152523+≤+k k解得k ≥413(2)解不等式①,得x ≤3. 解不等式②,得x<a. ∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3; 当a<3时,不等式组的解集为x<a.21.解析:(1)解⎩⎨⎧+=---=+a y x a y x 317得:⎩⎨⎧--=-=423a y a x∵x 为非正数,y 为负数, ∴⎩⎨⎧<≤00y x 即⎩⎨⎧<--≤-04203a a 解得⎩⎨⎧->≤23a a∴a 的取值范围是-2<a ≤3.(2)∵-2<a ≤3,∴a -3≤0,a +2>0, ∴|a -3|+|a +2|=3-a +a +2=5. (3)不等式2ax +x <2a +1可化简为 (2a +1)x <2a +1.∵不等式的解为x >1, ∴2a +1<0,∴a <-21. 又∵-2<a ≤3,∴-2<a <-21. ∵a 为整数,∴a =-1.22.解析:(1)设购买平板电脑a 台,则购买学习机(100-a)台,由题意,得 3 000a +800(100-a)≤168 000.解得a ≤40. 答:平板电脑最多购买40台.(2)设购买的平板电脑a 台,则购买学习机(100-a)台,根据题意,得 100-a ≤1.7a.解得a ≥37271. ∵a 为正整数,∴a =38,39,40,则学习机依次买:62台,61台,60台. 因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.23.解析:(1)∵()()815723--<-+x x .解得6>x . ∴不等式的最小整数解是7. 将x =7代入3x -ax =2,得719=a ∴aa 197-=19-7=12.(2)①∵523=++c b a , 132=-+c b a , 解得:37-=c a , c b 117-=, ∵0≥a ,0≥b ,∴037≥-c ,0117≥-c , ∴11773≤≤c , ②()()23711737373-=--+-=-+=c c c c c b a S∵11773≤≤c ,∴1121379≤≤c , ∴1112375-≤-≤-c∴S 的最大值为111-,最小值为75-。
第三章 不等式练习题(一元二次不等式、高次不等式、分式不等式解法)
一元二次不等式与特殊的高次不等式解法例1 解不等式0)1)(4(<-+x x .分析:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:⎩⎨⎧<+>-0401x x 与⎩⎨⎧>+<-0401x x 的解集的并集,即{x|⎩⎨⎧<+>-0401x x }∪⎩⎨⎧>+<-0401|{x x x }=φ∪{x|-4<x<1}={x|-4<x<1}.书写时可按下列格式:解:∵(x-1)(x+4)<0⇔⎩⎨⎧<+>-0401x x 或⎩⎨⎧>+<-0401x x ⇔x∈φ或-4<x<1⇔-4<x<1,∴原不等式的解集是{x|-4<x<1}.小结:一元二次不等式)a ()c bx ax (c bx ax 00022≠<++>++或的代数解法:设一元二次不等式)a (c bx ax 002≠>++相应的方程)a (c bx ax 002≠=++的两根为2121x x x x ≤且、,则00212>--⇔>++)x x )(x x (a c bx ax ;①若⎩⎨⎧>>⎩⎨⎧<<⇒⎩⎨⎧>->-⎩⎨⎧<-<->.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且. ②若⎩⎨⎧><⎩⎨⎧><⇒⎩⎨⎧>-<-⎩⎨⎧>-<-<.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得∅∈x .分析二:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②分析这三部分中原不等式左边各因式的符号例2:解不等式:(x-1)(x+2)(x-3)>0;解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3;③列表如下:④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.小结:此法叫列表法,解题步骤是:①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-x n)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集.练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1<x<0或2<x<3}.思考:由函数、方程、不等式的关系,能否作出函数图像求解例2图练习图直接写出解集:{x|-2<x<1或x>3}. {x|-1<x<0或2<x<3}在没有技术的情况下:可大致画出函数图星求解,称之为串根法①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.注意:奇穿偶不穿例3解不等式:(x-2)2(x-3)3(x+1)<0.解:①检查各因式中x的符号均正;②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:④∴原不等式的解集为:{x|-1<x<2或2<x<3}.说明:∵3是三重根,∴在C 处穿三次,2是二重根,∴在B 处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x 1)n 时,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.练习:解不等式:(x-3)(x+1)(x 2+4x+4)≤0.解:①将原不等式化为:(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为:-2(二重),-1,3;③在数轴上表示各根并穿线,如图:④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.2.分式不等式的解法 例4 解不等式:073<+-x x .错解:去分母得03<-x ∴原不等式的解集是{}3<x |x .解法1:化为两个不等式组来解:∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或\ ⇔x ∈φ或37<<-x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔⎩⎨⎧≠+<+-070)7)(3(x x x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x 说明:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x ≠-7的条件,解集应是{x| -7<x ≤3}. 小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项,通分,右边化为0,左边化为)x (g )x (f 的形式. 例5 解不等式:0322322≤--+-x x x x . 解法1:化为不等式组来解较繁.解法2:∵0322322≤--+-x x x x ⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⇔⎩⎨⎧≠+-≤+---0)1)(3(0)1)(3)(2)(1(x x x x x x ,∴原不等式的解集为{x| -1<x ≤1或2≤x<3}.练习:解不等式253>+-x x . 答案: 2.{x|-13<x<-5}. 练习:解不等式:123422+≥+--x x x x.(答:{x|x ≤0或1<x<2})三、小 结1.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x 的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律作;②注意边界点(数轴上表示时是“0”还是“.”).2.分式不等式,切忌去分母,一律移项通分化为)x (g )x (f >0(或)x (g )x (f <0)的形式,转化为:)0)(0)()((0)(0)()(⎩⎨⎧≠<⎩⎨⎧≠>x g x g x f x g x g x f 或,即转化为一次、二次或特殊高次不等式形式 . 3.一次不等式,二次不等式,特殊的高次不等式及分式不等式,我们称之为有理不等式. 4.注意必要的讨论.5.一次、二次不等式组成的不等式组仍要借助于数轴. 五、思考题:1. 解关于x 的不等式:(x-x 2+12)(x+a)<0.解:①将二次项系数化“+”为:(x 2-x-12)(x+a)>0,②相应方程的根为:-3,4,-a ,现a 的位置不定,应如何解? ③讨论:ⅰ当-a>4,即a<-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<4或x>-a}.ⅱ当-3<-a<4,即-4<a<3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<-a 或x>4}.ⅲ当-a<-3,即a>3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -a<x<-3或x>4}.ⅳ0当-a=4,即a=-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>-3}.ⅴ当-a=-3,即a=3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>4}.2.若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的范围.(提示:4x 2+6x+3恒正)(答:1<k<3)。
(典型题)高中数学必修五第三章《不等式》检测题(包含答案解析)
一、选择题1.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .952.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+3.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .44.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<6.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .97.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .28.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .225499.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163B .13C .2D .412.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <57二、填空题13.西气东输工程把西部的资源优势变为了经济优势,实现了气能源需求与供给的东西部衔接,同时该项工程的建设也加快了西部及沿线地区的经济发展.在输气管道工程建设过程中,某段直线形管道铺设需要经过一处平行峡谷,勘探人员在峡内恰好发现一处四分之一圆柱状的圆弧拐角,用测量仪器得到此横截圆面的圆心为O ,半径OM ON =且为1米,而运输人员利用运输工具水平横向移动直线形输气管不可避免的要经过此圆弧拐角,需从宽为38米的峡谷拐入宽为16米的峡谷.如图所示,位于峡谷悬崖壁上的两点A ,B 的连线恰好与圆弧拐角相切于点T (点A ,T ,B 在同一水平面内),若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过______________米.14.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.15.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.16.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.17.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 18.已知点(3,3A ,O 是坐标原点,点(),P x y 的坐标满足303200x y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.19.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.20.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.23.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米?24.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?25.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值26.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.2.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=, 则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭,当且仅当34b a b a =,即3133,46a b --==时等号成立,故12a b +的最小值为843+. 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.3.A解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域, 由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A ,220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方,由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z a a ⎛⎫== ⎪++⎝⎭, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案.【详解】解:由于0x >,0y >,21x y +=, 所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立, 故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.6.C解析:C 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】由约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150x x y =⎧⎨+-=⎩,解得A (1,4),化目标函数z =x +2y ﹣1为y 1222x z =-++, 由图可知,当直线y 1222x z =-++过A 时,z 有最大值为8. 故选C .【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.7.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++6622262644119(5)(52)444a a a a a a a a =++≥+⋅=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.8.C解析:C 【分析】根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值. 【详解】 由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩. 画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=的距离为221212534-=+, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭.故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.9.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-,故选:A【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题 10.A解析:A【详解】 因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 11.B解析:B【分析】 根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案.【详解】根据题意,正数x ,y 满足x +y =1, 则2211x y y x +++=22(1)(1)11--+++y x y x =(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13 [8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13,所以3m ≤,则m 的最大值为13; 故选:B .【点睛】 本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题. 12.D解析:D【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立令g (x )=mx 2-mx +m -5,对称轴为12x =当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0当m >0时,有g (x ) 开口向上且在[1,3]上单调递增∴在[1,3]上max ()(3)750g x g m ==-<,得507m <<综上,实数m 的取值范围为57m <故选:D【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围 二、填空题13.75【分析】设则可得AB 长度的表达式利用凑1法结合基本不等式即可求得答案【详解】设其中延长OM 交AB 于D 过B 做SB 垂线交DO 于G 延长ON 交AB 于E 过A 做SA 垂线交NO 于F 如图所示:在中AF=39则即解析:75【分析】设=MOT θ∠,则可得AB 长度的表达式,利用凑“1”法,结合基本不等式,即可求得答案.【详解】设=MOT θ∠,其中(0)2πθ∈,,延长OM ,交AB 于D ,过B 做SB 垂线,交DO 于G ,延长ON ,交AB 于E ,过A 做SA 垂线,交NO 于F ,如图所示:在Rt AEF 中,AEF θ∠=,AF =39,则sin AF AE θ=,即39sin AE θ=, 在Rt BDG 中,DBG θ∠=,17BG =,则cos BG BD θ=,即17cos BD θ=, 在Rt DOE 中, OT DE ⊥,OT=1,所以11,cos sin DO EO θθ==, 又1122DO EO DE OT ⨯⨯=⨯⨯,所以1sin cos DE θθ=, 所以39171()sin cos sin cos AB f AE BD DE θθθθθ==+-=+-=39cos 17sin 1sin cos θθθθ+-, 因为4sin 3cos 5sin()5θθθϕ+=+≤,其中3tan 4ϕ=,当且仅当2πθϕ+=时,等号成立, 所以1(4sin 3cos )(39cos 17sin )139cos 17sin 15()sin cos sin cos f θθθθθθθθθθθ++-+-=≥ 22221(68sin 207sin cos 117cos )(sin cos )5sin cos θθθθθθθθ++-+= =2263207112sin sin cos cos 716207555(9tan )sin cos 5tan 5θθθθθθθθ++=++ 71620729tan 755tan 5θθ≥⨯⨯=, 当且仅当169tan tan θθ=,即4tan 3θ=时等号成立, 所以若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过75米.故答案为:75.【点睛】解题的关键是根据题意,得到AB 长度的表达式,难点在于需利用凑“1”法,将表达式化简成齐次式,结合基本不等式求解,考查计算化简的能力,属中档题.14.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为: 解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值.【详解】由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫ ⎪⎝⎭, 所以54164333max z =⨯-=. 故答案为:163. 【点睛】方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ; ②平移,将l 平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.15.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常 解析:4【分析】先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求.【详解】 作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点,因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PM k ∈,所以z 的最大值为4,故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义:(1)y b z x a -=-:表示点(),x y 与点(),a b 连线的斜率; (2)()()22z x a y b =-+-(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C ++=22A B +倍. 16.【分析】根据约束条件作出可行域将目标函数变形为通过平移可知当直线与直线重合时取得最小值再利用基本不等式求解即可【详解】作出已知不等式组所表示的平面区域如图所示:将目标函数变形为由图可知当直线与直线重解析:14【分析】根据约束条件作出可行域,将目标函数变形为y x z =-+,通过平移可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,再利用基本不等式求解即可.【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数z x y =+变形为y x z =-+,由图可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,此时1x y +=, 所以21()24x y xy +≤=,当且仅当x y =且1x y +=,即12x y ==时等号成立. 所以xy 的最大值为14. 故答案为:14【点睛】 本题主要考查简单线性规划问题中的目标函数最值问题及基本不等式,解决线性规划问题的关键是正确地作出可行域,准确地理解目标函数的几何意义.17.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时 解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10a k b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b a a b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b a a b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图.由100y x y -=⎧⎨-=⎩ 可得点(1,1)B . 当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=. 所以28282828()()1010218b a b a a ba b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b a a b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号. 所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b a a b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 18.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围.【详解】作出可行域,如图所示cos 3OA OPz OA AOP AOP OP ⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 23cos 36z π==;当56AOP π∠=时,min 523cos36z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-.【点睛】本题考查简单的线性规划和向量的投影,属于中档题. 19.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然 解析:16【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移,当直线经过A 时,z 最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.20.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键解析:p q【分析】由已知结合作差法进行变形后即可比较大小.【详解】因为0a >,0b >,2b p a a =-与2a qb b=-, 所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q .【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16. 【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值.【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-, 1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩. (2)由于()12f =,0a >,0b >,则可知232a b +-+=,得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b a a b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立, 所以19a b+的最小值为16. 【点睛】 易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)1;(2)9.【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值;(2)先求得141b a +=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值.【详解】(1)不等式2122x x mx -+>可化为21(2)02x m x +-<, 即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 23.(1)1000(20)(8),(0)S x x x =++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米.【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽.【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米, 因此矩形ABCD 所占面积1000(20)(8),(0)S x x x =++>,(2)100020000(20)(8)1160811601960S x x x x =++=++≥+= 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米.【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题.24.(1)400吨;(2)不获利,补40000元.【分析】(1)求得每吨二氧化碳的平均处理成本为1800002002y x x x=+-,利用基本不等式求得y x的最小值,利用等号成立的条件求得x 的值,由此可得出结论; (2)令()2211100200800003008000022f x x x x x x ⎛⎫=--+=-+- ⎪⎝⎭,求得该函数在区间[]400,600的最大值,进而可得出结论.【详解】(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤, 所以,每吨二氧化碳的平均处理成本为1800002002y x x x =+-,由基本不等式可得200200y x ≥=(元), 当且仅当1800002x x=时,即当400x =时,等号成立,因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)令()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭,400600x ≤≤,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-.所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损.【点睛】本题考查基本不等式和二次函数的实际应用,考查计算能力,属于中等题.25.(1)4;(2)4.【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值.【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<,04xy ∴<≤(当且仅当2x y ==时取等号),∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥,∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣,∴4x y +≥(当且仅当2x y ==时取等号),所以x y +的最小值为4.【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力.26.(1)3;(2)6b ≥-【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值; (2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围.【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x -≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.。
八年级数学上册《第三章 不等式的基本性质》练习题及答案-浙教版
八年级数学上册《第三章不等式的基本性质》练习题及答案-浙教版一、选择题1.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B.2+a<2+bC.2a<2bD.3a>3b2.已知a<b,则下列不等式中不正确的是( )A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-43.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.-a>-2aD.4.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2yB.x+2>y+2C.﹣2x<﹣2yD.2x>2y5.如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣bB.a2<abC.ab<b2D.a2<b26.下列不等式中,解集是x>1的不等式是()A.3x>-3B.x+4>3C.2x+3>5D.-2x+3>57.已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是( )A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c8.已知四个实数a,b,c,d,若a>b,c>d,则( )A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>二、填空题9.当a<0时,6+a 6-a(填“<”或“>”).10.若a<b<0 ,则2a-1 2b-1.11.关于x的不等式(m-2)x>1的解集为x>1m-2,则m的取值范围是________.12.如果a>0,b>0,那么ab 0.13.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为________.14.若m<n,比较下列各式的大小:(1)m-3______n-3 (2)-5m_____-5n (3)______(4)3-m______2-n (5)0_____m-n (6)_____三、解答题15.判断下列推导是否正确,并说明理由.因为4a>4b,所以a>b;16.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.17.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x千米时,乘坐出租车合算,请写出x的范围.18.若不等式(2k+1)x<2k+1的解集是x>1,求k的取值范围.19.某单位为改善办公条件,欲购进20台某品牌电脑,据了解,该品牌电脑的单价大致在6000元至6500元之间,则该单位购进这批电脑应预备多少钱?20.利用不等式的基本性质,将下列不等式化为“x>a”或“x<a”的形式:(1)x+2>7. (2)3x<-12. (3)-7x>-14. (4)13x<2.参考答案1.D2.C3.B4.A5.A6.C7.D8.A9.答案为:<.10.答案为:<;11.答案为:m>2.12.答案为:>.13.答案为:11/3.14.答案为:(1)<(2)>(3)>(4)>(5)>(6)<15.解:因为4a>4b所以a>b;正确利用不等式两边同除以一个数不等号的方向不变;16.解:(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.17.解:根据题意,得1 500+x>2x,解得x<1 500.∵单位每月用车x(千米)不能是负数∴x的取值范围是0<x<1 500.18.答案为:k<-0.5.19.解:设该品牌电脑的单价为x元.则6000≤x≤6500.∴6000×20≤20x≤6500×20(不等式的基本性质3)即120000≤20x≤130000.答:该单位购买这批电脑应预备的钱数在12000元至13000元之间.20.解:(1)两边都减去2,得x>5.(2)两边都除以3,得x<-4.(3)两边都除以-7,得x<2.(4)两边都乘3,得x<6.。
新版高中数学人教A版必修5习题:第三章不等式 检测A(1)
第三章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若M=2a(a-2),N=(a+1)(a-3),则有().A.M>NB.M≥NC.M<ND.M≤N解析:∵M-N=2a(a-2)-(a+1)(a-3)=2a2-4a-(a2-2a-3)=2a2-4a-a2+2a+3=a2-2a+3=a2-2a+1+2=(a-1)2+2>0,∴M>N.答案:A<0的解集为().2不等式x-3x+2A.{x|-2<x<3}B.{x|x<-2}C.{x|x<-2,或x>3}D.{x|x>3}解析:原不等式等价于(x-3)(x+2)<0,解得-2<x<3.答案:A3若集合A={x|x2-2x>0},B={x|−√5<x<√5},则().A.A∩B=⌀B.A∪B=RC .B ⊆AD .A ⊆B解析:∵x 2-2x=x (x-2)>0,∴x<0或x>2.∴集合A 与B 在数轴上表示为由图象可以看出A ∪B=R ,故选B . 答案:B4不等式组{x ≥0,x +3y ≥6,3x +y ≤6所表示的平面区域的面积等于( ).A .32B.23C.13D.3答案:D5若2x +2y =1,则x+y 的取值范围是( ). A.[0,2] B.[-2,0]C.[-2,+∞)D.(-∞,-2]解析:∵2x +2y =1≥2√2x+y ,∴(12)2≥2x+y ,即2x+y ≤2-2.∴x+y ≤-2.答案:D6若变量x ,y 满足约束条件{x +y -1≤0,3x -y +1≥0,x -y -1≤0,则z =2x +y 的最大值为( ).A.1B.2C.3D.4解析:画出可行域,如图中的阴影部分所示.由图知,z是直线y=-2x+z在y轴上的截距,当直线y=-2x+z经过点A(1,0)时,z取最大值,此时x=1,y=0,则z的最大值是2x+y=2+0=2.答案:B7若a,b∈R,且ab>0,则下列不等式中恒成立的是().A.a2+b2>2abB.a+b≥2√abC.1a +1b>√abD.3ba +a27b≥23解析:由ab>0,得a,b同号.当a<0,b<0时,B,C不成立;当a=b时,A不成立;∵ba >0,∴3ba+a27b≥2√3ba ·a27b=23.答案:D8在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域{x-2≤0,x+y≥0, x-3y+4≥0中的点在直线x+y−2=0上的投影构成的线段记为AB,则|AB|=().A.2√2B.4C.3√2D.6解析:画出不等式组{x-2≤0,x+y≥0,x-3y+4≥0表示的平面区域如图阴影部分所示.作出直线x+y-2=0.设直线x-3y+4=0与x+y=0的交点为C ,直线x=2与直线x+y=0的交点为D. 过C 作CA ⊥直线x+y-2=0于点A , 过D 作DB ⊥直线x+y-2=0于点B ,则区域中的点在直线x+y-2=0上的投影为AB.∵直线x+y-2=0与直线x+y=0平行, ∴|CD|=|AB|.由{x -3y +4=0,x +y =0,得{x =-1,y =1,∴C 点坐标为(-1,1).由{x =2,x +y =0,得{x =2,y =-2,∴D 点坐标为(2,-2).∴|CD|=√9+9=3√2,即|AB|=3√2.故选C .答案:C9已知正实数a ,b 满足4a+b=30,当1a +1b 取最小值时,实数对(a,b)是( ). A.(5,10) B.(6,6)C.(10,5)D.(7,2)解析:1a +1b =(1a +1b )×130×30=130(1a +1b )(4a +b)=130(5+b a +4a b) ≥130(5+2√b a ·4ab)=310, 当且仅当{ba=4ab ,4a +b =30,即{a =5,b =10时取等号.故选A .答案:A10某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元;乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,则甲、乙两车间每天总获利最大的生产计划为( ).A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱 解析:设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意,得{x +y ≤70,10x +6y ≤480,x ≥0,y ≥0,x ,y ∈N ,目标函数z=280x+200y.画出可行域,如图中的阴影部分所示.由图知,目标函数过点A 时,z 取最大值.解方程组{x +y =70,10x +6y =480,得x=15,y=55,即A (15,55).所以甲车间加工原料15箱,乙车间加工原料55箱时,甲、乙两个车间每天总获利最大. 答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11已知x>0,y>0,若x ,y 满足x 3+y4=1,则xy 的最大值为 . 解析:∵x>0,y>0,∴1=x3+y4≥2√x 3·y4=√33√xy,则xy ≤3,当且仅当x3=y4,即x =32,y =2时,等号成立,∴xy 的最大值为3.答案:312若x ,y 满足约束条件{y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为 .如图,作出不等式组所表示的可行域.由z=x+3y ,得y=−13x +z 3.取l 0:x+3y=0,在可行域内平移直线l 0,由图可知直线过A 点时z 最大,由{y -x =1,x +y =3,得A (1,2).所以z max =1+3×2=7. 答案:713当x>1时,log 2x 2+log x 2的最小值为 . 解析:当x>1时,log 2x>0,log x 2>0,所以log 2x 2+log x 2=2log 2x +1log 2x≥2√2log 2x ·1log 2x =2√2,当且仅当2log 2x =1log 2x,即x =2√22时,等号成立,所以log 2x 2+log x 2的最小值为2√2. 答案:2√214如果实数x ,y 满足条件{x -y +1≥0,y +1≥0,x +y +1≤0,那么y -1x -1的取值范围是 .解析:画出可行域如图中的阴影部分所示.设P (x ,y )为可行域内的一点,M (1,1),则y -1x -1=kPM. 由于点P 在可行域内,则由图知k MB ≤k PM ≤k MA .又可得A (0,-1),B (-1,0),则k MA =2,k MB =12,则12≤k PM ≤2,即y -1x -1的取值范围是[12,2].答案:[12,2]15若不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是 . 解析:不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立. 若a+2=0,则显然不成立;若a+2≠0,则{a +2>0,16-4(a +2)(a -1)<0⇔{a >-2,16-4(a +2)(a -1)<0⇔{a >-2,a <-3或a >2⇔a>2.答案:(2,+∞)三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)解不等式组{3x -2x -6≤1,2x 2-x -1>0.解由3x -2x -6≤1得2x+4x -6≤0,∴-2≤x<6.由2x 2-x-1>0得(2x+1)(x-1)>0,∴x>1或x<−12.∴原不等式组的解集为{x |-2≤x <-12,或1<x <6}.17(8分)某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元.若墙高为3 m,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?解设房子的长为x m,宽为y m,总造价为t元,则xy=12,且t=3×x×1200+3×y×800×2+5800 =1200(3x+4y)+5800≥1200×2√12xy+5800=34600(当且仅当3x=4y,即x=4,y=3时,等号成立).故最低总造价是34600元.18(9分)已知函数f(x)=x2-2x-8,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.解f(x)=x2-2x-8.当x>2时,f(x)≥(m+2)x-m-15恒成立,则x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1).于是对一切x>2,均有不等式x 2-4x+7x-1≥m成立.∵x2-4x+7x-1=(x−1)+4x-1−2≥2√(x-1)·4x-1−2=2(当且仅当x=3时,等号成立), ∴实数m的取值范围是(-∞,2].19(10分)解关于x的不等式x2-(3m+1)x+2m2+m<0.解∵x2-(3m+1)x+2m2+m=(x-m)[x-(2m+1)],∴方程x2-(3m+1)x+2m2+m=0的两解是x1=m,x2=2m+1.当m<2m+1,即m>-1时,原不等式的解为m<x<2m+1;当m=2m+1,即m=-1时,原不等式无解;当m>2m+1,即m<-1时,原不等式的解为2m+1<x<m.综上所述,当m>-1时,原不等式的解集为{x|m<x<2m+1};当m=-1时,原不等式的解集为⌀;当m<-1时,原不等式的解集为{x|2m+1<x<m }.20(10分)某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5 kg,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50 000 kg,问饲料怎样混合,才使成本最低?解设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z 元,那么{x +y ≥35000,y ≥15x ,0≤x ≤50000,y ≥0,而z=0.28x+0.9y ,作出不等式组所表示的平面区域,即可行域如图中阴影部分所示.作一组平行直线0.28x+0.9y=t.其中经过可行域内的点A 时,z 最小,又直线x+y=35000和直线y =15x 的交点A (875003,175003),故当x =875003,y =175003时,饲料费用最低. 答:谷物饲料和动物饲料应按5∶1的比例混合,此时成本最低.。
高二数学必修5第三章不等式章末训练题精选(含解析)
⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分)1.原点和点(1,1)在直线x+y=a两侧,则a的取值范围是( )A.a<0或a>2B.0答案 B2.若不等式ax2+bx-2>0的解集为x|-2A.-18B.8C.-13D.1答案 C解析 ∵-2和-14是ax2+bx-2=0的两根.∴-2+-14=-ba -2 ×-14=-2a,∴a=-4b=-9.∴a+b=-13.3.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的⼤⼩关系是( )A.a2>a>-a2>-aB.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2答案 B解析 ∵a2+a<0,∴a(a+1)<0,∴-1a2>-a2>a.4.不等式1x<12的解集是( )A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)答案 D解析 1x<12⇔1x-12<0⇔2-x2x<0⇔x-22x>0⇔x<0或x>2.5.设变量x,y满⾜约束条件x+y≤3,x-y≥-1,y≥1,则⽬标函数z=4x+2y的值为( )A.12B.10C.8D.2答案 B解析 画出可⾏域如图中阴影部分所⽰,⽬标函数z=4x+2y可转化为y=-2x+z2,作出直线y=-2x并平移,显然当其过点A时纵截距z2.解⽅程组x+y=3,y=1得A(2,1),∴zmax=10.6.已知a、b、c满⾜cA.ab>acB.c(b-a)>0C.ab2>cb2D.ac(a-c)<0答案 C解析 ∵c0,c<0.⽽b与0的⼤⼩不确定,在选项C中,若b=0,则ab2>cb2不成⽴.7.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为( )A.{x|-4≤xB.{x|-4C.{x|x≤-2或x>3}D.{x|x答案 A解析 ∵M={x|x2-3x-28≤0}={x|-4≤x≤7},N={x|x2-x-6>0}={x|x3},∴M∩N={x|-4≤x8.在R上定义运算⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意实数x成⽴,则( )A.-1答案 C解析 (x-a)⊗(x+a)=(x-a)(1-x-a)<1⇔-x2+x+(a2-a-1)<0恒成⽴⇔Δ=1+4(a2-a-1)<0⇔-129.在下列各函数中,最⼩值等于2的函数是( )A.y=x+1xB.y=cos x+1cos x (0C.y=x2+3x2+2D.y=ex+4ex-2答案 D解析 选项A中,x>0时,y≥2,x<0时,y≤-2;选项B中,cos x≠1,故最⼩值不等于2;选项C中,x2+3x2+2=x2+2+1x2+2=x2+2+1x2+2,当x=0时,ymin=322.选项D中,ex+4ex-2>2ex•4ex-2=2,当且仅当ex=2,即x=ln 2时,ymin=2,适合.10.若x,y满⾜约束条件x+y≥1x-y≥-12x-y≤2,⽬标函数z=ax+2y仅在点(1,0)处取得最⼩值,则a的取值范围是( )A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)答案 B解析 作出可⾏域如图所⽰,直线ax+2y=z仅在点(1,0)处取得最⼩值,由图象可知-1即-411.若x,y∈R+,且2x+8y-xy=0,则x+y的最⼩值为( )A.12B.14C.16D.18答案 D解析 由2x+8y-xy=0,得y(x-8)=2x,∵x>0,y>0,∴x-8>0,得到y=2xx-8,则µ=x+y=x+2xx-8=x+ 2x-16 +16x-8=(x-8)+16x-8+10≥2 x-8 •16x-8+10=18,当且仅当x-8=16x-8,即x=12,y=6时取“=”.12.若实数x,y满⾜x-y+1≤0,x>0,则yx-1的取值范围是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.[1,+∞)答案 B解析 可⾏域如图阴影,yx-1的⼏何意义是区域内点与(1,0)连线的斜率,易求得yx-1>1或yx-1⼆、填空题(本⼤题共4⼩题,每⼩题4分,共16分)13.若A=(x+3)(x+7),B=(x+4)(x+6),则A、B的⼤⼩关系为________.答案 A14.不等式x-1x2-x-30>0的解集是________________________________________________________________________.答案 {x|-56}15.如果a>b,给出下列不等式:①1a<1b;②a3>b3;③a2>b2;④2ac2>2bc2;⑤ab>1;⑥a2+b2+1>ab+a+b.其中⼀定成⽴的不等式的序号是________.答案 ②⑥解析 ①若a>0,b<0,则1a>1b,故①不成⽴;②∵y=x3在x∈R上单调递增,且a>b.∴a3>b3,故②成⽴;③取a=0,b=-1,知③不成⽴;④当c=0时,ac2=bc2=0,2ac2=2bc2,故④不成⽴;⑤取a=1,b=-1,知⑤不成⽴;⑥∵a2+b2+1-(ab+a+b)=12[(a-b)2+(a-1)2+(b-1)2]>0,∴a2+b2+1>ab+a+b,故⑥成⽴.16.⼀批货物随17列货车从A市以v千⽶/⼩时匀速直达B市,已知两地铁路线长400千⽶,为了安全,两列货车的间距不得⼩于v202千⽶,那么这批货物全部运到B市,最快需要________⼩时.答案 8解析 这批货物从A市全部运到B市的时间为t,则t=400+16v202v=400v+16v400≥2 400v×16v400=8(⼩时),当且仅当400v=16v400,即v=100时等号成⽴,此时t=8⼩时.三、解答题(本⼤题共6⼩题,共74分)17.(12分)若不等式(1-a)x2-4x+6>0的解集是{x|-3(1)解不等式2x2+(2-a)x-a>0;(2)b为何值时,ax2+bx+3≥0的解集为R.解 (1)由题意知1-a<0且-3和1是⽅程(1-a)x2-4x+6=0的两根,∴1-a<041-a=-261-a=-3,解得a=3.∴不等式2x2+(2-a)x-a>0即为2x2-x-3>0,解得x32.∴所求不等式的解集为x|x32.(2)ax2+bx+3≥0,即为3x2+bx+3≥0,若此不等式解集为R,则b2-4×3×3≤0,∴-6≤b≤6.18.(12分)解关于x的不等式56x2+ax-a2<0.解 原不等式可化为(7x+a)(8x-a)<0,即x+a7x-a8<0.①当-a70时,-a7②当-a7=a8,即a=0时,原不等式解集为∅;③当-a7>a8,即a<0时,a8综上知,当a>0时,原不等式的解集为x|-a7当a=0时,原不等式的解集为∅;当a<0时,原不等式的解集为x|a819.(12分)证明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).证明 ∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴2(a4+b4+c4)≥2(a2b2+b2c2+c2a2)即a4+b4+c4≥a2b2+b2c2+c2a2.⼜a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,c2a2+a2b2≥2a2bc.∴2(a2b2+b2c2+c2a2)≥2(ab2c+abc2+a2bc),即a2b2+b2c2+c2a2≥abc(a+b+c).∴a4+b4+c4≥abc(a+b+c).20.(12分)某投资⼈打算投资甲、⼄两个项⽬,根据预测,甲、⼄项⽬可能的盈利率分别为100%和50%,可能的亏损率分别为30%和10%,投资⼈计划投资⾦额不超过10万元,要求确保可能的资⾦亏损不超过1.8万元,问投资⼈对甲、⼄两个项⽬各投资多少万元,才能使可能的盈利?解 设投资⼈分别⽤x万元、y万元投资甲、⼄两个项⽬,由题意知x+y≤10,0.3x+0.1y≤1.8,x≥0,y≥0.⽬标函数z=x+0.5y.上述不等式组表⽰的平⾯区域如图所⽰,阴影部分(含边界)即可⾏域.作直线l0:x+0.5y=0,并作平⾏于直线l0的⼀组直线x+0.5y=z,z∈R,与可⾏域相交,其中有⼀条直线经过可⾏域上的M点,且与直线x+0.5y=0的距离,这⾥M点是直线x+y=10和0.3x+0.1y=1.8的交点.解⽅程组x+y=10,0.3x+0.1y=1.8,得x=4,y=6,此时z=1×4+0.5×6=7(万元).∵7>0,∴当x=4,y=6时,z取得值.答 投资⼈⽤4万元投资甲项⽬、6万元投资⼄项⽬,才能在确保亏损不超过1.8万元的前提下,使可能的盈利.21.(12分)设a∈R,关于x的⼀元⼆次⽅程7x2-(a+13)x+a2-a-2=0有两实根x1,x2,且0解 设f(x)=7x2-(a+13)x+a2-a-2.因为x1,x2是⽅程f(x)=0的两个实根,且0所以f 0 >0,f 1 <0,f 2 >0⇒a2-a-2>0,7- a+13 +a2-a-2<0,28-2 a+13 +a2-a-2>0⇒a2-a-2>0,a2-2a-8<0,a2-3a>0⇒a2,-23⇒-2所以a的取值范围是{a|-222.(14分)某商店预备在⼀个⽉内分批购买每张价值为20元的书桌共36台,每批都购⼊x台(x是正整数),且每批均需付运费4元,储存购⼊的书桌⼀个⽉所付的保管费与每批购⼊书桌的总价值(不含运费)成正⽐,若每批购⼊4台,则该⽉需⽤去运费和保管费共52元,现在全⽉只有48元资⾦可以⽤于⽀付运费和保管费.(1)求该⽉需⽤去的运费和保管费的总费⽤f(x);(2)能否恰当地安排每批进货的数量,使资⾦够⽤?写出你的结论,并说明理由.解 (1)设题中⽐例系数为k,若每批购⼊x台,则共需分36x批,每批价值20x.由题意f(x)=36x•4+k•20x,由x=4时,y=52,得k=1680=15.∴f(x)=144x+4x (0(2)由(1)知f(x)=144x+4x (0∴f(x)≥2144x•4x=48(元).当且仅当144x=4x,即x=6时,上式等号成⽴.故只需每批购⼊6张书桌,可以使资⾦够⽤.。
第3章 不等式(A卷基础篇)(解析版)
必修五第三章不等式(A卷基础篇)参考答案与试题解析一.选择题(共10小题,每小题5分,满分50分)1.(2019秋•渭南期末)若a,b,c∈R且a>b,则下列不等式中一定成立的是()A.ac>bc B.(a﹣b)c2>0 C.D.﹣2a<﹣2b【解析】解:∵a,b,c∈R且a>b,∴取c=0,可排除A,B;取a=1,b=﹣1可排除C.由不等式的性质知当a>b时,﹣2a<﹣2b,故D正确.故选:D.【点睛】本题考查了不等式的基本性质,属基础题.2.(2019秋•江阴市期中)不等式x2﹣5x+6<0的解集是()A.{x|x>1或x<﹣6} B.{x|x>6或x<﹣1}C.{x|x>3或x<2} D.{x|2<x<3}【解析】解:不等式x2﹣5x+6<0化为(x﹣2)(x﹣3)<0,解得2<x<3,所以不等式的解集是{x|﹣2<x<3}.故选:D.【点睛】本题考查了求一元二次不等式解集的应用问题,是基础题.3.(2019秋•罗田县期中)若不等式x2+ax+b<0(a,b∈R)的解集为{x|2<x<5},则a,b的值为()A.a=﹣7,b=10 B.a=7,b=﹣10 C.a=﹣7,b=﹣10 D.a=7,b=10【解析】解:不等式x2+ax+b<0的解集为{x|2<x<5},则对应方程x2﹣ax+b=0的两个根为2和5,即,解得a=﹣7,b=10.故选:A.【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.4.(2019秋•常州期末)若x>0,y>0,且x+y=S,xy=P,则下列说法中正确的是()A.当且仅当x=y时S有最小值2B.当且仅当x=y时p有最大值C.当且仅当p为定值时S有最小值2D.若S为定值,当且仅当x=y时P有最大值【解析】解:∵x,y∈R+,x+y=s,xy=p,∴s=x+y≥22①,当且仅当x=y时取等号;∴如果p是定值,那么当且仅当x=y时s的值最小,故A、C错误;由①得,p,当且仅当x=y时取等号;∴如果s是定值,那么当且仅当x=y时p的值最大,故D正确,B错误.故选:D.【点睛】应用基本不等式时,要熟练掌握不等式成立的条件与重要不等式的变形.5.(2020•湖南一模)已知实数x,y满足,则该不等式组所表示的平面区域的面积为()A.B.C.2 D.3【解析】解:根据题中所给的约束条件,画出其对应的区域如下图所示,其为阴影部分的三角区,解方程组可以求得三角形三个顶点的坐标分别为(1,0),(2,1),(4,0),根据三角形的面积公式可以求得S.故选:B.【点睛】本题主要考查线性规划的应用,通过数形结合是解决本题的关键,是中档题.6.(2019秋•雁峰区校级月考)已知log a(a2﹣4)<log a(2a﹣1),则a的取值范围是()A.(2,+∞)B.(,2)C.(2,3)D.(,3)【解析】解:由题意知,得:a>2,即函数f(x)=log a x为增函数,又因为log a(a2﹣4)<log a(2a﹣1),所以a2﹣4<2a﹣1得2<a<3.故选:C.【点睛】本题考查对数函数的图象及性质,考查不等式的求解,属于基础题.7.(2019秋•安徽期末)已知x>0,y>0,4x•2y=8,则的最小值是()A.3 B.C.D.9【解析】解:∵x>0,y>0,4x•2y=8,∴2x+y=3,∴,当且仅当,即,y=1时取等号,∴的最小值为3.故选:A.【点睛】本题考查了利用基本不等式求最值,考查了转化思想,属基础题.8.(2019秋•徐州期中)若关于x的不等式x2﹣4x﹣a>0在1<x<4内有解,则实数a的取值范围()A.a<﹣3 B.a<0 C.a<﹣4 D.a≤﹣4【解析】解:不等式x2﹣4x﹣a>0可化为a<x2﹣4x;设f(x)=x2﹣4x,其中x∈(1,4);则f(x)=(x﹣2)2﹣4,所以f(x)<f(4)=0;所以不等式在1<x<4内有解,实数a的取值范围是a<0.故选:B.【点睛】本题考查了不等式在某一范围内有解的应用问题,是基础题.9.(2019秋•浙江期中)已知关于x的不等式a(x+1)(x﹣3)+1>0(a≠0)的解集是(x1,x2)(x1<x2),则下列结论中错误的是()A.x1+x2=2 B.x1x2<﹣3 C.x2﹣x1>4 D.﹣1<x1<x2<3【解析】解:由关于x的不等式a(x+1)(x﹣3)+1>0(a≠0)的解集是(x1,x2)(x1<x2),∴a<0,x1,x2是一元二次方程ax2﹣2ax+1﹣3a=0.∴x1+x2=2,x1x23<﹣3.x2﹣x124.由x2﹣x1>4,可得:﹣1<x1<x2<4是错误的.故选:D.【点睛】本题考查了一元二次方程的根与系数的关系、不等式、配方法,考查了推理能力与计算能力,属于基础题.10.(2019秋•无锡期末)已知关于x的不等式(a2﹣4)x2+(a﹣2)x﹣1≥0的解集为空集,则实数a的取值范围是()A.[﹣2,] B.[﹣2,)C.(,2] D.(﹣∞,2]∪[2,+∞)【解析】解:①当a2﹣4=0,即a=±2.当a=2时,不等式(a2﹣4)x2+(a﹣2)x﹣1≥0化为﹣1≥0,其解集为空集,因此a=2满足题意;当a=﹣2时,不等式(a2﹣4)x2+(a﹣2)x﹣1≥0化为﹣4x﹣1≥0,即,其解集不为空集,因此a=﹣2满足题意,应舍去;②当a2﹣4≠0,即a≠±2时.∵关于x的不等式(a2﹣4)x2+(a﹣2)x﹣1≥0的解集为空集,∴,解得a<2.综上可得:a的取值范围是(,2].故选:C.【点睛】本题考查了一元二次不等式的解集与判别式的关系,考查了分类讨论的思想方法,考查了计算能力,属于中档题.二.填空题(共4小题,每小题5分,满分20分)11.(2020•南通模拟)设x>﹣1,则当y=x取最小值时,x的值为1.【解析】解:∵x>﹣1,∴x+1>0,则y=x x+11≥3,当且仅当x+1即x=1时取等号,故答案为:1【点睛】本题考查了基本不等式在求最值中的应用,属于基础题.12.(2019秋•宜昌期末)定义新运算“⊗”:a⊗b=ab+2a+b,则关于x的不等式x⊗(x﹣2)<0的解集是(﹣2,1).【解析】解:∵a⊗b=ab+2a+b,则关于x的不等式x⊗(x﹣2)=x(x﹣2)+2x+x﹣2=x2+x﹣2=(x+2)(x﹣1)<0,求得﹣2<x<1,故答案为(﹣2,1).【点睛】本题主要考查新定义,一元二次不等式的解法,属于基础题.13.(2019秋•泉州期末)若x,y满足约束条件,则z=3x+2y的最大值为4.【解析】解:作出x,y满足约束条件的平面区域如图:由z=3x+2y,则y x,平移直线y x,由图象可知当直线y x,经过点A时,直线y x,的截距最大,此时z最大,由,解得A(0,2),此时z max=3×0+2×2=4,故答案为:4.【点睛】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.14.(2019秋•扬州期末)若关于x的不等式(a﹣2)x2+(4a﹣10)x+4a﹣12>0的解集中恰有两个整数,则实数a的取值范围是[0,1).【解析】解:由关于x的不等式(a﹣2)x2+(4a﹣10)x+4a﹣12>0的解集中恰有两个整数,则a≠2.二次函数y=(a﹣2)x2+(4a﹣10)x+4a﹣12只有开口向下时才能满足(a﹣2)x2+(4a﹣10)x+4a﹣12>0的解集中恰有两个整数,故a<2,(a﹣2)x2+(4a﹣10)x+4a﹣12=[(a﹣2)x+2a﹣6][x+2]=0即两根为﹣2,,故∵2,即两个整数解应为﹣3,﹣2,∴∴a∈[0,1)故答案为[0,1).【点睛】本题关于不等式的解法,属于基础题.三.解答题(共3小题,每小题10分,满分30分)15.(2019秋•苏州期末)解下列不等式:(1)x2﹣4x﹣12≤0;(2).【解析】解:(1)根据题意,x2﹣4x﹣12≤0⇒(x﹣6)(x+2)≤0,解可得:﹣2≤x≤6,即不等式的解集为[﹣2,6];(2)根据题意,⇒⇒0,解可得:x<3或x>8,即不等式的解集为{x|x<3或x>8}.【点睛】本题考查一元二次不等式和分式不等式的解法,注意分式不等式的变形,属于基础题.16.(2019秋•金安区校级月考)(1)已知0 ,求y x(1﹣2x)的最大值;(2)已知x<3,求f(x)x的最大值;(3)已知x,y∈R+,且2x+3y+12xy=4,求2x+3y的最小值.【解析】解:(1)由题意,y x(1﹣2x)2x(1﹣2x),当且仅当2x=1﹣2x即x∈(0,)时等号成立;(2)由题意,3﹣x>0,∴f(x)x x﹣3+3,当且仅当即x=1时等号成立;(3)由2x+3y+12xy=4得,∵x,y>0,∴0<x<2,则,当且仅当即x时等号成立.【点睛】本题主要考查基本不等式及其应用,属于基础题.17.(2019秋•平谷区期末)已知f(x)=ax2﹣(2a+1)x+2,(Ⅰ)当a=﹣1时,解不等式f(x)≤0;(Ⅱ)若a>0,解关于x的不等式f(x)≤0.【解析】解:(Ⅰ)因为a=﹣1,所以f(x)=﹣x2+x+2;由f(x)≤0所以x2﹣x﹣2≥0,所以不等式的解为{x|x≤﹣1或x≥2}.(Ⅱ)因为a>0,f(x)≤0所以ax2﹣(2a+1)x+2≤0化为①时②当时,③当时{x|x=2}.综上当时,不等式f(x)≤0的解集是:当时,不等式f(x)≤0的解集是:;当时,不等式f(x)≤0的解集是:{x|x=2}.【点睛】本题主要考查一元二次不等式的求解以及分类讨论思想的应用,属于基础题目.。
高中数学必修五第三章《不等式》单元测试题含答案
高中数学必修五第三章单元测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0D .a 2-b 2<03.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .PMC .MP D .∁U M ∩P =∅4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0)C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0)D .(-4,0]10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C.4 D.1 211.函数y=3x2+6x2+1的最小值是( )A.32-3 B.-3 C.6 2 D.62-312.设a>0,b>0.若3是3a与3b的等比中项,则1a+1b的最小值为( )A.8 B.4C.1 D.1 4二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是________.14.函数y=13-2x-x2的定义域是________.15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm2(图中阴影部分),上下空白各2 dm,左右空白各1 dm,则四周空白部分面积的最小值是________dm2.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1. 求证:(1-a )(1-b )(1-c )≥8abc .20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为y=144v(v>0).v2-58v+1 225(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x)和g(x),当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f(0)=10,g(0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?高中数学必修五第三章单元测试题《不等式》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③答案 B2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0 D .a 2-b 2<0 答案 C解析 由a -|b |>0⇒|b |<a ⇒-a <b <a ⇒a +b >0,故选C.3.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .P MC .MP D .∁U M ∩P =∅答案 C4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)答案 B解析 ∵x -1x -4<0⇔(x -1)(x -4)<0,∴1<x <4,即B ={x |1<x <4},∴A ∩B =(3,4),故选B.5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0) C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x 答案 D解析 y =x 2+2x 的值域为(-∞,-2]∪[2,+∞);y =x +2x +1=x +1+1x +1>2(x >0);y =sin x +csc x =sin x +1sin x>2(0<sin x <1);y =7x +7-x ≥2(当且仅当x =0时取等号).6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)答案 B7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]答案 C解析 画可行域如图:当直线y =x -z 过A 点时,z min =-1. 当直线y =x -z 过B 点时,z max =2. ∴z ∈[-1,2].8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )答案 C9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0) D .(-4,0]答案 D10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C .4D.12答案 D 11.函数y =3x 2+6x 2+1的最小值是( ) A .32-3B .-3C .6 2D .62-3答案 D 12.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为( ) A .8B .4C .1D.14 答案 B解析 3是3a 与3b 的等比中项⇒3a ·3b =3a +b =3⇒a +b =1,∵a >0,b >0,∴ab ≤a +b 2=12⇒ab ≤14. ∴1a +1b =a +b ab =1ab ≥114=4. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.答案 (23,+∞) 14.函数y =13-2x -x2的定义域是________. 答案 {x |-3<x <1}15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各2 dm ,左右空白各1 dm ,则四周空白部分面积的最小值是________dm 2.答案 56解析 设阴影部分的高为x dm ,宽为72xdm ,则四周空白部分面积是y dm 2,由题意,得y =(x +4)(72x +2)-72=8+2(x +144x )≥8+2×2x ×144x =56.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 由题意得当x >0时,恒有m <x +4x 成立.设f (x )=x +4x,x >0,则有f (x )=x +4x ≥2x ×4x =4,当且仅当x =4x ,即x =2时,等号成立.所以f (x )=x +4x ,x >0的最小值是4.所以实数m 的取值范围是(-∞,4).三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.答案 (1)(2,+∞) (2)[1,2]18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值. 答案 16解析 由于x >0,y >0,1x +9y=1, 所以x +y =(x +y )(1x +9y )=y x +9x y+10 ≥2y x ·9x y +10=16. 当且仅当y x =9x y 时,等号成立,又由于1x +9y=1. 所以当x =4,y =12时,(x +y )min =16.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1.求证:(1-a )(1-b )(1-c )≥8abc .证明 ∵a 、b 、c 都是正数,且a +b +c =1,∴1-a =b +c ≥2bc >0,1-b =a +c ≥2ac >0,1-c =a +b ≥2ab >0.∴(1-a )(1-b )(1-c )≥2bc ·2ac ·2ab =8abc .∴原不等式成立.20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?解析 设A 厂工作x 小时,B 厂工作y 小时,总工作时数为t 小时,则目标函数t =x +y ,x ,y 满足⎩⎪⎨⎪⎧ x +3y ≥40,2x +y ≥20,x ≥0,y ≥0.可行域如图所示,而符合题意的解为此内的整点,于是问题变为要在此可行域内,找出整点(x ,y ),使t =x +y 的值最小.由图知当直线l :y =-x +t 过Q 点时,纵截距t 最小.解方程组⎩⎪⎨⎪⎧ x +3y =40,2x +y =20,得Q (4,12).答:A 厂工作4小时,B 厂工作12小时,可使所费的总工时最少.21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =144v v 2-58v +1 225(v >0). (1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?思路分析 (1)利用基本不等式求最大车流量,(2)转化为解不等式.解析 (1)依题意,有y =144v +1 225v-58≤1442 1 225-58=12, 当且仅当v =1 225v,即v =35时等号成立, ∴y max =12,即当汽车的平均速度v 为35千米/时,车流量最大为12.(2)由题意,得y =144v v 2-58v +1225>9. ∵v 2-58v +1225=(v -29)2+384>0,∴144v >9(v 2-58v +1225).∴v 2-74v +1225<0.解得25<v <49.即汽车的平均速度应在(25,49)内.22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f (x )和g (x ),当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于f (x )万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f (0)=10,g (0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?解析 (1)f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,依题意,当且仅当⎩⎪⎨⎪⎧ y ≥f x =14x +10, ①x ≥g y =y +20, ②成立,双方均无失败的风险.由①②得y ≥14(y +20)+10⇒4y -y -60≥0, ∴(y -4)(4y +15)≥0.∵4y +15>0,∴y ≥4.∴y ≥16.∴x ≥y +20≥4+20=24.∴x min =24,y min =16.即要使双方均无失败风险,甲公司至少要投入24万元,乙公司至少要投入16万元.。
第3章 一元一次不等式单元测试卷(含解析)
绝密★启用前第三章一元一次不等式单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,每小题3分,共30分)1.有下列数学表达式:①3>0;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2<x+1.其中是不等式的有()A.2个B.3个C.4个D.5个2.若a<b,则下列不等式正确的是()A.B.ac2<bc2 C.﹣b<﹣a D.b﹣a<03.不等式的解集在数轴上表示为()A.B.C.D.4.下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>05.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<16.不等式组的解集是x>2,则m的取值范围是()A.m≤2 B.m≥2 C.m≤1 D.m>17.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤78.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.9.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种10.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,每小题3分,共24分)11.用适当的不等式表示下列关系:(1)a是非负数;(2)x与2差不足15.12.若x>y,且(a﹣3)x<(a﹣3)y,则a的取值范围为.13.写出一个解集为x>1的一元一次不等式组:.14.不等式组的非负整数解有个.15.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入小球时有水溢出.16.若无解,则a的取值范围是.17.若不等式|x+1|+|x﹣2|>a对任意实数x恒成立,则a的取值范围是.18.为迎接G20杭州峰会的召开,某校八年级(1)(2)班准备集体购买一种T恤衫参加一项社会活动.了解到某商店正好有这种T恤衫的促销,当购买10件时每件140元,购买数量每增加1件单价减少1元;当购买数量为60件(含60件)以上时,一律每件80元.如果八(1)(2)班共购买了100件T恤衫,由于某种原因需分两批购买,且第一批购买数量多于30件且少于60件.已知购买两批T恤衫一共花了9200元,则第一批T恤衫的购买件.评卷人得分三.解答题(共6小题,共46分)19.(6分)解下列不等式,并把它的解集在数轴上表示出来.(1)2(x+1)﹣3(x+2)<0(2)<﹣2.20.(6分)解不等式组,并求不等式组的所有整数解.21.(8分)若关于x的不等式组的正整数解只有2个,求a的取值范围.22.(8分)三月份学校开展了“朗读月”系列活动,活动结束后,为了表彰优秀,学校准备购买一些钢笔和笔记本作为奖品进行奖励,如果购买3支钢笔和4本笔记本需要93元;如果买2支钢笔和5本笔记本需要90元.(1)试求出每支钢笔和每本笔记本的价格是多少元?(2)学校计划用不超过500元购买两种奖品共40份,问:最多可以买几支钢笔?23.(8分)某车间加工A型和B型两种零件,平均一个工人每小时能加工7个A型零件和3个B型零件,而且3个A型与2个B型配套,就可以包装进库房,剩余不能配套的只能暂时存放起来,如果B型零件单独存放,对环境的要求远高于A型零件,已知该车间原有工人69名.(1)怎样分配工人进行工作才能保证生产出的产品及时包装运进库房;(2)后来因为工作调动,有4名工人调离了该车间,那么你认为现在应该怎样分配工人工作最合适呢?请通过计算说明你的依据.24.(10分)宁波某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共10台,具体情况如下表:A型B型价格(万元/台)1512月污水处理能力(吨/月)250200经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.参考答案与试题解析1.解:根据不等式的定义,只要有不等符号的式子就是不等式,⑥x+2<x+1应该是x+2>>x+1,所以不是不等式,所以①3>0;②4x+5>0;⑤x≠﹣4共有3个.故选:B.2.解:A、当b<0时,由a<b得出>1,故本选项错误;B、当c=0时,ac2=bc2,故本选项错误;C、∵a<b,∴两边都乘以﹣1得:﹣a>﹣b,故本选项正确;D、∵a<b,∴b﹣a>0,故本选项错误;故选:C.3.解:不等式两边同乘12得:8x﹣3(x﹣5)>10,去括号,移项,合并同类项得:5x>﹣5,x系数化为1,得:x>﹣1故选:C.4.解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.5.解:∵关于x的不等式组的解集为x>1,∴a的取值范围是:a≤1.故选:C.6.解:∵不等式组的解集是x>2,解不等式①得x>2,解不等式②得x>m+1,不等式组的解集是x>2,∴不等式,①解集是不等式组的解集,∴m+1≤2,m≤1,故选:C.7.解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.8.解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.9.解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选:C.10.解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.11.解:(1)a是非负数则:a≥0;(2)x与2差不足15:x﹣2<15.故答案为:x﹣2<15.12.解:由不等号的方向改变,得a﹣3<0,解得a<3,故答案为:a<3.13.解:2x﹣2>0的解集为x>1,x+1>0的解集为x>﹣1.所以解集为x>1的不等式组可为.故答案为.14.解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.15.解:设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由题意,得:,解得:,即y=2x+30;由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.方法2:由题意可得每添加一个球,水面上升2cm,设至少放入x个小球时有水溢出,则2x+30>49,解得x>9.5,即至少放入10个小球时有水溢出.16.解:上面表示﹣1≤x≤2,不等式无解,即x<a与上面的不等式没有公共部分,因而a≤﹣1a的取值范围是a≤﹣1.故答案为:a≤﹣1.17.解:∵|x+1|+|x﹣2|表示数轴上的x对应点到﹣1、2对应点的距离之和,∴它的最小值为3,∵不等式|x+1|+|x﹣2|>a对任意的实数x恒成立,∴a<3,故答案为:a<3.18.解:设第一批购买x件,则第二批购买(100﹣x)件.①,解得x1=30(舍去),x2=40;②无实数解;所以:第一批购买数量为40件.故答案是:40.19.解:(1)去括号得2x+2﹣3x﹣6<0,移项得2x﹣3x<6﹣2,合并得﹣x<4,系数化为1得x>﹣4;如图,(2)去分母得4(x﹣1)<3(x+1)﹣24,去括号得4x﹣4<3x+3﹣24,移项得4x﹣3x<3﹣24+4,合并得x<﹣17.如图,20.解:原不等式组为,解不等式①,得x>﹣2,解不等式②,得x≤1,∴原不等式组的解集为﹣2<x≤1,所以不等式组的所有整数解为﹣1,0,1.21.解:解不等式(1)得:x<21,解不等式(2)得:x<﹣3a﹣2,∵不等式组只有两个正整数解,∴2<﹣3a﹣2≤3.解得:﹣≤a<﹣.22.解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得:,解得:,答:一支钢笔需15元,一本笔记本需12元.(2)设购买钢笔的数量为x,则笔记本的数量为(40﹣x)本,由题意得:15x+12(40﹣x)≤500,解得:x≤6,答:学校最多可以购买6支钢笔.23.解:(1)设分配加工A型零件工人为x人,加工B型零件工人为(69﹣x)人,由题意得x=,解得:x=27.答:分配加工A型零件工人为27人,加工B型零件工人为42人.(2)若调走4名工人,设分配生产A型零件工人为x人,则生产B型为(65﹣x)人,由题意得x≥,解得:x≥25,∵x为整数,∴x=26,65﹣x=39.答:分配加工A型零件工人为26人,加工B型零件工人为39人.24.解:(1)设购买A型号的污水处理设备x台,则购买B型号的污水处理设备(10﹣x)台,根据题意得:,解得:3≤x≤.∵x是整数,∴x=3或4或5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10﹣x=5.答:有3种购买方案:第一种是购买3台A型污水处理设备,7台B型污水处理设备;第二种是购买4台A型污水处理设备,6台B型污水处理设备;第三种是购买5台A型污水处理设备,5台B型污水处理设备.(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).∵135>132>129,∴为了节约资金,应购污水处理设备A型号3台,B型号7台.答:购买3台A型污水处理设备,7台B型污水处理设备更省钱.21世纪教育网–中小学教育资源及组卷应用平台21世纪教育网。
2018_2019学年高中数学第三章不等式学业质量标准检测新人教A版必修5(含答案)
第三章 不等式学业质量标准检测一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设M =2a (a -2)+7,N =(a -2)(a -3),则有( A ) A .M >N B .M ≥N C .M <ND .M ≤N[解析] M -N =(2a 2-4a +7)-(a 2-5a +6) =a 2+a +1=(a +12)2+34>0,∴M >N .故选A .2.设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( A ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2}D .{x |2<x <3}[解析] A ={x |-1<x <2},B ={x |1<x <3}, ∴A ∪B ={x |-1<x <3},选A .3.(2018-2019学年度山东日照青山中学高二月考)若a >b >c ,则下列不等式成立的是( B ) A .1a -c >1b -cB .1a -c <1b -cC .ac >bcD .ac <bc[解析] ∵a >b >c ,∴a -c >b -c >0, ∴1a -c <1b -c,故选B . 4.不等式1x <12的解集是( D )A .(-∞,2)B .(2,+∞)C .(0,2)D .(-∞,0)∪(2,+∞)[解析] 因1x <12,得1x -12=2-x2x <0,即x (x -2)>0,解得x <0或x >2,故选D .5.不等式(x +5)(3-2x )≥6的解集是( D )A .⎩⎨⎧⎭⎬⎫x |x ≤-1,或x ≥92 B .⎩⎨⎧⎭⎬⎫x |-1≤x ≤92 C .⎩⎨⎧⎭⎬⎫x |x ≤-92或x ≥1D.⎩⎨⎧⎭⎬⎫x |-92≤x ≤1[解析] 解法一:取x =1检验,满足排除A ;取x =4检验,不满足排除B 、C ;∴选D . 解法二:原不等式化为:2x 2+7x -9≤0, 即(x -1)(2x +9)≤0,∴-92≤x ≤1,选D .6.(2018-2019学年度吉林省德惠市实验中学高二月考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是( A )A .(0,8)B .(1,8)C .(0,10)D .(1,10)[解析] 由题意得a 2-8a <0, ∴0<a <8,故选A .7.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A ) A .a ≤-4 B .a ≥-4 C .a ≥-12D .a ≤-12[解析] ∵y =2x 2-8x -4(1≤x ≤4)在x =4时,取最大值-4,当a ≤-4时,2x 2-8x -4≥a 存在解.故选A . 8.(2018-2019学年度江西戈阳一中高二月考)设f (x )=e x,0<a <b ,若p =f (ab ),q =f (a +b2),r =f a f b ,则下列关系正确的是( C )A .q =r <pB .p =r <qC .q =r >pD .p =r >q[解析] f (x )=e x是增函数, ∵0<a <b ,∴ab <a +b2,∴f (ab )<f (a +b2)∴p <q 又f (a +b2)=ea +b2=e ab,f a f b =e a ·e b =e a +b ,∴r =q ,故选C .9.不等式(x -2a )(x +1)(x -3)<0的解集为(-∞,-1)∪(3,4),则a 的值为( D ) A .-4 B .-2 C .4D .2[解析] 当2a =4时,用穿针引线法易知不等式的解集满足题意,∴a =2. 10.下列函数中,最小值是4的函数是( C ) A .y =x +4xB .y =sin x +4sin x(0<x <π)C .y =e x+4e -x(其中e 为自然对数的底数) D .y =log 3x +log x 81[解析] 当x <0时,y =x +4x≤-4,排除A ;∵0<x <π,∴0<sin x <1.y =sin x +4sin x ≥4.但sin x =4sin x无解,排除B ;e x >0,y =e x +4e -x ≥4.等号在e x=4ex 即e x=2时成立.∴x =ln 2,D 中,x >0且x ≠1,若0<x <1,则log 3x <0,log x 81<0,∴排除D . 11.(2016·全国卷Ⅰ理,8)若a >b >1,0<c <1,则( C ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c[解析] 对于选项A ,考虑幂函数y =x c,因为c >0,所以y =x c为增函数,又a >b >1,所以a c>b c,A 错.对于选项B ,ab c<ba c⇔(b a)c<b a ,又y =(b a)x是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C .12.(2018-2019学年度吉林省德惠市实验中学高二月考)函数y =x 2+2x -1(x >1)的最小值是( A )A .23+2B .23-2C .2 3D .2[解析] y =x 2+2x -1=x -2+x -+3x -1=(x -1)+3x -1+2,∵x >1,∴(x -1)+3x -1+2≥2x -3x -+2=23+2,当且仅当x -1=3x -1,即(x -1)2=3,x -1=3,x =3+1时,等号成立. 二、填空题(本大题共4个小题,每个小题5分,共20分,将正确答案填在题中横线上) 13.不等式2x 2+2x -4≤12的解集为__[-3,1]__.[解析] 不等式2x 2+2x -4≤12化为2x 2+2x -4≤2-1,∴x 2+2x -4≤-1,∴x 2+2x -3≤0, ∴-3≤x ≤1,∴原不等式的解集为[-3,1]. 14.函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(m 、n >0)上,则1m +1n的最小值为__4__.[解析] 由题意知A (1,1),∴m +n =1, ∵m >0,n >0,∴1m +1n =(1m +1n )·1=(1m +1n )·(m +n )=n m +mn+2≥4.等号在n m =mn 时成立,由⎩⎪⎨⎪⎧m +n =1n m =mn,得m =n =12.∴1m +1n的最小值为4.15.若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是__(-∞,-12)__.[解析] 依题意,对任意的x ∈[4,+∞),有f (x )=(mx +1)(m 2x -1)<0恒成立,结合图象分析可知⎩⎪⎨⎪⎧m <0-1m <41m 2<4,由此解得m <-12,即实数m 的取值范围是(-∞,-12).16.某校今年计划招聘女教师a 名,男教师b 名,若a 、b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5a -b ≤2a <7,设这所学校今年计划招聘教师最多x 名,则x =__13__.[解析] 由题意得x =a +b ,如图所示,画出约束条件所表示的可行域,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x 取最大值,∴x =a +b =13.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)若函数f (x )=lg(8+2x -x 2)的定义域为M ,函数g (x )=1-2x -1的定义域为N ,求集合M 、N 、M ∩N .[解析] 由8+2x -x 2>0,即x 2-2x -8<0, ∴(x -4)(x +2)<0, ∴-2<x <4. ∴M ={x |-2<x <4}. 由1-2x -1≥0,得x -3x -1≥0, ∴x <1或x ≥3. ∴N ={x |x <1或x ≥3}.∴M ∩N ={x |-2<x <1或3≤x <4}.18.(本题满分12分)不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切x ∈R 恒成立,求实数m 的取值范围. [解析] 由m 2-2m -3=0,得m =-1或m =3. 当m =3时,原不等式化为-1<0恒成立;当m =-1时,原不等式化为4x -1<0, ∴x <14,故m =-1不满足题意.当m 2-2m -3≠0时,由题意,得⎩⎪⎨⎪⎧m 2-2m -3<0Δ=[-m -2+m 2-2m -,即⎩⎪⎨⎪⎧-1<m <3-15<m <3,∴-15<m <3.综上可知,实数m 的取值范围是-15<m ≤3.19.(本题满分12分)(2018-2019学年度福建莆田一中高二月考)解关于x 的不等式m 2x 2+2mx -3<0(m ∈R ). [解析] 当m =0时,原不等式化为-3<0,∴x ∈R . 当m ≠0时,原不等式化为(mx -1)(mx +3)<0, ∵m 2>0,∴(x -1m )(x +3m)<0.当m >0时,-3m <x <1m ,当m <0时,1m<x <-3m.综上所述,当m =0时,原不等式的解集为R ; 当m >0时,原不等式的解集为(-3m ,1m );当m <0时,原不等式的解集为(1m,-3m).20.(本题满分12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内? [解析] (1)依题意得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1). 整理,得:y =-60x 2+20x +200(0<x <1). ∴本年度年利润与投入成本增加的比例的关系式为y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加,当且仅当⎩⎪⎨⎪⎧y --0<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >00<x <1,解得:0<x <13,所以为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足0<x <13.21.(本题满分12分)若a <1,解关于x 的不等式axx -2>1 . [解析] a =0时,不等式的解集为∅,ax x -2>1⇔a -x +2x -2>0 ⇔[(a -1)x +2](x -2)>0. ∵a <1,∴a -1<0. ∴化为(x -21-a )(x -2)<0,当0<a <1时,21-a >2,∴不等式的解为2<x <21-a ;当a <0时,1-a >1, ∴21-a<2, ∴不等式解为21-a<x <2,∴当0<a <1时,不等式解集为⎩⎨⎧⎭⎬⎫x |2<x <21-a ;当a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |21-a <x <2;当a =0时,解集为∅.22.(本题满分12分)已知关于x 的方程(m +1)x 2+2(2m +1)x +1-3m =0的两根为x 1、x 2,若x 1<1<x 2<3,求实数m 的取值范围.[解析] 设f (x )=(m +1)x 2+2(2m +1)x +1-3m ,显然m +1≠0. (1)当m +1>0时,可画简图:则⎩⎪⎨⎪⎧ m +1>0ff,即⎩⎪⎨⎪⎧ m >-1m <-2m >-89,不等式组无解.(2)当m +1<0时,可画简图:则⎩⎪⎨⎪⎧m +1<0ff,即⎩⎪⎨⎪⎧m <-1m >-2m <-89.得-2<m <-1.由(1)、(2)知m 的取值范围是(-2,-1).。
高中数学 第三章 不等式 3.3 一元二次不等式及其解法练习(含解析)新人教B版必修5-新人教B版高
3.3 一元二次不等式及其解法课时过关·能力提升1下列不等式中,解集是R的是()A.x2+2x+1>0B.√x2>0C.(13)x+1>0D.1x -2<1xx2+2x+1=(x+1)2≥0,所以选项A不正确;因为√x2=|x|≥0,所以选项B不正确;选项D中x≠0;因为(13)x>0,所以(13)x+1>1>0,x∈R,故选C.2已知2a+1<0,则关于x的不等式x2-4ax-5a2>0的解集是()A.{x|x>5a或x<-a}B.{x|x<5a或x>-a}C.{x|-a<x<5a}D.{x|5a<x<-a}2-4ax-5a2>0⇒(x-5a)(x+a)>0.∵a<-12,∴5a<-a.∴x>-a或x<5a.故选B.3已知不等式ax2+bx+c>0的解集为{x|-13<x<2},则不等式cx2+bx+a<0的解集为()A.{x|-3<x<12} B.{x|x<-3或x>12}C.{x|-2<x<13} D.{x|x<-2或x>13}:ax2+bx+c>0的解集为{x|-13<x<2}⇔3x2-5x-2<0⇔-3x2+5x+2>0.设a=-3k,b=5k,c=2k(k>0),则cx2+bx+a<0⇔2kx2+5kx-3k<0⇔2x2+5x-3<0⇔-3<x<12,故选A.方法二:由题意知a<0,且-x x =(-13)+2,x x =(-13)×2,即x x =-53,x x =-23,而cx 2+bx+a<0⇔x x x 2+x x x+1>0⇔-23x 2-53x+1>0⇔2x 2+5x-3<0⇔-3<x<12,故选A .4设f (x )={2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为()A.(1,2)∪(3,+∞)B.(√10,+∞)C.(1,2)∪(√10,+∞)D.(1,2)x<2时,令2e x-1>2,解得1<x<2.当x ≥2时,令log 3(x 2-1)>2,解得x ∈(√10,+∞).故x ∈(1,2)∪(√10,+∞).★5关于x 的方程x 2+(a 2-1)x+a-2=0的一根比1小,且另一根比1大的充要条件是()A.-1<a<1 B .a<-1或a>1 C.-2<a<1D.a<-2或a>1f (x )=x 2+(a 2-1)x+a-2,则它是开口向上的二次函数,方程的根即是函数与x 轴的交点的横坐标,因此只需f (1)<0,即1+a 2-1+a-2<0,故-2<a<1.6已知函数f (x )=√xx 2-6xx +(x +8)的定义域为R ,则实数k 的取值X 围为.2-6kx+(k+8)≥0恒成立,当k=0时,满足. 当k ≠0时,{x >0,x =(-6x )2-4x (x +8)≤0⇒0<k ≤1. ∴0≤k ≤1.7已知三个不等式①x 2-4x+3<0,②x 2-6x+8<0,③2x 2-9x+m<0,要使同时满足①和②的所有x 都满足③,则实数m 的取值X 围是.:由{x 2-4x +3<0,x 2-6x +8<0,解得2<x<3.③对于2<x<3恒成立,即m<-2x 2+9x 对x ∈(2,3)恒成立,所以m 只需满足小于函数-2x 2+9x 在区间(2,3)上的最小值,即当x=3时,最小值为9,但取不到最小值.所以m ≤9.方法二:{x 2-4x +3<0x 2-6x +8<0⇒{1<x <32<x <4⇒2<x<3.设f (x )=2x 2-9x+m.当x ∈(2,3)时,f (x )<0恒成立. 由二次函数的图象与性质,得{x (2)≤0,x (3)≤0,即{8-18+x ≤0,18-27+x ≤0,解得m ≤9.-∞,9]8已知f (x )是定义在R 上的奇函数,当x>0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为.f (x )为奇函数,且当x>0时,f (x )=x 2-4x ,所以f (x )={x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0,所以原不等式等价于{x >0,x 2-4x >x 或{x <0,-x 2-4x >x .由此可解得x>5或-5<x<0. 用区间表示为(-5,0)∪(5,+∞).-5,0)∪(5,+∞) ★9定义在(-3,3)内的奇函数f (x ),已知f (x )在其定义域内单调递减,且f (2-a )+f (1-a-a 2)>0,则实数a 的取值X 围是.f (x )为奇函数,∴f (2-a )>-f (1-a-a 2)=f (a 2+a-1). 又f (x )在(-3,3)上单调递减,∴{-3<2-x <3,-3<1-x -x 2<3,2-x <x 2+x -1,即{-1<x <5,-1-√172<x <-1+√172,x >1或x <-3.解得1<a<√17-12, 故实数a 的取值X 围为1<a<√17-12.1,√17-12) 10解关于x 的不等式ax 2-(a+1)x+1<0.当a=0时,原不等式化为-x+1<0,所以不等式的解集是{x|x>1}.(2)当a ≠0时,原不等式可化为a (x-1)(x -1x )<0. 若a<0,则(x-1)(x -1x )>0. 因为1x <1,所以原不等式的解集为{x |x <1x 或x >1};若a>0,原不等式化为(x-1)(x -1x )<0.①当1x <1,即a>1时,不等式的解集为{x |1x<x <1}.②当1x =1,即a=1时,不等式即为(x-1)2<0,显然不等式的解集为⌀. ③当1x>1,即0<a<1时,不等式的解集为{x |1<x <1x}.综上,原不等式的解集如下:当a<0时,解集为{x |x <1x 或x >1}; 当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1x};当a=1时,解集为⌀;当a>1时,解集为{x|1x<x<1}.11设0<α<β,已知不等式ax2+bx+c>0的解集为(α,β),求不等式(a+c-b)x2+(b-2a)x+a>0的解集.,得a<0,α+β=-xx >0,αβ=xx>0.∴a<0,c<0,b>0,从而a+c-b<0.设(a+c-b)x2+(b-2a)x+a=0的两根为α',β',则有α'+β'=2x-xx+x-x =2x+x(x+x)x+xxx+x(x+x)=(x+1)+(x+1) (x+1)(x+1)=1x+1+1x+1,α'β'=xx+x-x =xx+xxx+x(x+x)=1x+1·1x+1.∴(a+c-b)x2+(b-2a)x+a=0的两根为1x+1,1 x+1.∵0<α<β,∴1x+1>1x+1>0.∴不等式(a+c-b)x2+(b-2a)x+a>0的解集为(1x+1,1x+1).★12若关于x的不等式4x+xx2-2x+3<2对任意实数x恒成立,某某数m的取值X围.:因为x2-2x+3=(x-1)2+2>0,所以不等式4x+xx2-2x+3<2同解于4x+m<2x2-4x+6,即2x2-8x+6-m>0.要使原不等式对任意实数x恒成立,只要2x2-8x+6-m>0对任意实数x恒成立.所以需要Δ<0,即64-8(6-m)<0.整理并解得m<-2.所以实数m的取值X围是(-∞,-2).方法二:由方法一,知要使4x+xx2-2x+3<2对任意实数x恒成立,只要2x2-8x+6-m>0恒成立即可.变形为m<2x2-8x+6.设h(x)=2x2-8x+6,要使m<2x2-8x+6恒成立,只要m<h(x)min.而h(x)=2x2-8x+6=2(x-2)2-2≥-2, 所以h(x)min=-2.所以m<-2.所以实数m的取值X围是(-∞,-2).。
(常考题)北师大版高中数学必修五第三章《不等式》测试(含答案解析)(3)
一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B .252 C .85D .1252.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4193.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .64.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .35.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-16.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<< D .42m -<<7.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16 B .25C .36D .498.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .810.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<-11.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.已知2xy x =+,则42x y+的最小值为_________14.已知实数x y ,,正实数a b ,满足2x y a b ==,且213x y+=-,则2a b +的最小值为__________.15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.17.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 18.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________.三、解答题21.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 22.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.(1)求f(x)的解析式; (2)解不等式f(x)>2x +5.23.已知函数f (x )=ax 2﹣(4a +1)x +4(a ∈R ).(1)若关于x 的不等式f (x )≥b 的解集为{x |1≤x ≤2},求实数a ,b 的值; (2)解关于x 的不等式f (x )>0.24.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?25.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值26.如果x ,y R ∈,比较()222+x y 与()2xy x y +的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值. 【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当49b aa b =,即812,55a b ==时取等号. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.C解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 3.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.4.B解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦, 所以,()()1216a b -+=且有10a ->,20b +>,由基本不等式可得()()128a b -++≥=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】 作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.6.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案.【详解】解:由于0x >,0y >,21x y +=, 所以()21214424428y x y x x y x y x y x y x y⎛⎫+=++=++≥+⋅= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立, 故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.7.A解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A 【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.8.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.10.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题11.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.【分析】依题意可得再利用基本不等式计算可得;【详解】解:因为所以所以所以所以所以所以所以当且仅当即时取等号;故答案为:【点睛】在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正解析:【分析】依题意可得21x y +=,再利用基本不等式计算可得; 【详解】解:因为2xy x =+,2x xy =+-,所以()()()()2222221(1)42222x y x xy x x xy x y ⎡⎤+-+=+-=+-++⎣⎦, 所以2242144x y y x xy +-+=-, 所以()()222210x y x y +-++=, 所以()2210x y +-=,所以21x y +=,所以42x y +≥=42x y =,即14x =,12y =时取等号;故答案为:【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.【分析】由条件化简可得利用均值不等式求最小值即可【详解】正实数满足取对数可得所以所以由均值不等式知当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(解析:2【分析】由条件化简可得218a b =,利用均值不等式求最小值即可.【详解】正实数a b ,满足2x y a b ==, 取对数可得log 2,log 2a b x y ==, 所以2222212log log log 3a b a b x y+=+==-, 所以218a b =,由均值不等式知,22a b +≥=,当且仅当2a b =,即a =,4b =时等号成立.故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】 作出可行域,令yt x =,OA OB y k k x ≤≤,所以7,313t ⎡⎤∈⎢⎥⎣⎦,22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值. 【详解】由43040x y x y -+=⎧⎨+-=⎩解得:13575x y ⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A ⎛⎫ ⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B ,y x 表示可行域内的点与原点连线的斜率,所以OA OB yk k x ≤≤, 775131305OAk -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦, 所以22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t =时,1713109213791y ⎛⎫=+=⎪⎝⎭,当75t=时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53,故答案为:53. 【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.16.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m的最小值为:1 2-,故答案为12-.【点睛】本题考查二次函数的性质,关键是将x2+mx+m≥0在x∈[1,2]上恒成立转化为二次函数y=x2+mx+m在x∈[1,2]上的最值问题.18.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000【分析】设每月生产甲产品x件,生产乙产品y件,每月收入为z元,列出实际问题中x、y所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y=+的最大值.【详解】设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为30002000z x y=+,需要满足的条件是24002500x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y=+可转化直线3122000y x z=-+,数形结合知当直线经过点A时z取得最大值.解方程组24002500x yx y+=⎧⎨+=⎩,可得点()200,100A,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)s t s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立.2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由参变量分离法得出对任意的恒成立利用二次函数的基本性质可求得函数在区间上的最小值进而可求得实数的取值范围【详解】要使在区间上不等式恒成立只需恒成立设只需小于在区间上的最小值因为所以当时所以所 解析:(),1-∞-【分析】由参变量分离法得出231m x x <-+对任意的[]1,1x ∈-恒成立,利用二次函数的基本性质可求得函数()231g x x x =-+在区间[]1,1-上的最小值,进而可求得实数m 的取值范围.【详解】要使在区间[]1,1-上,不等式()2f x x m >+恒成立, 只需()2231m f x x x x <-=-+恒成立,设()231g x x x =-+,只需m 小于()y g x =在区间[]1,1-上的最小值,因为()22353124g x x x x ⎛⎫=-+=-- ⎪⎝⎭,所以当1x =时,()()min 11g x g ==-, 所以1m <-,所以实数m 的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题考查利用二次不等式在区间上恒成立求参数,考查了参变量分离法的应用,考查计算能力,属于中等题.三、解答题21.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 22.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x ); (2) 利用一元二次不等式的解法即可得出. 【详解】(1).设二次函数f (x )=ax 2+bx+c , ∵函数f (x )满足f (x+1)﹣f (x )=2x ,∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0. 化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1. ∴原不等式的解集为()(),14,-∞-⋃+∞ 【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题. 23.(1)-1,6;(2)答案见详解 【分析】(1)由f (x )≥b 的解集为{x |1≤x ≤2}结合韦达定理即可求解参数a ,b 的值;(2)原式可因式分解为()()()14f x ax x =--,再分类讨论即可0,0,0a a a =<>,对0a >再细分为111,0,,,444a a a ⎛⎫⎛⎫=∈∈+∞ ⎪ ⎪⎝⎭⎝⎭即可求解.【详解】(1)由f (x )≥b 得()24140ax a x b -++-≥,因为f (x )≥b 的解集为{x |1≤x ≤2},故满足4112a a ++=,412b a-⨯=,解得1,6a b =-=; (2)原式因式分解可得()()14f x a x x a ⎛⎫=-- ⎪⎝⎭, 当0a =时,()40f x x =-+>,解得(),4x ∈-∞;当0a <时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为1,4x a ⎛⎫∈ ⎪⎝⎭; 当0a >时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭, ①若14a =,即14a =,则()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为4x ≠;②若14a <,即14a >时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭;③若14a >,即104a <<时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭. 【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题. 24.(1)400吨;(2)不获利,补40000元. 【分析】(1)求得每吨二氧化碳的平均处理成本为1800002002y x x x=+-,利用基本不等式求得yx的最小值,利用等号成立的条件求得x 的值,由此可得出结论; (2)令()2211100200800003008000022f x x x x x x ⎛⎫=--+=-+-⎪⎝⎭,求得该函数在区间[]400,600的最大值,进而可得出结论. 【详解】(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤, 所以,每吨二氧化碳的平均处理成本为1800002002y x x x=+-,由基本不等式可得200200y x ≥=(元), 当且仅当1800002x x=时,即当400x =时,等号成立, 因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)令()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭,400600x ≤≤,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-. 所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损. 【点睛】本题考查基本不等式和二次函数的实际应用,考查计算能力,属于中等题. 25.(1)4;(2)4. 【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值.【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<,04xy ∴<≤(当且仅当2x y ==时取等号), ∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥, ∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣,∴4x y +≥(当且仅当2x y ==时取等号), 所以x y +的最小值为4. 【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力. 26.()()2222x y xy x y ≥++,当且仅当x y =时等号成立【分析】运用作差比较法,结合配方法进行比较大小即可. 【详解】()()()2222442224433222x y xy x y x y x y xy x xy y x y x y xy +-++--++=+--=()()()()()()()2223333222324y x x y yy x x y xyx y xxy yx y x y ⎡⎤⎛⎫=-+-=--=-++=-++⎢⎥⎪⎝⎭⎢⎥⎣⎦()20x y -≥,223024y x y ⎛⎫++≥ ⎪⎝⎭,()2223024y x y x y ⎡⎤⎛⎫∴-++≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. ()()2222x y xy x y ∴≥++,当且仅当x y =时等号成立.【点睛】本题考查了用作差比较法进行比较两个多项式的大小,考查了配方法的应用,属于中档题.。
(压轴题)高中数学必修五第三章《不等式》测试题(含答案解析)(1)
一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.已知2244x y +=,则2211x y +的最小值为( ) A .52B .9C .1D .943.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-5.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .16.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R7.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .88.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 9.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭10.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 15.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠. (1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 24.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围. 26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.D解析:D 【分析】利用22222211111(4)4x y x y xy ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233zy x =-, 平移直线233zy x =-,当过A 时直线截距最小,z 最大,由4100yx y=⎧⎨--=⎩得到5(,0)2A,所以23z x y=-的最大值为max523052z=⨯-⨯=,故选C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.6.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.7.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.8.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题9.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-,由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.10.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.11.D解析:D【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得 解析:612【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.故答案为:12【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.15.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大解析:23 【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B , 又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122zy x =+, 当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值, 将C 代入直线320x y k +-=,解得23k =.故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-.(2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型.23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >;(2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 24.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.25.(1)3;(2)6b ≥- 【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围. 【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x-≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.26.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =- (2)∵不等式的解集为R∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。
《不等式》复习测试题(二)
第三章《不等式》复习测试题(二)三、解答题12.某商场计划出售两种商品,商场根据实际情况和市场需求,得到如下数据:(商品单位:件)商品商品日资金供应量3020考查目的:考查二元一次不等式组表示的平面区域、线性规划问题等基础知识和方法,考查数形结合能力和应用数学知识解决实际问题的能力.答案:40,90;960.解析:设供应商品件,商品件,总利润为百元,则,根据题意得约束条件为,即.作出可行域如图所示.目标函数表示一组斜率为的平行直线,其在轴上的截距为.由图可知,当直线经过点(即直线与的交点)时直线在轴上的截距最大,此时.13.(2007江西理)已知函数在区间内连续,且.⑴求实数和的值;⑵解不等式.考查目的:考查分段函数、连续函数的概念等基础知识,考查不等式的解法以及综合运用知识解决问题的能力.答案:⑴,;⑵.解析:⑴∵,∴.由,即,得,∴. 又∵在处连续,∴,解得.⑵由⑴得,. 由得,当时,解得;当时,解得,∴不等式的解集为.14.(2011安徽理)⑴设,证明:;⑵设,证明:.考查目的:考查不等式的基本性质、对数函数的性质和对数换底公式等基本知识,考查不等式证明的基本方法,以及代数式的恒等变形能力和推理论证能力.解析:证明:⑴∵,∴要证原不等式成立,只需证明.由于,而,∴,从而所要证明的不等式成立.⑵设,,由对数换底公式得,,,,于是,所要证明的不等式即为.∵,∴,,∴由⑴可知所要证明的不等式成立.15.(2009江苏)按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为.现假设甲生产两种产品的单件成本分别为12元和5元,乙生产两种产品的单件成本分别为3元和20元,设产品的单价分别为元和元,甲买进与卖出的综合满意度为,乙卖出与买进的综合满意度为.⑴求和关于的表达式;当时,求证:;⑵设,当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?⑶记⑵中最大的综合满意度为,试问能否适当选取的值,使得和同时成立,但等号不同时成立?试说明理由.考查目的:考查函数的概念、基本不等式等基础知识,考查数学建模能力、抽象概括能力、数学阅读理解能力以及运算求解能力.答案:⑴,;⑵当,时,甲乙两人同时取到最大的综合满意度为;⑶不能.解析:⑴根据题意,甲买进产品的满意度,甲卖出产品的满意度,∴甲买进与卖出的综合满意度为;同理,乙卖出与买进的综合满意度为.当时,,,∴.⑵设,.由⑴知,当,即时,,当且仅当时取等号,此时,∴当,时,甲、乙两人的综合满意度均最大,且最大的综合满意度为.⑶由⑵知,,∵,∴当,时,有,因此不能取到的值,使得和同时成立,但等号不同时成立.。
高中数学第三章不等式3.2.1一元二次不等式及其解法练习(含解析)新人教A版必修5
高中数学第三章不等式3.2.1一元二次不等式及其解法练习(含解析)新人教A 版必修5知识点一 解一元二次不等式1.不等式4x 2-11x +6≤0的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x ≤2 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤34或x >2 D .{}x |x <2答案 A解析 原不等式可化为(4x -3)(x -2)≤0, 解得34≤x ≤2.故选A .2.不等式3x 2-x +2<0的解集为( ) A .∅ B .RC .⎩⎪⎨⎪⎧x ⎪⎪⎪ -13<x <12 D .x ∈R ⎪⎪⎪x ≠16答案 A解析 ∵Δ=-23<0,且二次函数y =3x 2-x +2的图象开口向上,∴3x 2-x +2<0的解集为∅.3.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≥5或x ≤-1} B .{x |x >5或x <-1} C .{x |-1<x <5} D .{x |-1≤x ≤5} 答案 B解析 不等式x 2-2x -5>2x 可化为x 2-4x -5>0,解得x >5或x <-1. 4.不等式0≤x 2-2x -3<5的解集为________. 答案 {x |-2<x ≤-1或3≤x <4} 解析 由x 2-2x -3≥0得x ≤-1或x ≥3; 由x 2-2x -3<5得-2<x <4, ∴-2<x ≤-1或3≤x <4.∴原不等式的解集为{x |-2<x ≤-1或3≤x <4}.知识点二 根与系数关系的应用5.若一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2} 答案 D解析 由题意知,-ba =1,c a=-2, ∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2.6.若不等式2x 2+mx +n >0的解集是{x |x >3或x <-2},则m ,n 的值分别是( ) A .2,12 B .2,-2 C .2,-12 D .-2,-12 答案 D解析 由题意知-2,3是方程2x 2+mx +n =0的两个根,所以-2+3=-m 2,-2×3=n2,∴m =-2,n =-12.知识点三 一元二次不等式的应用7.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2) B .(-2,2]C .(-∞,-2)∪[2,+∞) D.(-∞,2) 答案 B解析 ∵mx 2+2mx -4<2x 2+4x , ∴(2-m )x 2+(4-2m )x +4>0. 当m =2时,4>0,x ∈R ;当m <2时,Δ=(4-2m )2-16(2-m )<0, 解得-2<m <2.此时,x ∈R . 综上所述,-2<m ≤2.8.不等式lg x 2<(lg x )2的解集是________. 答案 {x |x >100或0<x <1}解析 不等式lg x 2<(lg x )2, 可化为(lg x )2-2lg x >0,解得lg x >2或lg x <0,即x >100或0<x <1.易错点一 忽略二次项系数的正负9.求一元二次不等式-x 2+5x -4>0的解集.易错分析 本题易不注意二次项系数为负数错解为x <1或x >4. 解 原不等式等价于x 2-5x +4<0,因为方程x 2-5x +4=0的根为x 1=1,x 2=4, 所以原不等式的解集为{x |1<x <4}.易错点二 忽略不等式对应方程根的大小10.解关于x 的不等式21x 2+4ax -a 2<0.易错分析 当一元二次不等式解集的端点值(即对应方程的根)无法比较大小时,要注意分类讨论.本题易错解为-a 3<x <a7.解 原不等式等价于⎝ ⎛⎭⎪⎫x +a 3⎝ ⎛⎭⎪⎫x -a 7<0. ①当a >0时,a 7>-a3,原不等式的解集为⎩⎪⎨⎪⎧ x ⎪⎪⎪ -a3<⎭⎪⎬⎪⎫x <a7; ②当a <0时,a 7<-a3,原不等式的解集为⎩⎪⎨⎪⎧ x ⎪⎪⎪ a 7<x ⎭⎪⎬⎪⎫<-a3; ③当a =0时,原不等式的解集为∅.一、选择题1.不等式4x 2-12x +9≤0的解集是( ) A .∅ B .RC .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠32 D .⎩⎨⎧⎭⎬⎫32答案 D解析 原不等式可化为(2x -3)2≤0,故x =32.故选D .2.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个 答案 D解析 根据一元二次不等式的定义知①②正确.3.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集是( )A .{x |-1≤x ≤1} B.{x |-2≤x ≤2} C .{x |-2≤x ≤1} D.{x |-1≤x ≤2} 答案 A解析 原不等式可化为⎩⎪⎨⎪⎧x ≤0,x +2≥x 2或⎩⎪⎨⎪⎧x >0,-x +2≥x 2,解得-1≤x ≤0或0<x ≤1,即-1≤x ≤1.故选A .4.设集合M ={x |x 2-2x -3<0,x ∈Z },则集合M 的真子集个数为( ) A .8 B .7 C .4 D .3 答案 B解析 由x 2-2x -3<0得-1<x <3,∴M ={0,1,2}.故选B . 5.不等式x 2-|x |-2<0的解集是( ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1} 答案 A解析 令t =|x |,则原不等式可化为t 2-t -2<0, 即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,解得-2<x <2. 二、填空题6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.答案 {x |-1<x <1}解析 ∁U A ={x |x 2-1<0}={x |-1<x <1}. 7.不等式-1<x 2+2x -1≤2的解集是________. 答案 {x |-3≤x <-2或0<x ≤1}解析 ∵⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,∴-3≤x <-2或0<x ≤1.8.已知关于x 的不等式ax 2-bx +c >0的解集是⎝ ⎛⎭⎪⎫-12,2,对于系数a ,b ,c 有下列说法:(1)a >0;(2)b >0;(3)c >0;(4)a +b +c >0; (5)a -b +c >0.其中正确的序号是________. 答案 (3)(5)解析 依题意有a <0且b a =2-12=32>0,c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,故b <0,c >0,a =-c ,b =-32c .令f (x )=ax 2-bx +c ,则f (1)=a -b +c =32c ,f (-1)=a +b +c =-32c ,所以f (1)>0,f (-1)<0,所以a -b +c >0,a +b +c <0.故(3)(5)正确. 三、解答题 9.解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解 (1)原不等式可化为2x 2-3x -2<0, ∴(2x +1)(x -2)<0.故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-12<x <2.(2)原不等式可化为2x 2-x -1≥0, ∴(2x +1)(x -1)≥0,故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-12或x ≥1.10.已知关于x 的不等式ax 2+2x +c >0的解集为-13,12,求-cx 2+2x -a >0的解集.解 由ax 2+2x +c >0的解集为-13,12,知a <0,且-13和12是方程ax 2+2x +c =0的两个根.由根与系数的关系,得⎩⎪⎨⎪⎧-13×12=c a,-13+12=-2a ,解得⎩⎪⎨⎪⎧a =-12,c =2.所以-cx 2+2x -a >0,即x 2-x -6<0,解得-2<x <3.所以-cx 2+2x -a >0的解集为{x |-2<x <3}.。