实验十三 电子束线的电偏转与磁偏转
【2017年整理】电子束线的电偏转与磁偏转

【2017年整理】电子束线的电偏转与磁偏转电子束线是一种用于聚焦和控制电子束的设备,它通常由许多电极和磁铁组成。
在电子束管中,我们可以通过作用于电子束上的磁场或电场来实现其偏转。
磁偏转和电偏转是电子束线中最基本的两种偏转方式。
电偏转电偏转是通过作用于电子束上的电场来实现的。
它是用一对偏转板(或偏转电极)来产生电场的方式。
当电子束通过偏转板时,其运动方向可能被偏转。
当偏转板的电场与电子束方向垂直时,电子束将被偏转90度。
偏转板的电场可以通过应用电压来控制,根据需要进行调整。
在电偏转器中,电子束的偏转是通过一对接地的金属板来实现的。
这些金属板周围的电场是可以控制的。
当电子束通过这个区域时,它将受到一个成比例的电场,这样它的方向就会发生改变。
因此,通过更改板的电场极性,可以控制电子束的偏转方向。
磁偏转是通过作用于电子束上的磁场来实现的。
这种改变是通过磁铁来实现的。
电子束通过的区域如果有一个磁场,则磁场方向垂直于电子束的运动方向时,电子束的运动方向将被弯曲。
如果想让电子束向一个特定的方向偏转,可以更改磁铁北极与南极的极性。
在磁偏转器中,通过一个或多个磁铁来产生相应的磁力场。
一般情况下,电子束经过了一个非常短暂的时间间隔,这个时间间隔远小于磁铁的反应时间,因此磁铁可以被当做一个静态的器件。
当电子束通过磁场以后,其轨迹会受到轻微的弯曲,从而实现了偏转。
比较电子束线的磁偏转和电偏转不同之处在于,电子束在经过磁场时,其轨迹不需要改变,只需要改变方向即可,而在电偏转器中,通过偏转板改变了电子束的运动方向,因此电子束轨迹也会发生质的变化。
此外,与电偏转相比,磁偏转具有比较大的特点,因为其制造成本要高得多。
在偏转器使用磁铁构成的情况下,将需要使用较大的磁体来产生足够的磁场强度,而这些造价昂贵的组件将会使整个偏转器的制造成本增加。
在电偏转器中,制造的成本相对较低,因此其成为许多电子设备中标配的选择。
结论总结来说,磁偏转和电偏转都是较为基本的电子束线偏转方式。
电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告实验目的:通过电偏转和磁偏转实验,研究电子束在电场和磁场中的偏转规律,验证电子在电场和磁场中的运动轨迹。
实验原理:电子束在电场中受力为F=qE,方向与电场方向相同;在磁场中受力为F=qvBsinθ,其中v为电子速度,θ为速度方向与磁场方向之间的夹角。
实验仪器:电子枪、电子束偏转装置、电压源、电流源、磁铁、示波器等。
实验步骤:1. 将电子枪与示波器连接起来,将示波器置于适当的量程和灵敏度。
2. 打开电压源和电流源,根据实验需要设定适当的电压和电流。
3. 调整电子束偏转装置,使电子束偏转仪表的示数稳定在零点附近,并记录此时的偏转电压和偏转电流。
4. 同时改变电压和电流,记录不同条件下的偏转仪表示数与电压、电流之间的关系。
5. 启动磁铁,调节磁铁电流和位置,记录不同条件下的偏转仪表示数与磁铁电流之间的关系。
6. 根据实验数据,绘制电子束的偏转角度与电压、电流、磁场电流之间的关系曲线。
实验结果:根据实验数据绘制得到电子束的偏转角度与电压、电流、磁场电流之间的关系曲线。
由曲线可以得出电子在电场和磁场中的偏转规律。
实验讨论:1. 在实验中,我们需要注意调节电子束偏转装置和磁铁的参数,以使电子束的偏转仪表示数尽量稳定在零点附近,从而保证实验的准确性。
2. 实验中还可以改变电压和电流的大小,观察电子束的偏转角度随着电压和电流的变化情况,进一步研究电子在电场中的受力规律。
3. 在磁偏转实验中,应注意测量磁场电流和位置的准确性,以保证实验数据的可靠性。
4. 实验中还可以通过改变电子束的速度和磁场的方向,研究电子束在不同条件下的偏转规律。
实验结论:通过电偏转和磁偏转实验,我们验证了电子束在电场和磁场中的偏转规律。
实验结果表明,电子束的偏转角度与电压、电流以及磁场电流之间存在着一定的关系,进一步研究可以得到更详细的结论。
实验结果对于理解电子在电场和磁场中的运动轨迹具有重要意义。
电磁场中电电偏转和磁偏转

电磁场中电子电偏转和磁偏转【实验目的】1、 研究电子在电场和磁场中的运动规律;2、 掌握用外加电场或者磁场的方法来约束电子束运动的方法。
【实验原理】一、电子在电场中的加速和偏转:为了描述电子的运动,我们选用了一个直角坐标系,其z 轴沿示波管管轴,x 轴是示波管正面所在平面上的水平线,y 轴是示波管正面所在平面上的竖直线。
从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图2)。
电子从K 移动到2A ,位能降低了2eV ;因此,如果电子逸出阴极时的初始动能可以忽略不计,那么它从2A 射出时的动能221z mv 就由下式确定:2221eV mv z = (1) 此后,电子再通过偏转板之间的空间。
如果偏转板之间没有电位差,那么电子将笔直地通过。
最后打在荧光屏的中心(假定电子枪描准了中心)形成一个小亮点。
但是,如果两个垂直偏转板(水平放置的一对)之间加有电位差d V ,使偏转板之间形成一个横向电场y E ,那么作用在电子上的电场力便使电子获得一个横向速度y v ,但却不改变它的轴向速度分量z v ,这样,电子在离开偏转板时运动的方向将与z 轴成一个夹角θ,而这个θ角由下式决定:zyv v tg =θ (2)如图3所示。
如果知道了偏转电位差和偏转板的尺寸,那么以上各个量都能计算出来。
设距离为d 的两个偏转板之间的电位差d V 在其中产生一个横向电场d /V E d y =,从而对电子作用一个大小为d /eV eE F d y y == 的横向力。
在电子从偏转板之间通过的时间t ∆内,这个力使电子得到一个横向动量y mv ,而它等于力的冲量,即dteV t F mv d y y ∆⋅=∆= (3) 于是: t dVm e v d y ∆⋅⋅= (4)然而,这个时间间隔t ∆,也就是电子以轴向速度z v 通过距离l (l 等于偏转板的长度)所需要的时间,因此t v l z ∆=。
实验十三 电子束线的电偏转与磁偏转

实验十三电子束线的电偏转与磁偏转一、实验目的1.了解电子束线的产生、调节和偏转原理。
3.了解磁场对电子运动的影响。
二、实验原理电子束线是一束加速的电子流,是通过电子枪中的热阴极发射大量的电子,通过电子加速管的阳极电压加速,并通过管中一些特定的结构,如聚焦器,透镜,偏转板等来调节。
在热阴极上施加较高电压,热阴极表面极易发射电子,使电子从热阴极射出,在加速管中通过阳极电压加速。
加速度与阳极电压成正比,电流与电子流密度成正比。
2.电子束线的电偏转电偏转是指通过电场对电子束线中的电子进行偏转。
当电子束通过一个带电和平板时,电子束中的电子会受到力的作用,在水平方向受到电场力F=E×q,其中 E 为电场强度,q 为电子所带电荷量。
力的方向始终垂直于电子运动的方向,所以电子束线将被打向与电场垂直的方向。
三、实验器材与装置万用电表、电子学实验箱、电子束线管、CRO 示波器等。
四、实验步骤1.检查实验仪器和所需的全部元器件,按照电路接线图连接好实验电路,并保证电子枪稳定工作。
2.将电子束管放在实验台上,调节相应的管电压并调整其成一个垂直的红色线,以便后续实验调整方便。
3.接通电路电源,在电子束线管中加入直流电压,使电子流从阳极发射管流经偏转器以及磁偏转器,最后击中荧光屏上。
4.打开示波器,调整亮度,聚焦和辉度,直到荧光屏上显示出一个明亮的光点。
5.调整偏转电压和磁场的大小,使电子流在荧光屏上绘制出一个稳定的图形,记录下相应偏转电压和磁场强度。
6.通过更改偏转器的输出信号并记录不同输入电压下电子束的偏转量,记录实验数据并计算出电偏转的比率。
7.更改磁偏转器的输入电流并记录荧光屏上的偏转量,计算出该磁场的磁感应强度。
五、实验注意事项1.注意安全,使用仪器前应检查仪器是否运行正常。
2.要经常检查电子束线管的压力,确保其正常工作。
3.调节偏转电压和磁场强度时,一定要谨慎,防止电子束过大而烧毁设备。
4.记录每次实验的数据,做好实验报告。
实验电子束的电偏转

实验电子束的电偏转篇一:实验十三电子束线的电偏转与磁偏转实验十三电子束线的电偏转与磁偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
实验仪器SJ—SS—2型电子束实验仪。
实验原理在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,显像管等器件就是在这个基础上运用相同的原理制成的。
1.电偏转原理电偏转原理如图4-17-1所示。
通常在示波管(又称电子束线管)的偏转板上加上偏转电压V,当加速后的电子以速度v沿Z方向进入偏转板后,受到偏转电场E (Y轴方向)的作用,使电子的运动轨道发生偏移。
假定偏转电场在偏转板l范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
在偏转板之内Y?1at2?1eE(Z)2 (4-17-1)22mv式中v为电子初速度,Y为电子束在Y方向的偏转。
电子在加速电压VA的作用下,加速电压对电子所做的1功全部转为电子动能,则mv2?eVA。
2将E=V/d和v2代入(4-17-1)式,得2Y?VZ4VAd电子离开偏转系统时,电子运动的轨道与Z轴所成的偏转角?的正切为tg??dY?Vl(4-17-2)dZx?l2VAd设偏转板的中心至荧光屏的距离为L,电子在荧光屏上的偏离为S,则Stg??L代入(4-17-2)式,得S?VlL (4-17-3)2VAd由上式可知,荧光屏上电子束的偏转距离S与偏转电压V成正比,与加速电压VA成反比,由于上式中的其它量是与示波管结构有关的常数故可写成S?keV(4-17-4)VAke为电偏常数。
可见,当加速电压VA一定时,偏转距离与偏转电压呈线性关系。
为了反映电偏转的灵敏程度,定义?电?S?ke(1)(4-17-5)VVA?电称为电偏转灵敏度,单位为毫米/伏。
?电越大,表示电偏转系统的灵敏度越高。
2.磁偏转原理磁偏转原理如图4-17-2所示。
电子束的电偏转、磁偏转研究

湖南城市学院教师备课纸第次课题:电子束的电偏转、磁偏转研究目的要求:1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
教学重点:1、示波管2、电子的加速和电偏转3、电子的磁偏转原理教学难点:电子束线管、电子束的聚焦和偏转、电聚焦和电偏转、磁聚焦和磁偏转教学课时:3-4课时教学方法:实验教学教学内容和步骤:示波器中用来显示电信号波形的示波管和电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽各不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。
因此统称它们为电子束线管。
电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。
本实验研究电子束的电偏转和磁偏转。
通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。
一、实验目的1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
二、实验原理1、示波管图(一)图(一)1、示波管包括有:(1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束;(2)一个由两对金属板组成的偏转系统;(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。
所有部件全都密封在一个抽空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。
接通电源后,灯丝发热,阴极发射电子。
栅极加上相对于阴极的负电压,它有两个作用:一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一交叉点。
第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。
【精品作文】实验电子束的电偏转

垂直电偏转灵敏度D-V曲线:
电偏转(VA?1000伏)
垂直电偏转:
2. 2.磁偏转(vA?800伏)磁场励磁线圈电阻R=210欧姆
磁偏转(vA?1000伏)
注:偏移量D或S等于加电压时的光点坐标与0伏电压的光点坐标的差值。 3.截止栅偏压:99.73V。 ? 结论:
由于偏转磁场是由一对平行线圈产生的,所以有
B?KI
式中I是励磁电流,K是与线圈结构和匝数有关的常数。代入(4-17-7)式,得
S?KleI(L?1l)(4-17-8)
22meVA由于式中其它量都是常数,故可写成
S?km?I(4-17-9)
A
km为磁偏常数。可见,当加速电压一定时,位移与电流呈线性关系。为了描述磁偏转的灵敏程度,定义
S?keV(4-17-4)
VA
ke为电偏常数。可见,当加速电压VA一定时,偏转距离与偏转电压呈线性关系。为了反映电偏转的灵敏程度,定义
?电?S?ke(1) (4-17-5)
VVA?电称为电偏转灵敏度,单位为毫米/伏。?电越大,表示电偏转系统的灵敏度越高。
2.磁偏转原理
磁偏转原理如图4-17-2所示。通常在示波管的电子枪和荧光屏之间加上一均匀横向偏转磁场,假定在l范围内是均匀的,在其它范围都为零。当电子以速度v沿Z方向垂直射入磁场B时,将受到洛仑磁力的作用在均匀磁场B内电子作匀速圆周运动,轨道半径为R,电子穿出磁场后,将沿切线方向作匀速直线运动,最后打在荧光屏上,由牛顿第二定律得
为了反映磁偏转的灵敏程度,定义
?m?SlI (2)
?m称为磁偏转灵敏,用mm/A为单位。?m越大,表示磁偏转系统灵敏度越高。实验
中S从荧屏上读出,测出I,就可验证S与I的线性关系。 3.截止栅偏压原理
电子束的电偏转和磁偏转研究

电子束的电偏转和磁偏转研究示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。
对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。
前者称为电聚焦或电偏转。
随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。
本实验在了解电子束线管的结构基础上,讨论电子束的偏转特性及其测量方法。
【实验目的】1.了解示波管的构造和工作原理,研究静电场对电子的加速作用。
2.定量分析电子束在横向匀强电场作用下的偏转情况。
3.研究电子束在横向磁场作用下的运动和偏转情况。
【实验原理】1.小型电子示波管的构造电子示波管的构造如图1所示。
包括下面几个部分:(1)电子枪,它的作用是发射电子,把它加速到一定速度并聚成一细束;(2)偏转系统,由两对平板电极构成。
一对上下放置的Y 轴偏转板(或称垂直偏转板),一对左右放置的X 轴偏转板(或称水平偏转板); (3)荧光屏,用以显示电子束打在示波管端面的位置。
以上这几部分都密封在一只玻璃壳之中。
玻璃壳内抽成高真空,以免电子穿越整个荧光屏图1 示波管结构图F -灯丝 K -阴极 G 1,G 2- 控制栅极 A 1-第一阳极A 2-第二阳极 Y -竖直偏转板 X -水平偏转板管长时与气体分子发生碰撞,故管内的残余气压不超过610-大气压。
电子枪的内部构造如图2所示。
电子源是阴极,图中用字母K 表示。
它是一只金属圆柱筒,里面装有加热用的灯丝,两者之间用陶瓷套管绝缘。
当灯丝通电时可把阴极加热到很高温度。
在圆柱筒端部涂有钡和锶氧化物,此材料中的电子在加热时较容易逸出表面,并能在阴极周围空间自由运动,这种过程叫热电子发射。
电子束的电偏转和磁偏转[1]
![电子束的电偏转和磁偏转[1]](https://img.taocdn.com/s3/m/890200d06037ee06eff9aef8941ea76e58fa4a72.png)
电子束的电偏转和磁偏转Electrostatic Deflection of Electron Beam示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。
对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。
前者称为电聚焦或电偏转。
随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。
本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。
【一】目的1.了解示波管的基本结构和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
【二】仪器电子束实验仪、稳压电源、MF-47万用表、数字万用表【三】原理(一)示波管的基本结构如图3-18-1所示,示波管由电子枪、偏转板和荧光屏三部分组成。
其中电子枪是示波管图1 示波管的基本结构H 、H —钨丝加热电极;A F —聚焦电极;C —阴极;1A —第一加速阳极; 2A —第二加速阳极;G —控制栅极; 1X 、2X —水平偏转板; 1Y 、2Y —垂直偏转板电子枪由阴极C 、栅极G 、第一加速阳极1A 、聚焦电极A F 和第二加速电极2A 等同轴金属圆筒(筒内膜片的中心有限制小孔)组成。
当加热电流从H 、H 通过钨丝,阴极C 被加热后,筒端的钡与锶氧化物涂层内的自由电子获得较高的动能,从表面逸出。
因为第一加速阳极1A 具有(相对于阴极C )很高的电压(例如1500伏),在1A G C --之间形成强电场,故从阴极逸出的电子在电场中被电力加速,穿过 G 的小孔(直径约 l mm),以高速度(数量级710米/秒)穿过1A 、2A F A 及筒内的限制孔,形成一束电子射线。
电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告篇一:电子束的电偏转和磁偏转电子束的电偏转和磁偏转?实验目的:1.掌握电子束在外加电场和磁场作用下的偏转的原理和方式。
2.观察电子束的电偏转和磁偏转现象,测定电偏转灵敏度、磁偏转灵敏度、截止栅偏压。
?实验原理:1.电偏转的观测电子束电偏转原理图如图(1)所示。
当加速后的电子以速度V沿x 方向进入电场时,将受到电场力作用,作加速运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
其电偏转的距离D与偏转电压V,加速电压VA及示波管结构有关。
图(1)电子束电偏转原理为了反应电偏转的灵敏程度,定义?e?D(1)V?e称为电偏转灵敏度,用mm/V为单位。
?e越大,电偏转的灵敏度越高。
实验中D从荧光屏上读出,记下V,就可验证D与V的线性关系。
2.磁偏转原理电子束磁偏转原理如图(2)所示。
当加速后的电子以速度V沿x方向垂直射入磁场时,将会受到洛伦磁力作用,在均匀磁场b内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
为了反映磁偏转的灵敏程度,定义?m?slI(2)?m称为磁偏转灵敏,用mm/A为单位。
?m越大,表示磁偏转系统灵敏度越高。
实验中s从荧屏上读出,测出I,就可验证s与I的线性关系。
3.截止栅偏压原理示波管的电子束流通常通过调节负栅压ugK来控制的,调节ugK即调节“辉度调节”电位器,可调节荧光屏上光点的辉度。
ugK是一个负电压,通常在-35~45之间。
负栅压越大,电子束电流越小,光点的辉度越暗。
使电子束流截止的负栅压ugK0称为截止栅偏压。
?实验仪器:Th-eb型电子束实验仪,示波管组件,0~30V可调直流电源,多用表?实验步骤:1.准备工作。
2.电偏转灵敏度的测定。
3.磁偏转灵敏度的测定。
4.测定截止栅偏压。
?数据记录及实验数据处理:1.电偏转(vA?800伏)水平电偏转灵敏度D-V曲线:垂直电偏转灵敏度D-V曲线:电偏转(V A?1000伏)垂直电偏转:2.2.磁偏转(vA?800伏)磁场励磁线圈电阻R=210欧姆磁偏转(vA?1000伏)注:偏移量D或s等于加电压时的光点坐标与0伏电压的光点坐标的差值。
实验—电子束线的电偏转与磁偏转

实验—电子束线的电偏转与磁偏转实验—电子束线的电偏转与磁偏转实验目的本次实验旨在掌握电子束线的电偏转与磁偏转的基本知识,了解电子束线的基本特性和实验过程中的注意事项。
实验器材电子束管、电源、偏转板、磁场装置、示波器、直尺、刻度尺、通用电表等。
实验原理电子束线是一种通过高速电子流进行成像和精确定位的技术,电子束线通过粒子的电荷与电磁场之间的相互作用实现运动和成像。
在电子束线中,电偏转与磁偏转是重要的物理现象,它们分别可以用电场和磁场控制电子束的方向和位置。
电偏转是利用电场对电子束进行转向的原理。
将带有电荷的物体置于电场中,电场力作用于物体的电荷,使其受到力的作用,并向电场较强的地方运动。
在电子束线中,同样可以通过电场的作用控制电子流的方向和位置。
电子束管内的电子在经过偏转板后,会发生偏转,根据电压和偏转板的位置可以控制电子束的偏转程度和方向。
磁偏转则是利用磁场对电子束进行转向的原理。
当电子被置于具有磁性的物质中时,它们会受到磁力的作用,这是一种自然现象。
在电子束线中,利用此特性可以实现磁偏转,控制电子束的方向和位置。
在电子束管内加入垂直于电子束方向的磁场,可以使电子受到力的作用,并偏转到一个方向。
因此,电偏转和磁偏转是电子束线中非常重要的现象,能够促进成像技术的进步和增强成像的精度。
在实验过程中,掌握电偏转和磁偏转的基本知识是非常有必要的,这样才能充分理解实验的目的和过程,以及使用正确的实验器材和控制方法。
实验步骤1. 准备实验器材。
将电子束管插在底座上,并连接电源和示波器等设备。
将偏转板和磁场装置放在电子束管的前面,将它们与电源链接。
2. 使用电偏转。
对电源进行调节,使得偏转板上的电压逐渐增大,然后缓慢调整偏转板的位置,观察电子束的偏移程度和方向是否与预期相同。
如果发现电子束的偏转方向相反,则应将偏转板朝相反方向移动,直到电子束偏向我们所需的方向。
3. 使用磁偏转。
对电源进行调节,增大磁场的强度,观察电子束是否发生偏转。
700117电子束的电偏转和磁偏转

电子束的电偏转和磁偏转实验报告【一】实验目的及实验仪器实验目的1.了解示波管的基本构造和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
实验仪器DZS-D型电子束试验仪仪器介绍1.螺线管内的线圈匝数n=526匝2.螺线管的长度『0.234米3.螺旋管的直径d=0.090米4.螺距(y偏转板至荧光屏距离)h=0.145米5.加速电压V k调节旋钮:改变电子束加速电压的大小,600〜800V。
6.聚焦电压V1调节旋钮:用以调节聚焦板上的电压,以调节电板附近区域的电场分布,从而调节电子束的聚焦和散焦。
7.栅极电压V C辉度调节旋钮:用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。
8.Vdx偏转电压调节旋钮:-30〜30V,Vdy偏转电压调节旋钮:-30〜30V。
9.调零x调节旋钮:用来调节光点水平位置,调零y,调节旋钮用来调节光点上下位置。
10.Vdx、Vdy低压转换开关:当打到Vdx挡,低压测量表头即可显示偏转电压Vdy,当打到Vdy的低压测量表头即可显示偏转电压Vdy。
同理,高压转换开关对应高压测量表头。
11.磁偏转线圈:用来做磁偏转实验。
12.电流测量表头:显示磁偏转线圈内励磁电流大小。
13.电流调节旋钮:用来改变磁偏转线圈内励磁电流大小。
14.示波管电源开关:用来接通总电源使仪器工作【二】实验原理及过程简述1.示波管的基本构造它由电子枪、偏转板和荧光屏三部分组成。
自阴极发射的电子束,经过第一栅极(61)、第二栅极(G2)、第一阳极(A1)、第二阳极(A2)的加速和聚焦后,形成一个细电子束。
垂直偏转板(常称作Y轴)及水平偏转板(常称作X轴)所形成的二维电场,使电子束发生位移。
位移大小与X、Y偏转板上所加的电压有关:y=s y V y=V y/D y( 1) x=S x V x=V x/D x(2)式⑴中S y和D y为y轴偏转板的偏转灵敏度和偏转因数,式(2)中S y和D y为x轴偏转板的偏转灵敏度和偏转因数。
实验电子束的偏转

[标签:标题]篇一:实验十三电子束线的电偏转与磁偏转实验十三电子束线的电偏转与磁偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
实验仪器SJ—SS—2型电子束实验仪。
实验原理在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,显像管等器件就是在这个基础上运用相同的原理制成的。
1.电偏转原理电偏转原理如图4-17-1所示。
通常在示波管(又称电子束线管)的偏转板上加上偏转电压V,当加速后的电子以速度v沿Z方向进入偏转板后,受到偏转电场E(Y 轴方向)的作用,使电子的运动轨道发生偏移。
假定偏转电场在偏转板l范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
在偏转板之内Y?1at2?1eE(Z)2 (4-17-1)22mv式中v为电子初速度,Y为电子束在Y方向的偏转。
电子在加速电压VA的作用下,加速电压对电子所做的1功全部转为电子动能,则mv2?eV A。
2将E=V/d和v2代入(4-17-1)式,得2Y?VZ4V Ad电子离开偏转系统时,电子运动的轨道与Z轴所成的偏转角?的正切为tg??dY?Vl(4-17-2)dZx?l2V Ad设偏转板的中心至荧光屏的距离为L,电子在荧光屏上的偏离为S,则Stg??L代入(4-17-2)式,得S?VlL (4-17-3)2V Ad由上式可知,荧光屏上电子束的偏转距离S与偏转电压V成正比,与加速电压V A成反比,由于上式中的其它量是与示波管结构有关的常数故可写成S?keV(4-17-4)V Ake为电偏常数。
可见,当加速电压V A一定时,偏转距离与偏转电压呈线性关系。
为了反映电偏转的灵敏程度,定义电?S?ke(1) (4-17-5)VV A?电称为电偏转灵敏度,单位为毫米/伏。
?电越大,表示电偏转系统的灵敏度越高。
2.磁偏转原理磁偏转原理如图4-17-2所示。
电偏转与磁偏转实验报告

电偏转与磁偏转实验报告电偏转与磁偏转实验报告引言:电偏转与磁偏转实验是物理学实验中常见的一种实验,通过观察电子束在电场和磁场中的偏转现象,可以验证电子的带电性质以及电场和磁场的基本性质。
本实验旨在通过实际操作和数据分析,加深对电磁学基本原理的理解。
实验一:电偏转实验1. 实验目的通过观察电子束在电场中的偏转现象,验证电子的带电性质以及电场对带电粒子的作用。
2. 实验装置实验装置包括电子枪、电场装置和测量仪器。
3. 实验步骤首先,将电子枪放置在真空室中,通过加热阴极产生电子。
然后,将电子束引入电场装置,调节电场强度。
观察电子束在电场中的偏转现象,并记录相应的数据。
4. 实验结果与分析根据实验数据,可以得到电子束在电场中偏转的角度与电场强度之间的关系。
通过分析这一关系,可以验证电子带电性质以及电场对带电粒子的作用。
实验二:磁偏转实验1. 实验目的通过观察电子束在磁场中的偏转现象,验证电子的带电性质以及磁场对带电粒子的作用。
2. 实验装置实验装置包括电子枪、磁场装置和测量仪器。
3. 实验步骤首先,将电子枪放置在真空室中,通过加热阴极产生电子。
然后,将电子束引入磁场装置,调节磁场强度。
观察电子束在磁场中的偏转现象,并记录相应的数据。
4. 实验结果与分析根据实验数据,可以得到电子束在磁场中偏转的角度与磁场强度之间的关系。
通过分析这一关系,可以验证电子带电性质以及磁场对带电粒子的作用。
实验三:电偏转与磁偏转的对比分析1. 实验目的通过对比电偏转实验和磁偏转实验的结果,分析电场和磁场对带电粒子的作用的异同。
2. 实验装置实验装置包括电子枪、电场装置、磁场装置和测量仪器。
3. 实验步骤首先,按照实验一和实验二的步骤进行电偏转实验和磁偏转实验。
然后,通过对比两个实验的结果,分析电场和磁场对带电粒子的作用的异同。
4. 实验结果与分析通过对比分析,可以得出电场和磁场对带电粒子的作用的异同。
电场和磁场对带电粒子的作用都是偏转其运动轨迹,但电场的作用是使带电粒子偏转的方向与电场方向相反,而磁场的作用则是使带电粒子偏转的方向与磁场方向垂直。
电子束的电偏转和磁偏转实验报告范文

电子束的电偏转和磁偏转实验报告范文一、实验目的1.掌握强磁场和弱电场对电子束的偏转原理。
2.通过实验测量电子的比电荷e/m的值。
3.了解示波器测量带电粒子停留时间的原理。
二、实验原理1.电偏转电偏转是通过用电场对电子进行作用,使电子束发生偏转的现象。
由于荷质比已知,若电场的电场强度和电子速度都已知,则可精确计算出电子的荷量。
公式:e/m = 8U (d/D)^2f^2其中,U为加速电压,d为两平行板之间的距离,D为电子的偏转半径,f为振荡器的频率。
2.磁偏转磁场对带电粒子的偏转作用是由洛伦兹力产生的。
当带电粒子穿过磁场时,会受到力的作用,使其偏转。
由于传统的荷质比实验制造、安装和维护投入大、使用周期长,难以进行大规模的实验教学活动。
现在,磁偏转实验也可以通过计算机模拟实现。
其中,V为电压,D为电子束偏转半径,B为磁场强度。
三、实验内容(1)接通实验仪器并预热真空管,调节加速电压至所需电压。
(2)设置电压测量仪,并调节电压使其读数稳定。
(3)调节振荡器的频率,使得实验观察单元产生频率和偏转频率相同的电压信号。
(4)调节磁场强度使得电子束偏转1/2或1/4个周期。
(5)记录相应的U、d、D和f值,并计算e/m的值。
(1)通过计算机软件调整电子束的初始速度,保持磁场强度不变,记录带电粒子在磁场中偏转圆周的半径r和磁场强度B。
(2)测量电子束在磁场中偏转半径时需要保持向心力与洛伦兹力平衡。
(3)通过可见光照相的方法测量电子束在数个不同恒定电压下的偏转半径,并计算出e/m的值。
四、实验结果与分析本次实验得到的数据如下所示:加速电压U(V)距离d(mm)包络线半径D(mm)振荡频率f(Hz)e/m200 20.0 8.5 2080.6 1.77×10^11 格·c/kg250 20.0 5.5 1693.3 1.74×10^11 格·c/kg300 20.0 4.2 1455.5 1.74×10^11 格·c/kg350 20.0 3.2 1245.5 1.72×10^11 格·c/kg400 20.0 2.7 1107.4 1.75×10^11 格·c/kg实验测量得到电子运动半径随电子速度的变化情况如下所示:五、实验结论1.通过此实验,我们成功地获得了电子的荷质比e/m的值,分别是1.77×10^11格·c/kg、1.74×10^11格·c/kg、1.72×10^11格·c/kg、1.75×10^11格·c/kg,以及1.68×10^11格·c/kg、1.89×10^11格·c/kg、1.73×10^11格·c/kg,结果较为准确。
工作报告-电子束的电偏转和磁偏转实验报告

工作报告-电子束的电偏转和磁偏转实验报告标题:工作报告-电子束的电偏转和磁偏转实验报告1. 实验目的本实验旨在通过电子束的电偏转和磁偏转实验,观察和验证电磁场对电子束的影响,以更深入地了解电子的带电性质和运动规律。
2. 实验原理2.1 电子束的电偏转根据电磁场的作用规律,带电粒子在电场中受力,从而发生偏转。
在电子束的电偏转实验中,我们通过在电子束所在区域中加入电场,观察电子束受力而偏转的情况。
2.2 电子束的磁偏转根据洛伦兹力的作用规律,运动带电粒子在磁场中受力,从而在垂直于磁场方向上发生偏转。
在电子束的磁偏转实验中,我们通过在电子束所在区域中加入磁场,观察电子束受力而偏转的情况。
3. 实验步骤3.1 电子束的电偏转实验3.1.1 准备工作a) 准备一个电子束发射器和一个电子束接收屏。
b) 在电子束发射器和电子束接收屏之间设置一个电场,如平行板电容器。
3.1.2 进行实验a) 打开电子束发射器和电子束接收屏,并保持它们在工作状态。
b) 通过调整电场的大小和方向,观察并记录电子束在电场作用下的偏转情况。
3.2 电子束的磁偏转实验3.2.1 准备工作a) 准备一个电子束发射器和一个电子束接收屏。
b) 在电子束发射器和电子束接收屏之间设置一个磁场,如螺线管。
3.2.2 进行实验a) 打开电子束发射器和电子束接收屏,并保持它们在工作状态。
b) 通过调整磁场的大小和方向,观察并记录电子束在磁场作用下的偏转情况。
4. 实验结果与分析通过实验观察和记录,我们可以得到电子束在电场和磁场作用下的偏转情况。
根据实验结果,可以验证电磁场对电子束的影响,并进一步分析电子的带电性质和运动规律。
5. 实验总结本实验通过电子束的电偏转和磁偏转实验,观察和验证电磁场对电子束的影响,使我们更深入地了解了电子的带电性质和运动规律。
实验结果和分析表明,电子在电场和磁场中会发生不同的偏转现象,进一步加深了我们对电子的认知。
6. 改进建议为了提高实验的准确性和可重复性,建议在实验过程中注意以下几点:a) 确保电子束发射器和电子束接收屏处于良好的工作状态。
700117电子束的电偏转和磁偏转 (1)

电子束的电偏转和磁偏转实验报告【一】实验目的及实验仪器实验目的 1.了解示波管的基本构造和原理。
2.研究带电粒子在电场和磁场中偏转的规律。
实验仪器DZS-D型电子束试验仪仪器介绍1.螺线管内的线圈匝数n=526匝2.螺线管的长度l=0.234米3.螺旋管的直径d=0.090米4.螺距(y偏转板至荧光屏距离)h=0.145米5.加速电压V k调节旋钮:改变电子束加速电压的大小,600~800V。
6.聚焦电压V1调节旋钮:用以调节聚焦板上的电压,以调节电板附近区域的电场分布,从而调节电子束的聚焦和散焦。
7.栅极电压V C辉度调节旋钮:用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。
8.Vdx偏转电压调节旋钮:-30~30V,Vdy偏转电压调节旋钮:-30~30V。
9.调零x调节旋钮:用来调节光点水平位置,调零y,调节旋钮用来调节光点上下位置。
10.Vdx、Vdy低压转换开关:当打到Vdx挡,低压测量表头即可显示偏转电压Vdy,当打到Vdy的低压测量表头即可显示偏转电压Vdy。
同理,高压转换开关对应高压测量表头。
11.磁偏转线圈:用来做磁偏转实验。
12.电流测量表头:显示磁偏转线圈内励磁电流大小。
13.电流调节旋钮:用来改变磁偏转线圈内励磁电流大小。
14.示波管电源开关:用来接通总电源使仪器工作【二】实验原理及过程简述1.示波管的基本构造它由电子枪、偏转板和荧光屏三部分组成。
自阴极发射的电子束,经过第一栅极(G1)、第二栅极(G2)、第一阳极(A1)、第二阳极(A2)的加速和聚焦后,形成一个细电子束。
垂直偏转板(常称作Y轴)及水平偏转板(常称作X轴)所形成的二维电场,使电子束发生位移。
位移大小与X、Y偏转板上所加的电压有关:y=s y V y=V y/D y(1)x=s x V x=V x/D x(2)式(1)中S y和D y为y轴偏转板的偏转灵敏度和偏转因数,式(2)中S y和D y为x轴偏转板的偏转灵敏度和偏转因数。
电子束的电偏转与磁偏转

电子束的电偏转与磁偏转【实验原理】1、电子示波管实验中所采用的电子示波管型号是8SJ45J ,就是示波器中的示波管。
通常用在雷达中。
它的工作原理与电视显像管非常相似,这种管子又名阴极射线管(CRT )或者电子束示波管。
在近代科学技术许多领域中都要用到,是一种非常有用的电子器件。
电子示波管的构造如图1所示。
包括下面几个部分:(1)电子枪,它的作用是发射电子,把它加速到一定的速度并聚成一细束;(2)偏转系统,由两对平板电板构成,一对上下放置的叫Y 轴偏转板或垂直偏转板,另一对左右放置的是X 轴偏转板或水平偏转板;(3)荧光屏,用以显示电子束打在示波管端面的位置。
所有这几部分都密封在一只玻璃外壳中,玻璃管壳内抽成高度真空,以避免电子与空气分子发生碰撞引起电子束的散射。
电子源是阴极,图1中用字母K 表示。
它是一只金属圆柱筒,里面装有一根加热用的钨丝,两者之间用陶瓷套管绝缘。
当灯丝通电时(6.3伏交流电)把阴极加热到很高温度,在圆柱筒端部涂有钡和锶的氧化物,这种材料中的电子由于加热得到足够的能量会逸出表面,并能在阴极周围空间自由运动,这种过程叫热电子发射。
与阴极共轴布置着四个圆筒状电极,其中有几个中间带有小孔的隔板。
电极G 1称为控制栅,正常工作时加有相当于阴极K 大约0~30伏的负电压,它产生一个电场是要把阴极发射出来的电子推回到阴极去。
改变控制栅极的电位可以限制穿过G 上小孔出去的电子数目,从而控制电子束的强度。
电压V2,—般约有几百伏到几千伏的正电压。
它产生一个很强的电场使电子沿电子枪轴线方向加速。
8SJ45J 示波管的电极A 1为聚焦电极,在正常使用情况下具有电位V 1(相当于K ),大小介于K 和A 2的电位之间。
在G 2和A 1之间以及A 1和A 2之间形成的电场把电子束聚焦成很细的电子流,使它打在荧光屏上形成很小的一个光点。
聚焦程度好坏主要取决于V 1和v 2的大小。
2、电偏转原理电偏转是通过在垂直于电子射线的方向上外加电场来实现的。
电子束偏转实验报告

电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1. 研究带电粒子在电场和磁场中偏转的规律;2. 了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿z 方向作加速运动,则其最后速度vz可根据功能原理求出来,即eUA?移项后得到vz?212mvz 22eUA(C.11.1) me式中UA为加速阳极相对于阴极的电势,为电子的电荷与质量之比(简称比荷,又称荷m质比).如果在垂直于z轴的y方向上设置一个匀强电场,那么以vz速度飞行的电子将在y方向上发生偏转,如图C.11.l所示.若偏转电场由一个平行板电容器构成,板间距离为d,极间电势差为U,则电子在电容器中所受到的偏转力为Fy?eE?eU(C.11.2) d??根据牛顿定律 Fy?m?y??因此 ?yeUdeU(C.11.3) md即电子在电容器的y方向上作匀加速运动,而在z方向上作匀速运动,电子横越电容器的时间为 t?l(C.11.4) vz当电子飞出电容器后,由于受到的合外力近似为零,于是电子几乎作匀速直线运动,一直打到荧光屏上,如图C.11.l里的F点.整理以上各式可得到电子偏离z轴的距离N?KEU(C.11.5) UALl?l?1??? 2d?2L?式中KE?是一个与偏转系统的几何尺寸有关的常量.所以电场偏转的特点是:电子束线偏离z轴(即荧光屏中心)的距离与偏转板两端的电压成正比,与加速极的加速电压成反比.2.电子束在磁场中的偏转如果在垂直于z轴的x方向上设置一个由亥姆霍兹线圈所产生的恒定均匀磁场,那么以速度vz飞越的电子在y方向上也将发生偏转,如图C.11.2所示.假定使电子偏转的磁场在l范围内均匀分布,则电子受到的洛伦兹力大小不变,方向与速度垂直,因而电子作匀速圆周运动,洛伦兹力就是向心力,所以电子旋转的半径R?mvz(C.11.6) eB当电子飞到A点时将沿着切线方向飞出,直射荧光屏,由于磁场由亥姆霍兹线圈产生,因此磁场强度B?kI (C.11.7)式中k是与线圈半径等有关的常量,I为通过线圈的电流值.将(C.11.1)、(C.11.7)式代人(C.11.6)式,再根据图C.11.2的几何关系加以整理和化简,可得到电于偏离z轴的距离N?KMI(C.11.8) ALlk?l?e1? ??2?2L?m式中KM?也是一个与偏转系统几何尺寸有关的常量.所以磁场偏转的特点是:电子束的偏转距离与加速电压的平方根成反比,与偏转电流成正比.1 2 3 22电子管内部线路图实验内容1、研究和验证示波管中电场偏转的规律。
电子束的电偏转和磁偏转-PowerPointPrese

但因为在整个电场区域里电子都受到同方向的沿Z轴的作 用力,电子在后半区的轴向速度比在前半区的大得多。因此, 在后半区,电子受Fr的作用时间短得多,获得的离轴速度比在 前半区获得的向轴速度小。
总的效果是,电子向轴线靠拢,整个电场起聚焦作用。
磁聚焦原理的简单介绍
磁聚焦原理的简单介绍
改变加速电场强度 和磁场强度,使电 子在示波管中所经 过的路程为螺距的 整数倍,这时电子 束将在荧光屏上会 聚。这就是电子射 线的磁聚焦原理。
Hale Waihona Puke Sxx Vx
bL 2dV2
实验内容
1.接插线 (已完成) 2.调焦:把聚焦选择开关置于“点”聚焦位置的反方向,
辉度(栅压)控制处在适当位置,调节聚焦电压,使屏上 光点聚成一细线 ,光线不要太亮,以免烧坏荧光物质。 3.测加速电压V2 :用万用表2500V档(量程选直流 1000V档,“+”表笔插2500V插孔) 4.测偏转电压 Vy :用数字表直流 200V档。 5.光线调零:用数字表测 Vy; 调 y偏转旋钮使 Vy为 0, 这时光线在 y轴上应在中心原点,若不在调Y调零旋钮使 光线处在中心原点。 6.测量不同V2(取两组)时的y── Vy
数据处理
1.课堂上填好如下表格
Y(cm) -2.0 -1.0 0 V2= Vy(V) V’2= V’y(V)
1.0 2.0
2.课后完成:在坐标纸上画出y──Vy图线,计算 直 线的斜率(即电偏转灵敏度)。
直线的斜率表示电偏转灵敏度的大小,直线的斜 率随加速电压的大小而变化,说明偏转灵敏度与 电子的动能大小有关或者说和速度大小有关。
y
bL 2dV2
Vy
式中,b为偏转板长度;d为偏转板间距离;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十三 电子束线的电偏转与磁偏转
实验目的
1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
实验仪器
SJ —SS —2型电子束实验仪。
实验原理
在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,
显像管等器件就是在这个基础上运用相同的原理制成的。
1.电偏转原理
电偏转原理如图4-17-1所示。
通常在示波管(又称电子束线管)的偏转板上
加上偏转电压V ,当加速后的电子以速度v 沿Z 方向进入偏转板后,受到偏转电场E (Y 轴方向)的作用,使电子的运动轨道发生偏移。
假定偏转电场在偏转板l 范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
在偏转板之内
22)(212
1v
Z m eE at Y == (4-17-1)
式中v 为电子初速度,Y 为电子束在Y 方向的偏转。
电子在加速电压V A 的作用下,加速电压对电子所做的功全部转为电子动能,则A eV mv =22
1。
将E =V /d 和v 2代入(4-17-1)式,得
d
V VZ Y A 42
=
电子离开偏转系统时,电子运动的轨道与Z 轴所成的偏转角ϕ的正切为
d V Vl dZ dY tg A l x 2===ϕ (4-17-2)
设偏转板的中心至荧光屏的距离为L ,电子在荧光屏上的偏离为S ,则
L S
tg =ϕ
代入(4-17-2)式,得
d
V VlL S A 2= (4-17-3)
由上式可知,荧光屏上电子束的偏转距离S 与偏转电压V 成正比,与加速电压V A 成反比,由于上式中的其它量是与示波管结构有关的常数故可写成
A
e V V k S = (4-17-4)
k e 为电偏常数。
可见,当加速电压V A 一定时,偏转距离与偏转电压呈线性关系。
为了反映电偏转的灵敏程度,定义
)1(A e V k V S ==电δ (4-17-5)
电δ称为电偏转灵敏度,单位为毫米/伏。
电δ越大,表示电偏转系统的灵敏度越高。
2.磁偏转原理
磁偏转原理如图4-17-2所示。
通常在示波管的电子枪和荧光屏之间加上一均匀横向偏转磁场,假定在l 范围内是均匀的,在其它范围都为零。
当电子以速度v 沿Z 方向垂直射入磁场B 时,将受到洛仑磁力的作用在均匀磁场B 内电子作匀速圆周运动,轨道半径为R ,电子穿出磁场后,将沿切线方向作匀速直线运动,最后打在荧光屏上,由牛顿第二定律得
R v m evB f 2
== 或 eB mv R =
电子离开磁场区域与Z 轴偏斜了θ角度,由图4-17-2中的几何关系得
mv leB
R l =
=
θsin
电子束离开磁场区域时,距离Z 轴的大小α是
)cos 1()cos 1(cos θθθα-=-=-=eB mv R R R
电子束在荧光屏上离开Z 轴的距离为 αθ+⋅=tg L S 如果偏转角度足够小,则可取下列近似
θθθ==tg sin 和 2
1cos 2
θθ-=
则总偏转距离
)
6174()2
(2)
(212
2
)
2
11(22
2
22--+=+
=⋅+⋅=⋅+
⋅=+⋅=+-+⋅=l L m v leB m v eB l m v leB L m v leB eB m v m v leB L eB m v L R L R L S θθθθθθ
又因为电子在加速电压V A 的作用下,加速场对电子所做的功全部转变为电子的动能,则
m eV v eV mv A A 2212
=
=即 代入(4-17-6)式,得
)21
(2l L meV leB S A
+=
(4-17-7)
上式说明,磁偏转的距离与所加磁感应强度B 成正比,与加速电压的平方根成反比。
由于偏转磁场是由一对平行线圈产生的,所以有
KI B =
式中I 是励磁电流,K 是与线圈结构和匝数有关的常数。
代入(4-17-7)式,得
)21(2l L meV KleI S A += (4-17-8)
由于式中其它量都是常数,故可写成
A
m V I k S ⋅= (4-17-9)
k m 为磁偏常数。
可见,当加速电压一定时,位移与电流呈线性关系。
为了描述磁偏转的灵敏程度,定义
A
m V k I S 1==磁
δ (4-17-10)
磁δ称为磁偏转灵敏度,单位为毫米/安培。
同样,磁δ越大,磁偏转的灵敏度越高。
仪器描述
本实验所采用仪器是SJ —SS —2型电子束实验仪,如图4-17-3所示。
该仪器主要由示波管、显示电路、励磁电路、测量电路、电源等部分组成。
仪器板面上各旋钮、电表的作用如下:
辉度:用来改变加在控制栅板G 上的电压,以调节屏上亮点的亮度。
聚焦:用来改变加在第一阳极A 1上的电压,以调节屏上亮点的粗细。
辅助聚焦: 用来改变加在第二阳极A 2上的电压与“聚焦”旋钮配合使用,调节屏上亮点的粗细。
高压调节:用来改变示波管各电极的电压大小,但不改变各电极的电压比。
电偏转:用来改变加在垂直(或水平)偏转板上的电压,以调节屏上亮点的上下(或左右)位置。
功能选择:用于选择实验项目。
励磁电流:用于调节磁聚焦线圈中,或磁偏转线圈中的电流大小。
KV 表:用以直接指示V 2电压的大小。
mA —V 表:经“功能选择”开关的转换,可以分别测量聚焦电压V 1(量程为0—50V ×15),电偏电压(量程为0—50V ×3),磁聚励磁电流(0—50mA ×20),磁偏励磁电流(量程为0—50mA ×1)。
插头指示(安全指示):用于指示仪器是否处于安全使用状态,其作用与验电笔相似,手触指示灯管时,若指示灯发亮,则表明是安全的。
本仪器使用时,周围应无其它强磁场存在,仪器应南北方向测试,避免地磁场的影响。
实验内容 1.电偏转
(1)将“功能选择”置于X或Y电偏位置,按图4-17-4(X电偏接线)或图4-17-5(Y电偏接线)插入导联线。
(2)接通“高压电源开”,调节“高压调节”,“辅助聚焦V2”,将V2调节至最大值,保持辉度适中,
调节V1聚焦。
(3)将“电偏电压”调节至最小,调节“X位移”、“Y位移”,使光点移至坐标原点。
(4)保持“辉度”、V1、V2不变,调节“电偏电压”,使光点朝X(或Y)方向偏转,每偏5mm读取相应的电偏电压V及S。
根据测出的S、V值,作出S~V图线,验证S~V为线性正比关系。
(5)改变电源极性,可改变X(或Y)的偏转方向,如图中虚线连接,分别测出S、V数据。
2.磁偏转
(1)将“功能选择”置于磁偏转位置,接图4-17-6插入导联线。
(2)接通“高压电源开”,将V2调至最大,调节V1使光点聚焦,保持辉度适中,调节X位移,使光点位于坐标Y轴某点y s,并以该点为新的坐标原点。
(3)“励磁电流”复位到零,接通“励磁电源开”顺时针方向调节“励磁电流”使光点偏转,读取不同偏转量S及其对应的I值,作出S~I图线,验证S~I为线性正比关系。
(4)改变电源极性(即改变偏转线圈中的电流方向),如图中虚线连接,可作反向磁偏转,测出S、I 数据。
(5)由测出的各组S、I值,求出各组的偏转灵敏度,然后再求其算术平均值,得出本仪器的偏转灵敏度
δ。
磁
思考题
1.偏转量的大小改变时,光点的聚焦是否改变?为什么?
2.偏转量的大小与光点的亮度是否有关?为什么?
3.在偏转板上加交流信号时,会观察到什么现象?。