2017年人教版初二下数学期中考试题及答案
2017人教版八年级数学下册期中试卷含答案
期中测试(时间:90分钟 满分:120分)一、选择题☎每小题 分,共 分✆ .☎南通中考✆若⌧-在实数范围内有意义,则⌧的取值范围是☎ ✆✌.⌧≥ .⌧≥- .⌧>.⌧≠.一直角三角形的两直角边长为 和 ,则斜边长为☎ ✆✌. . . . .如图,在▱✌中,已知✌= ♍❍,✌= ♍❍,✌☜平分 ✌交 边于点☜,则☜等于☎ ✆ ✌. ♍❍ . ♍❍ . ♍❍ . ♍❍.下列计算错误的是☎ ✆✌ = = ♋+ ♋= ♋ . - = .如图,点 是平面坐标系内一点,则点 到原点的距离是☎ ✆ ✌. .下列根式中,是最简二次根式的是☎ ✆ ✌♌♋- ♌⌧ -⍓ ♋♌ .如图,已知四边形✌是平行四边形,下列结论中不正确的是☎ ✆✌.当✌= 时,它是菱形 .当✌时,它是菱形.当 ✌= °时,它是矩形 .当✌= 时,它是正方形.已知菱形✌中,对角线✌与 交于点 ,∠ ✌= °,✌= ,则该菱形的面积是☎✆✌. . . ..如图,在四边形✌中,✌= ,∠✌= ✌= °, ☜⊥✌于点☜,且四边形✌的面积为 ,则 ☜=☎✆✌. . . ..如图所示,✌☎- , ✆, ☎, ✆分别为⌧轴,⍓轴上的点,△✌为等边三角形,点 ☎,♋✆在第一象限内,且满足 ✌= △✌,则♋的值为☎✆✌ .二、填空题☎每小题 分,共 分✆.已知☎⌧-⍓+ ✆ + -⍓= ,则⌧+⍓=♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知 ✌中,✌= ♍❍, = ♍❍,✌= ♍❍,那么✌边上的中线 的长为♉♉♉♉♉♉♉♉♉♉♉♉♍❍.☎郴州中考✆如图,在矩形✌中,✌= , = ,☜是✌上一点,将矩形✌沿 ☜折叠后,点 落在✌边的点☞上,则 ☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知在 ♦△✌中,∠✌= °,✌= ,分别以✌, 为直径作半圆,面积分别记为 , ,则 + 等于♉♉♉♉♉♉♉♉♉♉♉♉..如图所示,直线♋经过正方形✌的顶点✌,分别过顶点 , 作 ☜♋于点☜, ☞⊥♋于点☞,若 ☜= , ☞= ,则☜☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,在图 中,✌ , , 分别是 ✌的边 , ✌,✌的中点,在图 中,✌ , , 分别是 ✌ 的边 , ✌ ,✌ 的中点,…,按此规律,则第⏹个图形中平行四边形的个数共有♉♉♉♉♉♉♉♉♉♉♉♉个.三、解答题☎共 分✆ .☎分✆计算: ☎✆ + - -; ☎✆ - +☎- ✆☎+✆..☎分✆在解答❽判断由长为 , ,的线段组成的三角形是不是直角三角形”一题中,小明是这样做的: 解:设♋= ,♌= ,♍= 又因为♋ +♌ =☎ ✆ + = ♊ =♍ , 所以由♋,♌,♍组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由..☎分✆如图,铁路上✌, 两点相距 ❍, , 为两村庄, ✌⊥✌于点✌, ⊥✌于点 ,已知 ✌= ❍, = ❍,现在要在铁路✌上建一个土特产品收购站☜,使得 , 两村到☜站的距离相等,则☜站应建在离✌站多少 ❍处?.☎分✆如图,☜,☞,☝,☟分别是边✌, , , ✌的中点. ☎✆判断四边形☜☞☝☟的形状,并证明你的结论;☎✆当 ,✌满足什么条件时,四边形☜☞☝☟是正方形.☎不要求证明✆.☎分✆如图,四边形✌是一个菱形绿地,其周长为 ❍,∠✌= °,在其内部有一个四边形花坛☜☞☝☟,其四个顶点恰好在菱形✌各边的中点,现在准备在花坛中种植茉莉花,其单价为 元 ❍ ,请问需投资金多少元?☎结果保留整数✆.☎分✆如图,在▱✌中,☜为 的中点,连接✌☜并延长交 的延长线于点☞☎✆求证:✌= ☞;☎✆当 与✌☞满足什么数量关系时,四边形✌☞是矩形,并说明理由..☎分✆如图,在 ♦△✌中,∠ = °,✌= ♍❍,∠✌= °,点 从点 出发沿 ✌方向以 ♍❍秒的速度向点✌匀速运动,同时点☜从点✌出发沿✌方向以 ♍❍秒的速度向点 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点 ,☜运动的时间是♦秒☎♦♎✆.过点 作 ☞于点☞,连接 ☜,☜☞☎✆求证:✌☜= ☞;☎✆四边形✌☜☞能够成为菱形吗?如果能,求出相应的♦值;如果不能,请说明理由;☎✆当♦为何值时,△ ☜☞为直角三角形?请说明理由.参考答案. ✌ π ⏹ .☎✆原式= + - -= ☎✆原式= - + + - - = -+ .小明的解答是错误的.设♋= ,♌= ,♍= 因为♋♍♌,且♋ +♍ =☎ ✆ +☎✆ =♌ ,所以由♋,♌,♍组成的三角形是直角三角形..设✌☜=⌧ ❍,则 ☜=☎-⌧✆❍,∵ ☜= ☜,又 在 ✌☜和 ☜中, ✌⊥✌于点✌, ⊥✌于点 ,∴⌧ + = +☎-⌧✆ 解得⌧= ☜站应建在离✌站 ❍处. .解:☎✆四边形☜☞☝☟是平行四边形.证明: ☜,☞分别是边✌ , 的中点,∴☜☞∥✌,且☜☞=✌ 同理:☟☝✌,且☟☝=✌☜☞☟☝,且☜☞=☟☝四边形☜☞☝☟是平行四边形.☎✆当 =✌且 ✌时,四边形☜☞☝☟是正方形..连接 ,✌∵菱形✌的周长为 ❍,∴菱形✌的边长为 ❍.∵∠✌= °,∴△✌,△ 是等边三角形. 对角线 = ❍,✌= ❍.∵☜,☞,☝,☟是菱形✌各边的中点,∴四边形☜☞☝☟是矩形,矩形的边长分别为 ❍, ❍.∴矩形☜☞☝☟的面积为 = ☎❍ ✆,即需投资金为 = ☟☎元✆.答:需投资金为 元. .☎✆证明: 四边形✌是平行四边形,∴✌∥ ☞∴∠ ✌☞= ☞✌☜为 的中点,∴ ☜= ☜又 ✌☜= ☞☜,∴△✌☜≌△☞☜☎✌✌✆. ✌= ☞☎✆当 =✌☞时,四边形✌☞是矩形.理由如下:由☎✆,得✌= ☞,∵✌∥ ☞,∴四边形✌☞是平行四边形. =✌☞,∴四边形✌☞是矩形..☎✆证明:在 ☞中,∠ ☞= °,∠ = °, = ♦,∴ ☞= ♦又 ✌☜= ♦,∴✌☜= ☞☎✆能.理由如下: ✌, ☞⊥ ,∴✌☜∥ ☞又 ✌☜= ☞,∴四边形✌☜☞为平行四边形.当四边形✌☜☞为菱形时,✌☜=✌=✌- 即 - ♦= ♦,解得♦= 当♦= 秒时,四边形✌☜☞为菱形.☎✆♊当 ☜☞= °时,由☎✆知四边形✌☜☞为平行四边形,∴☜☞∥✌,∴∠✌☜= ☜☞= ° ∵∠✌= °,∴∠✌☜= ° ∴✌= ✌☜=♦又✌= - ♦,即 - ♦=♦,解得♦= ;♋当 ☜☞= °时,四边形☜☞为矩形,在 ♦△✌☜中,∠✌= °,则∠✌☜= °,∴✌= ✌☜,即 - ♦= ♦,解得♦= ;♌若 ☜☞= ,则☜与 重合, 与✌重合,此种情况不存在.故当♦= 或 秒时,△ ☜☞为直角三角形.。
2017-2018学年f人教版八年级(下)期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5 3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6 4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=25.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=16.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>57.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.128.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D .6,59.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根10.在平行四边形ABCD 中,AC 与BD 相交于0,AE ⊥BD 于E ,CF ⊥BD 于F ,则图中的全等三角形共( )A .5对B .6对C .7对D .8对二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 .12.一个多边形的每一个外角为30°,那么这个多边形的边数为 .13.化简:= .14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 市场.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 .16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6【分析】利用一元二次方程的定义判断即可.【解答】解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.【点评】本题考查了解一元二次方程的应用,关键是能正确配方.6.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).7.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.12【分析】先过点D作DE⊥AC于点E,由在▱ABCD中,AC=8,BD=6,可求得OD的长,又由对角线AC、BD相交成的锐角α为30°,求得DE的长,△ACD的面积,则可求得答案.【解答】解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S=AC•DE=×8×1.5=6,△ACD=12.∴S▱ABCD=2S△ACD故选:D.【点评】此题考查了平行四边形的性质以及三角函数的知识.注意准确作出辅助线是解此题的关键.8.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可. 【解答】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B .【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 9.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根【分析】先把方程化为一般式得到2x 2﹣3x ﹣3=0,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>0,然后根据△的意义判断方程根的情况. 【解答】解:方程整理得2x 2﹣3x ﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共()A.5对B.6对C.7对D.8对【分析】由四边形ABCD是平行四边形,可得OA=OC,OB=OD,AB=CD,AD=BC,即可证得△ABD≌△CDB(SSS),△ABC≌△CDA,△AOD≌△COB(SAS),△AOB≌△COD,又由AC⊥BD,AE⊥BD,可得△AOE≌△COF,△ABE≌△CDF(AAS),△ADE≌△CBF.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB=CD,AD=BC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ABC≌△CDA;在△AOD和△COB中,,∴△AOD≌△COB(SAS),同理:△AOB≌△COD,∴∠ABO=∠CDO,∵AC⊥BD,AE⊥BD,∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,在△AOE和△COF中,,∴△AOE ≌△COF (AAS ), 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ). 同理:△ADE ≌△CBF . 故选:C .【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 4 .【分析】把x =﹣2代入已知二次根式,通过开平方求得答案.【解答】解:把x =﹣2代入得,==4,故答案为:4.【点评】本题考查了二次根式的定义及性质,注意二次根式的结果是非负数是解答此题的关键. 12.一个多边形的每一个外角为30°,那么这个多边形的边数为 12 .【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.化简:=.【分析】根据二次根式的性质计算即可.【解答】解:原式==,故答案为:.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 乙 市场.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=7.5,S 乙2=1.5,S 丙2=3.1, ∴S 甲2>S 丙2>S 乙2,∴该月份白菜价格最稳定的是乙市场; 故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 x 1=﹣,x 2=0 .【分析】由于方程的解比二次方程a (x +h )2+k =0的解要大,则方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.【解答】解:∵关于x 的二次方程a (x +h )2+k =0的解为,∴方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.故答案为x 1=﹣,x 2=0.【点评】本题考查了一元二次方程的解:满足一元二次方程的未知数的值叫一元二次方程的解. 16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 【解答】解:连接E 、F 两点, ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等, ∴S △EFC =S △BCF , ∴S △EFQ =S △BCQ , 同理:S △EFD =S △ADF , ∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2, 故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第 ③ 步开始出错的; (2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案. 【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【分析】(1)利用配方法得到(x﹣7)2=57,然后利用直接开平方法解方程;(2)先计算判别式的值,然后利用求根公式解方程;(3)先移项得到(2x+3)2﹣4(2x+3)=0,然后利用因式分解法解方程;(4)先变形得到2(x﹣3)2﹣(x+3)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解一元二次方程.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:10,13,12,14,16;乙:13,14,12,12,14.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.【分析】根据图表就可以得到甲,乙的成绩,注意观察次数所对应的点的纵坐标,就是成绩;根据这两组数就可以求出每组的平均数,中位数、众数、方差;根据平均数的大小确定成绩的好坏,根据方差确定成绩哪个稳定.【解答】解:(1)甲:10,13,12,14,16;乙:13,14,12,12,14;(2)(3)选择乙去竞赛.因为甲乙的平均分相同,乙的成绩较稳定所以选乙去.【点评】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?【分析】设这种商品每千克应降价x元,利用销售量×每千克利润=2240元列出方程求解即可.【解答】解:设这种商品每千克应降价x元,根据题意得(60﹣x﹣40)(100+×20)=2240整理得x2﹣10x+24=0解得:x1=4(不合题意,舍去),x2=6.答:这种商品每千克应降价6元.【点评】本题考查了一元二次方程的应用,解题的关键是掌握销售问题中的基本数量关系.21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.【分析】(1)由题意可得:∠DAE=∠BAE=∠AEB=∠BAD=∠C,则∠C+∠FEC=90°,根据三角形内角和可得∠C+∠EFC=90°,则∠CEF=∠CFE,即可得结论;(2)连接AC,作AP⊥BC于P,由题意可求AB=BE=CD=5,CE=CF=2,即可求DH=3,根据勾股定理可求AE的长,根据勾股定理可列出方程,可求出BP,AP,PE,PC的长度,再根据勾股定理可求AC的长,由题意可证AC=GF,即可得GF的长.【解答】证明:(1)∵四边形ABCD是平行四边形∴∠BAD=∠C,AD∥BC∴∠DAE=∠AEB∵AE平分∠DAB∴∠BAE=∠DAE=∠BAD∴∠BAE=∠AEB=∠BAD∴AB=BE∵AE⊥EF∴∠AEF=90°∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°∴∠C+∠FEC=90°∵∠C+∠FEC+∠EFC=180°∴∠C+∠EFC=90°∴∠EFC=∠FEC∴CE=CF(2)如图连接AC,作AP⊥BC于P∵四边形ABCD是平行四边形∴AB=CD,AD=BC=7,AB∥CD∵CE=CF∴BC﹣BE=CD﹣DF,且AB=BE=CD∴7﹣AB=AB﹣3∴AB=5=BE=CD∴CE=CF=2∵AD∥BC∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC ∴∠H=∠DFH∴DH=DF=3∴AH=10在Rt△AEH中,AH2=AE2+EH2,且EH=2AE∴5AE2=100∴AE=2在Rt△ABP和Rt△APE中AP2=AB2﹣BP2,AP2=AE2﹣PE2.∴AB2﹣BP2=AE2﹣PE2.∴25﹣BP2=20﹣(5﹣BP)2.∴BP=3∴AP=4,PE=2,PC=4在Rt△APC中,AC==4∵AB∥CD,AG=CF∴四边形AGFC是平行四边形∴GF=AC=4【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.【分析】(1)由△=[﹣(k+1)]2﹣4×1×(2k﹣2)=(k﹣3)2≥0可得答案;(2)利用因式分解法可得(x﹣2)[x﹣(k﹣1)]=0,再进一步求解可得;(3)根据等边三角形的三边相等得出关于k的方程,解之可得.【解答】解:(1)依题意,得△=[﹣(k+1)]2﹣4×1×(2k﹣2)=k2+2k+1﹣8k+8=k2﹣6k+9=(k﹣3)2≥0,∴此方程总有两个实数根.(2)将方程左边因式分解得(x﹣2)[x﹣(k﹣1)]=0,则x﹣2=0或x﹣(k﹣1)=0,解得x1=2,x2=k﹣1;(3)∵此方程的根刚好是某个等边三角形的边长,∴k﹣1=2.∴k=3.【点评】此题考查了配方法解一元二次方程与一元二次方程判别式的知识.解题的关键是熟练掌握一元二次方程的根的个数与判别式的关系及因式分解法解一元二次方程及等边三角形的性质.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【分析】(1)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠BAD=30°;(2)由三棱柱的侧面展开图求出BC和MB的长,即是所需的矩形纸带的长度.【解答】解:(1)由图2的包贴方法知:∵AB的长等于三棱柱的底边周长,∴AB=30cm,∵纸带的宽为15cm,∴sin∠BAD=sin∠ABM===,∴∠BAD=30°;(2)在图3中将三棱柱沿过点A的侧棱剪开,得知如图甲的侧面展开图.将图甲的△ABF向左平移30cm,△CDE向右平移30cm,拼成如图乙中的平行四边形AMCN,此平行四边形即为图2中的平行四边形ABCD.由题意得:图2中的BC=图乙中的AM=2AE=2AB÷cos∠EAB=60÷cos30°=40(cm),故所需的矩形纸带的长度为MB+BC=30×cos30°+40=55cm.【点评】本题是一道立体图形的侧面展开,结合三角函数进行计算是一道综合题,难度较大.。
人教版2017-2018学年八年级下期中考试数学试题(含答案解析)
2017-2018学年甘肃省武威市八年级(下)期中数学试卷一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,143.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=69.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠212.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.2513.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是.17.如图,数轴上点A表示的实数是.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG =.三、解答题(本大题共8小题,共60分)21.(6分)计算:(1)﹣5+(2)÷﹣×22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2017-2018学年甘肃省武威市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,14【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,所以是直角三角形;D、52+122≠142,不符合勾股定理的逆定理,所以不是直角三角形;故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直【分析】根据正方形的性质和菱形的性质,容易得出结论.【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.【点评】本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,推出AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB.∵AB=AE,AB=2CB,∴AE=2AD.∴∠DEA=30°.∵DC∥AB,∴∠DEA=∠EAB=30°.∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°.∵∠ABC=90°,∴∠EBC=90°﹣75°=15°.故选:A.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数.6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=6【分析】根据二次根式的乘法法则:•=(a≥0,b≥0),二次根式的除法法则:=(a ≥0,b>0)进行计算即可.【解答】解:A、5=,故原题计算错误;B、==(a>0,b>0),故原题计算正确;C、×3=3=,故原题计算错误;D、×=×16=24,故原题计算错误;故选:B.【点评】此题主要考查了二次根式的乘除法,关键是掌握计算法则.9.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定【分析】根据平行四边形的性质得到AB=DC,而△CMB的面积为S=CD•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,这样得到S1+S2=MA•高+BM•高=(MA+BM)•高=AB•高=S,由此则可以推出S,S1,S2的大小关系.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,∵△CMB的面积为S=DC•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,而它们的高都是等于平行四边形的高,∴S1+S2=AD•高+BM•高=(MA+BM)•高=AB•高=CD•高=S,则S,S1,S2的大小关系是S=S1+S2.故选:A.【点评】本题考查平行四边形的性质对边相等以及三角形的面积计算公式,分别表示出图形面积是解题关键.11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.12.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【分析】先将中能开方的因数开方,然后再判断n的最小正整数值.【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.【点评】解答此题的关键是能够正确的对进行开方化简.13.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8.故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是记住菱形的性质,学会利用菱形的面积的两种求法,构建方程解决问题,属于中考常考题型.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形.【分析】根据互逆命题的概念解答.【解答】解:命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形.【点评】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17.如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=5.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得答案.【解答】解:由直角三角形的性质,得CE=AB=5,故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,利用直角三角形的性质是解题关键.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).【分析】根据二次根式的性质和已知得出即可.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG= 4 .【分析】连接EO ,可得S △ABO =S △AEO +S △BEO ,再把AO =BO =4代入可求EF +EG 的值. 【解答】解:连接EO∵ABCD 为正方形∴AC ⊥BD ,AO =BO =CO =DO 且AC =BD =8 ∴AO =CO =BO =4 ∵S △ABO =S △AEO +S △BEO∴+∴EF +EG =4 故答案为4.【点评】本题考查了正方形的性质,本题关键是运用面积法解决问题. 三、解答题(本大题共8小题,共60分) 21.(6分)计算:(1)﹣5+(2)÷﹣× 【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可; (2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=4﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.【分析】连接BD,根据勾股定理可求出BC、CD、BD的值,再由BC2+CD2=BD2利用勾股定理的逆定理,即可证出∠BCD=90°.【解答】解:∠BCD是直角,理由如下:连接BD,如图所示.BC==2,CD==,BD==5.∵BC2+CD2=25=BD2,∴∠BCD=90°.【点评】本题考查了勾股定理及勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.【分析】通过△AEF≌△ABF,可以求证FE=FB,然后证得△CEF为等腰直角三角形即可.【解答】解:在Rt△AEF和Rt△ABF中,,∴Rt△AEF≌Rt△ABF(HL),∴FE=FB.∵正方形ABCD,∴∠ACB=∠BCD=45°,在Rt△CEF中,∵∠ACB=45°,∴∠CFE=45°,∴∠ACB=∠CFE,∴EC=EF,∴FB=EC=EF.【点评】本题考查了全等三角形的证明,考查了等腰直角三角形的判定,本题求证Rt△AEF≌Rt△ABF是解本题的关键.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.【分析】(1)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题;(2)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2y﹣xy2=xy(x﹣y)=1×2=2;(2))∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2﹣xy+y2=(x﹣y)2+xy=22+1=4+1=5.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.【分析】(1)首先判断四边形ABCD和四边形ANMD为平行四边形,然后由“平行四边形的对边相等”推知AB=CD,AN=CM,由等式的性质证得结论;(2)根据平行四边形的对边平行,平行线的性质以及平行四边形的对角相等进行解答.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD.又∵AN=CM,∴四边形ANMD为平行四边形,∴AN=CM,∴AB﹣AN=CD﹣CM,即BN=DM;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=180°﹣50°=130°.由(1)知,四边形ABCD是平行四边形,∴∠D=∠B=50°,AB=CD,AD=BC.∵BC=3,CD=2,∴四边形ABCD的周长=2(BC+CD)=2×(3+2)=10.【点评】考查了平行四边形的性质,解题的关键是平行四边形的判定,与平行四边形的性质的综合应用.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【解答】解:在Rt△AOC中,∵OA=OC,AC=18km,∴OA=OC=18(km),∵AB=0.2×40=8(km),CD=0.2×30=6(km),∴OB=10(km),OD=24(km),在Rt△OBD中,BD==26(km).答:此时B处距离D处26km远.【点评】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.。
2016-2017八年级下期期中考试(新人教)
DEF H第9题第17题ACDBEFO2016~2017学年度下学期期中考试八年级数学试题姓名一、选择题(每小题2分,共20分)1.其中最简二次根式有【】A.2个 B.3个C.4个D. 5个2.x的取值范围是……………………………………【】A. x≥12B. x≤12C. x≥12- D. x≤12-3.一个直角三角形的两条直角边的长分别为6cm和8cm,则其斜边上的中线的长为【】.A.3cm B.4cm C.5cm D. 7cm4. 计算221-631+8的结果是…………………………………………………【】A.32-23B.5-2C.5-3D.225. 如图,台风过后,一旗杆在B处断裂,旗杆顶部A落在离旗杆底部C8米处,已知旗杆长16米,折痕处离地面的高度是………………………………………【】A,米6.如图所示:数轴上点A所表示的数为a,则a的值是…………………………【】A.7.如图所示,在□ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两不同的点,当E、F两点满足下列哪个条件时,四边形DEBF不一定是平行四边形………………【】A.AE=CFB.DE=BF D.∠AED=∠CFE8.如图所示,边长为6的大正方形中有两个小正方形,如果它们的面积分别为1S、2S,那么1S+2S的值是…………………………………………………………………………………【】A.16 B. 17 C.18 D. 199.如图,已知矩形ABCD的对角线AC的长为10cm,连结各边中点E、F、G、H得到EFGH,则四边形EFGH的周长为…………………………………………………………………………【】A. 20cmB.C.D.25cm10.如图,E、F分别是正方形ABCD的边CD、AD上的点且CE=DF,AE、BF相交于点O,下列结论:①AE=BF, ②AE⊥BF,③AO=OE,④AOB DEOFS=SV四边形中,错误的有…………………【】A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11.命题“对顶角相等”的逆命题是:.12. 14、函数y=x+2x-1中自变量x的取值范围是。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.02.下列各式属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=24.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣16.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,237.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.249.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A .6B .4C .10D .210.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =12m B .MN ∥ABC .△CMN ∽△CABD .CM :MA =1:2二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12.已知▱ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE ﹣CF = .13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.14.若最简二次根式与能合并成一项,则a = .15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .16.若x=﹣1,则x3+x2﹣3x+2019的值为.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.0【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.2.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣1【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.6.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.9.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A.6B.4C.10D.2【分析】连接AC,则EF垂直平分AC,推出△AOE∽△ABC,根据勾股定理,可以求出AC的长度,根据相似三角形对应边的比等于相似比求出OE,即可得出EF的长.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=16,BC=8,∴AC=,∴AO=,∵∠EAO=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴OE:BC=AO:BA,即∴OE=,∴EF=2OE=.故选:B.【点评】本题主要考查了矩形的性质、勾股定理、相似三角形的判定和性质、折叠的性质;熟练掌握矩形的性质和折叠的性质,证明三角形相似是解决问题的关键.10.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【分析】由已知条件得出MN是△ABC的中位线,CM=MA,由三角形中位线定理得出MN∥AB,MN=AB,AB=2MN=12m,得出△CMN∽△CAB;即可得出结论.【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.【点评】本题考查了三角形中位线定理;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12【分析】直接利用二次根式乘法运算法则计算得出答案.【解答】解:×=×2=12.故答案为:12.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.已知▱ABCD的周长为28,自顶点A作AE⊥DC于点E,AF⊥BC于点F.若AE=3,AF=4,则CE﹣CF=14﹣7或2﹣(答对前者得2分,答对后者得1分).【分析】首先可证得△ADE∽△ABF,又由四边形ABCD是平行四边形,即可求得AB与AD的长,然后根据勾股定理即可求得DE与BF的长,继而求得答案.【解答】解:如图1:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴△ADE∽△ABF,∴,∵AD+CD+BC+AB=28,即AD+AB=14,∴AD=6,AB=8,∴DE=3,BF=4,∴EC=CD﹣DE=8﹣3,CF=BF﹣BC=4﹣6,∴CE﹣CF=(8﹣3)﹣(4﹣6)=14﹣7;如图2:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴∠ADE =∠ABF ,∴△ADE ∽△ABF ,∴,∵AD +CD +BC +AB =28,即AD +AB =14,∴AD =6,AB =8,∴DE =3,BF =4,∴EC =CD +DE =8+3,CF =BC +BF =6+4,∴CE ﹣CF =(8+3)﹣(6+4)=2﹣.∴CE ﹣CF =14﹣7或2﹣.【点评】本题主要考查的是平行四边形的性质.解题时,还借用了勾股定理这一知识点. 13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 四边形EPFQ =41cm 2,故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.14.若最简二次根式与能合并成一项,则a = 1 .【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【解答】解:=2,由最简二次根式与能合并成一项,得a +1=2.解得a =1.故答案为:1.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 (﹣5,4) .【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.若x=﹣1,则x3+x2﹣3x+2019的值为2018.【分析】先根据x的值计算出x2的值,再代入原式=x•x2+x2﹣3x+2019,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,由勾股定理得,CD2=AC2﹣AD2,CD2=BC2﹣BD2,∴AC2﹣AD2=BC2﹣BD2,即32﹣(2x)2=22﹣x2,解得,x=,即BD的长为.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE∥DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵E、F分别是OA、OC的中点∴OE=OA,OF=OC∴OE=OF∴四边形BFDE是平行四边形∴BE∥DF【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?【分析】(1)由CD垂直于AB,得到三角形BCD与三角形ACD都为直角三角形,由BC与DB,利用勾股定理求出CD的长,再利用勾股定理求出AD的长即可;(2)三角形ABC为直角三角形,理由为:由BD+AD求出AB的长,利用勾股定理的逆定理得到三角形ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.【分析】(1)连接DE,根据矩形的性质可得△ADE是等腰直角三角形,所以,∠AED=45°,设∠BGE=x,根据角平分线的定义可得∠DGE=x,根据直角三角形两锐角互余求出∠BEG,根据等腰三角形两底角相等求出∠DEG,然后根据平角等于180°列式求解即可得到x=30°,再根据30°所对的直角边等于斜边的一半证明;(2)先求出∠CGD=60°,然后解直角三角形求出CD的长度,根据矩形的对边相等求出AB的长度,在Rt△BGE中,求出BE、BG的长度,然后求出AE,即可得到AD,然后利用梯形的面积公式列式计算即可得解.【解答】(1)证明:如图,连接DE,∵AD=AE,∴△ADE是等腰直角三角形,∴∠AED=45°,设∠BGE=x,∵GE是∠BGD的平分线,∴∠BGE=∠DGE=x,在Rt△BGE中,∠BEG=90°﹣x,∵EG=DG,∴∠DEG=(180°﹣x),又∵∠AED+∠DEG+∠BEG=180°,∴45°+(180°﹣x)+90°﹣x=180°,解得x=30°,即∠BGE=30°,∴GE=2BE;(2)解:∵GE是∠BGD的平分线,∴∠CGD=∠BGE+∠DGE=30°+30°=60°,∴CD=DG sin60°=4×=2,在Rt△BGE中,BE=EG=×4=2,BG=EG cos30°=4×=2,∴AD=AE=AB﹣BE=2﹣2,梯形ABGD的面积=(AD+BG)CD=(2﹣2+2)×2=(4﹣2)=12﹣2.【点评】本题考查了矩形的性质,解直角三角形,直角三角形30°角所对的直角边等于斜边的一半的性质,题目设计巧妙,难度较大,利用∠BGE的度数恰好30°求解是解题的关键.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【分析】(1)可以证明四边形AEFD为平行四边形,如果四边形AEFD能够成为菱形,则必有邻边相等,则AE=AD,列方程求出即可;(2)当△DEF为直角三角形时,有三种情况:①当∠EDF=90°时,如图3,②当∠DEF=90°时,如图4,③当∠DFE=90°不成立;分别找一等量关系列方程可以求出t的值.【解答】(1)解:四边形AEFD能够成为菱形,理由是:由题意得:AE=2t,CD=4t,∵DF⊥BC,∴∠CFD=90°,∴∠C=30°,∴DF=CD=×4t=2t,∴AE=DF;∵DF⊥BC,∴∠CFD=∠B=90°,∴DF∥AE,∴四边形AEFD是平行四边形.当AE=AD,四边形AEFD是菱形,∵AC=100,CD=4t,∴AD=100﹣4t,∴2t=100﹣4t,t=,∴当t=时,四边形AEFD能够成为菱形;(3)分三种情况:①当∠EDF=90°时,如图3,则四边形DFBE为矩形,∴DF=BE=2t,∵AB=AC=50,AE=2t,∴2t=50﹣2t,t=,②当∠DEF=90°时,如图4,∵四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,在Rt△ADE中,∠A=60°,AE=2t,∴AD=t,则100=t+4t,t=20,③当∠DFE=90°不成立;综上所述:当t为s或20s时,△DEF为直角三角形.【点评】本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
新人教版本20172018学年初中八年级的下期初中中考试数学试卷试题包括答案2018.4.docx
新人教版 2017-2018 学年八年级下期中考试数学试题含答案2018.4(考试时间:120 分钟总分150分)一、选择题(每小题 4 分,共 48 分)1.如图,下列哪组条件能判别四边形ABCD是平行四边形?()A.AB ∥ CD,AD= BCB.AB = CD, AD= BCC. ∠ A=∠ B,∠ C=∠ DD.AB= AD, CB= CD2. 三角形的三边为 a、b、 c,由下列条件不能判断它是直角三角形的是()A . a:b:c =13∶ 5∶12B. a 2-b 2=c22D. a:b:c=8 ∶16∶ 17C . a =(b+c )(b-c)3.在△ ABC中,∠ C=90°,周长为 60,斜边与一直角边比是13: 5,?则这个三角形三边分别是()A . 5, 4,3B . 13, 12, 5C . 10, 8, 6D . 26, 24,104.已知:如图,在矩形 ABCD中, E、 F、G、 H 分别为边 AB、BC、 CD、DA的中点.若 AB= 2,AD = 4,则图中阴影部分的面积为( )A.5B.4.5C.4D.3.5A DB C第 1题第4题第5题5.如图 ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是()。
A.AC ⊥ BDB.∠ABC=90°C.OA=OB=OC=ODD.AC=BD6.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是()A . CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF7.若a 2 b24b 4c2c10 ,则 b2a c =()4A . 4B. 2C. -2D. 111则ab(a b)8.若a1, bb) 的值为(2 2 1aA. 2B.-2C.2D.229.如图, D 是△ ABC内一点, BD⊥ CD,AD=6, BD=4,CD=3, E,F,G,H 分别是 AB,AC,CD,BD的中点,则四边形EFGH的周长是 ( )A . 7 B.9 C.10 D.1110.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则 S +S 值为()12A . 16 B.17 C.18 D.19[来源 : 学科网 ZXXK]第 11 题第 12 题11.如图,在 Rt△ ABC中,∠ BAC=90°, D、E 分别是 AB、BC的中点, F 在 CA延长线上,∠ FDA=∠ B,AC=6, AB=8,则四边形 AEDF的周长为()A. 14 B.15 C.16 D.1812. 已知如图,矩形ABCD中, BD=5cm, BC=4cm, E 是边 AD上一点,且BE = ED, P是对角线上任意一点, PF⊥ BE, PG⊥ AD,垂足分别为F、 G。
人教版2017初二(下册)数学期中考试试卷(附答案)
人教版2017初二(下册)数学期中考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不是二次根式的是()A.B.C.D.2.中x的取值范围是()A.x≤2 B.x≠﹣2C.x≠2 D.x≥23.下列根式中属最简二次根式的是()A.B.C.D.4.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100C.4,5,6 D.5,6,75.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=86.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5C.4 D.37.如图,下面不能判断是平行四边形的是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠DC.AB=CD,AD∥BC D.AB=CD,AD=BC8.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形9.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=8,BD=6,则DH⊥AB于H,则DH等于()A.B.C.5 D.410.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论:①AF=AE;②AF=EF;③△ABE≌△AGF;④EF=2,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)11.计算:=.12.若直角三角形两条边分别是8,15,则斜边长为.13.若最简二次根式与是同类二次根式,则a=,b=.14.如图,在四边形ABCD中,已知AB∥CD,AB=CD,在不添加任何辅助线的前提下,要想该四边形成为菱形,只需再添加上的一个条件是.15.如图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a,较长边为b,那么(a+b)2的值是.16.如图,菱形ABCD中,∠BAD=45°,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于2,则AB=.三、解答题(本大题共8小题,共72分)17.计算:(1)×÷(2)(+)2×(﹣2)18.观察下列各式:;;…,请你猜想:(1)=,=.(2)计算(请写出推导过程):(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.19.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.20.如图,四边形ABCD中,AD∥BC,点E在边AB上,∠A=∠B=90°△ADE≌△BEC时,设AD=a,AE=b,DE=c,请利用如图,证明勾股定理:a2+b2=c2.21.如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.22.如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.(1)证明:四边形OCED为菱形;(2)若AC=4,求四边形CODE的周长.23.如图,正方形ABCD中,点P是BC边上的任意一点(异于端点B,C),连接AP,过点B,D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:△ADF≌△BAE;(2)若DF=5,BE=2,求EF长度.24.如图,在Rt△ABC中,∠B=90°,AC=60,∠C=30°,点D从点C出发沿CA 方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)当t=时,四边形BEDF是矩形;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.人教版2017初二(下册)数学期中考试试卷参考答案一、1-5 DDABD 6-10 DCDAC二、11.﹣112.17或113.1,114.AB=AD或AC⊥BD15.2516.2三、17.解:(1)原式==;(2)原式=(3+2+2)(5﹣2)=(5+2)(5﹣2)=25﹣24=1.18.解:(1),;(2);(3)(n≥1).19.解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,=.∴S△=20.解:当△ADE≌△BEC时,AD=BE=a,AE=BC=b,则有∠AED=∠BEC,∵∠AED+∠ADE=90°,∴∠AED+∠BEC=90°,∴∠DEC=90°,且DE=CE=c,=(AD+BC)AB=(a+b)2,S△ADE=S△BEC=ab,S△DEC=c2,∴S梯形ABCD=S△ADE+S△BEC+S△DEC,∵S梯形ABCD∴(a+b)2=ab+2,整理可得a2+b2=c2.21.证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,OE=OF.∵OA=OC,∴AECF是平行四边形;∵∠AEC=90°,∴四边形AECF为矩形.22.(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形又∵四边形ABCD 是矩形∴OD=OC∴四边形CODE为菱形;(2)解:∵四边形ABCD 是矩形∴OC=OD=AC又∵AC=4∴OC=2由(1)知,四边形CODE为菱形∴四边形CODE的周长为=4OC=2×4=8.23.(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,∴∠DAF=∠ABE,在△ADF和△BAE中,,∴△ADF≌△BAE(AAS),(2)解:∵△ADF≌△BAE(AAS),∴AF=BE,DF=AE,∴EF=AE﹣AF=DF﹣BE=5﹣2=3;24.(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=CD=2t.又∵AE=2t,∴AE=DF;(2)∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即60﹣4t=4t,∴t=.故答案是:;(3)能;理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又AE=DF,∴四边形AEFD为平行四边形.∵∠C=30°,AC=60,∴AB=30,∴AD=AC﹣DC=6﹣2t,若平行四边形AEFD为菱形,则AE=AD,∴2t=60﹣4t,∴t=10;即当t=10时,四边形AEFD能够成为菱形.。
2017年八年级下学期期中数学试卷两套合集五附答案解析
2017年八年级下学期期中数学试卷两套合集五附答案解析八年级(下)期中数学试卷一、选择题(共10小题,每题3分,总分值30分)1.以下各式中不是二次根式的是()A.B.C.D.2.化简的结果正确的选项是()A.﹣2 B.2 C.±2 D.43.以下二次根式中,最简二次根式是()A.B.C.D.4.在Rt△ABC中,∠A=90°,BC=13cm,AC=5cm,那么第三边AB的长为()A.18cm B.12cm C.8cm D.6cm5.知足以下条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5 B.三边之比为1:1:C.三边长别离为5、13、12 D.有两锐角别离为32°、58°6.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°7.假设一个菱形的边长为2,那么那个菱形两条对角线的平方和为()A.16 B.8 C.4 D.18.△ABC中,AB=15,AC=13,高AD=12,那么△ABC中BC边的长为()A.9 B.5 C.4 D.4或149.如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,那么AE的长为()A.2cm B.4cm C.6cm D.8cm10.如图,直线l过正方形ABCD的极点B,点A、C至直线l的距离别离为2和3,那么此正方形的面积为()A.5 B.6 C.9 D.13二、填空题(共6小题,每题3分,总分值18分)11.已知:+|b﹣1|=0,那么(a+b)2016的值为.12.已知直角三角形的两边长为3、2,那么另一条边长的平方是.13.某楼梯的侧面视图如下图,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,那么在AB段楼梯所铺地毯的长度应为米.14.如下图,已知▱ABCD,以下条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC 中,能说明▱ABCD是矩形的有(填写序号).15.如图,在▱ABCD中,E、F别离是AD、DC的中点,假设△CEF的面积为3,那么▱ABCD的面积为.16.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,假设P、Q 别离是AD和AC上的动点,那么PC+PQ的最小值是.三、解答题(共8小题,总分值72分)17.计算(1)2﹣++(2)÷(﹣)×.18.如图,网格中每一个小正方形的边长都为1,(1)求四边形ABCD的面积;(2)求∠BCD的度数.19.阅读下面的文字后,回答下列问题:甲、乙两人同时解答题目:“化简并求值:,其中a=5.”甲、乙两人的解答不同;甲的解答是:;乙的解答是:.(1)的解答是错误的.(2)错误的解答在于未能正确运用二次根式的性质:.(3)仿照上题解答:化简并求值:,其中a=2.20.小强想明白学校旗杆的高,他发觉旗杆端的绳索垂到地面还多1米,当他把绳索的下端拉开5米后(即BC=5米),发觉下端恰好接触地面,你能帮他算出来吗?假设能,请你计算出AC的长.21.嘉淇同窗要证明命题“两组对边别离相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的方式写出证明;(3)用文字表达所证命题的逆命题为.22.如图,四边形ABCD是正方形,F别离是DC和BC的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)假设BC=8,DE=6,求EF的长.23.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:AO=CO;(2)假设∠OCD=30°,AB=,求△AOC的面积.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)假设D为AB中点,那么当∠A的大小知足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案与试题解析一、选择题(共10小题,每题3分,总分值30分)1.以下各式中不是二次根式的是()A.B.C.D.【考点】二次根式的概念.【分析】依照二次根式的被开方数是非负数,可得答案.【解答】解:被开方数是非负数,故C不是二次根式,应选:C.2.化简的结果正确的选项是()A.﹣2 B.2 C.±2 D.4【考点】二次根式的性质与化简.【分析】依照=|a|计算即可.【解答】解:原式=|﹣2|=2.应选B.3.以下二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方式,确实是逐个检查最简二次根式的两个条件是不是同时知足,同时知足的确实是最简二次根式,不然就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D. =5,被开方数,含能开得尽方的因数或因式,故D选项错误;应选C.4.在Rt△ABC中,∠A=90°,BC=13cm,AC=5cm,那么第三边AB的长为()A.18cm B.12cm C.8cm D.6cm【考点】勾股定理.【分析】依照勾股定理:在任何一个直角三角形中,两条直角边长的平方之和必然等于斜边长的平方进行计算即可.【解答】解:∵∠A=90°,BC=13cm,AC=5cm,∴AB===12(cm),应选:B.5.知足以下条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5 B.三边之比为1:1:C.三边长别离为5、13、12 D.有两锐角别离为32°、58°【考点】勾股定理的逆定理.【分析】依照三角形内角和定理和勾股定理的逆定理判定是不是为直角三角形.【解答】解:A、依照三角形内角和定理,求得各角别离为45°,60°,75°,因此此三角形不是直角三角形;B、三边符合勾股定理的逆定理,因此其是直角三角形;C、52+122=132,符合勾股定理的逆定理,因此是直角三角形;D、依照三角形内角和定理,求得第三个角为90°,因此此三角形是直角三角形;应选A.6.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92° D.88°,92°,88°【考点】平行四边形的判定.【分析】两组对角别离相等的四边形是平行四边形,依照所给的三个角的度数能够求出第四个角,然后依照平行四边形的判定方式验证即可.【解答】解:两组对角别离相等的四边形是平行四边形,故B不是;当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A不是;当三个内角度数依次是88°,92°,92°,第四个角是88°,而C中相等的两个角不是对角故C错,D中知足两组对角别离相等,因此是平行四边形.应选D.7.假设一个菱形的边长为2,那么那个菱形两条对角线的平方和为()A.16 B.8 C.4 D.1【考点】菱形的性质.【分析】依照菱形的对角线相互垂直平分,即菱形被对角线平分成四个全等的直角三角形,依照勾股定理,即可求解.【解答】解:设两对角线长别离是:a,b.那么(a)2+(b)2=22.那么a2+b2=16.应选A.8.△ABC中,AB=15,AC=13,高AD=12,那么△ABC中BC边的长为()A.9 B.5 C.4 D.4或14【考点】勾股定理.【分析】分两种情形讨论:锐角三角形和钝角三角形,依照勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故BC长为14或4.应选:D.9.如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,那么AE的长为()A.2cm B.4cm C.6cm D.8cm【考点】平行四边形的性质.【分析】利用平行四边形的性质和角平分线的性质得出∠BEC=∠BCE,进而得出BE=BC=6cm,再依照AE=AB﹣BE计算即可.【解答】解:∵在▱ABCD中,AB∥CD,AB=CD=8cm,BC=AD=6cm,∴∠DCE=∠BEC,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠BEC=∠BCE,∴BE=BC=6cm,∴AE=AB﹣BE=2cm,应选:A.10.如图,直线l过正方形ABCD的极点B,点A、C至直线l的距离别离为2和3,那么此正方形的面积为()A.5 B.6 C.9 D.13【考点】正方形的性质;全等三角形的判定与性质.【分析】第一证明△ABE≌△BCF,推出AE=BF,EB=CF,再利用勾股定理求出AB2,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,∵AE⊥EF,CF⊥EF,∴∠AEB=∠CFB=90°,在△ABE和△BCF中,,∴△ABE≌△BCF,∴AE=BF=2,EB=CF=3,∴AB2=AE2+EB2=22+32=13,∴正方形ABCD面积=AB2=13.应选D.二、填空题(共6小题,每题3分,总分值18分)11.已知: +|b﹣1|=0,那么(a+b)2016的值为 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】依照非负数的性质别离求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a+2=0,b﹣1=0,解得,a=﹣2,b=1,那么(a+b)2016=1,故答案为:1.12.已知直角三角形的两边长为3、2,那么另一条边长的平方是13或5 .【考点】勾股定理.【分析】依照勾股定理,分两种情形讨论:①直角三角形的两条直角边长别离为3、2;②当斜边为3时,进而取得答案.【解答】解:设第三边长为c,①直角三角形的两条直角边长别离为3、2,那么c2=32+22=13;②当斜边为4时,c2=32﹣22=5.故答案为13或5.13.某楼梯的侧面视图如下图,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,那么在AB段楼梯所铺地毯的长度应为(2+2)米.【考点】解直角三角形的应用-坡度坡角问题.【分析】求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.【解答】解:依照题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.14.如下图,已知▱ABCD,以下条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号)①④.【考点】矩形的判定;平行四边形的性质.【分析】矩形是特殊的平行四边形,矩形有而平行四边形没有的特点是:矩形的四个内角是直角;矩形的对角线相等且相互平分;可依照这些特点来选择条件.【解答】解:能说明▱ABCD是矩形的有:①对角线相等的平行四边形是矩形;④有一个角是直角的平行四边形是矩形.15.如图,在▱ABCD中,E、F别离是AD、DC的中点,假设△CEF的面积为3,那么▱ABCD 的面积为24 .【考点】平行四边形的性质.【分析】由平行四边形的性质得出△ABC的面积=△ADC的面积=平行四边形ABCD的面积,由中点的性质得出△DEF的面积=△CEF的面积=3,△ACE的面积=△CDE的面积=6,求出△ADC的面积=2△CDE的面积=12,即可得出▱ABCD的面积.【解答】解:连接AC,如下图:∵四边形ABCD是平行四边形,∴△ABC的面积=△ADC的面积=平行四边形ABCD的面积,∵E、F别离是AD、DC的中点,△CEF的面积为3,∴△DEF的面积=△CEF的面积=3,△ACE的面积=△CDE的面积=3+3=6,∴△ADC的面积=2△CDE的面积=12,∴▱ABCD的面积=2△ADC的面积=24;故答案为:24.16.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,假设P、Q别离是AD 和AC上的动点,那么PC+PQ的最小值是 2.4 .【考点】轴对称-最短线路问题.【分析】如图作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC现在PC+PQ最短,利用面积法求出CQ′即可解决问题.【解答】解:如图,作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC现在PC+PQ最短.∵PQ⊥AC,PQ′⊥AB,AD平分∠CAB,∴PQ=PQ′,∴PQ+CP=PC+PQ′=CQ′∴现在PC+PQ最短(垂线段最短).在RT△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵•AC•BC=•AB•CQ′,∴CQ′===2.4.∴PC+PQ的最小值为2.4.故答案为2.4.三、解答题(共8小题,总分值72分)17.计算(1)2﹣++(2)÷(﹣)×.【考点】二次根式的混合运算.【分析】(1)先把各个二次根式依照二次根式的性质化为最简二次根式,归并同类二次根式即可;(2)依照二次根式的乘除运算法那么计算即可.【解答】解:(1)原式=2﹣2++=3﹣;(2)原式=×(﹣)×=﹣=﹣=9.18.如图,网格中每一个小正方形的边长都为1,(1)求四边形ABCD的面积;(2)求∠BCD的度数.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【分析】(1)利用正方形的面积减去四个极点上三角形及小正方形的面积即可;(2)连接BD,依照勾股定理的逆定理判定出△BCD的形状,进而可得出结论.=5×5﹣1﹣×1×4﹣×1×2﹣×2×4﹣×1×5=24﹣2﹣1【解答】解:(1)S四边形ABCD﹣4﹣=;(2)连BD,∵BC=2,CD=,BD=5,BC2+CD2=BD2,∴∠BCD=90°.19.阅读下面的文字后,回答下列问题:甲、乙两人同时解答题目:“化简并求值:,其中a=5.”甲、乙两人的解答不同;甲的解答是:;乙的解答是:.(1)甲的解答是错误的.(2)错误的解答在于未能正确运用二次根式的性质:=|a|,当a<0时, =﹣a .(3)仿照上题解答:化简并求值:,其中a=2.【考点】二次根式的化简求值.【分析】(1)当a=5时,1﹣3a<0,甲求的算术平方根为负数,错误;(2)二次根式的性质, =|a|,当a<0时, =﹣a;(3)将被开方数写成完全平方式,先判定当a=2时,1﹣a,1﹣4a的符号,再去绝对值,代值计算.【解答】解:(1)当a=5时,甲没有判定1﹣3a的符号,错误的选项是:甲;(2)=|a|,当a<0时, =﹣a.(3)|1﹣a|+=|1﹣a|+.∵a=2,∴1﹣a<0,1﹣4a<0,∴原式=a﹣1+4a﹣1=5a﹣2=8.20.小强想明白学校旗杆的高,他发觉旗杆端的绳索垂到地面还多1米,当他把绳索的下端拉开5米后(即BC=5米),发觉下端恰好接触地面,你能帮他算出来吗?假设能,请你计算出AC的长.【考点】勾股定理的应用.【分析】依照题意设旗杆的高AC为x米,那么绳索AB的长为(x+1)米,再利用勾股定理即可求得AC的长,即旗杆的高.【解答】解:设AC=x,那么AB=x+1,在Rt△ACB中,由勾股定理得:(x+1)2=x2+25,解得x=12(米),故:旗杆的高AC为12米.21.嘉淇同窗要证明命题“两组对边别离相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的方式写出证明;(3)用文字表达所证命题的逆命题为平行四边形两组对边别离相等.【考点】平行四边形的判定;命题与定理.【分析】(1)命题的题设为“两组对边别离相等的四边形”,结论是“是平行四边形”,依照题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,依照两组对边别离平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边别离相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边别离相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字表达所证命题的逆命题为:平行四边形两组对边别离相等.22.如图,四边形ABCD是正方形,F别离是DC和BC的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)假设BC=8,DE=6,求EF的长.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】(1)依照正方形性质得出∠ADE=∠ABC=90°=∠ABF,依照SAS推出全等即可;(2)依照全等三角形的性质求出BF=6,求出CF和CE,依照勾股定理求出即可.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ADE=∠ABC=90°=∠ABF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,DE=6,∴BF=DE=6,∵BC=DC=8,∴CE=8﹣6=2,CF=8+6=14,在Rt△FCE中,EF===10.23.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:AO=CO;(2)假设∠OCD=30°,AB=,求△AOC的面积.【考点】矩形的性质;全等三角形的判定与性质;翻折变换(折叠问题).【分析】(1)由矩形的性质和折叠的性质证明∠DAC=∠ECA,即可取得AO=CO;(2)第一求出AO,CO的长,再由三角形面积公式计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠BCA,又由折叠可知:∠BCA=∠ECA,∴∠DAC=∠ECA,∴OA=OC;(2)在Rt△COD中,∠D=90°∠OCD=30°∴OD=OC,又∵AB=CD=,∴(OC)2=OC2﹣()2,∴OC=2,∴AO=OC=2,∴S=AO•CD=×2×=△AOC24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)假设D为AB中点,那么当∠A的大小知足什么条件时,四边形BECD是正方形?请说明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【分析】(1)先求出四边形ADEC是平行四边形,依照平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,依照菱形的判定推出即可;(3)求出∠CDB=90°,再依照正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.八年级(下)期中数学试卷一、选择题(本部份共12小题,每题3分,共36分,每题只有一个选项正确)1.已知a>b,以下不等式中正确的选项是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>2.以下各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)3.以下多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)24.将一把直尺与一把三角板如图那样放置,假设∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°5.已知点P(3﹣m,m﹣1)在第二象限,那么m的取值范围在数轴上表示正确的选项是()A.B.C.D.6.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.假设a﹣b=2,ab=3,那么ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣58.等腰三角形两边长别离为4和8,那么那个等腰三角形的周长为()A.16 B.18 C.20 D.16或209.若是关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣110.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,那么以下确信P 点的方式正确的选项是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点11.某校举行关于“爱惜环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,那么他至少答对的题数是()A.17 B.16 C.15 D.1212.如下图,在△ABC中,已知点D,E,F别离为边BC,AD,CE的中点,且S△ABC=4cm2,那么S阴影等于()A.2cm2B.1cm2C. cm2D. cm2二、填空题(此题共4小题,每题3分,共12分)13.分解因式:4x2﹣8x+4=______.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,那么∠DAE=______.15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),那么不等式kx1+b1<kx2+b2的解集是______.16.如图,已知Rt△ABC中,AC⊥BC,∠B=30°,AB=10,过直角极点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A1⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,如此一直做下去,取得了一组线段A1C1,A2C2,…,那么A1C1=______;那么A 3C3=______;那么AnCn=______.三、解答题(此题共7小题,共52分)17.计算:(1)解不等式:x﹣(2x﹣1)≤3(2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a2x+12ax﹣9x.18.先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中x=,m=3.19.如图,方格纸中的每一个小方格都是边长为1个单位的正方形,在成立平面直角坐标系后,Rt△OAB的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角极点A在y轴,画出△OAB.①点B的坐标是______;②把△OAB向上平移5个单位后取得对应的△O1A1B1,画出△O1A1B1,点B1的坐标是______;③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是______.20.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线别离交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.21.某产品生产车间有工人10名.已知每名工人天天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,若是要使此车间天天所获利润不低于15600元,你以为至少要派多少名工人去生产乙种产品才适合.22.某校张教师寒假预备率领他们的“三勤学生”外出旅行,甲、乙两家旅行社的效劳质量相同,且报价都是每人400元,经协商,甲旅行社表示:“若是带队张教师买一张全票,那么学生可半价”;乙旅行社表示:“所有游客全数享受6折优惠.”那么:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?23.如图,已知△ABC中AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)若是点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①假设点P点Q的运动速度相等,通过1秒后,△BPD与△CQP是不是全等,请说明理由;②假设点P点Q的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)假设点Q以②中的运动速度从点C动身,点P以原先的运动速度从点B同时动身,都逆时针沿△ABC三边运动,求通过量长时刻,点P与点Q第一次在△ABC的哪条边上相遇?参考答案与试题解析一、选择题(本部份共12小题,每题3分,共36分,每题只有一个选项正确)1.已知a>b,以下不等式中正确的选项是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>【考点】不等式的性质.【分析】依照不等式的性质1,可判定A,B;依照不等式的性质3,可判定C;依照不等式的性质2,可判定D.【解答】解;A、不等式的两边都加上那个同一个数,不等号的方向不变,故A错误;B、不等式的两边都减去同一个数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都除以同一个负数不等号的方向改,故D正确;应选:D.2.以下各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把那个多项式因式分解,也叫做分解因式,依照概念即可判定.【解答】解:A、结果不是乘积的形式,不是分解因式,选项正确;B、是分解因式,选项错误;C、是分解因式,选项错误;D、是分解因式,选项错误.应选A.3.以下多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2【考点】因式分解-运用公式法.【分析】能运用平方差公式因式分解的式子的特点是:两项平方项;符号相反.【解答】解:A、﹣m2+4符合平方差公式因式分解的式子的特点,故A错误;B、﹣x2﹣y2两项的符号相同,因此不能用平方差公式因式分解,故B正确;C、x2y2﹣1符合平方差公式因式分解的式子的特点,故C错误;D、(m﹣a)2﹣(m+a)2符合平方差公式因式分解的式子的特点,故D错误.应选B.4.将一把直尺与一把三角板如图那样放置,假设∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°【考点】平行线的性质.【分析】先依照平行线的性质求出∠3的度数,再由三角形外角的性质即可得出结论.【解答】解:∵直尺的两边相互平行,∠1=35°,∴∠3=∠1=35°,∴∠2=35°+30°=65°.应选A.5.已知点P(3﹣m,m﹣1)在第二象限,那么m的取值范围在数轴上表示正确的选项是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【分析】依照第二象限内点的坐标特点,可得不等式,依照解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,应选:A.6.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的概念和中心对称图形的概念回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.应选:D.7.假设a﹣b=2,ab=3,那么ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣5【考点】因式分解-提公因式法.【分析】直接将原式提取公因式ab,进而分解因式将已知代入求出答案.【解答】解:∵a﹣b=2,ab=3,那么b﹣a=﹣2,∴ab2﹣a2b=ab(b﹣a)=3×(﹣2)=﹣6.应选:C.8.等腰三角形两边长别离为4和8,那么那个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,那么应该分两种情形进行分析.【解答】解:①当4为腰时,4+4=8,故此种情形不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.应选:C.9.若是关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【考点】解一元一次不等式.【分析】此题可对a>﹣1,与a<﹣1的情形进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解此题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.应选:D.10.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,那么以下确信P 点的方式正确的选项是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点【考点】角平分线的性质;线段垂直平分线的性质.【分析】别离作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点.【解答】解:作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点,应选C.11.某校举行关于“爱惜环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,那么他至少答对的题数是()A.17 B.16 C.15 D.12【考点】一元一次不等式的应用.【分析】依照竞赛得分=10×答对的题数+(﹣5)×未答对的题数,依照本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,15x>200,解得:x>,依照x必需为整数,故x取最小整数14,即小彤参加本次竞赛得分要超过100分,他至少要答对14道题.应选C.12.如下图,在△ABC中,已知点D,E,F别离为边BC,AD,CE的中点,且S△ABC=4cm2,那么S阴影等于()A.2cm2B.1cm2C. cm2D. cm2【考点】三角形的面积.【分析】依照三角形的面积公式,知:等底等高的两个三角形的面积相等.【解答】解:S阴影=S△BCE=S△ABC=1cm2.应选:B.二、填空题(此题共4小题,每题3分,共12分)13.分解因式:4x2﹣8x+4= 4(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式4,再依照完全平方公式进行二次分解即可求得答案.【解答】解:4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,那么∠DAE= 12°.【考点】三角形内角和定理.【分析】由角平分线的概念可求得∠BAE,在Rt△ABD中可求得∠BAD,再利用角的和差可求得∠DAE的大小.【解答】解:∵AE是∠BAC的平分线,∠BAC=84°,∴∠BAE=∠BAC=×84°=42°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=42°﹣30°=12°,故答案为:12°15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),那么不等式kx1+b1<kx2+b2的解集是x<1 .【考点】一次函数与一元一次不等式.【分析】看两函数交点坐标左侧的图象所对应的自变量的取值即可.【解答】解:一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),因此不等式kx1+b1<kx2+b2的解集是x<1.故答案为:x<1.。
人教版2017-2018学年八年级数学下册期中试卷及解析
2017-2018学年八年级下期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.)1.(4分)(﹣2018)0的结果是()A.﹣2018 B.﹣1 C.1 D.20182.(4分)若分式有意义,则x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x<33.(4分)一次函数y=2x﹣6的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限4.(4分)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣15.(4分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<26.(4分)2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于DNA 折纸技术的纳米机器人大小只有90×60×2nm,nm是长度计量单位,1nm=0.000000001米,则2nm用科学记数法表示为()A.2×109米 B.20×10﹣8米C.2×10﹣9米D.2×10﹣8米7.(4分)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍8.(4分)把分式方程﹣1=化为整式方程,正确的是()A.2(x+1)﹣1=﹣x B.2(x+1)﹣x(x+1)=﹣xC.2(x+1)﹣x(x+1)=﹣1 D.2x﹣x(x+1)=﹣x9.(4分)一次函数=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>010.(4分)若关于x的分式方程+1=有增根,则k的值为()A.2 B.﹣2 C.1 D.311.(4分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B.C.D.12.(4分)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b >0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k的值共有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)点P(1,﹣2)在第象限.14.(4分)当x= 时,分式的值为0.15.(4分)点P(﹣2,4)关于x轴的对称点的坐标是.16.(4分)两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2018在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2018,纵坐标分别是1,3,5,…,共2018个连续奇数,过点P1,P2,P3,…,P2018分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2018(x2018,y2018),则y2018= .三、解答题(本大题共6小题,共56分)17.(9分)解答下列各题:(1)计算:(2)计算:(3)解方程:18.(7分)先化简,再求值:(﹣1)÷,其中x=﹣2.19.(12分)已知y+4与x成正比例,且x=6时,y=8.(1)求出y与x之间的函数关系式.(2)在所给的直角坐标系(如图)中画出函数的图象.(3)直接写出当﹣4≤y≤0时,自变量x的取值范围.20.(8分)2017年12月29日,国家发改委批复了昌景黄铁路项目可行性研究报告.该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度.21.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.22.(10分)如图1,直线y=﹣x+b分别与x轴、y轴交于A、B两点,与直线y=kx交于点C(2,).平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;直线l分别交线段BC、OC、x轴于点D、E、P,以DE为斜边向左侧作等腰直角△DEF,设直线l的运动时间为t(秒).(1)填空:k= ;b= ;(2)当t为何值时,点F在y轴上(如图2所示);(3)设△DEF与△BCO重叠部分的面积为S,请直接写出S与t的函数关系式(不要求写解答过程),并写出t的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(﹣2018)0的结果是()A.﹣2018 B.﹣1 C.1 D.2018【解答】解:(﹣2018)0=1.故选:C.2.(4分)若分式有意义,则x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x<3【解答】解:由题意得,x﹣3≠0,解得x≠3.故选:A.3.(4分)一次函数y=2x﹣6的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限【解答】解:∵一次函数y=2x﹣3中,k=2>0,∴此函数图象经过一、三象限,∵b=﹣3<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限.故选:B.4.(4分)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣1【解答】解:∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得k=1.故选:B.5.(4分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<2【解答】解:A、把点(1,2)代入反比例函数y=,得2=2,正确.B、∵k=2>0,∴在每一象限内y随x的增大而减小,不正确.C、∵k=2>0,∴图象在第一、三象限内,正确.D、若x>1,则y<2,正确.故选:B.6.(4分)2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于DNA 折纸技术的纳米机器人大小只有90×60×2nm,nm是长度计量单位,1nm=0.000000001米,则2nm用科学记数法表示为()A.2×109米 B.20×10﹣8米C.2×10﹣9米D.2×10﹣8米【解答】解:∵1nm=0.000000001m,∴2nm=0.000000002m=2×10﹣9m,故选:C.7.(4分)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.8.(4分)把分式方程﹣1=化为整式方程,正确的是()A.2(x+1)﹣1=﹣x B.2(x+1)﹣x(x+1)=﹣xC.2(x+1)﹣x(x+1)=﹣1 D.2x﹣x(x+1)=﹣x【解答】解:﹣1=,两边乘x(x+1)得到,2(x+1)﹣x(x+1)=﹣x,故选:B.9.(4分)一次函数=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>0【解答】解:∵一次函数y=kx+b(k≠0)的图象经过一、二、四象限,∴k<0,b>0.故选:D.10.(4分)若关于x的分式方程+1=有增根,则k的值为()A.2 B.﹣2 C.1 D.3【解答】解:去分母,得:3+x﹣2=k,∵分式方程有增根,∴增根为x=2,将x=2代入整式方程,得:k=3,故选:D.11.(4分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B.C.D.【解答】解:∵草坪面积为100m2,∴x、y存在关系y=,∵两边长均不小于5m,∴x≥5、y≥5,则x≤20,故选:C.12.(4分)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b >0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k的值共有()A.1个 B.2个 C.3个 D.4个【解答】解:根据题意得A(a,a),B(b,8b),把A,B坐标代入函数y=kx+m,得,②﹣①得:k==8+,∵a>0,b>0,是整数,∴为整数时,k为整数;则﹣1=1或7,所以满足条件的整数k的值共有两个.故选:B.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)点P(1,﹣2)在第四象限.【解答】解:由题意知点P(1,﹣2),横坐标1>0,纵坐标﹣2<0,结合坐标特点,第四象限横坐标为正,纵坐标为负,得点P在第四象限.故答案为:四.14.(4分)当x= 2 时,分式的值为0.【解答】解:当x﹣2=0时,即x=2时,分式的值为0,故答案为:2.15.(4分)点P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4).【解答】解:P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).16.(4分)两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2018在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2018,纵坐标分别是1,3,5,…,共2018个连续奇数,过点P1,P2,P3,…,P2018分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2018(x2018,y2018),则y2018= .【解答】解:观察,发现规律:x1==6,x2==2,x3=,x4=,…,∴x n=(n为正整数),∵点Q n(x n,y n)在反比例函数y=的图象上,∴y n===.当n=2018时,y2018==,故答案为:.三、解答题(本大题共6小题,共56分)17.(9分)解答下列各题:(1)计算:(2)计算:(3)解方程:【解答】解:(1)原式===2;(2)原式==3;(3)方程两边同时乘2x(x+1)得,3(x+1)=4x,解得:x=3,经检验x=3是原方程的解,∴原方程的解为x=3.18.(7分)先化简,再求值:(﹣1)÷,其中x=﹣2.【解答】解:(﹣1)÷,===,当x=﹣2时,原式=.19.(12分)已知y+4与x成正比例,且x=6时,y=8.(1)求出y与x之间的函数关系式.(2)在所给的直角坐标系(如图)中画出函数的图象.(3)直接写出当﹣4≤y≤0时,自变量x的取值范围.【解答】解:(1)∵y+4与x成正比例,∴设y+4=kx(k≠0),∵当x=6时,y=8,∴8+4=6k,解得k=2,∴y+4=2x,函数关系式为:y=2x﹣4;(2)当x=0时,y=﹣4,当y=0时,2x﹣4=0,解得x=2,所以,函数图象经过点(0,﹣4),(2,0),函数图象如右图:(3)由图象得:当﹣4≤y≤0时,自变量x的取值范围是:0≤x≤2.20.(8分)2017年12月29日,国家发改委批复了昌景黄铁路项目可行性研究报告.该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度.【解答】解:设普通快车的平均行驶速度为x千米/时,则昌景黄高铁列车的平均行驶速度为1.5x千米/时,根据题意得:,解得:x=180,经检验,x=180是所列分式方程的解,且符合题意,∴1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时.21.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.【解答】解:(1)根据题意得:y1=20×300+80×(x﹣20)=80x+4400;y2=(20×300+80x)×0.8=64x+4800.(2)设按照方案一的优惠办法购买了m件甲种商品,则按照方案二的优惠办法购买了(20﹣m)件甲种商品,根据题意得:w=300m+[300(20﹣m)+80(40﹣m)]×0.8=﹣4m+7360,∵w是m的一次函数,且k=﹣4<0,∴w随m的增加而减小,∴当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.22.(10分)如图1,直线y=﹣x+b分别与x轴、y轴交于A、B两点,与直线y=kx交于点C(2,).平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;直线l分别交线段BC、OC、x轴于点D、E、P,以DE为斜边向左侧作等腰直角△DEF,设直线l的运动时间为t(秒).(1)填空:k= ;b= 4 ;(2)当t为何值时,点F在y轴上(如图2所示);(3)设△DEF与△BCO重叠部分的面积为S,请直接写出S与t的函数关系式(不要求写解答过程),并写出t的取值范围.【解答】解:(1)把(2,)代入y=﹣x+b得:﹣+b=,解得:b=4;把(2,)代入y=kx中,2k=,解得:k=.故答案是:,4;(2)解:由(1)得两直线的解析式为:y=﹣x+4和y=x,依题意得OP=t,则D(t,﹣t+4),E(t,t),∴DE=﹣2t+4,作FG⊥DE于G,则FG=OP=t∵△DEF是等腰直角三角形,FG⊥DE,∴FG=DE,即t=(﹣2t+4),解得t=1.(3)当0<t≤1时(如图1),S△DEF=(﹣t+4﹣t)•(﹣t+4﹣t)=(﹣2t+4)2=(t﹣2)2,在y轴的左边部分是等腰直角三角形,底边上的高是:(﹣t+4﹣t)﹣t=(﹣2t+4)﹣t=2﹣2t,则面积是:(2﹣2t)2.S=(t﹣2)2﹣(2﹣2t)2=﹣3t2+4t;当1<t<2时(备用图),作FK⊥DE于点K.S=(t﹣2)2.。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(4)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,62.要使式子有意义,则x的值可以是()A.2B.0C.1D.93.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个5.下列二次根式中,是最简二次根式的是()A.B.C.D.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.28.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L410.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围.12.在,,,中,是最简二次根式的是.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.(用含n的代数式表示)16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,6【分析】能不能组成直角三角形,需验证两小边的平方和是否等于最长边的平方.【解答】解:A、112+152≠132,故不能组成直角三角形;B、12+42≠52,故不能组成直角三角形;C、82+152=172,故不能组成直角三角形;D、42+52≠62,故不能组成直角三角形;故选:C.【点评】解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.要使式子有意义,则x的值可以是()A.2B.0C.1D.9【分析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:依题意得:x﹣5≥0,解得:x≥5.观察选项,只有选项D符合题意.故选:D.【点评】此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x取整数的要求即可解决问题.3.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.【点评】此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个【分析】本题需先根据矩形的性质得出OA=OB=OC=OD,从而得出图中等腰三角形中的个数,即可得出正确答案.【解答】解:∵矩形ABCD中,AB<BC,对角线AC、BD相交于点O,∴OA=OB=OC=OD,∴图中的等腰三角形有△AOB、△AOD、△COD、△BOC四个.故选:B.【点评】本题主要考查了等腰三角形的判定,在解题时要把等腰三角形的判定与矩形的性质相结合是本题的关键.5.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=【分析】根据正比例函数的定义,2m+1=0,1﹣2m≠0.从而求解.【解答】解:根据题意得:2m+1=0,解得:m=﹣.故选:D.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.2【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB 的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,=AC•BC=AB•h,∵S△ABC∴h==7.2,故选:D.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L4【分析】先利用勾股定理计算出AC,然后进行无理数估算后进行判断.【解答】解:在Rt△ACD中,∵AD=5,CD=5,∴AC==5≈7.07,∴拉线AC最好选用L3.故选:C.【点评】本题考查了勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.10.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度差.【解答】解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),故快者比慢者的速度每秒快:8﹣6.5=1.5(m/s).故选:C.【点评】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围m≤.【分析】由于一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则得到,解不等式组即可得到m的取值范围.【解答】解:∵一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,∴,∴m≤.则m的取值范围是m≤.故答案为:m≤.【点评】本题考查的知识点为:一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,说明x的系数小于0,常数项大于等于0.12.在,,,中,是最简二次根式的是.【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【解答】解:在,=4,=,=3中,是最简二次根式的是,故答案为:【点评】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是8cm.【分析】先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【解答】解:6×2=12(cm),由勾股定理得=20(cm),则玻璃棒露在容器外的长度的最小值是28﹣20=8(cm).故答案为8.【点评】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是y1>y2.【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<2即可得出结论.【解答】解:∵一次函数y=﹣(k2+1)x+2(k为常数)中,﹣(k2+1)<0,∴y随x的增大而减小,∵﹣4<2,∴y1>y2.故答案为:y1>y2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由(5n+1)个基础图形组成.(用含n的代数式表示)【分析】观察图形不难发现,后一个图形比前一个图形多5个基础图形,根据此规律写出第n个图案的基础图形个数即可.【解答】解:第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,11=5×2+1,第3个图案由16个基础图形组成,16=5×3+1,…,第n个图案由5n+1个基础图形组成.故答案为:5n+1.【点评】本题是对图形变化规律的考查,观察图形得到后一个图形比前一个图形多5个基础图形是解题的关键.16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.【分析】根据已知可得到当P点位于AB的中垂线时,BP+PQ有最小值.过点Q作PQ⊥AB,交AC与P,则PA=PB,根据已知可求得PQ,PA的会值,从而不难求得BP+PQ的最小值.【解答】解:如图,∵在菱形ABCD中,点B与点D关于对角线AC对称.∴连接DQ,DQ与AC的交点为P,连接BP,此时BP+PQ有最小值.∵∠DAB=60°∴∠BAC=30°∴PA=2PQ在Rt△APQ中,PA2=PQ2+32∴PQ=,PA=2∴BP+PQ=PA+PQ=3故答案为3.【点评】本题考查的是中垂线、菱形的性质、勾股定理和最值.根据题意得出:当P点位于AB 的中垂线时,BP+PQ有最小值是解本题的关键.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?【分析】(1)(2)(3)可由图象直接得出.(4)数与形相结合,理解时间与路程之间的关系.【解答】解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家900米;(2)小明到达超市用了20分钟;返回用了15分钟,往返共用了35分钟;(3)小明离家出发后20分钟到30分钟可以在超市购物或休息;(4)小明到超市的平均速度是900÷20=45米/分钟;返回的平均速度是900÷15=60米/分钟.【点评】结合图形反映小明从离家到返回的全过程.20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.【分析】根据连接AC、BD交于点O,根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据线段垂直平分线的性质、矩形的判定定理证明.【解答】证明:连接AC、BD交于点O,∵E,F分别为AB,BC的中点,∴EF∥AC,EF=AC,∵G,H分别为CD,AD的中点,∴HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵AB=AD,BC=CD,∴AC是线段BD的垂直平分线,∵E,H分别为AB,AD的中点,∴EH∥BD,又EF∥AC,∴∠HEF=90°,∴四边形EFGH是矩形.【点评】本题中点四边形、矩形的判定、三角形中位线定理,掌握矩形的判定定理是解题的关键.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.【分析】(1)根据矩形的性质得出AB=CD,∠A=∠C=90°,根据折叠得出DF=CD,∠F =∠C=90°,求出AB=FD,∠A=∠F,根据全等三角形的判定得出即可;(2)根据全等得出BE=DE,根据勾股定理得出关于AE的方程,求出方程的解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∵把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E,∴DF=CD,∠F=∠C=90°,∴AB=FD,∠A=∠F,在△BEA和△DEF中∴△BEA≌△DEF(AAS);(2)解:∵△BEA≌△DEF,∴BE=DE=AD﹣AE=4﹣AE,在Rt△BAE中,由勾股定理得:AB2+AE2=BE2,∴22+AE2=(4﹣AE)2,解得:AE=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质的应用,能灵活运用定理进行推理是解此题的关键.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【分析】(1)由点A的纵坐标、点A所在的象限结合△AOH的面积为3,可求出点A的坐标,再根据点A的坐标利用待定系数法,可求出正比例函数的表达式;(2)设点P的坐标为(a,0),根据△AOP的面积为5,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),=|a|×|﹣2|=5,则S△AOP解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).【点评】本题考查了待定系数法求正比例函数解析式以及三角形的面积,解题的关键是:(1)根据三角形的面积找出点A的坐标;(2)利用三角形的面积找出关于a的含绝对值符号的一元一次方程.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.【分析】(1)先证明证明△CDE≌△CBF,得到CD=CB,可得▱ABCD是菱形,则AD=AB,由DE=BF得AE=AF,则△AEF是等边三角形,根据EF的长可得△AEF的面积;(2)延长DP交BC于N,连结FN,证明△CPN≌△EPD,得到AE=BN,证明△FBN≌△DEF,得到FN=FD,根据等腰三角形三线合一的性质可得结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.【点评】本题考查的是菱形的性质和判定、平行四边形的性质、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线,构造全等三角形和等腰三角形是解题的关键.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?【分析】(1)根据矩形的四角相等为90度求解;(2)根据D、A、E在同一条直线上时不能构成四边形求解;(3)分别根据菱形的四边相等和正方形的四边相等,四角相等的特性解题.【解答】解:(1)当∠BAC=150°时,四边形ADFE是矩形,∴∠DAE=360°﹣120°﹣150°=90°;∵四边形ADFE是平行四边形,∴四边形ADFE是矩形(有一个角是直角的平行四边形是矩形);(2)当∠BAC=60°时平行四边形ADFE不存在,∠DAE=180°﹣60°﹣60°﹣60°=0°;(3)当AB=AC且∠BAC不等于60°时平行四边形ADFE是菱形.综上可知:当AB=AC、∠BAC=150°时平行四边形ADFE是正方形.【点评】主要考查了特殊平行四边形的特殊性.其中矩形,菱形,正方形的一些特性要掌握.25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.【分析】△EMC的形状是等腰直角三角形,求出∠DAB=90°,AD=AB,推出AM⊥BD,AM =BM=DM,求出∠MBC=∠MAE,BM=AM,证△BCM≌△AEM,推出EM=CM,∠3=∠2,求出∠1+∠3=90°即可.【解答】解:△EMC的形状是等腰直角三角形,理由是:连接AM,∵∠8=30°,∠9=60°,∴∠DAB=180°﹣30°﹣60°=90°,∵M为BD中点,AD=AB(已知两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起),∴AM⊥BD(等腰三角形底边的高也平分底边)AM=BM=DM(直角三角形斜边上中线等于斜边的一半)∴∠5=∠6=(180°﹣90°)=45°,∠4=∠BDA=45°,∵∠7=30°,∴∠MBC=45°+30°=75°,同理∠MAE=75°=∠MBC,在△BCM和△AEM中,∴△BCM≌△AEM(SAS),∴EM=CM,∠3=∠2,∵AM⊥BD,∴∠1+∠2=90°,∴∠1+∠3=90°,∴△EMC是等腰直角三角形.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,直角三角形斜边上中线等知识点的运用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.。
2017人教版八年级数学下册期中试卷含答案
2017人教版八年级数学下册期中试卷含答案期中测试一、选择题(每小题3分,共30分)1.若在实数范围内有意义,则x的取值范围是()。
A。
x≥2B。
x≥-2C。
x>1D。
x≠22.一直角三角形的两直角边长为12和16,则斜边长为()。
A。
12B。
16C。
18D。
203.如图,在▱ABCD中,已知AD=5 cm,AB=3 cm,AE 平分∠BAD交BC边于点E,则EC等于()。
A。
1 cmB。
2 cmC。
3 cmD。
4 cm4.下列计算错误的是()。
A。
14×7=98B。
60÷5=12C。
9a+25a=34aD。
32-2=305.如图,点P是平面直角坐标系内一点,则点P到原点的距离是()。
A。
3B。
2C。
7D。
5√36.下列根式中,是最简二次根式的是()。
A。
0.2bB。
12a-12bC。
x^2-y^2D。
5ab^27.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()。
A。
当AB=BC时,它是菱形B。
当AC⊥BD时,它是菱形C。
当∠ABC=90°时,它是矩形D。
当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()。
A。
16√3B。
16C。
8√3D。
89.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()。
A。
2B。
3C。
2√2D。
3√210.如图所示,A(-3,0),B(0,1)分别为x轴,y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()。
A。
7B。
2C。
3D。
4二、填空题(每小题4分,共24分)11.已知(x-y+3)^2+2-y=0,则x+y=()。
解:(x-y+3)^2+2-y=0化简得:x^2-2xy+3x+y^2-2y+11=0移项得:x^2-2xy+3x+y^2-2y=-11再加上2xy,得:x^2+y^2+3x-2y=-11+2xy再移项得:x^2+y^2+3x+2y-11=0再加上6,得:x^2+y^2+3x+2y-5=6即:(x+3)^2+(y+1)^2=25因此,点(x,y)在以(-3,-1)为圆心,5为半径的圆上,而x和y的和等于该点到圆心的距离,即x+y=5.12.如图,已知△ABC中,AB=5 cm,BC=12 cm,AC=13 cm,那么AC边上的中线BD的长为()cm。
17—18学年下学期八年级期中考试数学试题(附答案)
2016—2017学年度第二学期期中考试八 年 级 数 学 试 题(友情提醒:全卷满分100分,答卷时间100分钟,请你掌握好时间.)命题、校对:曹## 一、 选择题( 每题3分,共24分)1. 下列图形中,是中心对称图形,但不是轴对称图形的是 ( ) A .正方形 B .矩形 C .菱形 D .平行四边形 2.已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( ) A .当AB =BC 时,它是菱形 B .当AC =BD 时,它是正方形 C .当∠ABC =90°时,它是矩形 D .当AC ⊥BD 时,它是菱形3. 分式 有意义,则x 的取值范围是( )A .x ≠1B .x =1C .x ≠﹣1D .x =﹣1 4.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( )A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-25. 下列函数中,是反比例函数的是( ) A. y x =-2B. y x =-12C. y x =-11D. y x=126. 东台教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“……”,设乙学校教师有x 人,则可得方程20%2016000060000=+-xx )(,根据此情景,题中用“……”表示的缺失的条件应补( )A .乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B .甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%C .甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D .乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20% 7. 如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE=CF ,连接CE 、DF .△CDF 可以看作是将△BCE 绕正方形ABCD 的中心O 按逆时针方向旋转得到.则旋转角度为( )A .45°B .60°C .90°D .120°8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中不一定成立的是( ) A. S △BEC =2S △CEF B.EF =CF C. ∠DCF =∠BCD D.∠DFE =3∠AEF 二、填空题( 每题3分,共30分)9.在式子1a 、2xy π、2334a b c 、56x +、78x y +、109x y +中,分式有 个.10.□ABCD 中,∠A =50°,则∠C =__________.11.已知菱形两条对角线的长分别为5cm 和12cm ,则这个菱形的面积是_______ cm 2. 12.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=8,则DE= .13.当x 时,分式11x 2+-x 的值为零.14.如果反比例函数xmy =过A (2,-3),则m= 。
新人教版本20172018学年初中八年级的下期中数学试卷习题包括答案解析.docx
新人教版 2017-2018 学年八年级下期中数学试卷含答案解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.52.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的3.在平面直角坐标系中,点(4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037 毫克,那么 0.000037 毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克C. 37×10﹣7毫克D.3.7×10﹣8毫克5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.8.已知平行四边形ABCD 中,∠ B=5∠A ,则∠ C=()A. 30°B.60°C. 120°D. 150°9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B(5,0),D( 2, 3),则顶点 C 的坐标是()A.( 3,7)B.( 5,3)C.( 7,3)D.( 8,2)10.若反比例函数 y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()1>y2>y31>y3>y22y1> y3D.y3>y2>y1A. y B. y C.y >11.如图,在平面直角坐标系中,直线l1:y=x+3 与直线 l2:y=mx+n 交于点 A(﹣ 1,b),则关于 x、y 的方程组的解为()A.B.C.D.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4 D.﹣ 4二、填空题(本大题共 8 小题,每小题 4 分,共 32分)13.在函数 y=中,自变量 x 的取值范围是.14.当 x=时,分式的值为零.15.化简:=.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂).17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k=+18.一次函数 y=(2m﹣6)x+4 中, y 随 x 的增大而减小,则 m 的取值范围是.19.如图,在平行四边形ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段DE 的长度为.20.如图,平行四边形ABCD 的对角线相交于点O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.22.解方程:.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?26.如图,一次函数 y=kx b 与反比例函数 y= (x> 0)的图象交于 A(m,6), B( 3, n)两点.+( 1)直接写出 m=,n=;(2)根据图象直接写出使kx b<成立的 x 的取值范围;+(3)在 x 轴上找一点 P 使 PA PB 的值最小,求出 P 点的坐标.+27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲 16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案与试题解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.5【考点】 61:分式的定义.【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式.,,的分母中含有字母,因此是分式.故选 B.2.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的【考点】 65:分式的基本性质.【分析】根据分式的性质,可得答案.【解答】解:分式中的x和y都扩大3倍,得==,故选: C.3.在平面直角坐标系中,点( 4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【分析】根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x, y)关于 y 轴的对称点的坐标是(﹣ x,y)即可得到点( 4,﹣ 3)关于 y 轴对称的点的坐标.【解答】解:点( 4,﹣ 3)关于 y 轴的对称点的坐标是(﹣ 4,﹣ 3),故选: A.4.花粉的质量很小,一粒某种植物花粉的质量约为 0.000037 毫克,那么0.000037毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克 C. 37×10﹣7毫克 D.3.7×10﹣8毫克【考点】 1J:科学记数法—表示较小的数.a×10﹣n,与较大数的科学记【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.000037 毫克 =3.7× 10﹣5毫克;故选: A.5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米【考点】 E6:函数的图象; E9:分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5 分钟,可知 A 错误; B、 C、D 三种说法都符合题意.故选 A .6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点【考点】 G8:反比例函数与一次函数的交点问题.【分析】根据反比例函数的图象和性质逐一判断可得.【解答】解: A、当 x=﹣3 时, y=﹣=2,即图象必经过(﹣ 3,2),此结论正确;B、∵﹣ 6<0,∴反比例函数在x>0 或 x<0 时, y 随 x 的增大而增大,此结论正确;C、由 k=﹣6<0 知函数图象在第二、四象限内,此结论正确;D、由反比例函数图象位于第二、四象限,而直线y=x 经过第一、三象限,∴图象与直线 y=x 没有交点,此结论错误;故选: D.7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.【考点】 F7:一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与 k、 b 的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选 C.8.已知平行四边形 ABCD 中,∠ B=5∠A ,则∠ C=( ) A . 30°B .60°C . 120° D . 150°【考点】 L5:平行四边形的性质.【分析】 首先根据平行四边形的性质可得∠ A= ∠C ,∠ A +∠ B=180°,再由已知条件计算出∠ A 的度数,即可得出∠ C 的度数.【解答】 解:∵四边形 ABCD 是平行四边形,∴ AD ∥BC ,∠ A= ∠C , ∴∠ A+∠B=180°, ∵∠ B=5∠ A ,∴∠ A+5∠ A=180°,解得:∠ A=30°, ∴∠ C=30°,故选: A .9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B (5,0),D ( 2, 3),则顶点 C 的坐标是 ( ) A .( 3,7) B .( 5,3) C .( 7,3) D .( 8,2)【考点】 L5:平行四边形的性质; D5:坐标与图形性质.【分析】 根据题意画出图形,进而得出 C 点横纵坐标得出答案即可.【解答】 解:如图所示:∵ ? ABCD 的顶点 A ( 0, 0), B (5,0), D ( 2, 3),∴ AB=CD=5 , C 点纵坐标与 D 点纵坐标相同,∴顶点 C 的坐标是;( 7, 3).故选: C .11,y 2),( 2,y 3),则 y 1,y 2,y 310.若反比例函数 y= (k <0)的图象经过点(﹣ 2,y ),(﹣ 的大小关系为( ) 2> y 1> y 33> y 2> y 1A . y 1> y 2> y 31> y 3> y 2C .yD .yB . y【考点】 G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性, 再由各点横坐标的值即可得出结论.【解答】 解:∵反比例函数 y= (k <0),∴此函数图象的两个分支分别位于二、四象限,并且在每一象限内,y 随 x 的增大而增大.∵(﹣ 2,y 1),(﹣ 1, y 2),( 2, y 3)三点都在反比例函数 y= (k <0)的图象上,∴(﹣ 2,y1),(﹣ 1, y2)在第二象限,点( 2, y3)在第四象限,∴y2> y1> y3.故选 C.11.如图,在平面直角坐标系中,直线 l 1:y=x 3与直线 l2:y=mx n 交于点 A(﹣ 1,b),则关于 x、++y 的方程组的解为()A.B.C.D.【考点】 FE:一次函数与二元一次方程(组).【分析】首先将点 A 的横坐标代入y=x+3 求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l : y=x 3 与直线 l : y=mx n 交于点 A (﹣ 1,b),1+2+∴当 x=﹣1 时, b=﹣1+3=2,∴点 A 的坐标为(﹣ 1,2),∴关于 x、 y 的方程组的解是,故选 C.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4D.﹣ 4【考点】 G5:反比例函数系数k 的几何意义.【分析】根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,由题意可知△ AOB 的面积为.【解答】解:根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,∴△ AOB 的面积为,∴=2,∴k1﹣k2=4,故选( C)二、填空题(本大题共8 小题,每小题 4 分,共 32 分)13.在函数 y=中,自变量x的取值范围是x≠3.【考点】 E4:函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出 x 的范围.【解答】解:根据题意得: x﹣3≠0,解得: x≠3.故答案为 x≠3.14.当 x= 2时,分式的值为零.【考点】 63:分式的值为零的条件.【分析】要使分式的值为 0,必须分式分子的值为0 并且分母的值不为0.【解答】解:由分子 x2﹣4=0? x=±2;而x=2 时,分母 x+2=2+2=4≠0,x=﹣2 时分母 x+2=0,分式没有意义.所以 x=2.故答案为: 2.15.化简:= 1 .【考点】 6B:分式的加减法.【分析】首先把分式通分,然后进行同分母的分式的加减,最后把结果进行化简即可求解.【解答】解:原式 =﹣===1.故答案是: 1.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂)【考点】 47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】直接利用积的乘方运算法则结合负指数幂的性质计算得出答案.【解答】解:(﹣ m3n﹣2)﹣2=m﹣6n4=.故答案为:.17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k= 2 .+【考点】 F9:一次函数图象与几何变换.【分析】直线 y=2x 平移时,系数 k=2 不会改变. 5 个单位长度得到,【解答】解:因为一次函数y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移+所以 k=2.故答案是: 2.18.一次函数 y=(2m﹣6)x 4中, y 随 x 的增大而减小,则 m 的取值范围是m<3 .+【考点】 F7:一次函数图象与系数的关系.【分析】利用一次函数图象与系数的关系列出关于m 的不等式 2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6) x 4 中, y 随 x 的增大而减小,+∴ 2m﹣ 6< 0,解得, m< 3;故答案是: m<3.19.如图,在平行四边形 ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段 DE 的长度为 2cm .【考点】 L5:平行四边形的性质.【分析】根据四边形ABCD 为平行四边形可得AE ∥BC,根据平行线的性质和角平分线的性质可得出∠ ABE=∠ AEB,继而可得 AB=AE ,然后根据已知可求得DE 的长度【解答】解:∵四边形 ABCD 为平行四边形,∴ AE∥ BC, AD=BC=8cm ,∴∠ AEB=∠ EBC,∵ BE 平分∠ ABC ,∴∠ ABE=∠ EBC,∴∠ ABE=∠ AEB,∴ AB=AE=6cm ,∴ DE=AD ﹣AE=8 ﹣6=2(cm);故答案为: 2cm.20.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为 10 .【考点】 L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形 ABCD 的对角线相交于点 O, OE⊥ BD ,根据线段垂直平分线的性质,可得BE=DE ,又由平行四边形 ABCD 的周长为 20,可得 BC+CD 的长,继而可得△ CDE 的周长等于BC+CD.【解答】解:∵四边形 ABCD 是平行四边形,∴OB=OD,AB=CD ,AD=BC ,∵平行四边形 ABCD 的周长为 20,∴BC+CD=10,∵OE⊥ BD ,∴ BE=DE,∴△ CDE 的周长为: CD+CE+DE=CD +CE+BE=CD+BC=10.故答案为: 10.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.【考点】 6C:分式的混合运算; 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;( 2)根据分式的加法和除法可以解答本题.【解答】解:( 1)(﹣)﹣2+﹣(﹣1)0=4+3﹣1=6;(2)( 1+)÷==x 1.+22.解方程:.【考点】 B3:解分式方程.x 的值,代入公分母进行检验即可.【分析】先去分母把分式方程化为整式方程,求出整式方程中【解答】解:方程两边同时乘以 2(3x﹣ 1),得 4﹣ 2( 3x﹣1)=3,化简,﹣ 6x=﹣3,解得 x=.检验: x=时, 2(3x﹣1)=2×( 3× ﹣1)≠ 0所以, x=是原方程的解.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.【考点】 FA:待定系数法求一次函数解析式; F5:一次函数的性质.【分析】(1)把 x=2,y=﹣ 1 代入函数 y=kx +b,得出方程组,求出方程组的解即可;(2)把 P 点的坐标代入函数 y=﹣2x+3,求出 m 的值,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:( 1)依题意得:,解得:,所以一次函数的解析式是y=﹣2x+3;( 2)由( 1)可得, y=﹣2x+3.∵点 P (m,n )是此函数图象上的一点,∴n=﹣2m 3即,+又∵﹣ 3≤m≤ 2,∴,解得,﹣ 1≤ n≤ 9,∴ n 的最大值是 9.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.【考点】 L5:平行四边形的性质.【分析】结论: OE=OF,欲证明 OE=OF,只要证明△ AOE≌△ COF 即可.【解答】解:结论: OE=OF.理由∵四边形 ABCD 是平行四边形,∴OA=OC,AD ∥ BC,∴∠ OAE=∠ OCF,在△ AOE 和△ COF 中,,∴△ AOE≌△ COF,∴OE=OF.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?【考点】 B7:分式方程的应用.【分析】设原计划每天改造道路 x 米,实际每天改造( 1+10%)x 米,根据比原计划每天多改造 10%,结果提前 3 天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x 米,实际每天改造( 1+10%) x 米,根据题意得:=+3,解得: x=100,经检验 x=100 是原方程的解,且符合题意.答:原计划每天改造道路100 米.26.如图,一次函数y=kx+b 与反比例函数 y=(x>0)的图象交于A(m,6), B( 3, n)两点.(1)直接写出 m= 1 , n= 2 ;( 2)根据图象直接写出使kx+b<成立的x的取值范围0<x<1 或 x>3;( 3)在 x 轴上找一点 P 使 PA+PB 的值最小,求出P 点的坐标.【考点】 G8:反比例函数与一次函数的交点问题.【分析】(1)将点 A 、B 坐标代入即可得;(2)由函数图象即可得;(3)作点 A 关于 x 轴的对称点 C,连接 BC 与 x 轴的交点即为所求.【解答】解:( 1)把点( m,6), B(3,n)分别代入 y=(x>0)得:m=1,n=2,故答案为: 1、2;(2)由函数图象可知,使 kx+b<成立的 x 的取值范围是 0<x<1 或 x> 3,故答案为: 0<x<1 或 x> 3;(3)由( 1)知 A 点坐标为( 1, 6), B 点坐标为( 3, 2),则点 A 关于 x 的轴对称点 C 的坐标( 1,﹣ 6),设直线 BC 的解析式为 y=kx+b,将点 B、 C 坐标代入,得:,解得:,则直线 BC 的解析式为 y=4x﹣ 10,当y=0 时,由 4x﹣10=0 得: x= ,∴点 P 的坐标为(,0).27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【考点】 GA:反比例函数的应用.【分析】(1)先用待定系数法分别求出 AB 和 CD 的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为 36 时的两个时间,再将两时间之差和 16 比较,大于 16 则能讲完,否则不能.【解答】解:( 1)设线段 AB 所在的直线的解析式为y1=k1x+20,把B(10,40)代入得, k1=2,∴ y1=2x+20.设C、D 所在双曲线的解析式为 y2= ,把 C(25,40)代入得, k2=1000,∴ y2=.当 x1=5 时, y1 =2×5+20=30,当 x2时, 2÷30=,=30y =1000∴y1< y2,∴第 30 分钟注意力更集中.(2)令 y1=36,∴ 36=2x+20,∴ x1=8.令y2=36,∴36=1000÷ x,∴x2=1000÷36≈27.8,∵ 27.8﹣8=19.8>16,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.2017 年 8 月 2 日。
2017年4月八年级数学下册期中试题(有答案)
2017年4月八年级数学下册期中试题(有答案)八年级阶段性测试数学试题(2017年4月)本试题第I卷为选择题,满分48分,请用2B铅笔涂在答题卡上,第II卷为非选择题,共102分,请按照要求填写在试题的相应位置,本试题满分10分,考试时间120分钟第I卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程是一元二次方程的是()A.B..D.2.如图,跷跷板AB的支柱D经过它的中点,且垂直于地面B,垂足为D,D=0,当它的一端B着地时,另一端A离地面的高度A为()A.2 B.0 .7 D.1003.若关于的方程有一个根为1,则另一个根为()A.﹣4 B.2 .4 D.﹣34.关于□ABD的叙述,正确的是()A.若AB⊥B,则□ABD是菱形B.若A⊥BD,则□ABD是正方形.若A=BD,则□ABD是矩形D.若AB=AD,则□ABD是正方形.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形.五边形D.六边形6.关于的一元二次方程有实数根,则的取值范围是()A.B..D.7.如图,菱形ABD的对角线A、BD相交于点,A=8,BD=6,过点作H⊥AB,垂足为H,则点到边AB的距离H等于()A.2B..D.8.已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长为()A.8B.10.8或10D.129.如图,平行四边形ABD的周长是26,对角线A与BD交于点,A⊥AB,E是B中点,△AD的周长比△AB的周长多3,则AE的长度为()A.3B.4.D.810.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x 米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0.x2-9x+8=0 D.2x2-9x+8=011.如图,在△AB中,AB=3,A=4,B=,P为边B上一动点,PE⊥AB于E,PF⊥A于F,为EF中点,则A的最小值为()A B..D.12.如图,分别以直角△AB的斜边AB,直角边A为边向△AB外作等边△ABD和等边△AE,F为AB的中点,DE与AB交于点G,EF 与A交于点H,∠AB=90°,∠BA=30°.给出如下结论:①EF⊥A;②四边形ADFE为菱形;③AD=4AG;④FH= BD;其中正确结论的是()A①②③B.①②④.①③④D.②③④第II卷(非选择题共102分)二、填空题:(本大题共6个小题,每小题4分,共24分.)13方程的根是.14如图,已知AB∥D,要使四边形ABD是平行四边形,还需增加条.(只填写一个条即可,不再在图形中添加其它线段).1若一个正多边形的每个内角为144°,则这个正多边形的边数是16如图,在□ABD中,∠BAD的平分线AE交边D于点E,AB=,B=3,则E=.17如图,菱形ABD的两条对角线分别长4和6,点P是对角线A上的一个动点,点,N分别是边AB,B的中点,则P+PN的最小值是.18如图,正方形ABD的边长为1,以对角线A为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.三、解答题(本大题9个小题,共78分.解答应写出字说明、证明过程或演算步骤.)19.(6分)解方程:(1)(2)20(8分)(1)已知x 1=3是关于x的一元二次方程x2-4x+=0的一个根,求的值和方程的另一个根(2)如图,在矩形ABD中.点在边AB上,∠A=∠BD.求证:A=B.21(6分)如图,四边形ABD是菱形,对角线A与BD相交于点,AB=6,B=3求A的长及∠BAD的度数.22.(8分)如图,四边形ABD为平行四边形,∠BAD的角平分线AE交D于点F,交B的延长线于点E.(1)求证:BE=D;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABD 的面积.23(8分)如图,将矩形纸片ABD沿对角线BD折叠,使点A落在平面上的F点处,DF交B于点E.(1)求证:△DE≌△BFE;(2)若D=2,∠ADB=30°,求BE的长.24.(8分)如图,将□ABD的边AB延长至点E,使AB=BE,连接DE,E,DE交B于点.(1)求证:四边形BED是平行四边形;(2)连接BD,若∠BD=2∠A,求证:四边形BED是矩形.2.(10分)菜农小伟种植的某蔬菜计划以每千克元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.小伟为了加快销售,减少损失,对价格经过两次下调后,以每千克32元的单价对外批发销售.(1)求平均每次下调的百分率.(2)小华准备到小伟处购买吨该蔬菜,因数量多,小伟决定给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.26.(12分)已知:如图,在△AB中,∠B=90°,AB=,B=7.点P 从点A开始沿AB边向点B以1/s的速度移动,同时点Q从点B开始沿B边向点以2/s的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为x秒,(1)求几秒后,△PBQ的面积等于62?(2)求几秒后,PQ的长度等于?(3)运动过程中,△PQB的面积能否等于82?说明理由.27(12分)在平行四边形ABD中,∠BAD的平分线交线段B于点E,交线段D的延长线于点F,以E、F为邻边作平行四边形EFG.(1)如图1,证明平行四边形EFG为菱形;(2)如图2,若∠AB=9 0°,是EF的中点,求∠BD的度数;(3)如图3,若∠AB=120°,请直接写出∠BDG的度数.八年级阶段性测试数学试题参考答案(2017年4月)一、选择题(本大题共12个小题,每小题4分,共48分.)题号12346789101112答案BDABDDBBD二、填空题:(本大题共6个小题,每小题4分,共24分.)13 x1=0,x2=214 AB=D(或AD∥B)1 1016 21718三、解答题(本大题9个小题,共78分.解答应写出字说明、证明过程或演算步骤.)19解:(1)∵(x﹣1)2=9,∴x﹣1=3或x﹣1=﹣3,1分解得:x1=4或x2=﹣2;3分(2)1分3分20解:(1)把x1=3代入方程得:9-12+=0∴=32分把=3代入方程得:x2-4x+3=0解得:x1=3,x2=14分(2)解:∵四边形ABD是矩形,∴∠A=∠B=90°,AD=B,1分∵∠A=∠BD,∴∠A﹣∠D=∠BD﹣∠D,∴∠AD=∠B,2分在△AD和△B中,,∴△AD≌△B,3分∴A=B.4分21解:∵四边形ABD是菱形,∴A⊥BD,A=2A,AD=AB=6,BD=2B=2×3=62分∴AD=AB=BD∴△ABD是等边三角形3分∴∠BAD=60°,4分∴A=AB2-B2=3 3,分∴A=2A=6 36分22(1)证明:∵四边形ABD是平行四边形,∴AD∥B,AB∥D,AB=D,1分∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE∴∠BAE=∠AEB,3分∴AB=BE,∴BE=D;4分(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,分∴AE= AB=4,∵BF⊥AE,∴AF=EF=2∴BF= = =2 ,6分∵AD∥B,∴∠D=∠EF,∠DAF=∠E,在△ADF和△EF中,,∴△ADF≌△EF(AAS),7分∴△ADF的面积=△EF的面积,∴平行四边形ABD的面积=△ABE的面积= AE•BF= ×4×2 =4 .8分23解:(1)∵AD∥B,∴∠ADB=∠DB,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠=90°,2分∴∠DB=∠BDF,∴BE=DE,3分在△DE和△BFE中,,∴△DE≌△BFE;4分(2)在Rt△BD中,∵D=2,∠ADB=∠DB=30°,∴B=2 ,分在Rt△BD中,∵D=2,∠ED=30°,∴DE=2E,∴(2E)2﹣E2=D2,7分∴E= ,∴BE=B﹣E= .8分24证明:(1)∵四边形ABD是平行四边形∴AB=D,AB∥D1分又∵AB=BE,∴BE=D,2分又∵AE∥D∴四边形BED为平行四边形,4分(2)由(1)知,四边形BED为平行四边形∴D=E,=B.分∵四边形ABD为平行四边形,∴∠A=∠BD又∵∠BD=2∠A,∠BD=∠D+∠D,∴∠D=∠D,6分∴=D,∴+B=D+E,即B=ED,7分∴平行四边形BED为矩形.8分2解:(1)设平均每次下调的百分率为x1分由题意,得(1-x)2=324分解这个方程,得x1=02,x2=18(不符合题意,舍去)6分答:平均每次下调的百分率是20%7分(2)小华选择方案一购买更优惠.8分理由:方案一所需费用为32×09×000=14400(元),方案二所需费用为32×000-200×=1000(元).9分∵14400<1000,∴小华选择方案一购买更优惠.10分26解:(1)= ×(﹣x)×2x=62分整理得:x2﹣x+6=0解得:x1=2,x2=3∴2或3秒后△PBQ的面积等于62 4分(2)当PQ=时,在Rt△PBQ中,∵BP2+BQ2=PQ2,∴(﹣x)2+(2x)2=2,6分x2﹣10x=0,x(x﹣10)=0,x1=0,x2=2,∴当x=0或2时,PQ的长度等于.8分(3)假设△PQB的面积等于82则:×(﹣x)×2x=8 9分整理得:x2﹣x+8=010分△=2﹣32=﹣7<011分∴△PQB的面积不能等于82.12分27解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,1分∵四边形ABD是平行四边形,∴AD∥B,AB∥D,∴∠DAF=∠EF,∠BAF=∠FE∴∠EF=∠FE,∴E=F,3分又∵四边形EFG是平行四边形,∴四边形EFG为菱形.4分(2)如图,连接B,,分∵∠AB=90°,四边形ABD是平行四边形,∴四边形ABD是矩形,又由(1)可知四边形EFG为菱形,∴四边形EFG为正方形.6分∵∠BAF=∠DAF,∴BE=AB=D,∵为EF中点,∴∠E=∠E=4°,∴∠BE=∠D=13°,在△BE和△D中,∵,∴△BE≌△D(SAS),8分∴B=D,∠D=∠BE.∴∠BD=∠BE+∠ED=∠D+∠ED=90°,∴△BD是等腰直角三角形9分∴∠BD=4°;10分(3)∠BDG=60°12分。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
人教版2017-2018学年数学八年级下学期期中带答案
数学八年级下学期期中模拟试卷一、单选题(共10题;共20分)1.下列式子中,属于最简二次根式的是()A. B. C. D.2.在下列的线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=41,c=40B. a=b=5,c=5C. a:b:c=3:4:5D. a=11,b=12,c=153.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A. 90°B. 60°C. 120°D. 45°4.已知一个直角三角形的两条边长分别是6和8,则第三边长是()A. 10B. 8C. 2D. 10或25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米6.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A. AB∥CD,AD=BCB. ∠A=∠C,∠B=∠DC. AB∥CD,AD∥BCD. AB=CD,AD=BC7.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A. 16B. 15C. 14D. 138.如图,直线l过正方形ABCD的顶点B,点A、C至直线l的距离分别为2和3,则此正方形的面积为()A. 5B. 6C. 9D. 139.如图,菱形ABCD中,AB∥y轴,且B(﹣10,1)、C(2,6),则点A的坐标为()A. (﹣10,12)B. (﹣10,13)C. (﹣10,14)D. (2,12)10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A. 3B. 4C. 5D. 6二、填空题(共8题;共8分)11.若实数a、b满足,则=________.12.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为________cm.13.计算:=________.14.△ABC的周长为16,点D,E,F分别是△ABC的边AB、BC、CA的中点,连接DE,EF,DF,则△DEF的周长是________.15.一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为________ cm2.16.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是________米.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=________cm.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为________.三、解答题(共3题;共15分)19.已知:如图,在▱ABCD中,对角线AC、BD相交于点O,EF过点O分别交AD、BC于点E、F.求证:OE=OF.20.如图,已知四边形ABCD是菱形,点M、N分别在AB、AD上,且BM=DN,MG∥AD,NF∥AB,点F、G分别在BC、CD上,MG与NF相交于点E,求证:四边形AMEN是菱形.21.如图,正方形ABCD中,点E、F分别在AD、CD上,且AE=DF,连接BE、AF,相交于G.求证:AF⊥BE.四、计算题(共1题;共5分)22.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.五、综合题(共3题;共30分)23.阅读下面材料,回答问题:(1)在化简 的过程中,小张和小李的化简结果不同;小张的化简如下: = = = ﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.24.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若BC=2,求AB 的长.25.如图,E 是正方形ABCD 对角线BD 上一点,EM ⊥BC ,EN ⊥CD 垂足分别是求M 、N(1)求证:AE=MN ;(2)若AE=2,∠DAE=30°,求正方形的边长.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】A7.【答案】B8.【答案】D9.【答案】C10.【答案】D二、填空题11.【答案】12.【答案】4.813.【答案】214.【答案】815.【答案】8416.【答案】817.【答案】918.【答案】或3三、解答题19.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AEO≌△CFO(AAS),∴OE=OF.20.【答案】证明:∵MG∥AD,NF∥AB,∴四边形AMEN是平行四边形,∵四边形ABCD是菱形,∴AB=AD,∵BM=DN,∴AB﹣BM=AD﹣DN,∴AM=AN,∴四边形AMEN是菱形;21.【答案】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠AEG=90°,∴∠DAF+∠AEG=90°,∴∠AGE=90°,∴BE⊥AF.四、计算题22.【答案】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB= =10,∵S△ABC= AB•CD= AC•BC,∴CD= = =4.8五、综合题23.【答案】(1)解:小李化简正确,小张的化简结果错误.因为=| ﹣|= ﹣(2)解:原式= = = ﹣124.【答案】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2 ,∴AC=2BC=4 ,∴AB= = =6.25.【答案】(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF= AE=1,AF=AE•cos30°=2× = .∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF= +1,即正方形的边长为+1.。
人教版2017初二(下册)数学期中考试卷(附答案)
人教版2017初二(下册)数学期中考试卷一、(共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.下列图形中既是轴对称又是中心对称的是()A.B.C.D.2.为了检查某鞋厂生产的一批皮鞋的质量,从中抽取50双进行检查.此项调查中,50是这个问题的()A.个体B.总体C.总体的一个样本D.样本容量3.从1、3、5、7、9中任取两个数字,组成的两位数是奇数,这是()A.必然事件B.随机事件C.不可能事件D.何类事件不能确定4.若把分式中x、y的都扩大5倍,则分式的值()A.扩大5倍B.扩大10倍C.不变D.缩小到原来的5.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8C.4和6 D.2和126.顺次连接矩形的四边中点所得的四边形一定是()A.菱形B.矩形C.平行四边形D.正方形7.下列分式是最简分式的是()A.B.C.D.8.在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共8小题,每小题3分,满分24分)9.一只不透明的袋子中装有3个白球,4个黄球,每个球除颜色外完全相同,从袋子中随机摸出一个球,摸到黄球的概率是.10.在平行四边形ABCD中,∠B=100°,则∠A=,∠D=.11.分式与的最简公分母是.12.菱形的一个内角为60°,较短对角线的长为2,则此菱形的面积为.13.写一个关于x的分式,使此分式当x=3时,它的值为2.这个分式可以是.14.在平面直角坐标系中,A(4,0)、B(4,2)、C(0,2).直线y=kx﹣k+3(k 是常数)将四边形OABC分成面积相等的两部分,则k的值是.15.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为.16.已知,在平面直角坐标系中,点A、C(0,2016),以AC为对角线作正方形ABCD,则顶点D的坐标为.三、解答题(本大题共4小题,每小题7分,共28分)17.计算:(1)﹣(2)(﹣)÷.18.先化简,再求值:(﹣)÷,其中x=6.19.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.求证:DE=BF.20.在一个不透明的袋子装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再先从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下面表格:(2)当(1)中的m=2时,请直接写出事件A发生的概率.四、解答题(本大题共3小题,每小题8分,共24分)21.某中学开展对学生学习方式调查活动.小丽与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了如图的两个统计图.请根据如图两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两幅统计图;(3)根据抽样调查的结果,估算该校800名学生中大约有多少人选择“小组合作学习”?22.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O顺时针旋转90°得到线段A′B′.试在图中画出线段A′B′;(2)若线段A″B″与线段A′B′关于y轴对称,请画出线段A″B″;(3)若点P是此平面直角坐标系内的一点,当点A、B′、B″、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.23.已知:如图,在△ABC中,D、E、F分别是各边的中点,AH是高.求证:∠DEF=∠DHF.五、解答题(本大题共2小题,每小题10分,共20分)24.矩形ABCD中,AB=10,BC=8,点P为AD边上的一点,沿直线BP将△ABP 翻折至△EBP(点A落在点E处).=;(1)如图1,当点E落在CD边上,则△EBC的面积S△BEC(2)如图2,PE、CD相交于点M,且MD=ME,求折痕BP的长;(3)如图3,当点P为AD的中点时,连接DE,则图中与∠APB相等的角的个数为.25.已知四边形ABCD为菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段BC的中点时,请直接写出线段AE、EF、AF之间的数量关系;(2)如图2,当点E是线段BC上的任意一点(点E不与点B、C重合)时,求证:BE=CF;(3)如图3,当点E在线段CB上的延长线上,且∠EAB=15°时,求线段FD的长.人教版2017初二(下册)数学期中考试卷参考答案一、1-5 CDACB 6-8 ACB二、9.10.80°,100°11.m2﹣912.213.14.﹣215.16.(1,﹣1)三、17.解:(1)原式==3(2)原式=•=18.解:原式=[﹣]÷=﹣=﹣当x=6时,原式=﹣19.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.20.解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2或3;(2)m=2时,P(摸出黑球)==.四、21.解:(1)这次抽样调查中,共调查的学生数是:=500(名);故答案为:500.(2)小组合作学习所占的百分比是:×100%=30%,教师传授的人数是:500﹣300﹣150=50(人),教师传授所占的百分比是:×100%=10%;补图如下:(3)根据题意得:800×30%=240(人).答:该校800名学生中大约有240人选择“小组合作学习”.22.解:(1)如图,线段A′B′为所作;(2)如图,线段A″B″为所作;(3)P 点坐标为(﹣4,1)、(4,1)、(0,﹣5).23.证明:∵D、E分别是AB、BC的中点∴DE=AC,∵AH⊥BC F为AC的中点,∴FH=AC,∴DE=FH,同理FE=DH,又∵DF=FD,∴在△DEF和△FHD中,∴△DEF≌△FHD,∴∠DEF=∠DHF.五、24.解:(1)由折叠知,BE=AB=10,在Rt△BCE中,BC=8,根据勾股定理得,CE=6,=CE•BC=24,∴S△BCE故答案为24,(2)如图2,当MD=ME时,设BE交DC与点Q,在△DPM和△EQM中,,∴△DPM≌△EQM∴DP=EQ DQ=EP,设AP=x,则DP=8﹣x=EQ DQ=EP=AP=x∴CQ=10﹣x BQ=2+x,在Rt△CBQ中,由勾股定理得:64+(10﹣x)2=(x+2)2,解得x=,即AP=,在Rt△ABP中,由勾股定理得:BP=,(3)由折叠知,∠BPE=∠APB,AP=PE,∵点P是AD中点,∴AP=DP,∴PD=PE,∴∠PDE=∠PED,∵2∠PDE+∠DPE=180°,2∠APB+∠DPE=180°,∴∠PDE=∠APB,∴∠PDE=∠PED=∠BPE=∠APB,∵∠APB+∠ABP=90°,∠PBC+∠ABP=90°,∴∠APB=∠PBC故答案为4.25.(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:连接AC,如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF;(3)解:过点A作AG⊥BC于点G,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=AB=2,AG=BG=2,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,第11页(共11页) ∴AE=AF ,EB=CF=2﹣2, ∴DF=CF +CD=2﹣2+4=2+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4B.1:2:2:1C.1:2:1:2D.1:1:2:2
6•在平行四边形ABCD中,/A:/B:ZC:ZD的值可以是(
A.1:2:3:
二、填空题:(每小题3分,共24分)
7.
B
4
10题图
3x在实数范内有意义,则x的取值范围是
9.
b
10.如图,口ABCD与口DCFE的周长相等,且/BAD=60° /F=110°则/DAE的度数书为.
2017
一、选择题(每小题2分,共12分)
1•下列式子中,属于最简二次根式的是(
2.如图,在矩形ABCD中,
AD=2AB,点M、
连接BM、
DN.若四边形
MBND是菱形,则
N分别在边AD、BC上,
等于 ()
MD
2
B.
3
C.
4
D.-
5
2题图
-x
3•若代数式.有意义,则实数
x
4题图
x的取值范围是(
A.x工1B.x>0C.x>0D.x>0且x工1
11.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对厶OAB连续作旋转变换,依次得到△1、
△2、△3、△4…,则△2013的直角顶点的坐标为
12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD
成为菱形.(只需添加一个即可)
13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边
4.如图,把矩形
/EFB=60,
ABCD沿EF翻折,点B恰好落在 则矩形ABCD的面积是
AD边的B'处,若
( )
AE=2,
DE=6,
A.12
B. 24
C.
D.
ABCD的边长为4,点E在对角线
)
C.4-2 2
5.如图,正方形
EF丄AB,垂足为F,则EF的长为(
A.1
BD上,且/
BAE=22.5 o,
3.'2-4
长为2cm,/A=120,贝U EF=.
14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把/B沿AE折叠,使点B落在 点B处,当△CEB为直角三角形时,BE的长为.
/
LaZI
*
11题图
12题图
A
13题图
D
三、解答题(每小题5分,共20分)
15•计算:恵卜厲1
14题图