高一数学上学期段考试题
高中数学新教材高一上学期段考数学试题(基础、好用)
高一上学期段考数学试题时间:120分钟 总分:150分一、单选题(每题5分,共40分)1.已知集合{}|2A x x =≤,,且A B ⊆,则a 的取值范围是( ) A .3a > B .2a > C .2a ≥ D .3a ≥2.函数()f x = )A .(],2-∞B .(][),16,-∞-⋃+∞C .()(),33,-∞+∞ D .(](),23,-∞+∞∪3.定义在R 上的函数()f x ,对任意()1212,x x R x x ∈≠有1221()()0f x f x x x ->-,则( )A .(3)(2)(1)f f f <<B .(1)(2)(3)f f f <<C .(2)(3)(1)f f f <<D .(3)(1)(2)f f f <<4.已知0x >,0y >且x+4y=1,则11x y+的最小值为( )A .9B .7C .4D .35.如果不等式1x a ->成立的充分不必要条件是1322x <<,则实数a 的取值范围是( )A .1522a -<<B .1522a -≤≤C .12a <-或52a >D .12a ≤-或52a ≥6.已知8,0()5(),0x x f x g x x -≤⎧=⎨>⎩为奇函数,则(2)g 等于( )A .1B .1-C .2-D .24-7.已知偶函数()f x 在区间[)0,+∞上单调递减,则满足()1213f x f ⎛⎫-> ⎪⎝⎭的实数x 的取值范围是( )A .1233⎛⎫ ⎪⎝⎭,B .1233⎡⎫⎪⎢⎣⎭, C .1223⎛⎫ ⎪⎝⎭, D .1223⎡⎫⎪⎢⎣⎭,8.已知函数,若,则( )A .B .C .D .二、多选题(每题5分,共20分,其中部分选对得2分,全选对得5分,有选错的得0分){}B x x a =<()538f x x ax bx =++-()310f -=()3f =26181026-9.下列各组函数是同一个函数的是( ) A .()f x x =与()g x =B .()f x x =与()g x C .()1f x x =-与()211x g x x -=+D .()0f x x =与()01g t t =10.下列四个命题中,假命题是( ) A .∀x ∀R ,x +1x≥2B .∀x ∀R ,x 2-x >5C .∀x ∀R ,|x +1|<0D .∀x ∀R ,|x +1|>011.给出下列四个命题,其中正确命题的是( )A.若a b >,c d >,则ac bd >;B.若22a x a y >,则x y >;C.若a b >,则11a b a>-; D.若110a b <<,则2ab b <.12.已知a ,b 为正实数,且26ab a b ++=,则( ) A .ab 的最大值为2 B .2a b +的最小值为4 C .a b +的最小值为3 D .1112+++a b三、填空题(每题5分,共20分)13.命题“x ∀,y R ∈,220≥+x y ”的否定是 . 14.不等式2711x x -≤-的解集是 . 15.函数在区间上单调递减,则的取值范围为 .16.设f (x )为偶函数,且在区间(-∞,0)内单调递增,f (-2)=0,则f (x )在区间(0,+∞)上单调 ,(2分)使xf (x )<0的x 的取值范围是 。
山东省济南市山东省实验中学2024-2025学年高一上学期期中考试数学试题(无答案)
山东省实验中学2024~2025学年第一学期期中高一数学试题2024.11(必修第一册阶段检测)说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第1页至第2页,第II 卷为第2页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第I 卷(选择题58分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.命题,,则命题的否定为( )A., B.,C., D.,3.若,函数最小值为( )B.2C. D.44.若幂函数为偶函数,则( )A.或4 B. C.2 D.45.“”的一个必要不充分条件为( )A. B. C. D.6.已知不等式的解集为或,则( )A. B.C. D.的解集为7.已知函数,对任意,,当时,都有成立,则实数的取值范围是( )A. B. C. D.{2,1,0,1,2}A =--122x B x ⎧⎫=≤⎨⎬⎩⎭A B = {1}-{2,1}--{1}{1,0,1}-:2p x ∀>210x ->p 2x ∀>210x -≤2x ∀≤210x ->2x ∃>210x -≤2x ∃≤210x -≤0x >13y x x=+()2()19m f x m m x =+-m =5-5-3a ≥1a ≥1a <3a ≥3a >20ax bx c ++<{1x x <-}3x >0a >0c <0a b c ++<20cx bx a -+<113x x ⎧⎫-<<⎨⎬⎩⎭2(31)4,1()6,1a x a x f x x ax x -+<⎧=⎨-+≥⎩1x 2x ∈R 12x x ≠()()12120f x f x x x ->-a [2,)+∞1,23⎛⎤ ⎥⎝⎦1,13⎛⎤ ⎥⎝⎦[1,2]8.在山东省实验中学科技节中,高一李明同学定义了可分比集合:若对于集合满足对任意,,都有,则称是可分比集合.例如:集合是可分比集合.若集合A ,B 均为可分比集合,且,则正整数的最大值为( )A.6B.7C.8D.9二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中,既是偶函数,又在上单调递增的是( )A. B.C. D.10.若,,且,则( )A. B.C. D.11.已知函数的定义域为,且,的图象关于对称.当时,,若,则( )A.的周期为4 B.的图象关于对称C. D.当时,第II 卷(非选择题 92分)三、填空题:本题共3小题,每小题5分,共15分.12.若函数的定义域为,则的定义域为_________.13.若正实数x ,y 满足,则的最小值为_________.14.已知函数,若关于的方程至少有两个不相等的实数根,则实数的取值范围为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设集合,.(1)当时,求与;M a b M ∈[2,3]ab∉M {}1,4,6,7{}1,2,,A B n = n (0,)x ∈+∞()f x =()||f x x =2()||f x x x =+()22xxf x -=-a 0b ≠||||a bc c >a b>11a b<||a b >||||a cbc >()f x R ()(2)f x f x =-(2)y f x =+(0,0)[0,1]x ∈()2xf x a b =⋅+(3)1f =-()f x ()y f x =(4,0)(2025)1f =[4,5]x ∈()21xf x =-(31)f x +[1,2]-()f x 32x y +=31x y+22,0()112,0x x x f x x x ⎧->⎪=⎨-+≤⎪⎩x ()2f x kx k =-k {}23100A x x x =--≤{}121B x m x m =-<<+4m =()A B R ðA B(2)当时,求实数的取值范围.16.(本小题满分15分)已知定义域为上的奇函数满足当时,.(1)求函数的解析式;(2)求函数在上的最大值和最小值及对应的值.17.(本小题满分15分)已知二次函数.(1)当时,解关于的不等式;(2)当,时,求的最大值.18.(本小题满分17分)已知函数.(1)判断并证明的奇偶性;(2)判断并证明在上的单调性;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.(本小题满分17分)已知函数,.(1)求函数的值域;(2)证明:曲线是中心对称图形;(3)若对任意,都存在及实数,使得,求实数的最大值.A B A = m R ()f x (,0]x ∈-∞2()4f x x x =+()f x ()f x [1,3]-x 2()33f x x mx x m =+--m ∈R x ()0f x ≤2m =[],1x t t ∈+()f x ()g t 3()2||1xf x x x =++()f x ()f x [0,)+∞x ()()2310f ax ax f ax ++->x a 1()21x f x =+x ∈R ()f x ()y f x =1[1,]x n ∈2[1,2]x ∈m ()()11231f mx f x x -+=n。
树人高级中学2020_2021学年高一数学上学期第一次阶段考试试题
安徽省淮北市树人高级中学2020-2021学年高一数学上学期第一次阶段考试试题时间:120分钟 满分:150分一.单选题(每题5分,共8题)1.若0a b >>,则下面不等式中成立的是( ) A 。
2a ba b ab +>>> B.2a ba ab b +>>> C.2a ba b ab +>>>D 。
2a ba ab b +>>> 2.下面关于集合的表示正确的个数是;; ;. A 。
0B. 1C. 2D 。
33。
已知1(0,)4x ∈,则(14)x x -取最大值时x 的值是( )A .14B .16C .18D .1104。
命题“所有能被2整除的整数都偶数"的否定( ) A.所有不能被2整除的整数都是偶数 B 。
所有能被2整除的整数都不是偶数 C 。
存在一个不能被2整除的整数是偶数 D 。
存在一个能被2整除的整数不是偶数5。
已知0,0,22x y x y >>+=,则x y 的最大值为( ) A.2B 。
1 C.12D.146.给出下列四个条件:①22xt yt >;②xt yt>;③22x y >;④110x y<<.其中能成为x y >的充分条件的是( )A 。
①②B 。
②③C 。
③④D 。
①④7。
函数的最小值是A. 4B. 6C. 8D 。
108.某城市对一种每件售价为160元的商品征收附加税,税率为%R (即每销售100元征税R 元),若年销售量为5302R ⎛⎫- ⎪⎝⎭万件,要使附加税不少于128万元,则R 的取值范围是( ) A.[]4,8B.[]6,10C 。
[]4%,8%D.[]6%,100%二、不定项选择题(本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得3分。
江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)
江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
东北师范大学附属中学2024年高一上学期9月阶段性考试数学试题(解析版)
2024-2025学年东北师大附中 高一年级数学科试卷上学期阶段性考试考试时长:90分钟 试卷总分:120分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 下列元素的全体可以组成集合的是( ) A. 人口密度大的国家 B. 所有美丽的城市 C. 地球上四大洋 D. 优秀的高中生【答案】C 【解析】【分析】根据集合的确定性,互异性和无序性即可得出结论.详解】由题意,选项ABD ,都不满足集合元素的确定性,选项C 的元素是确定的,可以组成集合. 故选:C.2. 若全集R U =,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A. {3,4,5,6}B. {0,1,2}C. {0,1,2,3}D. {4,5,6}【答案】A 【解析】【分析】根据图中阴影部分表示()U A B 求解即可. 【详解】由题知:图中阴影部分表示()U A B ,{}|3U Bx x =≥ ,则(){}3,4,5,6U B A = .故选:A3. 命题“[1,3]x ∀∈−,2320x x −+<”的否定为( )的【A. []1,3x ∃∈−,2320x x −+≥B. []1,3x ∃∈−,2320x x −+>C. []1,3x ∀∈−,2320x x −+≥D. []1,3x ∃∉−,2320x x −+≥【答案】A 【解析】【分析】根据给定条件,利用全称量词命题的否定直接写出结论即可.【详解】命题“[1,3]x ∀∈−,2320x x −+<”是全称量词命题,其否定是存在量词命题, 因此命题“[1,3]x ∀∈−,2320x x −+<”的否定是[]1,3x ∃∈−,2320x x −+≥. 故选:A4. 已知集合{}240A x x=−>,{}2430B x xx =−+<,则A B = ( )A. {}21x x −<< B. {}12x x <<C. {}23x x −<<D. {}23x x <<【答案】D 【解析】【分析】解出集合,A B ,再利用交集含义即可.【详解】{}{2402A x xx x =−>=或}2x <−,{}{}2430|13B x xx x x =−+<=<<,则{}23A Bx x ∩=<<.故选:D.5. 若,,a b c ∈R ,0a b >>,则下列不等式正确的是( ) A.11a b> B. a c b c >C. 2ab b >D. ()()2211a c b c −>−【答案】C 【解析】【分析】对BD 举反例即可,对AC 根据不等式性质即可判断. 【详解】对A ,因为0a b >>,则11a b<,故A 错误; 对B ,当0c =时,则a c b c =,故B 错误;对C ,因为0a b >>,则2ab b >,故C 正确; 对D ,当1c =时,则()()2211a c b c −=−,故D 错误. 故选:C.6. “2a <−”是“24a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】解出不等式24a >,根据充分不必要条件的判定即可得到答案. 【详解】24a >,解得2a >或2a <−,则“2a <−”可以推出“24a >”,但“24a >”无法推出“2a <−”, 则“2a <−”是“24a >”的充分不必要条件. 故选:A .7. 关于x 的一元二次方程(1)(4)x x a −−=有实数根12,x x ,且12x x <,则下列结论中错误的说法是( ) A. 当0a =时,11x =,24x = B. 当0a >时,1214x x << C. 当0a >时,1214x x <<< D. 当904a −<<时,122544x x <<【答案】B 【解析】【分析】根据给定条件,借助二次函数的图象,逐项分析判断即可.【详解】对于A ,当0a =时,方程(1)(4)0x x −−=的二实根为121,4x x ==,A 正确; 对于B ,方程(1)(4)x x a −−=,即2540x x a −+−=,254(4)0a ∆=−−>,解得94a >−, 当0a >时,1244x x a =−<,B 错误;对于C ,令()(1)(4)f x x x =−−,依题意,12,x x 是函数()y f x =的图象与直线y a =交点的横坐标, 在同一坐标系内作出函数()y f x =的图象与直线y a =,如图,观察图象知,当0a >时,1214x x <<<,C 正确; 对于D ,当904a −<<时,12254(4,)4x x a =−∈,D 正确.故选:B8. 已知[]x 表示不超过x 的最大整数,集合[]{}03A x x =∈<<Z ,()(){}2220Bx xax x x b =+++=,且 R A B ∩=∅ ,则集合B 的子集个数为( ).A. 4B. 8C. 16D. 32【答案】C 【解析】【分析】由新定义及集合的概念可化简集合{}1,2A =,再由()A B ∩=∅R 可知A B ⊆,分类讨论1,2的归属,从而得到集合B 的元素个数,由此利用子集个数公式即可求得集合B 的子集的个数. 【详解】由题设可知,[]{}{}Z |31,2A x x =∈<<=,又因为()A B ∩=∅R ,所以A B ⊆, 而()(){}22|20B x xax x x b =+++=,因为20x ax 的解为=0x 或x a =−,220x x b ++=的两根12,x x 满足122x x +=−, 所以1,2分属方程20x ax 与220x x b ++=的根,若1是20x ax 的根,2是220x x b ++=的根,则有221+1=02+22+=0a b × × ,解得=1=8a b −− , 代入20x ax 与220x x b ++=,解得=0x 或=1x 与=2x 或4x =−,故{}0,1,2,4B=−;若2是20x ax 的根,1是220x x b ++=的根,则有222+2=01+21+=0a b × × ,解得=2=3a b −− ,代入20x ax 与220x x b ++=,解得=0x 或=2x 与=1x 或3x =−,故{}0,1,2,3B=−;所以不管1,2如何归属方程20x ax 与220x x b ++=,集合B 总是有4个元素, 故由子集个数公式可得集合B 的子集的个数为42=16. 故选:C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知关于x 的不等式20ax bx c ++<的解集为(1,6)−,则( ) A. 0a < B. 不等式0ax c +>的解集是{|6}x x > C. 0a b c ++< D. 不等式20cx bx a −−<的解集为11(,)32【答案】BC 【解析】【分析】利用一元二次不等式的解集用a 表示,b c ,再逐项分析判断即得.【详解】对于A ,由不等式20ax bx c ++<的解集为(1,6)−,得1,6−是方程20ax bx c ++=的两个根,且0a >,A 错误;对于B ,16,16b ca a−+=−−×=,则5,6b a c a =−=−, 不等式0ax c +>,即60ax a −>,解得6x >,B 正确; 对于C ,56100a b c a a a a ++=−−=−<,C 正确;对于D ,不等式20cx bx a −−<,即2650ax ax a −+−<,整理得()()31210x x −−>,解得13x <或12x >,D 错误. 故选:BC10. 已知x y 、都是正数,且满足2x y +=,则下列说法正确的是( )A. xy 的最大值为1B.+的最小值为2C. 11x y+的最小值为2D. 2211x y x y +++的最小值为1【答案】ACD【解析】【分析】根据给定条件,借助基本不等式及“1”的妙用逐项计算判断即得.【详解】对于A ,由0,0x y >>,2x y +=,得2()12x y xy +≤=,当且仅当1xy ==时取等号,A 正确;对于B2+≤,当且仅当1xy ==时取等号,B 错误; 对于C,1111111()()(2)(22222y x x y x y x y x y +=++=++≥+=, 当且仅当1xy ==时取等号,C 正确; 对于D ,222211111111111111x y x y x y x y x y x y −+−++=+=−++−+++++++ 11111111[(1)(1)]()(2)11411411y x x y x y x y x y ++=+=++++=++++++++1(214≥+=,当且仅当1111y x x y ++=++,即1x y ==时取等号,D 正确. 故选:ACD11. 用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),,C A C B C A C B A B C B C A C A C B −≥ ∗=−< ,已知集合222{0},{R |()(1)0}A x x x B x x ax x ax =+==∈+++=|,则下面正确结论正确的是( )A. a ∃∈R ,()3C B =B. a ∀∈R ,()2C B ≥C. “0a =”是“1A B ∗=”的充分不必要条件D 若{}R1S a A B =∈∗=∣,则()4C S = 【答案】AC 【解析】【分析】根据集合新定义,结合一元二次方程,逐项分析判断即可. 【详解】对于A ,当2a =时,{}0,2,1B =−−,此时()3C B =,A 正确;对于B ,当0a =时,{}0B =,此时()1C B =,B 错误;.对于C ,当0a =时,{}0B =,则()1C B =,而{}0,1A =−,()2C A =,因此1A B ∗=;当1A B ∗=时,而()2C A =,则()1C B =或3,若()1C B =,满足2Δ40a a ==−< ,解得0a =; 若()3C B =,则方程20x ax 的两个根120,x x a ==−都不是方程210x ax ++=的根,且20Δ40a a ≠ =−=,解得2a =±,因此“0a =”是“1A B ∗=”的充分不必要条件,C 正确; 对于D ,由1A B ∗=,而()2C A =,得()1C B =或3,由C 知:0a =或2a =±,因此{}0,2,2S =−, 3C S ,D 错误.故选:AC三、填空题(本题共3小题,每小题5分,共15分.)12. 已知集合{}A x x a =<,{}13B x x =<<,若A B B = ,则实数a 的取值范围是______.【答案】3a ≥ 【解析】【分析】根据给定条件,利用交集的定义,结合集合的包含关系求解即得.【详解】由A B B = ,得B A ⊆,而{}A x x a =<,{}13B x x =<<,则3a ≥,所以实数a 的取值范围是3a ≥. 故答案:3a ≥13.若一个直角三角形的斜边长等于,当这个直角三角形周长取最大值时,其面积为______. 【答案】18 【解析】【分析】由题意画出图形,结合勾股定理并通过分析得知当()2722AB AC AB AC +=+⋅最大值,这个直角三角形周长取最大值,根据基本不等式的取等条件即可求解. 【详解】如图所示:为在Rt ABC △中,90,A BC ==而直角三角形周长l AB BC CA AB CA =++=++,由勾股定理可知(222272AB CA BC +===,若要使l 最大,只需+AB AC 即()2222722AB AC AB AC AB AC AB AC +=++⋅=+⋅最大即可, 又22272AB AC AB AC ⋅≤+=,等号成立当且仅当6AB AC ==, 所以()2722144AB AC AB AC +=+⋅≤,12AB AC +≤,12l ≤+, 等号成立当且仅当6AB AC ==, 此时,其面积为11661822S AB AC =⋅=××=. 故答案为:18.14. 若不等式22x x a ax +−>+对(]0,1a ∀∈恒成立,则实数x 取值范围是______. 【答案】(]),2∞∞−−∪+【解析】【分析】根据主元法得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,再利用一次函数性质即可得到答案.【详解】由不等式22x x a ax +−>+对(]0,1a ∀∈恒成立, 得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,令()()212g a x a x x =+−−+,得22(0)20(1)120g x x g x x x =−−+≤ =+−−+< , 解得(]),2x ∈−∞−+∞,∴实数x的取值范围是(.故答案为:(]),2∞∞−−∪+.四、解答题(本题共3小题,共47分)15. 设集合U =R ,{}05Ax x =≤≤,{}13B x m x m =−≤≤. (1)3m =,求()U A B ∪ ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.的【答案】(1){|5x x ≤或}9x > (2)12m <−或513m ≤≤. 【解析】【分析】(1)根据 集合的补集定义以及集合的交集运算,即可求得答案;(2)依题意可得B A ,讨论集合B 是否为空集,列出相应的不等式,即可求得结果. 【小问1详解】当3m =时,可得{}|29B x x =≤≤,故可得{|2U B x x =< 或}9x >,而{}|05A x x =≤≤, 所以(){|5U A B x x ∪=≤ 或}9x >. 【小问2详解】由“x B ∈”是“x A ∈”的充分不必要条件可得B A ; 当B =∅时,13m m −>,解得12m <−,符合题意; 当B ≠∅时,需满足131035m m m m −≤−≥ ≤,且10m −≥和35m ≤中的等号不能同时取得,解得513m ≤≤; 综上可得,m 的取值范围为12m <−或513m ≤≤. 16. (1)已知03x <<,求y =的最大值; (2)已知0x >,0y >,且5x y xy ++=,求x y +的最小值; (3)解关于x 的不等式()2330ax a x −++<(其中0a ≥). 【答案】(1)92;(2)2+;(3)答案见解析 【解析】【分析】(1)化简得y,再利用基本不等式即可;(2)利用基本不等式构造出252x y x y + ++≤,解出即可;(3)因式分解为(3)(1)0ax x −−<,再对a 进行分类讨论即可.【详解】(1)()229922x x y +−=≤=,当且仅当229x x =−,即229x x =−,即x =时等号成立.则y =的最大值为92. (2)因为 0,0x y >>, 且 5x y xy ++=, 则252x y x y xy + ++≤,解得2x y +≥ 或 2x y +≤−(舍去),当且仅当1x y ==时等号成立,则x y +的最小值为2+.(3)不等式()2330ax a x −++<化为(3)(1)0ax x −−<,(其中0a ≥), 当0a =时,解得1x >;当0a >时,不等式化为3()(1)0x x a−−<,若0<<3a ,即31a>,解得31x a <<;若3a =,x 无实数解; 若3a >,即31a <,解得31x a<<, 所以当0a =时,原不等式的解集为{|1}x x >; 当0<<3a 时,原不等式的解集为3{|1}x x a<<; 当3a =时,原不等式的解集为∅; 当3a >时,原不等式的解集为3{|1}x x a<<. 17. 已知方程()220,x mx n m n −+−=∈R(1)若1m =,0n =,求方程220x mx n −+−=的解;(2)若对任意实数m ,方程22x mx n x −+−=恒有两个不相等的实数解,求实数n 的取值范围;(3)若方程()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,且()2121248x x x x +−=,求221221128x x x x x x +−+的最小值. 【答案】(1)2x =或1−;(2)2n <(3)【解析】【分析】(1)由题意得到220x x −−=,求出方程的根;(2)由根的判别式大于0得到()21124n m <++,求出()211224m ++≥,从而得到2n <; (3)由韦达定理得到1212,2x x m x x n +==−,代入()2121248x x x x +−=中得到24m n =,结合立方和公式化简得到2212211288328x x m x x x x m m m+−=−++−,令8t m m =−,由单调性得到81333t −=≥,结合基本不等式求出22122112832x x t x x x x t +−=+≥+,得到答案. 【小问1详解】1m =,0n =时,220x x −−=,解得2x =或1−;【小问2详解】()222120x mx n x x m x n −+−=⇒−++−=,故()()2Δ1420m n =+−−>,所以()21124n m <++, 其中()211224m ++≥,当且仅当1m =−时,等号成立, 故2n <;【小问3详解】()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,()2Δ420m n =−−>,由韦达定理得1212,2x x m x x n +==−,故()2212124488x x x x m n +−=−+=,所以24m n =,此时80∆=>, 所以()()2222331211221212211212121212888x x x x x x x x x x x x x x x x x x x x x x +−+++−=−=−+++ ()()()221212121212336882x x x x x x m m n x x x x n m ++−−+ −=−+−,因为24m n =, 所以2222122221126284488883282244m m m m x x m m m x x x x m m m m m +−+ +−=−=−=−++−−−, 令8t m m =−,其在3m ≥上单调递增,故81333t −=≥,故22122112832x x t x x x x t +−=+≥+ 当且仅当32t t=,即=t 时,等号成立, 故221221128x x x x x x +−+的最小值为【点睛】关键点点睛:变形得到2212211288328x x m x x x x m m m+−=−++−,换元后,由函数单调性和基本不等式求最值.。
高一数学上学期半期考试试题含解析 试题
智才艺州攀枝花市创界学校一中办学一共同体二零二零—二零二壹高一数学上学期半期考试试题〔含解析〕一、选择题〔一共60分,每一小题5分,每个小题有且仅有一个正确之答案〕,,那么等于〔)A. B. C. D.【答案】D【解析】【分析】根据集合交集的定义,找到集合A、B的公一共元素即可.【详解】那么应选D【点睛】此题考察集合运算,对于A,B两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作A∩B.所以找出A、B的公一共元素是求交集的关键.,,那么满足条件的集合的个数为〔〕A.4B.8C.9D.16【答案】B【解析】根据集合A、B、C的关系,集合C中必然包含集合A中的元素,集合B一共有五个元素,只需要确定集合的子集个数,即为集合C的所有可能,所以集合C有种可能.【详解】集合C为:,,,,,,应选B【点睛】此题考察集合之间的关系以及集合子集个数的求法,首先需要确定集合中的元素,然后根据集合的特点确定集合子集个数,一般一个集合里有N个元素〔可以是数〕,那么它所有子集的数目是,所有真子集数目(子集除去本身),所有非空子集数目是〔子集除去空集〕,所有非空真子集数目〔子集除去本身和空集〕.3.集合A=[0,8],集合B=[0,4],那么以下对应关系中,不能看作从A到B的映射的是A.f:x→y=xB.f:x→y=xC.f:x→y=xD.f:x→y=x【答案】D【解析】试题分析:D选项里面的映射不能使集合A中的每一个元素都在集合B中找到一个元素与之对应,例如集合A 中的元素6就不能在集合B中找到一个元素与之对应.考点:运用映定义判断对应关系是否为映射.4.以下各组函数表示同一函数的是〔〕A. B.C. D.【答案】C试题分析:A中两函数定义域不同;B中两函数定义域不同;C中两函数定义域一样,对应关系一样,是同一函数;D中两函数定义域不同考点:判断两函数是否同一函数5.那么等于(〕A.π+1B.0C.2D.【答案】A【解析】【分析】此题可以根据分段函数解析式,由内到外,依次求解函数值,即可求得答案.【详解】f(-2)=0,f(0)=,应选A【点睛】此题主要考察了函数值的求解问题,解答题目的过程中要准确把握分段函数的分段条件,正确选择相应的解析式计算求值是解答的关键,着重考察了推理与运算才能.6.以下函数中,既是奇函数又是增函数的是()A. B. C. D.【答案】B【解析】【分析】根据奇函数定义先判断出奇偶性,然后根据单调性定义判断单调性即可.【详解】A.非奇非偶函数;B.奇函数且是单调递增函数;C.奇函数但在定义域上不是增函数;D.奇函数,单调递减函数;【点睛】此题主要考察函数的奇偶性和单调性,结合初等函数的奇偶性和单调性判断出原函数的性质,主要考察了推理才能。
重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
山东烟台市2019-2020学年度第一学期学段检测高一数学试题含答案(定稿)
烟台市2019-2020学年度第一学期期中学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。
2.答卷前务必将姓名和准考证号填涂在答题纸上。
3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰。
超出 答题区书写的答案无效;在草稿纸、试题卷上答题无效。
一、选择题:本大题共13小题,每小题4分,共52分。
在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。
1.已知集合{1,2,3,4,5}U =,={1,3,4}A ,={4,5}B ,则()=UA BA .{3}B .{1,3}C .{3,4}D .{1,3,4}2.命题“x ∀∈R ,21x >”的否定是 A .x ∃∈R ,21x ≤ B .x ∃∈R ,21x < C .x ∀∈R ,21x <D .x ∀∈R ,21x ≤3.设a ∈R ,则“0a >”是“20a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.我们把含有限个元素的集合A 叫做有限集,用card()A 表示有限集合A 中元素的个数.例如,{,,}A x y z =,则card()=3A .若非空集合,M N 满足card()M =card()N ,且M N ⊆,则下列说法错误..的是 A .M N M = B .M N N =C .M N N =D .M N =∅5.设102x <<,则(12)x x -的最大值为A .19B .29C .18D .146.下面各组函数中表示同一个函数的是A .()f x x =,2()g x =B .()f x x =,()g xC .21()1x f x x -=-,()1g x x =+D .()x f x x =,1,0,()1,0.x g x x ≥⎧=⎨-<⎩7.已知231,0,()21,0,x x f x x x +>⎧=⎨-<⎩若()(1)8f a f +-=,则实数a 的值为 A .2-B .2C .2±D .3±8.若不等式2220mx mx +-<对一切实数x 都成立,则实数m 的取值范围为 A .(2,0)-B .(2,0]-C .(,0)-∞D .(,0]-∞9.某容器如右图所示,现从容器顶部将水匀速注入其中,注满为止. 记容器内水面的高度h 随时间t 变化的函数为()h f t =,则()h f t = 的图象可能是A .B .C .D .10.已知函数()f x 是定义在R 上的单调函数,(0,1)A ,(2,1)B -是其图象上的两点,则不等式(1)1f x ->的解集为 A .(1,1)-B .(,1)(1,)-∞-+∞ C .(1,3) D .(,1)(3,)-∞+∞11.下列结论正确的有A .函数0()(1)1f x x x =-++的定义域为(1,1)(1,)-+∞B .函数()y f x =,[1,1]x ∈-的图象与y 轴有且只有一个交点C .“1k >”是“函数()(1)+f x k x k =-(k ∈R )为增函数”的充要条件D .若奇函数()y f x =在0x =处有定义,则(0)=0f12.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若,,a b c ∈R ,则下列命题正确的是 A .若0ab ≠且a b <,则11a b> B .若01a <<,则3a a < C .若0a b >>,则11b b a a+>+ D .若c b a <<且0ac <,则22cb ab < 13.我们把定义域为[0,)+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:(1)对任意的[0,)x ∈+∞,总有()0f x ≥;(2)若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,下列判断正确的是 A .若()f x 为“Ω函数”,则(0)0f =B .若()f x 为“Ω函数”,则()f x 在[0,)+∞上为增函数C .函数0,,()1,x g x x ∈⎧=⎨∉⎩Q Q在[0,)+∞上是“Ω函数” D .函数2g()+x x x =在[0,)+∞上是“Ω函数”。
湖北鄂东南省级示范高中教育教学改革联盟学校2024-2025学年高一上学期起点考试数学试题(含解析)
2024年秋季鄂东南省级示范高中教育教学改革联盟学校起点考试高一数学试题考试时间:2024年10月14日上午8:00—10:00 试卷满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A.B.C.D.2.命题“”的否定为( )A. B.C. D.3.已知集合,则集合A 的所有非空子集的个数为( )A.5个B.6个C.7个D.8个4.下列各组函数表示相同函数的是( )A. B.C. D.5.设,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知,则正确的结论是( )A. B.C.D.与的大小不确定7.已知关于的不等式的解集为,则关于的不等式的解集为()A. B.,或C. D.{1,0,1,2,3},{12}A B xx =-=-<≤∣A B ⋂={1,0}-{1,0,1}-{0,1}{0,1,2}2[1,3],320x x x ∀∈--+≤2000[1,3],320x x x ∃∈--+≥2[1,3],320x x x ∃∈--+>2[1,3],320x x x ∀∈--+≥2000[1,3],320x x x ∃∉--+≥86A x x ⎧⎫⎨⎬⎩⎭=∈∈-N N ()1,()|1|f x x g x x =+=+0()1,()f x g x x ==2()()f m g n ==32(),()1x xf xg x xx +==+x ∈R |32|3x -≤(2)0x x -≤1,c a b >==a b <a b>a b =a b x 20ax bx c ++>{23}xx <<∣x 20bx ax c ++<615x x ⎧⎫-<<⎨⎬⎩⎭{1x x <-∣6}5x >213x x ⎧⎫-<<⎨⎬⎩⎭213x x x ⎧⎫<->⎨⎬⎩⎭,或8.若正实数满足,不等式有解,则的取值范围是( )A. B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.图中阴影部分用集合符号可以表示为()A. B.C. D.10.若,且,则下列说法正确的是( )A.有最大值有最大值2C.有最小值5 D.11.下列命题正确的有()A.若方程有两个根,一个大于1另一个小于1,则实数的取值范围为B.设,若且,则C.设,命题是命题的充分不必要条件D.若集合和至少有一个集合不是空集,则实数的取值范围是或三、填空题:本题共3小题,每小题5分,共15分.12.已知函数的定义域为,则函数的定义域为______.,x y 24x y +=212131m m x y +>++m 4,13⎛⎫-⎪⎝⎭4,(1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭41,3⎛⎫- ⎪⎝⎭4(,1),3⎛⎫-∞-⋃+∞ ⎪⎝⎭()U ()B A C ⋂⋃ðU (()())A B B C ⋂⋃⋂ð()()U A C B⋃⋂ð()()()()U UA BC B ⋂⋃⋂ðð0,0a b >>41a b +=ab 1161a a b +2216a b +2210ax x -+=a (0,1),a b ∈R 12a b -……24a b +……54210a b -……,a b ∈R :p a b >:||||q a a b b >{}{}2220,220,A xx x a B x x ax A =+-==++=∣∣B a a (1)a -…()y f x =[3,2]-(21)1f x y x +=+13.已知为二次函数,满足,则函数______.14.设集合,函数,已知,且,则的取值范围为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合.(1)若,求;(2)若,求实数的取值范围.16.(15分)设命题:对任意,不等式恒成立,命题:存在使得不等式成立.(1)若为真命题,求实数的取值范围;(2)若命题与命题一真一假,求实数的取值范围.17.(15分)已知关于的不等式.(1)若不等式的解集为或,求的值;(2)求关于的不等式的解集.18.(17分)某公司销售甲、乙两种产品,根据市场调查和预测,甲产品的利润(万元)与投资额(万元)成正比,其关系如图(1)所示;乙产品的利润(万元)与投资额(万元)的算术平方根成正比,其关系式如图(2)所示,(1)分别将甲、乙两种产品的利润表示为投资额的函数;(2)若该公司投资万元资金,并全部用于甲、乙两种产品的营销,问:怎样分配这万元投资,才能使公司获得最大利润?其最大利润为多少?19.(17分)设,其中,记.(1)若,求的值域;()f x 2()(1)2f x f x x ++=()f x =[0,1),[1,3]M N ==21,()63,x x Mf x x x N+∈⎧=⎨-∈⎩a M ∈(())f f a M ∈a {68},{123}A xx B x m x m =-<=++∣∣………1m =()A B ⋂R ðA B A ⋃=m p [0,1]x ∈2234x m m --…q [1,1]x ∈-2210x x m -+-…p m p q m x 31,1ax x a x +->∈-R {1xx <∣2}x >a x y x y x (0)a a >a 22()21,()41f x x tx g x x tx =-+=-++0t >()min{(),()}F x f x g x =1t =()F x(2)若,记函数对任意,总存在,使得成立,求实数的取值范围;(3)若,求实数的取值范围.2024年秋季鄂东南省级示范高中教育教学改革联盟学校起点考试高一数学参考答案0t >2()()1h x f x tx t =+-+1,x t t ⎡⎤∈⎢⎥⎣⎦1,22m t t⎡⎤∈⎢⎥⎣⎦()h x m =t 13[0,3],()22x F x ∀∈-≤t一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【详解】因为,所以.故选:D.2.【答案】B【详解】由全称命题的否定为特称命题知:原命题的否定为:故选:B 3.【答案】C 【详解】由题设,,即8可被整除且,故集合A 的所有非空子集的个数为4.【答案】D【解答】解:与的对应关系不同,不是同一函数:定义域不同,不是同一函数:,而的定义域为,不是同一函数:与的定义域都为,对应关系相同,是同一函数.故途:D.5.【答案】D【解答】根据题意,不等式,则,即,解集为不等式,即,解集为,因为且,所以“”是“”的既不充分也不必要条件,故选:D.6.【解新】方法一:特值法取特殊值,令,则易知,排除B ,C ,还不能排除D ,猜测选A.方法二:作差法,分析法{1,0,1,2,3),{12}A Bxx =-=-<≤∣{}0,1,2A B ⋂=2000[1,3],320x x x ∃∈--+>86x∈-N 6x -60,x x ->∈N {2,4,5},A ∴=3217-=()1f x x =+()1g x x =+0()1,()f x g x x ==()f m =R 2()g n =[0,)∞+32()1x xf x x +=+()g x x =R 323x -...3323x -- (15)33x -≤≤15,33⎤-⎥⎦()20x x -…02x ……[]0,2[]15,0,233-⊂[]150,2,33⎤⊄-⎥⎦324x -…()20x x -…2c =1a b ==-a b <要比较比较与的大小(遇到二次根式可考虑平方去掉恨号)比较的大小与的大小..,故.故选:A.方法三:有理化法,故选A.7.【答案】A【解答】因为不等式的解集为,所以2和3是方程的两个实数解,且;由根和系数的关系知,所以;所以不等式可化为,叫,解得,所求不等式的解集为故选:A.8.【答栥】B 【详解】由a b -=-=-,a b +⇔24c ⇔2c +4c ⇔c c <<a b <====1100.c c ∴+>->⇒>⇒>>1.c ∀><a b <20ax bx c ++>{23}xx <<∣20ax bx c ++=0a <2323b ac a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩5,6b a c a =-=20bx ax c ++<2560ax ax a -++<2560x x --<615x -<<615x x ⎧⎫-<<⎨⎬⎩⎭,仅当,即时等号成立.要使不等式有解,只需.所以.故选:B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】AD【解答】解:图中阴影部分用集合符号可以表示为或.故选:AD.10.【答案】AC【解答】解:对于A ,,当且仅当且,当时取等号,不以有最大值故A 正确,对于B.因为.,当且仅当时取等号,,故B 错误对于C ,,当且仅当且叫且,即时取等号,所以有最小值5,故C 正确()()412112111421441616163y x x y x y x y x y ⎡⎡⎤+⎛⎫⎡⎤⎢+=+++=⨯++≥⨯+=⎢⎥ ⎪⎣⎦+++⎢⎝⎭⎣⎦⎣()411y x xy +=+13,2x y ==212131m m x y +>++()()221434341033m m m m m m +>⇒+-=+->()4,1,3m ∞∞⎛⎫∈--⋃+ ⎪⎝⎭()()U B A C ⋂⋃ð()()()()U UA B C B ⋂⋃⋂ðð211(4)1444416a b ab ab +=⨯≤⨯=4a b =41a b +=11,82b a ==ab 1,1624442a b a b a b +=++≤+++=+≤142a b ==+144115a a b a b a a b a b a b ++=+=++≥+=4b a a b =41,a b +=2a b =41a b +=11,36a b ==1aa b+对于D.因为.所以,所以,当且仅当且,即时取等号,所以有最小值,故错误.故选:AC 11.【答案】ABD 【解答】选项A :函数有两个两点,,而且一个大于1另一个小于1.则或,解得.实数的取值范围为,故A 正确;选项B :令,则.由解得所以.因为,所以,则.故B 正确;选项C :若既有;若显然有;若,则,而,所以,故可以推出若,当时,如果,不等式显然成立,此时有如果,则有,因而当时,,此时有.因而,敬可以推出,综合知是的充要条件221624a b ab +⨯…()222222161624(4)a b a b ab a b +++⨯=+ (22)2(4)11622a b a b ++≥=4a b =41a b +=11,82b a ==2216a b +12D ()()221f x x x x α=-+∈R 0a ∴≠()01210a f a >⎧⎨=-+<⎩()01210a f a <⎧⎨=-+>⎩01a <<∴a ()0,1,a b u a b v +=-=24,12u v …………a b u a b v +=⎧⎨-=⎩22u v a u v b +⎧=⎪⎪⎨-⎪=⎪⎩424222322u v u v a b u v u v u v +--=⋅-⋅=+-+=+24,336u v ............5310u v +......54210a b - (22)0,a b a b >≥>a a b b >0,a b ≥>0a a b b >>0a b >>22a b <22,a a a b b b =-=-a a b b >a b >||||a ab b >a a b b >0b <0a ≥1a b >0a <22a b ->-1a b >0b ≥0a >22a b >a b >a a b b >a b >p q故C 不正确;选项D :假设两个方程无实根(即均是空集),则有.所以当或时,两个方程至少有一个方程有实根,即两个集合至少有一个不是空集.故填或,故D 正确三、填空题:本题共3小题,每小题5分,共15分.12.【答案】【详解】由题意得:,解得:,由,解得:,故函数的定义域是.13.【答案】【解答】解:设,满足,所以,解得则函数.14.【答案】【解答】解:因为.所以,则,由,可得,解得.,A B 1221Δ440Δ480a a a a ⎧<-⎧=+<⎪⎪⇒⎨⎨=-<<<⎪⎪⎩⎩1a <<-a ≤1a -…a ≤1a ≥-[)12,11,2⎛⎤--⋃- ⎥⎝⎦3212x -≤+≤122x -≤≤10+≠x 1≠-x [)12,11,2⎛⎤--⋃- ⎥⎝⎦()2f x x x=-()2f x ax bx c =++()()212f x f x x ++=()()()2221(1)12f x f x ax bx c a x b x c x ++=+++++++=2212201200a a ab b a bc c ⎧==⎧⎪⎪+=⇒=-⎨⎨⎪⎪++==⎩⎩()2f x x x =-11,32⎛⎤ ⎥⎝⎦a M ∈()[)211,3f a a =+∈()()()632136f f a a a =-+=-()()ff a M ∈0361a -< (1132)a <≤故答案为:.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)【解答】解:(1)时,,则或,则或(2),等价于,当,则,船得,符合题意当.则,解得.综上,实数的取值范围为16.(15分)【解析】(1)因为为真命题,所以对任意不等式恒成立,所以其中,所以,解得,有以的取值范围,(2)若为真命题,即存在.使得不等式成立,则,其中,1],而,所以,故:因为一真一假.所以为真命题,为假命题或为假命题,为真命题,若为真命题,为假命题,则,所以;若为假命题,为真命题.则或,所以.综上,或,所以的取值范围为.17.(15分)【解答】解:(1)不等式可化为,原不等式的解集为或.故;11,32⎛⎤ ⎥⎝⎦1m ={25}B xx =<∣…{2R B x x =<∣ð5}x >(){62A A B xx ⋂=-<<∣ð58}x <…A B A ⋃=B A ⊆B =∅123m m +>+2m <-B ≠∅12316238m m m m +≤+⎧⎪+>-⎨⎪+≤⎩522m -≤≤m 5,2∞⎛⎤- ⎥⎝⎦p [0,1],x ∈2234x m m -- (2)min (23)4x m m -≥-[]0,1x ∈234m m --…13m ……m []1,3q []1,1x ∈-2210x x m -+-…()2min210x x m -+-…[1x ∈-()2min212x x m m -+-=-+20m -+…2m ….p q p q p q p q 132m m ≤≤⎧⎨>⎩23m <≤p q 12m m <⎧⎨≤⎩32m m >⎧⎨≤⎩1m <1m <23m <…m ()(],12,3∞-⋃ 311ax x x +->-()()210ax x -->{1xx <∣2}x >1a =(2)①当时,不等式为,解得:②当时,方程的两根分别为,(i )当时,,故不等式的解为:(ii )当时,若,即时,不等式的解为或.若,即时,不等式的解为;考,即时,不等式得解为或.综上可知,当时,不等式的解集为;当时,不等式的解集为当时,不等式的解集为或;当时,不等式的解集为,当时,不等式的解集为或.18.(17分)【解答】解:(1)由题知,甲产品的利润函数为乙产品的利润函数为.由题知,函数经过d 点,有,所以.函数经过点,有由,所以.(2)设乙产品的投资金额为万元,则甲产的投资金额为万元.所获得总利润为万元,则,0a =220x -+>1x <0a ≠()2220ax a x -++=21,a0a <21a <21x a<<0a >21a >02a <<1x <2x a >21a=2a =1x ≠21a <2a >2x a <1x >0a <21x x a ⎧⎫<<⎨⎬⎩⎭0a ={}|1x x <02a <<{1xx <∣2}x a >2a ={}1x x ≠∣2a >{1xx >∣2}x a <()(0)f x kx x =…())0g x x =>()f x ()1.8,0.4510.45 1.8,4k k ==()()104f x x x =…()g x ()9,3.75 3.75=54k =())0g x x =…(0)x x a <…()a x -y ()1,(0)4y a x x a =+-<…令,则,函数图象开口问上,对称轴为,所以当时,函数在上单调递增,当,即时,.时,函数在上递增,在上递减,当,即时,有最大值.综上得:时,乙产品投资万元,甲产品投资万元,该公司可获得最大利润,最大利润为万元.时,乙产品投资万元:时,乙产品投资万元,印产品投资万元,该公司可获得最大利润,最大利润为万元19.【解答】(1),即作图可知,函数的最大值为值域为.(2)由题意,只需在上的值域为的子集即可,因为,所以,对称轴为,由得,t =2x t =()2251151.44444y t a t t t a =+-=-++5541224t =-=-⨯502<⎡⎣t =x a =y 52>50,2⎡⎤⎢⎥⎣⎦52⎛ ⎝52t =254x =y 42516a +52>254254a ⎛⎫- ⎪⎝⎭42516a +52a 52>254254a ⎛⎫- ⎪⎝⎭42516a +()()2221,41f x x x g x x x =-+=-++ ()()()22623,f xg x x x x x ∴-=-=-()()(),03,,3,f x x F x g x x ⎧≤≤⎪∴=⎨>⎪⎩()[]()()2221,0,3,41,,03,.x x x F x x x x ∞∞⎧-+∈⎪=⎨-++∈-⋃+⎪⎩()F x ()()3 4.F F x =(],4∞-()h x 1,x t t ⎡⎤∈⎢⎥⎣⎦1,22t t⎡⎤⎢⎥⎣⎦0t >()2222324t h x x tx t x t ⎛⎫=-+=-+ ⎪⎝⎭2t x =1,x t t ⎡⎤∈⎢⎥⎣⎦1t >①当,即在的图象可知,,由题意得由(时取等号.放第一个式子成立,由第二个式子得故此时②当,即时,在递减,在上递增.此时最小值为,最大值为,所以,综上,所求的范围为.(3).①当时,无解,②当时,解得.12t t ≤1t <≤()h x 1,t t ⎡⎤⎢⎥⎣⎦2221()1,h x r t t ⎡⎤∈+-⎢⎥⎣⎦22211122t t t t t⎧≤+-⎪⎨⎪≥⎩221111t t +-≥=1t =02t <…1t <≤12t t >1>()h x 1,2t t ⎡⎫⎪⎢⎣⎭,2t t ⎡⎤⎢⎥⎣⎦2324t t h ⎛⎫= ⎪⎝⎭2()h t t =2231422t t t t ⎧≥⎪⎨⎪≤⎩2t ≤≤2t <≤t (1,2]()()131222F x F x -≤⇔-≤≤()()()22623,f xg x x tx x x t -=-=- ∴01t <≤()()[]()(]()()()1,,0,3,32,,3,3.31,f t f x x t F x f t g x x t g ⎧⎧≥-∈⎪⎪=∴≤⎨⎨∈⎪⎪≥-⎩⎩13t <<()()[]()()1,,0,3,32,f t F x f x x f ⎧≥-⎪=∈∴⎨≤⎪⎩43t ≤≤③当时,,解得,舍去.综上,3t ≥()()[](),0,3,31F x f x x f =∈∴≥-116t ≤413≤≤。
江苏省天一中学2024-2025学年高一上学期期中考试数学试卷
17.已知函数
f
(x)
=
ax + b 16 - x2
是定义在 (-4, 4)
上的奇函数.且
f
(1)
=1.
(1)求实数 a , b 的值; (2)判断函数 f (x) 在 (-4, 4) 上的单调性,并用定义证明你的结论;
( ) (3)若 f t2 -1 + f (1- 5t) < 0 ,求 t 的取值范围.
<
1 b
=
1
,故
D
错误;
故选:A. 5.B 【分析】根据函数奇偶性和单调性即可求解.
【详解】因为
f
(x)
=
x3
-
1 x
,
x Î (-¥, 0) U (0, +¥),
f
(- x)
=
-x3
+
1 x
=
-
f
(x) ,
所以 f (x) 为奇函数,
当 x > 0 时, 1 为减函数, x3 为增函数,故 f (x) 为增函数,故 B 选项正确. x
B. a = m - 3
C. 4b + (2m - 3)2 = 0
D.
c
=
-
21 4
三、填空题
12.
æ çè
5
1 16
ö0.5 ÷ø
+ (-1)5
¸
æ çè
3 ö-2 4 ÷ø
+
æ çè
2
10 27
ö
-
2 3
÷ø
=
试卷第31 页,共33 页
13.已知函数 f (x) 是偶函数,当 x ³ 0 时, f (x) = -x(2x -1) ,则当 x < 0 时, f (x) =
2022-2023学年湖北省襄阳市第四中学高一上学期1月阶段性考试数学试题(解析版)
2022-2023学年湖北省襄阳市第四中学高一上学期1月阶段性考试数学试题一、单选题1.已知集合1{|1216}{|0}6x x A x B x x -=≤=≥-<,,则R A C B ⋂=( ) A .{x |1<x ≤4} B .{x |0<x ≤6} C .{x |0<x <1} D .{x |4≤x ≤6}【答案】A【分析】化简集合,A B ,按照补集定义求出R C B ,再按交集定义,即可求解. 【详解】{|1216}{|04}x A x x x =<=<≤≤, 1{|0}{|16x B x x x x -=≥=≤-或6}x >, {|16}R C B x x =<≤,R A C B ⋂4{|}1x x <≤=.故选:A.【点睛】本题考查集合的混合运算,解题要注意正确化简集合,属于基础题. 2.下列说法正确的是( ) A .第二象限角比第一象限角大 B .60︒角与600︒角是终边相同角C .三角形的内角是第一象限角或第二象限角D .将表的分针拨慢10分钟,则分针转过的角的弧度数为π3【答案】D【分析】举反例说明A 错误;由终边相同角的概念说明B 错误;由三角形的内角的范围说明C 错误;求出分针转过的角的弧度数说明D 正确.【详解】对于A ,120︒是第二象限角,420︒是第一象限角,120420︒<︒,故A 错误; 对于B ,600360240︒=︒+︒,与60︒终边不同,故B 错误;对于C ,三角形的内角是第一象限角或第二象限角或y 轴正半轴上的角,故C 错误; 对于D ,分针转一周为60分钟,转过的角度为2π,将分针拨慢是逆时针旋转, ∴钟表拨慢10分钟,则分针所转过的弧度数为1π2π63⨯=,故D 正确.故选:D .3.若0a >,0b >,则“4ab ≤”是“4a b +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】取4a =,1b =,可得“4ab ≤”不能推出“4a b +≤”;由基本不等式可知由“4a b +≤”可以推出“4ab ≤”,进而可得结果.【详解】因为0a >,0b >,取4a =,1b =,则满足4ab ≤,但是54a b +=>,所以“4ab ≤”不能推出“4a b +≤”;反过来,因为a b ≤+,所以当4a b +≤时,有4,即4ab ≤. 综上可知,“4ab ≤”是“4a b +≤”的必要不充分条件. 故选:B.4.已知幂函数()y f x =的图象经过点,则13log (3)f 的值是( )A .13-B .1C .13D .-1【答案】A 【分析】设()a f x x ,代入点的坐标求得a ,然后再计算函数值.【详解】()a f x x,则由题意和13(3)33a f ===,13a =,∴1311133311log (3)log 3log 333f ===-.故选:A .【点睛】本题考查幂函数的定义,考查对数的运算,属于基础题. 5.已知实数2log 3a =,cos 4b π=,3log 2c =,则这三个数的大小关系正确的是( )A .a b c >>B .b a c >>C .b c a >>D .a c b >>【答案】A【分析】根据对数函数的图象和性质可得:1a c >>,然后再比较,b c 的大小关系即可. 【详解】因为2233log 3log 21log 3log 2>==>,所以1a c >>,又因为21cos43b π>==,而3982log 2log 2log 23c ==<=,所以1b c >>, 所以a b c >>, 故选:A .6.如图所示,函数cos tan y x x =(30π2x ≤<且π2x ≠)的图像是( ).A .B .C .D .【答案】C【分析】将函数解析式化成分段函数,再根据正弦函数的图象判断即可.【详解】解:因为πsin ,02πcos tan sin ,π23πsin ,π2x x y x x x x x x ⎧≤<⎪⎪⎪==-<≤⎨⎪⎪<<⎪⎩,所以函数图象如C 所示. 故选:C7.已知函数()tan 24f x x π⎛⎫=- ⎪⎝⎭,下列说法正确的有( )①函数()f x 最小正周期为2π; ②定义域为|R,,Z 28k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭③()f x 图象的所有对称中心为,0,Z 48k k ππ⎛⎫+∈⎪⎝⎭; ④函数()f x 的单调递增区间为3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭. A .1个 B .2个 C .3个 D .4个【答案】C【分析】根据正切函数的图象与性质,代入周期、定义域、对称中心和单调递增期间的公式即可求解.【详解】对①,函数()tan 24f x x π⎛⎫=- ⎪⎝⎭,可得()f x 的最小正周期为2T π=,所以①正确;对②,令2,Z 42x k k πππ-≠+∈,解得3,Z 82k x k ππ≠+∈, 即函数()f x 的定义域为3{|,Z}82k x x k ππ≠+∈,所以②错误; 对③,令2,Z 42k x k ππ-=∈,解得,Z 84k x k ππ=+∈,所以函数()f x 的图象关于点,0,Z 48k k ππ⎛⎫+∈ ⎪⎝⎭对称,所以③正确; 对④,令2,Z 242k x k k πππππ-<-<+∈,解得3,Z 2828k k x k ππππ-<<+∈,故函数()f x 的单调递增区间为3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭,所以④正确; 故①③④正确; 故选:C8.已知函数()f x 的定义域为R ,图象恒过()1,1点,对任意12x x <,都有()()12121f x f x x x ->--则不等式()()22log 212log 21xx f ⎡⎤-<--⎣⎦的解集为( ) A .()0,∞+ B .()2,log 3-∞ C .()()2,00,log 3-∞ D .()20,log 3【答案】D【解析】判断出()()R x f x x =+是增函数,又()()()2222log 1log 12(1)1x xf f -+-<=+,求得0<212x -<,从而求得x 的范围。
四川省成都2023-2024学年高一上学期12月月考数学试题含答案
成都高2026届高一上期数学12月考试(答案在最后)一.单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6730︒'化为弧度是()A.3π8B.38C.673π1800D.6731800【答案】A 【解析】【分析】先将角统一成度的形式,然后利用角度与弧度的互化公式求解即可【详解】π3π673067.51808'︒=⨯=(弧度).故选:A2.不等式2210x x --<的解集是()A.11,2⎛⎫- ⎪⎝⎭B.()1,2- C.1,12⎛⎫-⎪⎝⎭D.()2,1-【答案】C 【解析】【分析】利用了一元二次不等式的解法求解.【详解】解:不等式2210x x --<,可化为(1)(21)0x x -+<,解得112x -<<,即不等式2210x x --<的解集为1,12⎛⎫- ⎪⎝⎭.故选:C .3.已知函数()()32,20243f x ax bx f =+-=,则()2024f -=()A.-7B.-5C.-3D.3【答案】A 【解析】【分析】按题意取值即可【详解】因为()320242024202423f a b =⨯+⨯-=,所以3202420245a b ⨯+⨯=,所以()32024202420242527f a b -=-⨯-⨯-=--=-.故选:A.4.已知sin 5β=-,π02β-<<,则cos β=()A.5B.5±C.5-D.5【答案】D 【解析】【分析】由已知,利用同角公式计算得解.【详解】由π02β-<<,得cos 0β>,而5sin 5β=-,所以25cos 5β==.故选:D5.已知函数()f x 的图象是连续不断的,有如下的,()x f x 对应值表,那么函数()f x 在区间[1,6]上的零点至少有()x1234567()f x 123.521.5-7.8211.57-53.7-126.7-129.6A.2个B.3个C.4个D.5个【答案】B 【解析】【分析】根据函数值符号变化,由零点存在性定理可得.【详解】由数表可知,(2)0,(3)0,(4)0,(5)0f f f f ><><.则(2)(3)0<f f ,(3)(4)0f f <,(4)(5)0f f <,又函数()f x 的图象是连续不断的,由零点存在性定理可知,函数分别在(2,3),(3,4),(4,5)上至少各一个零点,因此在区间[1,6]上的零点至少有3个.故选:B.6.已知0.3281log ,log 27, 1.15a b c -=-==,则,,a b c 的大小关系为()A.c<a<bB.b<c<aC.b a c<< D.c b a<<【答案】D 【解析】【分析】直接由对数函数、指数函数的单调性、运算性质即可得解.【详解】由题意33228221log log 5log 27log 3log 35a b =-=>===,00.3822log 27log 3log 21 1.1 1.1b c -==>==>=,所以,,a b c 的大小关系为c b a <<.故选:D.7.某市一天内的气温()Q t (单位:℃)与时刻t (单位:时)之间的关系如图所示,令()C t 表示时间段[]0,t 内的温差(即时间段[]0,t 内最高温度与最低温度的差),()C t 与t 之间的函数关系用下列图象表示,则下列图象最接近的是().A. B.C. D.【答案】D【解析】【分析】根据()Q t 的图象确定()C t 的变化趋势,确定正确选项.【详解】由题意()C t ,从0到4逐渐增大,从4到8不变,从8到12逐渐增大,从12到20不变,从20到24又逐渐增大,从4到8不变,是常数,该常数为2,只有D 满足,故选:D .8.若定义在(,0)(0,)-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的1x ,2(0,)x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式2(4)(2)2f x f x x --<+的解集为()A.()()3,22,1--⋃-- B.()2(),31,-∞-- C.()),31(,2(2,)-∞--+∞ D.(,3)(2,)-∞-+∞ 【答案】B 【解析】【分析】令()()f x F x x=,故()F x 在()0,∞+上单调递减,并得到()()f x F x x=在(,0)(0,)-∞+∞ 上为偶函数,分2x >和2x <两种情况,得到不等式,求出答案.【详解】不妨设120x x >>,()()()()211221121200x f x x f x x f x x f x x x -<⇒-<-,故()()()()12211212f x f x x f x x f x x x <⇒<,令()()f x F x x=,故()F x 在()0,∞+上单调递减,其中()()f x F x x=定义域为(,0)(0,)-∞+∞ ,又()f x 在(,0)(0,)-∞+∞ 上为奇函数,故()()()()()f x f x f x F x F x xxx---====--,所以()()f x F x x=在(,0)(0,)-∞+∞ 上为偶函数,当20x ->,即2x >时,222(4)(2)(4)(2)224f x f x f x f x x x x ----<⇒<+--,即()()224F x F x -<-,()()224F x F x -<-,故22422x x x x ->-=-⋅+,又20x ->,故21x +<,解得32-<<-x 或2<<1x -,与2x >求交集得到空集;当20x -<即2x <时,222(4)(2)(4)(2)224f x f x f x f x x x x ----<⇒>+--,即()()224F x F x ->-,()()224F x F x ->-,故22422x x x x -<-=-⋅+,又20x ->,故21x +>,解得1x >-或3x <-,与2x <取交集得(),31,2()x -∞--∈ .故选:B二.多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中正确的有()A.命题p :0x ∃∈R ,200220x x ++<,则命题p 的否定是x ∀∈R ,2220x x ++≥B.“x y >”是“x y >”的必要不充分条件C.命题“x ∀∈Z ,20x >”是真命题D.“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件【答案】AD 【解析】【分析】利用特称量词命题的否定求解选项A ;利用不等式的性质确定选项B ;利用全称量词命题的真假判断选项C;利用一元二次方程根与系数的关系确定选项D.【详解】命题p 的否定是x ∀∈R ,2220x x ++≥,故A 正确;x y >不能推出x y >,例如21->,但21-<;x y >也不能推出x y >,例如23>-,而23<-;所以“x y >”是“x y >”的既不充分也不必要条件,故B 错误;当0x =时,20x =,故C 错误;关于x 的方程220x x m -+=有一正一负根44000m m m ->⎧⇔⇔<⎨<⎩,所以“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件,故D 正确.故选:AD.10.下列结论正确的是()A.7π6-是第三象限角B.若圆心角为π3的扇形的弧长为π,则该扇形的面积为3π2C.若角α的终边上有一点()3,4P -,则3cos 5α=-D.若角α为锐角,则角2α为钝角【答案】BC 【解析】【分析】利用象限角的定义可判断A 选项;利用扇形的面积公式可判断B 选项;利用三角函数的定义四可判断C 选项;取π4α=可判断D 选项.【详解】对于A 选项,因为7π5π2π66-=-且5π6为第二象限角,故7π6-是第二象限角,A 错;对于B 选项,若圆心角为π3的扇形的弧长为π,则该扇形的半径为π3π3r ==,因此,该扇形的面积为113πππ3222S r ==⨯=,B 对;对于C 选项,若角α的终边上有一点()3,4P -,则3cos 5α==-,C 对;对于D 选项,因为α为锐角,不妨取π4α=,则π22α=为直角,D 错.故选:BC.11.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a b +,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AFBC ⊥于点F ,则下列推理正确的是()①由图1和图2面积相等得ab d a b=+;②由AE AF≥可得2a b+≥;③由ADAE ≥可得211a b≥+;④由AD AF ≥可得222a b ab +≥.A.①B.②C.③D.④【答案】ABCD 【解析】【分析】根据图1,图2面积相等,可求得d 的表达式,可判断A 选项正误,由题意可求得图3中,,AD AE AF 的表达式,逐一分析B 、C 、D 选项,即可得答案.【详解】对于①:由图1和图2面积相等得()S ab a b d ==+⨯,所以abd a b =+,故①正确;对于②:因为AFBC ⊥,所以12a b AF ⨯⨯=,所以AF =,设图3中内接正方形边长为t ,根据三角形相似可得a t t ab -=,解得abt a b=+,所以AE a b==+,因为AE AF ≥,所以a b ≥+2a b+≥,故②正确;对于③:因为D 为斜边BC的中点,所以2AD =,因为AD AE ≥,所以2a b≥+211a b≥+,故③正确;对于④:因为AD AF ≥,所以2≥,整理得:222a b ab +≥,故④正确;故选:ABCD【点睛】解题的关键是根据题意及三角形的性质,利用几何法证明基本不等式,求得,,AD AE AF 的表达式,根据图形及题意,得到,,AD AE AF 的大小关系,即可求得答案,考查分析理解,计算化简的能力.12.已知函数12()22(R)x f x x x a a -=-++∈,则下列结论正确的是()A.函数()f x 在()1,+∞上单调递减B.函数()f x 的图象关于直线x =1对称C.存在实数a ,使得函数()f x 有三个不同的零点D.存在实数a ,使得关于x 的不等式()5f x ≥的解集为(][),13,-∞-+∞ 【答案】BD 【解析】【分析】对函数()f x 变形,并分析函数()f x 的性质,再判断选项ABC ,利用函数性质解不等式判断D 作答.【详解】R a ∈,函数12()(1)21x f x x a -=-++-的定义域为R ,对于A ,当1x >时,21()(1)21x f x x a -=-++-,而2(1)1y x a =-+-,12x y -=在()1,+∞上都单调递增,因此函数()f x 在()1,+∞上单调递增,A 错误;对于B ,因为12(2)(1)21()xf x x a f x --=-++-=,因此函数()f x 的图象关于直线x =1对称,B 正确;对于C ,对任意实数a ,由选项A 知,函数()f x 在[1,)+∞上单调递增,则函数()f x 在[1,)+∞上最多一个零点,由对称性知,函数()f x 在(,1]-∞上最多一个零点,因此函数()f x 在R 上最多两个零点,C 错误;对于D ,当2a =-时,12()(1)235x f x x -=-+-≥,而(1)(3)5f f -==,由对称性及选项A 知,()f x 在(),1-∞上单调递减,当1x ≤时,得1x ≤-,当1x ≥时,得3x ≥,即()5f x ≥的解集为(][),13,-∞-+∞ ,所以存在实数a ,使得关于x 的不等式()5f x ≥的解集为(][),13,-∞-+∞ ,D 正确.故选:BD【点睛】思路点睛:涉及分段函数解不等式问题,先在每一段上求解不等式,再求出各段解集的并集即可.第II 卷(非选择题)三.填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡上.13.3223827--⎛⎫-+= ⎪⎝⎭______.【答案】14-##-0.25【解析】【分析】直接由分数指数幂以及根式互化运算,以及整数指数幂运算即可求解.)3232112332433482122733----⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤⎢⎥+=-+⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎣⎦(1222191223344--⎛⎫⎛⎫=--+=--+=- ⎪ ⎪⎝⎭⎝⎭.故答案为:14-.14.已知函数()()122log 2f x x x t =-+-的定义域是(),8m m +,则函数()f x 的单调增区间为______.【答案】()1,5##[)1,5【解析】【分析】先根据定义域求出,m t 的值,再结合复合函数的单调性求出单调区间.【详解】因为函数()()122log 2f x x x t =-+-的定义域是(),8m m +,所以,8m m +为220x x t -+-=的两个根,所以22401t t ∆=->⇒<则()823815m m m m m t t ++==-⎧⎧⇒⎨⎨⨯+==-⎩⎩,即()()212log 215f x x x =-++,令()12log h x x =,则()h x 在()0,∞+单调递减,令()()22215116g x x x x =-++=--+,则()g x 为开口向下,对称轴为1x =的抛物线,且()035g x x >⇒-<<,所以()3,1x ∈-时,()g x 单调递增;()1,5x ∈时,()g x 单调递减;因为()()()()212log 215f x x x h g x =-++=,所以函数()f x 的单调增区间为()1,5.故答案为:()1,515.已知1x ,2x 分别是关于x 的方程ln 2023x x =,e 2023x x =的根,则12x x =________【答案】2023【解析】【分析】令1232023ln ,e ,xy x y y x ===,画出函数1232023ln ,e ,xy x y y x===的图象,由图象的对称性即可得出答案.【详解】由已知条件有2023ln x x =,2023e x x =,令1232023ln ,e ,x y x y y x ===,画出函数1232023ln ,e ,xy x y y x===的图象,曲线1ln y x =和2e xy =关于直线y x =对称,曲线32023y x =关于32023y x=,设曲线3y 分别与12,y y 交于点121220232023,,,A x B x x x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则点,A B 关于直线y x =对称,而点112023,A x x ⎛⎫ ⎪⎝⎭关于直线y x =对称点为112023,x x ⎛⎫ ⎪⎝⎭,即为点222023,B x x ⎛⎫ ⎪⎝⎭,则212023x x =,所以122023x x =.故答案为:2023.16.已知函数()f x 的定义域为R ,对任意实数m ,n ,都有()()()2f m n f m n f m -++=,且当0x >时,()0f x <.若()24f =-,2()(42)1f x m a m <-+-对任意[]1,1x ∈-,[)1,m ∈+∞恒成立,则实数a 的取值范围为______.【答案】(),1-∞-【解析】【分析】根据题设条件证明函数的单调性和奇偶性确定[]1,1x ∈-内的最大值为(1)2f -=,从而可得22(42)1m a m <-+-,再分离参变量即可求实数a 的取值范围.【详解】取0,m n ==则有()()()000f f f +=,所以()00f =,取0,,m n x ==则有()()()00f x f x f -+==,所以()f x 为奇函数,任意1212,,,x x x x ∈>R 则120x x ->,因为()()()2f m n f m n f m -++=,所以()()()2f m f m n f m n -+=-,令112,22x x m n x ==-,则有()11111222222x x x x f x f x f x ⎛⎫⎛⎫-+-=-+⎪ ⎪⎝⎭⎝⎭,即()()()12120f x f x f x x -=-<,所以()f x 在定义域R 上单调递减,所以()f x 在[]1,1x ∈-上单调递减,令()()()1,0,1124m n f f f ==+==-,所以()12f =-,所以max ()(1)(1)2f x f f =-=-=,因为2()(42)1f x m a m <-+-对任意[]1,1x ∈-,[)1,m ∈+∞恒成立,所以22(42)1m a m <-+-对任意[)1,m ∈+∞恒成立,分离变量可得342a m m+<-,因为函数3y m m =-对任意[)1,m ∈+∞恒成立,所以min 132y =-=-,所以422a +<-解得1a <-,故答案为:(),1-∞-.四.解答题:本题共6小题.17题10分,18—22题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.设m 为实数,U =R ,集合{}2log (2)1A xx =-≤∣,{2}B x m x m =≤≤+∣.(1)若1m =,求A B ⋃,()U A B ⋂ð;(2)若A B ⋂≠∅,求实数m 的取值范围.【答案】17.{|14}x A B x =≤≤⋃,(){|2U A B x x ⋂=≤ð或3}x >18.04m <≤【解析】【分析】(1)先求出集合,A B ,由交集、并集和补集的定义求解即可;(2)由交集的定义求解即可.【小问1详解】由2log (2)1x -≤可得:022x <-≤,则24x <≤,所以{|24}A x x =<≤,当1m =时,{|13}B x x =≤≤,所以{|14}x A B x =≤≤⋃,{|23}A B x x ⋂=<≤(){|2U C A B x x ⋂=≤或3}x >.【小问2详解】易知2m m <+恒成立,A B ⋂≠∅即224m <+≤或24m <≤解得02m <≤或24m <≤所以04m <≤.18.已知点()1,P t 在角θ的终边上,且sin 3θ=-.(1)求t 和cos θ的值;(233的值.【答案】(1)t =cos 3θ=(2【解析】【分析】(1)三角由三角函数的定义即可求解.(2)由三角函数定义、商数关系进行切弦互换即可.【小问1详解】由三角函数的定义知:6sin 3θ==-,则0t <,于是解得t =3cos 3θ==.【小问2详解】已知终边过点(1,得tan θ=(()3333312151+===-.19.杭州亚运会田径比赛于2023年10月5日收官.在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段.现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为115km /h ν=的匀速运动,该阶段每千克体重消耗体力1114Q v t ∆=⋅(1t 表示该阶段所用时间).疲劳阶段由于体力消耗过大变为22155v t =-的减速运动(2t 表示该阶段所用时间),疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力222241v t Q t ⋅∆=+.已知该运动员初始体力为010000kJ Q =,不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?【答案】(1)()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩(2)在2h t =时,运动员体力有最小值5200kJ【解析】【分析】(1)先写出速度v 关于时间t 的函数,进而求出剩余体力Q 关于时间t 的函数;(2)分01t <≤和14t <≤两种情况,结合函数单调性,结合基本不等式,求出最值.【小问1详解】由题可先写出速度v 关于时间t 的函数()()15,011551,14t v t t t <≤⎧=⎨--<≤⎩,代入1ΔQ 与2ΔQ 公式可得()()()1000060415,01601415516400,1411t t Q t t t t t -⋅⋅⨯<≤⎧⎪=⎡⎤-⋅--⎨⎣⎦-<≤⎪-+⎩解得()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩;【小问2详解】①稳定阶段中()Q t 单调递减,此过程中()Q t 最小值min ()(1)6400Q t Q ==;②疲劳阶段4800()4001200(14)Q t t t t=++<≤,则有4()400120040012005200Q t t t ⎛⎫=++≥+⨯ ⎪⎝⎭;当且仅当4t t=,即2t =时,“=”成立,所以疲劳阶段中体力最低值为5200kJ ,由于52006400<,因此,在2h t =时,运动员体力有最小值5200kJ .20.我们知道,函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图像关于点(),P m n 成中心对称图形的充要条件是函数()y f x m n =+-为奇函数.已知函数4()42x f x =+.(1)利用上述结论,证明:函数()f x 的图像关于1,12⎛⎫ ⎪⎝⎭成中心对称图形;(2)判断函数()f x 的单调性(无需证明),并解关于x 的不等式:()()212f x ax a f x ++++<.【答案】(1)证明见解析(2)4()42x f x =+为减函数,答案见解析【解析】【分析】(1)由题,证明1()()12g x f x =+-为奇函数即可;(2)由题可得4()42x f x =+为减函数,又结合(1)结论可知()()212f x ax a f x ++++<()()()221110f x ax a f x x a x a ⇔+++<-⇔+++>,后分类讨论a 的值解不等式即可.【小问1详解】证明:由题意,只需证明1()()12g x f x =+-为奇函数,又1214414()()11122241424x x xx g x f x +-=+-=-=-=+⋅++,易知函数()g x 定义域为R .R R ,,x x ∀∈-∈1114414()()1144114x x x x x x g x g x ------====-+++,所以()g x 为奇函数,所以()f x 的图像关于1(,1)2成中心对称图形.【小问2详解】易知24x y =+为增函数,且240x +>,对任意的x ∈R 恒成立,所以4()42x f x =+为减函数.又由(1)知,点(,())x f x 与点(1,(1))x f x --关于点1(,1)2成中心对称,即()(1)2f x f x +-=,所以原不等式等价于2(1)2()(1)f x ax a f x f x +++<-=-,所以211x ax a x +++>-,即2(1)0x a x a +++>,由2(1)0x a x a +++=解得121x a x =-=-,,当1a >时,原不等式解集为{|x x a <-或1}x >-;当1a =时,原不等式解集为{|1}x x ≠-;当1a <时,原不等式解集为{|1x x <-或}x a >-.【点睛】关键点点睛:本题涉及函数新定义,以及利用新定义结合函数单调性解决问题.本题关键是读懂信息,第一问将证明函数对称性转化为证明函数奇偶性,第二问则利用所得结论将函数不等式转化为含参二次不等式.21.定义:对于函数()y f x =,当[],x a b ∈时,值域为11,b a⎡⎤⎢⎥⎣⎦,则称区间[],a b 为函数()f x 的一个“倒值映射区间”.已知一个定义在[]3,3-上的奇函数()f x ,当(]0,3x ∈时,()1112f x x =--.(1)求()f x 的解析式;(2)求函数()f x 在[]1,3内的“倒值映射区间”;(3)求函数()f x 在定义域内的所有“倒值映射区间”.【答案】21.()111,3020,0111,032x x f x x x x ⎧-++-≤<⎪⎪==⎨⎪⎪--<≤⎩22.[]1,223.[]1,2和[]2,1--【解析】【分析】(1)利用奇函数的性质求得()f x 在[)3,0x ∈-上的解析式,结合()00f =,从而求解函数()f x 的解析式;(2)根据函数()f x 在[]1,3上的单调性建立方程组求解即可;(3)根据区间的定义知0a b ab <⎧⎨>⎩,分03a b <<≤和30a b -≤<<讨论,分析函数()f x 的单调性,建立方程组求解即可.【小问1详解】()f x 是定义在[]3,3-上的奇函数,则()00f =,当[)3,0x ∈-时,则(]()110,3,111122x f x x x -∈-=---=-+,又()f x 是奇函数,则()()1112f x f x x =--=-++,所以()111,3020,0111,032x x f x x x x ⎧-++-≤<⎪⎪==⎨⎪⎪--<≤⎩.【小问2详解】设13a b ≤<≤,函数()3122f x x =-,因为()f x 在[]1,3上递减,且()f x 在[],a b 上的值域为11,b a⎡⎤⎢⎥⎣⎦,所以()()311223112213f b b b f a a a a b ⎧=-=⎪⎪⎪=-=⎨⎪≤<≤⎪⎪⎩,解得12a b =⎧⎨=⎩,所以函数()f x 在[]1,3内的“倒值映射区间”为[]1,2.【小问3详解】因为()f x 在[],a b 时,函数值()f x 的取值区间恰为11,b a ⎡⎤⎢⎥⎣⎦,其中a b ¹且0,0a b ≠≠,所以11a b b a<⎧⎪⎨<⎪⎩,则0a b ab <⎧⎨>⎩,只考虑03a b <<≤或30a b -≤<<,①当03a b <<≤时,因为函数()f x 在()0,1上单调递增,在[]1,3上单调递减,故当(]0,3x ∈时,()max ()11f x f ==,则11a≤,所以,13a ≤<,则13a b ≤<≤,由(2)知,此时()f x 的“倒值映射区间”为[]1,2;②当30a b -≤<<时,可知因为函数()f x 在[]3,1--上单调递减,()1,0-上单调递增,故当[)3,0x ∈-时,()min ()11f x f =-=-,则11b≥-,所以,31b -<≤-,当[]()133,1,22x f x x ∈--=--在[]3,1--上递减,且()f x 在[],a b 上的值域为11,b a ⎡⎤⎢⎥⎣⎦,所以()()131221312231f b b b f a a a a b ⎧=--=⎪⎪⎪=--=⎨⎪-≤<≤-⎪⎪⎩,解得21a b =-⎧⎨=-⎩,所以()f x 的“倒值映射区间”为[]2,1--;综上,函数()f x 在定义域内的“倒值映射区间”为[]1,2和[]2,1--.22.已知函数()()3log 31x f x mx =++是偶函数.(1)求m 的值;(2)设函数()()311log 322x g x a a x f x ⎛⎫=⋅-+- ⎪⎝⎭(R a ∈),若()g x 有唯一零点,求实数a 的取值范围.【答案】(1)12-(2)0a >或10a =--【解析】【分析】(1)根据偶函数性质()()f x f x -=代入即可求解;(2)令3x t =,转化为关于t 的一元二次函数,对a 分类讨论即可求解.【小问1详解】依题意,因为()f x 的定义域为R 的偶函数,所以()()f x f x -=,所以()()33log 31log 31x x mx mx -++=+-,所以()()333313log 31log log 31log 33x x x x x mx mx mx ⎛⎫+++=-=+ ⎝⎭--⎪所以3log 3x mx x mxmx --=-=-所以()210m x +=,即12m =-.【小问2详解】由(1)知()()31log 312x f x x =+-所以()()()333111log 3log 3log 31222x x x g x a a x f x a a x ⎛⎫⎛⎫=⋅-+-=⋅--++ ⎪ ⎪⎝⎭⎝⎭,令()0g x =,()333131log 3=log 31log 23x x x x a a x +⎛⎫⋅-+-= ⎪⎝⎭,即1313=23x xx a a +⋅-,整理得()21313102x x a a ⎛⎫-+-= ⎪⎝⎭,其中1302x a ⎛⎫-> ⎪⎝⎭,所以0a ≠,令3x t =,则得211102at a t ⎛⎫-+-=⎪⎝⎭,①当0a >时,1302x ->,即12t >,所以方程211102at a t ⎛⎫-+-= ⎪⎝⎭在区间1,2⎛⎫+∞ ⎪⎝⎭上有唯一解,则方程对应的二次函数()21112m t at a t ⎛⎫=-+- ⎪⎝⎭,恒有()010m =-<,13022m ⎛⎫=-< ⎪⎝⎭,13602m a a⎛⎫+=> ⎪⎝⎭,所以当0a >时,方程211102at a t ⎛⎫-+-= ⎪⎝⎭在区间1,2⎛⎫+∞ ⎪⎝⎭上有唯一解.②当0a <时,1302x -<,即102t <<,方程211102at a t ⎛⎫-+-= ⎪⎝⎭在区间10,2⎛⎫ ⎪⎝⎭上有唯一解,因为方程对应的二次函数()21112m t at a t ⎛⎫=-+- ⎪⎝⎭的开口向下,恒有()010m =-<,13022m ⎛⎫=-< ⎪⎝⎭,所以满足恒有2114021112022a a a a ⎧⎛⎫∆=++=⎪ ⎪⎝⎭⎪⎨+⎪⎪<<⎩,解得10a =--综上所述,当0a >或10a =--时,()g x 有唯一零点.【点睛】方法点睛:(1)利用偶函数的性质()()f x f x -=代入原函数即可求解参数;。
广东深圳高级中学2024-2025学年高一上学期第一次月考试数学试卷
2024-2025学年深圳市高一上第一次月考试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间120分钟,满分150分.3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,谙将答题卡交回. 一、单选题(共8小题,共40分)1. 命题“210,0x x x ∃>−<”的否定为( )A. 210,0x x x ∃>−≥ B. 210,0x x x ∃≤−≥ C 210,0x x x∀>−≥ D. 210,0x x x∀≤−≥ 2. 从甲地到乙地通话m 分钟的电话费由() 1.0612m f m <>=+(元)决定,其中0m >,m <>是不小于m 的最小整数(如:33<>=, 3.84<>=, 5.16<>=), 则从甲地到乙地通话时间为7.3分钟的电话费为( ) A. 4.24元B. 4.77元C. 5.30元D. 4.93元3. 若函数()f x 定义域为R ,则“(2)(3)f f <”是“()f x 是增函数”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 甲、乙两人解关于x 的不等式20x bx c ++<,甲写错了常数b ,得到的解集为{}6<<1x x −;乙写错了常数c ,得到的解集为{}1<<4x x .那么原不等式的解集为( ) A. {}1<<6x xB. {}1<<4x x −C. {}4<<1x x − D. {}1<<6x x −.的5. 函数[)2235,4,22x yx x +∈−−−的值域为( ). A. 5317,142B. 5317,142C. 5317,142D. 5317,1426. 已知不等式2320ax x −+>的解集为(,1)(,)b −∞+∞ ,则,a b 的取值分别为( ) A. 3,1−B. 2,1C. 1−,3D. 1,27. 设()f x 是定义在R 上奇函数,在(,0)−∞上递减,且(3)0f −=, 则不等式()0xf x <的解集为( )A. {|30x x −<<或3}x >B. {|3x x <−或3}x >C. {|3x x <−或03}x <<D. {|30x x −<<或03}x <<8. 对于集合M ,N ,定义{},M N x x M x N −=∈∉且,()()M N M N N M ⊕−− ,设94A y y=≥−,{}0B y y =<,则A B ⊕=A. 9,04 −B. 9,04−C. [)9,0,4−∞−+∞D. ()9,0,4−∞−+∞二、多选题(共4小题,共20分)9. 下表表示y 是x 的函数,则( )x 05x <<510x ≤<1015x ≤<1520x ≤≤y2345A. 函数的定义域是(0,20]B. 函数的值域是[2,5]C. 函数的值域是{}2,3,4,5D. 函数是增函数10. 已知243fx =−,则下列结论错误的是( )的A. ()11f =B. 2()21f x x =−C. ()f x 是偶函数D. ()f x 有唯一零点11. 给出以下四个命题,其中为真命题的是( ) A. 函数y与函数y表示同一个函数B. 若函数(2)f x 的定义域为[0,2],则函数()f x 的定义域为[0,4]C. 若函数()y f x =奇函数,则函数()()yf x f x =−−也是奇函数D. 函数1y x=−在(,0)(0,)−∞+∞ 上是单调增函数 12. 下列命题正确的是( )A. 若对于1x ∀,2x ∈R ,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+,则函数yy =ff (xx )在R 上是增函数B. 若对于1x ∀,2x ∈R ,12x x ≠,都有()()12121f x f x x x −>−−,则函数()y f x x =+在R 上是增函数 C. 若对于x ∀∈R ,都有()()1f x f x +<成立,则函数yy =ff (xx )在R 上是增函数D. 若对于x ∀∈R ,都有()f x ,()g x 为增函数,则函数()()y f x g x =⋅在R 上也是增函数三、填空题(共4小题,共20分)13. A ={}|03x x << ,{}|24B x x =<<,则A B ∪=___________.14. 若“2,1000x mx mx ∀∈++>R ”是真命题,则m 的取值范围是__________.15. 已知函数()()11xf x x x =>−,())2g x x =≥,若存在函数()(),F x G x 满足:()()()()()(),G x F x f x g x g x f x =⋅=,学生甲认为函数()(),F x G x 一定是同一函数,乙认为函数()(),F x G x 一定不是同一函数,丙认为函数()(),F x G x 不一定是同一函数,观点正确的学生是_________.16. 已知函数()2cos ,,22f x x x x ππ=−∈−,则满足()06f x f π >的0x 的取值范围为__________. 四、解答题(共6小题,共70分)17. (1)设0x y <<,试比较22()()x y x y +−与22()()x y x y −+大小;是的(2)已知a ,b ,x ,(0,)∈+∞y 且11,x y a b>>,求证:x y x a y b >++.18. 求下列不等式的解集. (1)202735x x <−−−<; (2)1123x x +≤− 19. 冰墩墩(Bing Dwen Dwen )、雪容融(Shuey Rhon Rhon )分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶的进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共4020. 某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出()*N x x ∈名员工从事第三产业,调整出的员工平均每人每年创造利润为310500x a −万元()0a >,剩余员工平均每人每年创造的利润可以提高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少? 21. 已知函数()2f x x x=+. (1)判断()f x 的奇偶性,并证明你的结论;(2)用函数单调性的定义证明函数()f x 在)+∞上是增函数;(3)当[]1,3x ∈时,求函数()f x 的值域.22. 某企业用1960万元购得一块空地,计划在该空地建造一栋8,()x x x N ≥∈层,每层2800平方米的楼房.经测算,该楼房每平方米的平均建筑费用为56570x +(单位:元). (1)当该楼房建多少层时,每平方米的平均综合费用最少?最少为多少元?(2)若该楼房每平方米的平均综合费用不超过2000元,则该楼房最多建多少层?(注:综合费用=建筑费用+购地费用)。
河南省部分名校2022-2023学年上学期高一第一次阶段测试卷数学试题(含答案)
2022—2023学年第一学期第一次阶段测试卷高一数学考试说明:1.本试卷共150分。
考试时间120分钟。
2.请将各题答案填在答题卡上。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列各组对象不能构成集合的是( ) A.1~10之间的所有奇数 B.北方学院2022级大学一年级学生 C.滑雪速度较快的人D.直线21y x =+上的所有的点2.集合{},,M a b c =的真子集的个数为( ) A.5B.6C.7D.83.设a ,b R ∈,则“7a b +>”是“3a >且4b >”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既非充分又非必要条件4.已知3x ≠且2y ≠-,2264M x y x y =+-+,13N =-,则M 与N 的大小关系是( ) A.M N > B.M N <C.M N =D.不能确定5.若113A x x ⎧⎫=-<⎨⎬⎩⎭,112B x x ⎧⎫=≥⎨⎬⎩⎭,则A B =( ) A.403x x ⎧⎫<<⎨⎬⎩⎭ B.403x x ⎧⎫<≤⎨⎬⎩⎭C.{}02x x <≤D.223x x ⎧⎫-<≤⎨⎬⎩⎭6.若a 、b 、c 为实数,则下列命题正确的是( ) A.若a b >,则22ac bc > B.若0a b >>,则11a b a b+>+ C.若0a b <<,则22a ab b >>D.若0a b <<,则22a b <7.已知全集为U ,集合{}1,2,3,4,5,6A =,{}4B x x =≥,则图中阴影部分表示的集合为( )A.{}3B.{}2C.{}1,2D.{}1,2,38.已知0x >,0y >,且满足66x y +=,则xy 有( )A.最大值32B.最小值32C.最大值1D.最小值1二、选择题:本题共4小题,每小题5分,共20分。
福建省泉州晋江市磁灶中学2022-2023学年高一上学期第一次阶段考试数学试题
磁灶中学高一年段第一次阶段考试数学试题考试时长:120分钟 满分150分一,单项选择题(本大题共8小题,每小题5分,共40分.)1.已知命题p :所有地正方形都是矩形,则¬p 是( )A .所有地正方形都不是矩形B .存在一个正方形不是矩形C..存在一个矩形不是正方形D .不是正方形地四边形不是矩形2.已知集合{|06}A x x =∈≤≤N ,{|30}B x x =-<,则()A B =R ð( )A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}3.已知a R ∈,则“2a >”是“21a<”地( )A .充分不必要款件 B .必要不充分款件 C .充要款件 D .既不充分也不必要款件4.若a ,b ,c 为实数,则下面命题正确地是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b<D .若0a b <<,则b a a b >5.已知a 为实数,{}|14A x x =<<,{}|0B x x a =-≥,若A B B = ,则a 地取值范围为( )A .(],1-∞B .(),1-∞C .()1,+∞D .[)1,+∞6.有关x 地不等式22280(0)x ax a a --<>地解集为12(,)x x ,且2115x x -=,则a =( )A .52B .72C .154D .1527.若函数2()46f x x x =--地定义域为[0,]m ,值域为[10,6]--,则m 地取值范围是( )A .[0,4]B .[4,6]C .[2,6]D .[2,4]8.若正数x ,y 满足35x y xy +=,则34x y +地最小值是( )A .245B .285C .6D . 5二,多项选择题(本大题共4小题,每小题5分,共20分,其中每题全都选对得5分,选对但不全得2分,有选错得0分.)9.已知集合{|2}A x x =<,{|320}B x x =->,则( )A .32AB x x ⎧⎫=<⎨⎬⎩⎭ B .A B =∅C .{}A B 2x x =<D .A B R=10.若0a b >>,0c d <<,则一定有( )A .22a b >B .22c d >C .a b d c >D .a b d c <11.已知有关x 地不等式20ax bx c ++≥地解集为{3|x x ≤-或4}x ≥,则下面表达正确地是( )A .0a >B .不等式0bx c +>地解集为{}4x x <-C .0a b c ++>D .不等式20cx bx a -+<地解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭12.已知正数a ,b 满足1a b +=,则下面结论正确是( )A .14ab ≥B .114a b +≥C .2214a b +≥D .114113a b +≥++三,填空题(本大题共4小题,每题5分,满分20分.)13.已知12,25a b -<<<<,则2a b -地取值范围________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柳州铁一中学2016-2017学年第一学期高一年级段考
数学科试卷
(全卷满分150分,考试时间120分钟)
注意事项:
1.答题前,考生务必将姓名、考号填写在答题卡上.
2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试题上作答无效. 3.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是
符合题目要求的.
1.已知集合{}{}1,3,5,7,|25A B x x ==≤≤,则A
B =
A .{}1,3
B .{}3,5
C .{}5,7
D .{}1,7 2.函数()23log (1)f x x x =-++的定义域为
A .[)1,3-
B .()1,3-
C .[]1,3-
D .(1,3]- 3.已知函数⎩⎨
⎧≤-≥=2
,32,)(x x x x x f ,则))1((-f f 的值为
A .1-
B .0
C .1
D .2 4.已知函数1
()42x f x a
-=+(0a >且1a ≠)的图象恒过定点P ,则点P 的坐标是
A .(1,6)
B .(1,5)
C .(0,5)
D .(5,0) 5.已知函数(1)1f x x +=+,则函数()f x 的解析式为
A .2
()f x x = B .2
()1(1)f x x x =+≥
C .2()22(1)f x x x x =-+≥
D .2
()2(1)f x x x x =-≥
6.已知函数()f x 为奇函数,且当0x >时,2
1
()f x x x
=+
,则(1)f -= A .-2 B .0 C .1 D .2
7.下列函数中,与函数lg 10x
y =的定义域和值域都相同的是
A .y x =
B .lg y x =
C .2x
y = D .1y x =
8.设0a >,则函数()y x x a =-的图象的大致形状是
9.若函数442
--=x x y 的定义域为],0[m ,值域为]4,8[--,则m 的取值范围是 A .]2,0( B .]4,2( C .]4,2[ D .)4,0(
10.设函数:f ++→N N 满足:对于任意大于3的正整数n ,()3f n n =-,且当3n ≤时,
()23f n ≤≤,则不同的函数()f x 的个数为
A.1
B.3
C.6
D.8
11.定义在R 上的偶函数)(x f 满足:对任意[)()1212,0,x x x x ∈+∞≠,有
0)
()(1
212<--x x x f x f ,则
A.()()()
0.560.76log 60.7f f f << B.)6(log )6()7.0(7.05
.06f f f << C.)7.0()6()6(log 65.07.0f f f << D.)6()7.0()6(log 5
.067.0f f f <<
12.设()f x 的定义域为D ,若()f x 满足条件:存在[],a b D ⊆,使()f x 在[],a b D ⊆上的值域是
,22a b ⎡⎤⎢⎥⎣⎦
,则称()f x 为“倍缩函数”.若函数2()log (2)x
f x t =+为“倍缩函数”,则t 的取值范围是 A.1,4⎛⎫+∞
⎪⎝⎭ B.()0,1 C.10,2⎛⎤ ⎥⎝⎦ D.10,4⎛⎫
⎪⎝⎭
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分.
13.满足条件{,,}
={,,,,}a b c M a b c d e 的集合M 有 个.
14.若函数()f x 的定义域是[0,4],则函数(2)
()f x g x x
=
的定义域是___________. 15.函数212
()log ()f x x x =-+的值域为____________.
16.用{}min ,a b 表示,a b 两数中的最小值,若函数{}()min |3|,|1|f x x x =-+,则不等式
()(0)f x f <的解集是 .
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分) 求下列各式的值:
(1)()
(
)
1
40
13
3
0.0278
321--+
-+
-;
(2)16log 3log 3log 6log )279(log 34222
3⨯+-+⨯.
18.(本小题满分12分)
设集合{
}{}{}
32,12,log 1,12,x
A y y x
B x x
C x t x t t R ==≤≤=<=+<<∈. (1)求B A ⋂;
(2)若C C A =⋂,求t 的取值范围.
19.(本小题满分12分)
已知幂函数()()
2122m f x m m x +=-++为偶函数. (1)求()f x 的解析式;
(2)若函数()()211y f x a x =--+在区间()2,3上为单调函数,求实数a 的取值范围.
20.(本小题满分12分)
已知函数()log (3)a f x ax =-(0a >且1a ≠).
(1)当[0,2]x ∈时,函数()f x 恒有意义,求实数a 的取值范围;
(2)是否存在这样的实数a ,使得函数()f x 在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.
21.(本小题满分12分)
已知()f x 是定义在[]1,1-上的奇函数,当[]1,0x ∈-时,函数的解析式为1()()42x x
a
f x a R =-∈.
(1)写出()f x 在[]0,1上的解析式,并求()f x 在[]1,0-上的最大值.
(2)对任意的[]12,1,1x x ∈-都有12()()f x f x M -≤成立,求最小的整数M 的值.
22.(本小题满分12分)
已知函数()f x 满足:对任意,x y R ∈,都有()()()()()2f x y f x f y f x f y +=--+成立,且
0x >时,()2f x >.
(1)求()0f 的值,并证明:当0x <时,()12f x <<. (2)判断()f x 的单调性并加以证明.
柳州铁一中学2016-2017学年第一学期高一年级段考答案
BDDAC ADBCD CD
17.(1)原式===8 (5分)
(2)原式===11.(10分)
18.(1),所以(4分)
(2)因为,所以,(5分)
若是空集,则,得到;(7分)
若非空,则,得;(11分)
综上所述,.(12分)
19.由为幂函数知,得或
;
当时,,符合题意:当时,,不合题意,舍去.∴
(6分)
(2)由(1)得,
即函数的对称轴为,由题意知在上为单调函数,
所以或即或.(12分)
20.(1)由于为减函数,所以要使函数在上恒有意义,
就是要求恒成立,只需,∴且,因此的取值范围是
.(6分)
(2)由于为减函数,要使在为减函数且最大值为1,则,且
,∴.又在上需恒大于零,∴,
∴,这与矛盾,故不存在实数,使在上为减函数且最大值为 1. (12分)
21.(1),所以;
当时,
,其中,所以当时,.,根据对称性可知在上的最大值为2 .(8分)
(2),所以(12分)
22.(1)∵f(x+y)=f(x)•f(y)﹣f(x)﹣f(y)+2,令x=y=0,
F(0)=f(0)•f(0)﹣f(0)﹣f(0)+2
∴f2(0)﹣3f(0)+2=0, f(0)=2或 f(0)=1
若 f(0)=1, 则 f(1)=f(1+0)=f(1)•f(0)﹣f(1)﹣f(0)+2=1,
与已知条件x>0时,f(x)>2相矛盾,∴f(0)=2
设x<0,则﹣x>0,那么f(﹣x)>2
又2=f(0)=f(x-x)=f(x)•f(-x)-f(x)-f(-x)+2∴
∵f(-x)>2,∴,从而1<f(x)<2 (6分)
(2)函数f(x)在R上是增函数
设x1<x2则x2﹣x1>0,∴f(x2﹣x1)>2
f(x2)=f(x2﹣x1+x1)=f(x2﹣x1)f(x1)﹣f(x2﹣x1)﹣f(x1)+2
=f(x2﹣x1)[f(x1)﹣1]﹣f(x1)+2
∵由(1)可知对x∈R,f(x)>1,∴f(x1)﹣1>0,又f(x2﹣x1)>2∴f(x2﹣x1)•[f(x1)﹣1]>2f(x1)﹣2
f(x2﹣x1)[f(x1)﹣1]﹣f(x1)+2>f(x1)即f(x2)>f(x1)
∴函数f(x)在R上是增函数(12分)。