丹阳市2019届九年级中考数学模拟试题(含答案解析)

合集下载

2019届江苏省丹阳市九年级下学期期中考试数学试卷【含答案及解析】

2019届江苏省丹阳市九年级下学期期中考试数学试卷【含答案及解析】

2019届江苏省丹阳市九年级下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. ﹣6的绝对值是______。

二、填空题2. _________。

3. 因式分【解析】_________。

4. 函数中,自变量x的取值范围是___________。

5. 如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD=______°.6. 如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.7. 某广告公司全体员工年薪的具体情况如表:8. 年薪/万元25151064人数11332td9. 若关于x的方程有两个不相等的实数根,则实数a的取值范围是______。

10. 一个扇形的圆心角为120°,面积为12cm2,则此扇形的半径为_____cm11. 如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为_________.12. 已知菱形ABCD的对角线AC、BD相交于点O,AE⊥BC,BD =8,sin∠CBD=,则AE=_____________。

13. 如图,已知点A(6,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=5时,这两个二次函数的最大值之和等于______________。

三、单选题14. 下列运算正确的是()A. a7÷a4=a3B. 5a2﹣3a=2aC. 3a4•a2=3a8D. (a3b2)2=a5b415. 用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是()A. 4B. 5C. 6D. 716. 如图,转盘被平均分成8个区域,每个区域分别标注数字1、2、3,任意转动转盘,当转盘停止转动时,将指针所指区域标注的数字记录下来,(若指针落在交界线上,则重转一次),如此重复200次,则在所记录的200个数字中,众数最有可能是()A. 1B. 2C. 3D. 20017. 如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5,则∠B的度数是()A. 30°B. 45°C. 50°D. 60°18. 在矩形ABCD中,AB=3,BC=10,P是BC上的动点(不与B,C重合),以A为圆心,AP 长为半径作圆A,若经过点P的圆A的切线与线段AD交于点F,则以DF,BP的长为对角线长的菱形的最大面积是()A. 4B. 8C. 12. 5D. 16四、解答题19. 计算(1)(-1)0+()-2(2)先化简(1+)÷再从0,1,2中选择一个合适的数代入求值。

【精选】2019年江苏省镇江市丹阳市中考数学一模试卷(有答案)

【精选】2019年江苏省镇江市丹阳市中考数学一模试卷(有答案)
23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2 ,求CD的长.
24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
【解答】解:∵共有2+8+7+10+3=30个数据,
∴其中位数是第15、16个数据的平均数,而第15、16个数据均为1.3万步,
则中位数是1.3万步,
故答案为:1.3.
【点评】此题主要考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
22.(14分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.
汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图
二.选择题(共5小题,满分15分,每小题3分)
13.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为( )
A.0.324×108B.32.4×106C.3.24×107D.324×108
2019年江苏省镇江市丹阳市中考数学一模试卷

【优选】2019年江苏省镇江市丹阳市中考数学一模试卷(有答案)

【优选】2019年江苏省镇江市丹阳市中考数学一模试卷(有答案)
A.4cmB.2 cmC.3cmD.8cm
17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若OC=5cm,则CD的长为( )
A.6cmB.7cmC.8cmD.10cm
三.解答题(共11小题,满分91分)
18.(8分)(1)计算:3tan30°﹣|1﹣ |+(2008﹣π)0
11.【分析】通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC扫过的面积.
【解答】解:∵y=﹣x﹣3.
∴A(1,0),B(3,0),
∴AB=2.
∵∠ABC=90°,AC=2 ,
23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2 ,求CD的长.
24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
已知A(2,5).求:
(1)b和k的值;
(2)△OAB的面积.
27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).
(1)求此抛物线的解析式及顶点坐标;
(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;
(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.
=12.
故填空答案:12.

丹阳初三数学试卷及答案

丹阳初三数学试卷及答案

一、选择题(每题4分,共40分)1. 下列选项中,不是有理数的是()A. -2.5B. √4C. 0D. √-12. 若a、b是方程x²-3x+2=0的两个根,则a+b的值为()A. 2B. 3C. 4D. 53. 在平面直角坐标系中,点A(-1,2)关于y轴的对称点坐标是()A.(1,2)B.(-1,-2)C.(1,-2)D.(-1,2)4. 若函数y=2x+1的图象上有一点P,该点横坐标为2,则该点纵坐标为()A. 5B. 3C. 1D. 05. 在梯形ABCD中,AD平行于BC,AD=6cm,BC=10cm,梯形的高为4cm,则梯形ABCD的面积是()A. 24cm²B. 36cm²C. 48cm²D. 60cm²6. 若等边三角形ABC的边长为a,则其内切圆半径r与外接圆半径R的关系是()A. r = RB. r = R/√3C. r = R√3D. r = 2R7. 若x²-5x+6=0的两个根是m和n,则m²+n²的值为()A. 1B. 5C. 11D. 258. 下列函数中,在其定义域内单调递增的是()A. y=x²B. y=-x³C. y=2xD. y=√x9. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°10. 若等腰三角形ABC的底边BC=8cm,腰AB=AC=10cm,则该三角形的高AD的长度是()A. 6cmB. 8cmC. 10cmD. 12cm二、填空题(每题5分,共50分)11. 已知x²-4x+4=0,则x的值为______。

12. 若函数y=3x²-2x+1在x=1时取得最小值,则该最小值为______。

13. 在平面直角坐标系中,点M(3,-4)关于原点的对称点坐标是______。

2019年江苏省镇江市丹阳市吕城片中考数学一模试卷

2019年江苏省镇江市丹阳市吕城片中考数学一模试卷

2019年江苏省镇江市丹阳市吕城片中考数学一模试卷一、填空题(本大题共12小题,每小题2分,共24分)1.(2分)﹣5的倒数是.2.(2分)计算:=.3.(2分)分解因式:a3﹣4a=.4.(2分)使分式有意义的x的取值范围是.5.(2分)已知一组数据﹣3,x,﹣2,3,1,6的众数为3,则这组数据的中位数为.6.(2分)已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是.7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为.8.(2分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是.9.(2分)已知点A(1,y1),B(m,y2)在二次函数y=x2﹣4x+1的图象上,且y1>y2,则实数m的取值范围是.10.(2分)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为.11.(2分)如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′.12.(2分)如图,在平面直角坐标系中,点B(﹣1,4),点A(﹣7,0),点P是直线y=x﹣1上一点,且∠ABP=45°,则点P的坐标为.二、选择题(本大题共5小题,每小题3分,共15分)13.(3分)下列四个数中,是无理数的是()A.B.C.D.()2 14.(3分)如图是由6个大小相同的小正方体组成的几何体,它的俯视图是()A.B.C.D.15.(3分)有一张平行四边形纸片ABCD,已知∠B=75°,按如图所示的方法折叠两次,则∠BCF的度数等于()A.60°B.55°C.50°D.45°16.(3分)如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.B.C.D.617.(3分)如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A.2B.4C.5D.6三、简答题(本大题共11小题,共81分)18.(8分)(1)计算(2)化简:(a﹣2)(a+3)﹣(a﹣1)219.(10分)(1)解方程:(2)解不等式组:20.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?21.(6分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.22.(5分)为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?23.(6分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.24.(6分)如图,小山坡上有一根垂直于地面的电线杆CD,小明从地面上的A处测得电线杆顶端C点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端C点和电线杆底端D点的仰角分别是60°和30°.求电线杆CD的高度(结果保留根号)25.(8分)如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证:=;(3)若AD∥BC,求点B的坐标.26.(8分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.27.(8分)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin.设AP的长为x.(1)AB=;当x=1时,=;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.2019年江苏省镇江市丹阳市吕城片中考数学一模试卷参考答案与试题解析一、填空题(本大题共12小题,每小题2分,共24分)1.(2分)﹣5的倒数是.【解答】解:因为﹣5×()=1,所以﹣5的倒数是.2.(2分)计算:=1.【解答】解:原式=3﹣2=1.故答案为:1.3.(2分)分解因式:a3﹣4a=a(a+2)(a﹣2).【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)4.(2分)使分式有意义的x的取值范围是x≠﹣3.【解答】解:若分式有意义,则x+3≠0,解得:x≠﹣3.故答案为x≠﹣3.5.(2分)已知一组数据﹣3,x,﹣2,3,1,6的众数为3,则这组数据的中位数为2.【解答】解:∵数据﹣3,x,﹣2,3,1,6的众数为3,∴3出现的次数是2次,∴x=3,数据重新排列是:﹣3,﹣2、1、3、3、6,所以中位数是(1+3)÷2=2.故答案为:2.6.(2分)已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是m<1.【解答】解:因为抛物线图象顶点在x轴下方,且抛物线开口向上,则抛物线与x轴有两个交点,所以(﹣2)2﹣4×1×m>0,解得m<1.故答案为m<1.7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为3.【解答】解:设它的母线长为l,根据题意得×2π×1×l=3π,解得l=3,即它的母线长为3.故答案为3.8.(2分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是55°.【解答】解:∵∠D=35°,∴∠AOB=70°,∵OA=OB,∴∠OAB=∠OBA==55°,故答案为:55°.9.(2分)已知点A(1,y1),B(m,y2)在二次函数y=x2﹣4x+1的图象上,且y1>y2,则实数m的取值范围是1<m<3.【解答】解:二次函数y=x2﹣4x+1的对称轴为x=2,∴A(1,y1)的对称点为(3,y1),∵A(1,y1),B(m,y2)为其图象上的两点,且y1>y2,∴1<m<3.故答案为:1<m<3.10.(2分)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为10.【解答】解:∵BD=AB,BE是∠ABC的平分线,∴AE=DE,∴△BDE的面积与△ABE的面积均为3,又∵点F是AC的中点,∴EF是△ACD的中位线,∴2EF=CD,EF∥DC,∴△AEF∽△ADC,∴S△ACD=4S△AEF,∵四边形CDEF的面积为3,∴△ACD的面积为4,∴△ABC的面积为3+3+4=10.故答案为:10.11.(2分)如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′=.【解答】解:由题意可得:AD∥CD′,故△ADB′∽△D′CB′,则=,设AD=x,则B′C=x,DB′=4﹣x,AB=CD′=4,故=,解得:x1=﹣2﹣2(不合题意舍去),x2=﹣2+2,则DB′=6﹣2,则tan∠DAD′===.故答案为:.12.(2分)如图,在平面直角坐标系中,点B(﹣1,4),点A(﹣7,0),点P是直线y =x﹣1上一点,且∠ABP=45°,则点P的坐标为(﹣,﹣).【解答】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,﹣2),取AA′的中点K(﹣2,﹣1),直线BK与直线y=x﹣2的交点即为点P.∵直线BK的解析式为y=5x+9,由,解得,∴点P坐标为(﹣,﹣),故答案为:(﹣,﹣).二、选择题(本大题共5小题,每小题3分,共15分)13.(3分)下列四个数中,是无理数的是()A.B.C.D.()2【解答】解:A.=﹣2,是有理数;B.是分数,属于有理数;C.是无理数;D.()2=3是有理数;故选:C.14.(3分)如图是由6个大小相同的小正方体组成的几何体,它的俯视图是()A.B.C.D.【解答】解:从物体上面看,第一层有3个正方形,第二层的左边有1个正方形.故选:C.15.(3分)有一张平行四边形纸片ABCD,已知∠B=75°,按如图所示的方法折叠两次,则∠BCF的度数等于()A.60°B.55°C.50°D.45°【解答】解:由折叠可得,∠CED=90°=∠BCE,又∵∠D=∠B=75°,∴∠DCE=15°,由折叠可得,∠DCF=2×15°=30°,∴∠BCF=60°,故选:A.16.(3分)如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.B.C.D.6【解答】解:由图象可知,AB=3,AC=6如图,当x=1时,BP⊥ACRt△ABP中,BP==2,∵PC=6﹣1=5,∴Rt△CBP中,BC==,故选:B.17.(3分)如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A.2B.4C.5D.6【解答】解:连接OP,PC,OC,∵OP≥OC﹣PC=2,∴当点O,P,C三点共线时,OP最小,最小值为2,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=4,故选:B.三、简答题(本大题共11小题,共81分)18.(8分)(1)计算(2)化简:(a﹣2)(a+3)﹣(a﹣1)2【解答】解:(1)原式=+1﹣=1;(2)原式=a2+3a﹣2a﹣6﹣(a2﹣2a+1)=a2+a﹣6﹣a2+2a﹣1=3a﹣7.19.(10分)(1)解方程:(2)解不等式组:【解答】解:(1)去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1为原方程的解;(2)分别解不等式,得到,所以不等式组解集为﹣1<x≤4.20.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?【解答】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:,解得:.答:甲种奖品买了12件,乙种奖品买了18件.21.(6分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.【解答】解:(1)所选的学生性别为女生的概率==,故答案为:;(2)画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴这2名学生来自同一个班级的概率为=.22.(5分)为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)a=18,b=0.18;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?【解答】解:(1)抽取的总人数是2÷0.04=50(人),a=50×0.36=18,b==0.18;故答案是:18,0.18;(2);(3)中位数会落80≤x<90段,故答案是:80≤x<90;(4)该年级参加这次比赛的350名学生中成绩“优”等的人数约是:350×0.30=105(人).答:约有105人.23.(6分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.【解答】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.∵BC∥AD,∴∠ADB=∠EBC.∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,∴△ABD≌△ECB;(2)∵△ABD≌△ECB,∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴BD=2AD=6,∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°,∴∠DBC=60°,∴弧CD的长为=2π.24.(6分)如图,小山坡上有一根垂直于地面的电线杆CD,小明从地面上的A处测得电线杆顶端C点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端C点和电线杆底端D点的仰角分别是60°和30°.求电线杆CD的高度(结果保留根号)【解答】解:延长CD交AB于点E.∵∠DBE=30°,∴设DE=x,则BE=,∵∠CBE=60°,∴CE=,∵∠CBE=45°则,解得:.∴CD=CE﹣DE=2.25.(8分)如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证:=;(3)若AD∥BC,求点B的坐标.【解答】解:(1)∵函数y=(x>0,k是常数)的图象经过A(2,6),∴k=2×6=12,∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,∴mn=12①,BD=m,AE=6﹣n,∵△ABD的面积为3,∴BD•AE=3,∴m(6﹣n)=3②,联立①②得,m=3,n=4,∴B(3,4);设直线AB的解析式为y=kx+b(k≠0),则,∴,∴直线AB的解析式为y=﹣2x+10(2)∵A(2,6),B(m,n),∴BE=m﹣2,CE=n,DE=2,AE=6﹣n,∴DE•AE=2(6﹣n)=12﹣2n,BE•CE=n(m﹣2)=mn﹣2n=12﹣2n,∴DE•AE=BE•CE,∴(3)由(2)知,,∵∠AEB=∠DEC=90°,∴△DEC∽△BEA,∴∠CDE=∠ABE∴AB∥CD,∵AD∥BC,∴四边形ADCB是平行四边形.又∵AC⊥BD,∴四边形ADCB是菱形,∴DE=BE,CE=AE.∴B(4,3).26.(8分)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∴OD⊥DF.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD.∴CD=AD=4,AB=BC.∵DE=5,∴,EF=DE=5.∵∠CBD=∠BDE,∴BE=DE=5.∴BF=BE+EF=10,BC=BE+EC=8.∴AB=8.∵DE∥AB,∴△ABF∽△MEF.∴.∴ME=4.∴DM=DE﹣EM=1.27.(8分)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin.设AP的长为x.(1)AB=4;当x=1时,=;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.【解答】解:(1)作PM⊥AB于M交CD于N.如图1所示:∵四边形ABCD是矩形,∴BC=AD=3,∠ABC=90°,∴sin∠BAC==,∴AC=5,∴AB===4.在Rt△APM中,P A=1,PM=,AM=,∴BM=AB﹣AM=,∵MN=AD=3,∴PN=MN﹣PM=,∵∠PMB=∠PNE=∠BPE=90°,∴∠BPM+∠EPN=90°,∠EPN+∠PEN=90°,∴∠BPM=∠PEN,∴△BMP∽△PNE,∴===,故答案为4,;(2)①结论:的值为定值.理由如下:当点E在点C左侧时,如图1所示:由P A=x,可得PM=x.∴AM=x,BM=4﹣x,PN=3﹣x,∵△BMP∽△PNE,∴===.当点E在点C右侧时,如图2所示:同理得出=.综上所述:的值为定值.②在Rt△PBM中,PB2=BM2+PM2=(4﹣x)2+(x)2=x2﹣x+16,∵∴=.∴PE=PB,∴S=•PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值=.28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.【解答】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=﹣;(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x轴,∴△OAB∽△P AN,∴=,即=,∴PN=(4﹣m),∵M在抛物线上,∴PM=﹣m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴﹣m2+m+2=4×(4﹣m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P1(3,0),且OB=2,∴==,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.。

2019年江苏省镇江市丹阳市中考数学一模试卷 (1)

2019年江苏省镇江市丹阳市中考数学一模试卷 (1)

23.(6 分)如图,正方形 ABCD 的边长为 1,其中弧 DE、弧 EF、弧 FG 的圆心依次为点 A、 B、C. (1)求点 D 沿三条弧运动到点 G 所经过的路线长; (2)判断直线 GB 与 DF 的位置关系,并说明理由.
24.(6 分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点 B 处测得楼 顶 A 的仰角为 22°,他正对着城楼前进 21 米到达 C 处,再登上 3 米高的楼台 D 处,并 测得此时楼顶 A 的仰角为 45°. (1)求城门大楼的高度; (2)每逢重大节日,城门大楼管理处都要在 A,B 之间拉上绳子,并在绳子上挂一些彩 旗,请你求出 A,B 之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈ , cos22°≈ ,tan22°≈ )
些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为
()
A.2
B.3
C.4
D.5
15.(3 分)有一张平行四边形纸片 ABCD,已知∠B=70°,按如图所示的方法折叠两次,
则∠BCF 的度数等于( )
第 2页(共 28页)
A.55°
B.50°
C.45°
D.40°
16.(3 分)如图,AB 是⊙O 的直径,C、D 是 AB 下方半圆上的点,点 P 从点 O 出发,沿
°.
9.(2 分)已知二次函数 y=ax2+bx+c 中,自变量 x 与函数 y 的部分对应值如下表:
x

﹣2
0
2
3

y

8
0
0
3

当 x=﹣1 时,y=

10.(2 分)如图,O 为 Rt△ABC 斜边中点,AB=10,BC=6,M,N 在 AC 边上,∠MON

2019年江苏省丹阳市中考数学第二次模拟试题及答案解析

2019年江苏省丹阳市中考数学第二次模拟试题及答案解析

丹阳市最新中考二模数学试题一、填空题(本大题共有12小题,每小题2分,共计24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 1.3-的相反数是▲ .2.计算:=-m m 42 ▲ . 3. 因式分解:=-224b a ▲ . 4. 计算:=-28 ▲ . 5. 函数21-+=x x y 中,自变量x 的取值范围是 ▲ . 6.已知一个等腰三角形的两边长分别是1和2,则该等腰三角形的周长为 ▲ .7. 一种微粒的半径是0.00004米,这个数据用科学记数法表示为 ▲ . 8. 如图,正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA= ▲ .9. 二次函数c x x y +-=22的图像与x 轴有交点,则c 的取值范围是 ▲ . 10. 如图,△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB相切,则⊙C 的半径为 ▲ .11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离y (km )与慢车行驶的时间x (h )之间的函数关系如图所示,则快车的速度为 ▲ .12.如图,P 为双曲线)0(3>=x x y 上的一点,直线m x y +-=33与x 轴交于点A ,与y 轴交于点B ,过点P 作x 轴、y 轴的垂线,与该直线分别交于E 、F 两点,垂足为M 、N ,则AF •BE 的值为 ▲ .二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位置.......上)13.下列运算中,正确的是( ▲ ) A .235+=B .2a a a -+=C .336()a a =D .3273=-14. 一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“值”相对的字是( ▲ ) A .记B .观C .心D .间15.某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁) 12 13 14 15 人数1351则这10名同学年龄的中位数是( ▲ ) A .13B .13.5C .14D .15观间心记值价16. 已知二次函数c bx ax y ++=2的x 、y 的部分对应值如下表:x 1-0 123 y511-1-1则该二次函数图象的对称轴为( ▲ )A .y 轴B .直线25=x C .直线2=x D .直线23=x 17.如图,M 是直线x y 3=上的动点,N 为y 轴上的一个动点, 定点A 的坐标为(0,4),则AM +MN 的最小值为( ▲ )A .3.5B .22C .32D .122+三、解答题(本大题共有11小题,共计81分.请在答题卡指定区域内作.........答.,解答时应写出必要的文字说明、证明过程或演算步骤) 18.(本题满分8分)(1)计算:︒----60tan 3)2016(30π; (2)化简:xx x x +-÷++224)111(.19.(本题满分8分)(1)解方程:111223+-=+x x ;(2)解不等式组:⎪⎩⎪⎨⎧->--≥2215143x x x x .yxA NMO20. (本题满分6分) “低碳环保,你我同行”.近年来镇江市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有▲位市民参与调查;(2)补全条形统计图;(3)扇形统计图中A项所对应的圆心角的度数为▲;(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?21.(本题满分6分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF 是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.A(1)求证:BE=CF;C(2)当四边形ACDE 为菱形时,则BD= ▲ .22.(本题满分6分)小华的父母决定今年中考后带他去旅游,初步商量有意向的五个景点分别为:①大连,②青岛,③海南岛,④庐山,⑤黄山,由于受时间限制,只能选其中的二个景点,却不知该去哪里,于是小华父母决定通过抽签决定,用五张小纸条分别写上五个景点做成五个签,让小华随机抽二次,每次抽一个签,每个签抽到的机会相等. (1)小华最希望去青岛,小华第一次恰好抽到青岛的概率是 ▲ . (2)除外青岛,小华还希望去黄山,求小华抽到青岛、黄山二个景点中至少一个的概率是多少?(通过“画树状图”或“列表”进行分析).23. (本题满分6分)已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F . (1)求证:AC 与⊙O 相切;(2)当BD=6,sinC=53时,求⊙O 的半径.D GFECOBA24. (本题满分6分)如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(精确到0.1m);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(写出画法,并保留画图痕迹),并求出点A运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)25.(本题满分6分)近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A 种设备多少台?26. (本题满分8分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数xk y =(k >0,x >0)的图象上,点D 的坐标为(5,2). (1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的一个顶点恰好落在函数xk y =(k >0,x >0)的图象上时,求菱形ABCD 平移的距离; (3)把菱形ABCD 绕点O 顺时针旋转至点A ',点A '恰好落在反比例函数图像上时,点A '坐标为 ▲ .27. (本题满分9分)已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C. (1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G. 已知直线l:y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,则b 的取值范围是 ▲ ;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值.28. (本题满分12分) 如图1,P 为∠MON 平分线OC 上一点,以P 为顶点的∠APB 两边分别与射线OM 和ON 交于A 、B 两点,如果∠APB 在绕点P 旋转时始终满足OA ·OB=OP 2,我们就把∠APB 叫做∠MON 的关联角.A BO MNCPA N M O CPBAOM CNP Bxy321-3-1-24321O-1-2-3图1 图2图3(1)如图2,P 为∠MON 平分线OC 上一点,过P 作PB ⊥ON 于B ,AP ⊥OC 于P ,那么∠APB ▲∠MON 的关联角(填“是”或“不是”). (2)①如图3,如果∠MON=60°,OP=2,∠APB 是∠MON 的关联角,连接AB ,求:△AOB 的面积和∠APB 的度数;②如果∠MON=α°(0°<α°<90°),OP=m ,∠APB 是∠MON 的关联角,则∠APB=▲;=∆AOB S ▲ (用含有α和m 的代数式表示). (3)如图4,点C 是函数2y x=(x >0)图象上一个动点,过点C 的直线CD 分别交x 轴和y 轴于A ,B 两点,且满足BC=2CA ,求出∠AOB 的关联角∠APB 的顶点P 的坐标.图4Oxy C数学试卷参考答案一、 填空题:1.3 2.m 2- 3.)2)(2(b a b a -+ 4.2 5.2≠x 6.5 7.5104-⨯ 8. ︒369.1≤c 10.51211.150 12.4 二、选择题:13.B 14.A 15.C 16.D 17. C 三、解答题:18. (1)1-(分步给分) (2)2-x x(分步给分) 19.(1)23=x 是原方程的解(分步给分) (2)11≤<-x (分步给分) 20.解:(1)200 ……… 1分(2)略 ……… 4分 (3)18°……… 5分(4)46×5%=2.3(万人).……… 6分21. (1)证明:∵△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的, ∴AE=AB ,AF=AC ,∠EAF=∠BAC ,∴∠EAF+∠BAF=∠BAC+∠BAF ,即∠EAB=∠FAC ,在△EAB 和△FAC 中,⎪⎩⎪⎨⎧=∠=∠=AF AC FAC EAB AE AB ,∴△EAB ≌△FAC (SAS )FE D CBA∴BE=CF ;……… 4分 (2)BD=12-.……… 6分22.解:(1)∵有意向的五个景点分别为:①大连,②青岛,③海南岛,④庐山,⑤黄山,∴小华第一次恰好抽到青岛的概率是:51;……… 2分(2)画树状图得:∵共有20种等可能的结果,小华抽到青岛、黄山二个景点中至少一个的有14种情况,∴小华抽到青岛、黄山二个景点中至少一个的概率是:1072014=.……… 6分23.(1)证明:连接OE ,∵AB=BC 且D 是AC 中点,∴BD ⊥AC , ∵BE 平分∠ABD ,∴∠ABE=∠DBE , ∵OB=OE ∴∠OBE=∠OEB , ∴∠OEB=∠DBE ,∴OE ∥BD , ∵BD ⊥AC ,∴OE ⊥AC ,∴AC 与⊙O 相切.……… 3分 (2)解:∵BD=6,sinC=53,BD ⊥AC ,∴BC=10,∴AB=BC=10, 设⊙O 的半径为r ,则AO=r -10, ∵AB=BC ,∴∠C=∠A , ∴sinA=sinC=53,∵AC 与⊙O 相切于点E ,∴OE ⊥AC , ∴sinA=5310=-=r r OA OE ,∴r=415,……… 6分 答:⊙O 的半径是415. 24.解:(1)过点A 作地面的垂线,垂足为C ,在Rt △ABC 中,∠ABC=18°, ∴AC=AB •sin ∠ABC=6•sin18°≈6×0.31≈1.9.……… 3分(2)画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则弧AD 就是端点A 运动的路线.端点A 运动路线的长为531803182ππ=⨯⨯⨯(m ).……… 6分25.解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:⎩⎨⎧=+=+5.225.32y x y x 解得:⎩⎨⎧==5.15.0y x 答:每台A 种、B 种设备各0.5万元、1.5万元;……… 3分(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z ≥15,答:至少购买A 种设备15台.……… 6分26.解:(1)作DE ⊥BO ,DF ⊥x 轴于点F , ∵点D 的坐标为(5,2),∴DO= AD=3,∴A 点坐标为:(5,5),∴k=55; ……… 2分 (2)∵将菱形ABCD 向右平移,使点D 落在反比例函数xk y =(x >0)的图象上D ′, ∴DF=D ′F ′= 2,∴D ′点的纵坐标为2,设点D ′(x , 2) ∴x 552=,解得255=x ,∴5235255=-=-'='OF F O F F , ∴菱形ABCD 平移的距离为523. 同理,将菱形ABCD 向右平移,使点B 落在反比例函数xk y =(x >0)的图象上菱形ABCD 平移的距离为.535……… 6分 综上,当菱形ABCD 平移的距离为523或535时,菱形的一个顶点恰好落在函数图像上.(3)()55,……… 8分 27.解:(1)根据题意得:1413m n m n +=-⎧⎨+=-⎩解得:43m n =-⎧⎨=⎩ 二次函数的表达式为243y x x =-+. 顶点坐标为(2,-1)………………… 4分;(2)39b <<. ………………… 6分;(3)∵()1,P x c 和点()2,Q x c 在函数243y x x =-+的图象上,∴PQ ∥x 轴,∵二次函数243y x x =-+的对称轴是直线2x =, 又∵12x x <,2PQ a =. ∴12x a =-,22x a =+.∴()()2212612261x ax a a a a a -++=--+++ =5.……… 9分28.解:(1)是. ………………1分 (2)① 如图,过点A 作AH ⊥OB 于点H .∵∠APB 是∠MON 的关联角,OP=2, ∴OA ·OB=OP 2=4.在Rt △AOH 中,∠AOH=90°, ∴sin AH AOH OA∠=,∴sin AH OA AOH =⋅∠.H AOMCNP B∴S △AOB 111sin sin60222OB AH OB OA AOH OB OA =⋅⋅=⋅⋅∠=⋅⋅︒,22113sin 6023222OP =⋅⋅︒=⨯⨯=.……4分∵∠APB 是∠MON 的关联角, ∴OA ·OB=OP 2,即OA OP OPOB=.∵点P 为∠MON 的平分线上一点, ∴ ∠AOP=∠BOP=160302⨯︒=︒.∴△AOP ∽△POB . ∴∠OAP=∠OPB .∴∠APB=∠OPB+∠OPA=∠OAP+∠OPA=180°-30°=150°.……6分②∠APB=21-1800α, S △AOB 21sin 2m α=⋅⋅.………………8分(3)P 点的坐标为323222⎛⎫⎪⎪⎝⎭,,2222⎛⎫- ⎪ ⎪⎝⎭,. ………………12分。

江苏省丹阳市中考数学模拟卷4

江苏省丹阳市中考数学模拟卷4

九年级数学模拟卷一、选择题1. 2的相反数是( ) A.2- B.12- C.2 D.122. 的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间3. 年初,工信部官网发布了2016年通信运营业统计公报,数据显示,2016年,4G 用户数呈爆发式增长,全年新增3.4亿户,总数达到770 000 000亿户,将770 000 000用科学记数法表示应为( )A.90.7710⨯B.77.710⨯C.87.710⨯D.97.710⨯ 4. 把2x y y -分解因式,正确的是( )A.2(1)y x -B.(1)y x +C.(1)y x -D.(1)(1)y x x +- 5. 函数12y x =+中,x 的取值范围是( ) A.0x ≠ B.2x >- C.2x <- D.2x ≠- 6. 一组数据:10,15,10,17,18,20。

对于这组数据,下列说法错误的是( )A.平均数是15B.众数是10 C 中位数是17 D.方差是4437. 如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC =米,坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连,若10AB =米,则旗杆BC 的高度为( )A. 5米B. 6米C. 8米)米8. 如图,等腰直ABC V 中,8AB AC ==,以AB 为直径的半圆O 交斜边BC 于D ,则阴影部分面积为(结果保留π) ( )A.16B.244π-C.324π-D. 328π-9. 二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法:①20a b +=;②当13x -≤≤时,0y <;③若11(,)x y 、22(,)x y 在函数图象上,当12x x <时,12y y < ④930a b c ++=其中正确的是( )A.①②④B.①②③C.①④D.③④10. 如图,矩形ABCD 中,AB =BC =E 在对角线BD 上,且 1.8BE =,连接AE并延长交DC 于F ,则CFCD等于( )A.13二、填空题11. 计算:32a a = 。

江苏省句容市、丹阳市2019届九年级下学期中考网上阅卷第二次适应性检测(二模)数学试卷【含答案及解析】

江苏省句容市、丹阳市2019届九年级下学期中考网上阅卷第二次适应性检测(二模)数学试卷【含答案及解析】

江苏省句容市、丹阳市2019届九年级下学期中考网上阅卷第二次适应性检测(二模)数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 的相反数是______.2. 化简:=______.3. 若在实数范围内有意义,则x的取值范围是______.4. 如图,AB∥CD,若∠ECD=54°,则∠EAB的度数为______.5. 分解因式:=______.6. 一组数据:8,5,3,7,8的中位数是_____.7. 若关于x的一元二次方程有两个相等的实数根,则m=______.8. 若圆锥的底面半径为2,母线长为5,则圆锥的侧面积等于______.9. 如图,平行四边形ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△ABE的面积为1,则△BCF的面积等于__.10. 如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为_____.11. 如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC= ,直线l的关系式为:.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为_______平方单位.12. 如图,曲线AB是顶点为B,与y轴交于点A的抛物线的一部分,曲线BC是双曲线的一部分,由点C开始不断重复“A-B-C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,=_______.二、单选题13. 为解决“最后一公里”的交通接驳问题,我市投放了大量公租自行车供市民使用.据统计,目前我市共有公租自行车3200辆.将3200用科学记数法表示应为()A. 0.32×104B. 3.2×103C. 3.2×102D. 32×10214. 由六个相同的立方体搭成的几何体如图所示,下面有关它的视图的说法正确的是()A. 左视图与主视图相同B. 俯视图与主视图相同C. 左视图与俯视图相同D. 三个视图都相同15. 已知关于x的方程2x+4=m﹣x的解为非负数,则m的取值范围是()A. B. C. D.16. 某商场一楼与二楼之间的手扶电梯如图所示.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A. mB. 8 mC. mD. 4 m17. 如图,矩形ABCD 中,AB=4,AD=3,P 是边CD 上一点,将△AD P沿直线AP对折,得到△APQ.当射线BQ交线段CD于点F时,DF的最大值是()A. 3B. 2C.D.三、解答题18. (1)计算:;(2)19. (1)解不等式组:;(2)解方程:20. 在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.21. 某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率22. 为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a= ,b= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?23. 如图,四边形ABCD中,AB⊥BC,∠BCD=150,∠BAD=60,AB=4,BC=,求CD的长.24. 某校有一长方形花圃,里面有一些杂草需要处理.小聪单独完成这项杂草清除任务需要150分钟,小聪单独施工30分钟后,小明加入清理,两人又共同工作了15分钟,完成总清理任务的.(1)小明单独完成这项清理任务需要多少分钟?(2)为了加快清理,二人各自提高工作效率,设小明提高后的工作效率是m,小聪提高后的工作效率是小明提高后的工作效率的k倍(1≤k≤2),若两人合作40分钟后完成剩余的杂草清除任务,则m的最大值为.25. 如图,AB是⊙O的直径,AC是⊙O的弦,E是AB延长线上的点,BF⊥EC于F交⊙O于D,∠EBF=2∠EAC.(1)求证:CE是⊙O的切线;(2)若,求的值.26. 直线与双曲线的交点A的横坐标为2.(1)求k的值;(2)当m>2时,如图,过点P(m,3)作x轴的垂线交与双曲线(k>0)于点M,交直线OA于点N.①连接OM,当OA=OM时,PN-PM的值为;②试比较PM与PN的大小,并证明你的结论.27. 已知二次函数.(1)若该二次函数的最小值为-4,求该二次函数解析式;(2)当且时,函数值y的取值范围是-6≤y≤5-n,求n的值;(3)在(1)的条件下,将此二次函数平移,使平移后的图象经过(1,0).设平移后的图象对应的函数表达式为,当x<2时,y随x的增大而减小,求k的取值范围.28. 如果一个三角形有一边上的中线与这边的长相等,那么称这个三角形为“和谐三角形”.(1)请用直尺和圆规在图1中画一个以线段AB为一边的“和谐三角形”;(2)如图2,在△ABC中,∠C=90°,AB=,BC=,请你判断△ABC是否是“和谐三角形”?证明你的结论;(3)如图3,已知正方形ABCD的边长为1,动点M,N从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点M经过的路程为S,当△AMN为“和谐三角形”时,求S的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第14题【答案】第16题【答案】第18题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。

2019年江苏省镇江市丹阳市中考数学一模试卷(含答案)

2019年江苏省镇江市丹阳市中考数学一模试卷(含答案)

2019年江苏省镇江市丹阳市中考数学一模试卷一.填空题(共12小题,满分24分,每小题2分)1.化简﹣(﹣)的结果是.2.已知x m=6,x n=3,则x m﹣n的值为.3.若二次根式在实数范围内有意义,则x的取值范围是.4.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.5.分解因式:a3﹣a=.6.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.7.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.8.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.9.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC 分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.10.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.11.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为平方单位.12.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.二.选择题(共5小题,满分15分,每小题3分)13.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108 B.32.4×106C.3.24×107D.324×10814.如图所示的几何体的左视图是()A.B.C.D.15.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤216.如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°到AB位置,且左边细管位置不变,则此时“U”形装置左边细管内水柱的高度约为()A.4cm B.2cm C.3cm D.8cm17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B 落在E处,AE交DC于点O,若OC=5cm,则CD的长为()A.6cm B.7cm C.8cm D.10cm三.解答题(共11小题,满分91分)18.(8分)(1)计算:3tan30°﹣|1﹣|+(2008﹣π)0(2)化简:÷(1+)19.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.20.(6分)在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.21.(6分)在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率.请借助列表法或树形图说明理由.22.(14分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2,求CD的长.24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.(7分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.26.(7分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).(1)求此抛物线的解析式及顶点坐标;(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.28.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD 上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF =BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)2019年江苏省镇江市丹阳市中考数学一模试卷参考答案一.填空题(共12小题,满分24分,每小题2分)1.【分析】根据相反数的定义作答.【解答】解:﹣(﹣)=.故答案是:.【点评】考查了相反数.求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n 是一个整体,在整体前面添负号时,要用小括号.2.【分析】根据同底数幂的除法法则求解.【解答】解:∵x m=6,x n=3,∴x m﹣n=6÷3=2.故答案为:2.【点评】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.3.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.4.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.5.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.6.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此判断即可.【解答】解:∵共有2+8+7+10+3=30个数据,∴其中位数是第15、16个数据的平均数,而第15、16个数据均为1.3万步,则中位数是1.3万步,故答案为:1.3.【点评】此题主要考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac的关系是解答此题的关键.8.【分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故答案为20.【点评】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.9.【分析】根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE =ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.【解答】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故填空答案:12.【点评】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.10.【分析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD=90°,最后利用五边形的内角和相减可得结论.【解答】解:正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,连接OA、OC,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°,故答案为:144°.【点评】本题考查了正五边形的内角和、内角的度数、切线的性质,本题的五边形内角可通过外角来求:180°﹣360°÷5=108°.11.【分析】通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC 扫过的面积.【解答】解:∵y=﹣x﹣3.∴A(1,0),B(3,0),∴AB=2.∵∠ABC=90°,AC=2,∴BC=4,∴C(3,4).设平移后点A、C的对应点分别为A′、C′,当y=﹣x﹣3=4时,x=﹣7,∴C′(﹣7,4),∴CC′=10.∵线段AC扫过的四边形ACC′A′为平行四边形,∴S=CC′•BC=10×4=40.答:线段AC扫过的面积为40.故答案为:40【点评】本题考查了待定系数法求一次函数解析式、解直角三角形、一次函数图象上点的坐标特征、平行四边形的面积以及坐标与图形变化中的平移,解题的关键是通过解直角三角形以及一次函数图象上点的坐标特征找出点C、C′的坐标.12.【分析】根据点的对称性可求出ab和a+b的值,从而得出抛物线的解析式,再利用配方法可求其顶点坐标.【解答】解:∵M、N关于y轴对称的点,∴纵坐标相同,横坐标互为相反数∴点M坐标为(a,b),点N坐标为(﹣a,b),∴由点M在双曲线y=上知b=,即ab=1;由点N在直线y=x+3上知b=﹣a+3,即a+b=3,则抛物线y=﹣abx2+(a+b)x=﹣x2+3x=﹣(x﹣)2+,∴抛物线y=﹣abx2+(a+b)x的顶点坐标为(,),故答案为(,),【点评】本题主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.二.选择题(共5小题,满分15分,每小题3分)13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3240万用科学记数法表示为:3.24×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.15.【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.16.【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=2x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x•S+x •2S=6•S+6•S,然后求出x后计算出AC即可.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=2x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴CH=x=4,即此时“U”形装置左边细管内水柱的高度约为4cm.故选:A.【点评】本题考查了解直角三角形的应用,旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.【分析】由折叠的性质可得:∠BAC=∠EAC=∠ACD,可得AO=CO=5cm,根据勾股定理可求DO的长,即可求CD的长.【解答】解:∵折叠∴∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,∴CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查了折叠问题,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共11小题,满分91分)18.【分析】(1)根据实数的混合计算解答即可;(2)根据分式的混合计算解答即可.【解答】解:(1)原式=;(2)原式===.【点评】此题考查分式的混合计算,关键是根据运算法则和顺序解答.19.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)去分母得:5(1﹣x)=20﹣2(x+2),5﹣5x=20﹣2x﹣4,﹣5x+2x=20﹣4﹣5,﹣3x=11,x=﹣;(2)∵解不等式①得:x>﹣2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、解一元一次方程等知识点,能正确根据等式的性质进行变形是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.20.【分析】先根据三角形中位线定理得出∠EDB=∠C,∠B=∠FDC,再由F是AC边的中点得出FC=AC,故可得出DE=FC,利用AAS定理即可得出结论.【解答】证明:∵点D、E分别是BC、AB的中点,∴ED∥AC,ED=AC,∴∠EDB=∠C.又∵F是AC边的中点,∴FC=AC,∴DE=FC,同理可得,∠B=∠FDC,在△EBD和△FDC中,∵,∴△BED≌△DFC(AAS).【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.21.【分析】用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案.【解答】解:作树状图可得:(5分)“两次取的小球的标号相同”的概率为P=(9分)【点评】树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据频数分布表补全条形图即可得;(2)根据中位数的定义求解可得,将成绩在60≤x<70的分数段的人数除以总人数可得百分比;(3)用总人数乘以样本中90分以上(含90分)的人数所占比例可得.【解答】解(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90,∴这次抽取的学生成绩的中位数在80≤x<90的分数段中,这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%,故答案为:80≤x<90,12%;(3).答:该年级参加这次比赛的学生中成绩“优”等的约有105人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】延长AB、DC交于点E,利用等边三角形的判定和三角函数解答即可.【解答】解:分别延长AB、DC交于点E.∵∠BCD=150°°,∴∠BCE=30°.∵AB⊥BC,∠CBE=90°,∴∠AEC=60°.又∠BAD=60°.∴△AED是等边三角形,在Rt△BCE中,∵BC=2,∠BCE=30°,cos30=,EC=4,∴CD=2.【点评】此题考查勾股定理问题,关键是利用等边三角形的判定和勾股定理解答.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B 的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD 为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD 垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.【点评】此题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.26.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B (﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB=S△AOC+S△BOC=.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.27.【分析】(1)利用待定系数法求抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标;(2)先计算出当x=﹣1和x=3对应的函数值,然后根据二次函数的性质解决问题;(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,利用二次函数的性质,当2+m>5,此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,;设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,利用二次函数的性质得到2﹣m<1,此时x =1时,y=5,即(1﹣2﹣m)2﹣1=5,然后分别解关于m的方程即可.【解答】解:(1)把(1,0),(0,3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣4x+3;∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1);(2)当x=﹣1时,y=x2﹣4x+3=8,当x=3时,y=x2﹣4x+3=0,∴当﹣1≤x≤3时,函数值y的取值范围为﹣1≤x<8;(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2+m>5,即m>3,m2=3﹣此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,解得m(舍去),设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2﹣m<1,即m>1,m2=1﹣此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,解得m(舍去),综上所述,m的值为3+或1+.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.也考查了二次函数的性质.28.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF =BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.。

江苏省镇江市丹阳市2019年中考数学二模试卷

江苏省镇江市丹阳市2019年中考数学二模试卷

2019年江苏省镇江市丹阳市中考数学二模试卷一.填空题(共12小题)1.的倒数是.2.计算:x4÷x2=.3.分解因式:x2﹣2x+1=.4.要使二次根式有意义,字母x的取值范围必须满足的条件是.5.如图,转盘中6个扇形的面积都相等.任意转动转盘一次,当转盘停止转动时,指针指向偶数的概率是.6.关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是.7.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.8.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于.9.如图,△ABC中,∠ACB=90°,D在BC上,E为AB中点,AD、CE相交于F,AD=DB.若∠B=35°,则∠DFE等于°.10.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.11.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(﹣3,0),B(0,6)分别在x轴,y轴上,反比例函数的图象经过点D,且与边BC交于点E,则点E的坐标为.12.已知:6a=3b+12=2c,且b≥0,c≤9,则a﹣3b+c的最小值为.二.选择题(共5小题)13.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5 14.如图,这是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.15.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80 85 90 95人数/人 3 4 2 1那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和8516.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.17.如图,将边长为1的正方形纸片ABCD折叠,使点B的对应点M落在边CD上(不与点C、D重合),折痕为EF,AB的对应线段MG交AD于点N.以下结论正确的有()①∠MBN=45°;②△MDN的周长是定值;③△MDN的面积是定值.A.①②B.①③C.②③D.①②③三.解答题(共11小题)18.计算或化简:(1)(2)19.解方程或不等式组:(1)(2)20.某校举行“汉字听写”比赛,每位学生听写汉字40个,比赛结束后随机抽查部分学生听写“正确的字数”,以下是根据抽查结果绘制的统计图表.频数分布表组别正确的字数x人数A0.5~8.5 10B8.5~16.5 15C16.5~24.5 25D24.5~32.5 mE32.5~40.5 n根据以上信息解决下列问题:(1)补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)若该校共有1210名学生,如果听写正确的字数少于25,则定为不合格;请你估计这所学校本次比赛听写不合格的学生人数.21.一个不透明的袋子中,装有标号分别为1、﹣1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.22.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.23.如图,学校教学楼对面是一幢实验楼,小朱在教学楼的窗口C测得实验楼顶部D的仰角为20°,实验楼底部B的俯角为30°,量得教学楼与实验楼之间的距离AB=30m.求实验楼的高BD.(结果精确到1m.参考数据tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,24.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2016年底拥有家庭轿车640辆,2018年底家庭轿车的拥有量达到1000辆.若该小区2016年底到2019年底家庭轿车拥有量的年平均增长率都相同,求该小区到2019年底家庭轿车将达到多少辆?25.如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26.如图,点C是线段AB上一点,AC=AB,BC为⊙O的直径.(1)在图(1)直径BC上方的圆弧上找一点P,使得PA=PB;(用尺规作图,保留作图痕迹,不要求写作法)(2)连接PA,求证:PA是⊙O的切线;(3)在(1)的条件下,连接PC、PB,∠PAB的平分线分别交PC、PB于点D、E.求的值.27.如图,将矩形ABCD绕点A顺时针旋转θ(0°≤θ≤360°),得到矩形AEFG.(1)当点E在BD上时,求证:AF∥BD;(2)当GC=GB时,求θ;(3)当AB=10,BG=BC=13时,求点G到直线CD的距离.28.如图(1),二次函数y=ax2﹣bx(a≠0)的图象与x轴、直线y=x的交点分别为点A (4,0)、B(5,5).(1)a=,b=,∠AOB=°;(2)连接AB,点P是抛物线上一点(异于点A),且∠PBO=∠OBA,求点P的坐标;(3)如图(2),点C、D是线段OB上的动点,且CD=2.设点C的横坐标为m.①过点C、D分别作x轴的垂线,与抛物线相交于点F、E,连接EF.当CF+DE取得最大值时,求m的值并判断四边形CDEF的形状;②连接AC、AD,求m为何值时,AC+AD取得最小值,并求出这个最小值.。

2019年江苏省镇江市丹阳市中考数学一模试卷((有答案))

2019年江苏省镇江市丹阳市中考数学一模试卷((有答案))

2019年江苏省镇江市丹阳市中考数学一模试卷一.填空题(共12小题,满分24分,每小题2分)1.化简﹣(﹣)的结果是.2.已知x m=6,x n=3,则x m﹣n的值为.3.若二次根式在实数范围内有意义,则x的取值范围是.4.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.5.分解因式:a3﹣a=.6.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.7.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.8.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.9.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.10.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.11.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为平方单位.12.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.二.选择题(共5小题,满分15分,每小题3分)13.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108B.32.4×106C.3.24×107D.324×10814.如图所示的几何体的左视图是()A.B.C.D.15.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2C.m<2D.m≤216.如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°到AB位置,且左边细管位置不变,则此时“U”形装置左边细管内水柱的高度约为()A.4cm B.2cm C.3cm D.8cm17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若OC=5cm,则CD的长为()A.6cm B.7cm C.8cm D.10cm三.解答题(共11小题,满分91分)18.(8分)(1)计算:3tan30°﹣|1﹣|+(2008﹣π)0(2)化简:÷(1+)19.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.20.(6分)在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.21.(6分)在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率.请借助列表法或树形图说明理由.22.(14分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2,求CD 的长.24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.(7分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.26.(7分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).(1)求此抛物线的解析式及顶点坐标;(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.28.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)2019年江苏省镇江市丹阳市中考数学一模试卷参考答案与试题解析一.填空题(共12小题,满分24分,每小题2分)1.【分析】根据相反数的定义作答.【解答】解:﹣(﹣)=.故答案是:.【点评】考查了相反数.求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2.【分析】根据同底数幂的除法法则求解.【解答】解:∵x m=6,x n=3,∴x m﹣n=6÷3=2.故答案为:2.【点评】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.3.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.4.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.5.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.6.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此判断即可.【解答】解:∵共有2+8+7+10+3=30个数据,∴其中位数是第15、16个数据的平均数,而第15、16个数据均为1.3万步,则中位数是1.3万步,故答案为:1.3.【点评】此题主要考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系是解答此题的关键.8.【分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故答案为20.【点评】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.9.【分析】根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.【解答】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故填空答案:12.【点评】本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.10.【分析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD=90°,最后利用五边形的内角和相减可得结论.【解答】解:正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,连接OA、OC,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°,故答案为:144°.【点评】本题考查了正五边形的内角和、内角的度数、切线的性质,本题的五边形内角可通过外角来求:180°﹣360°÷5=108°.11.【分析】通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC扫过的面积.【解答】解:∵y=﹣x﹣3.∴A(1,0),B(3,0),∴AB=2.∵∠ABC=90°,AC=2,∴BC=4,∴C(3,4).设平移后点A、C的对应点分别为A′、C′,当y=﹣x﹣3=4时,x=﹣7,∴C′(﹣7,4),∴CC′=10.∵线段AC扫过的四边形ACC′A′为平行四边形,∴S=CC′•BC=10×4=40.答:线段AC扫过的面积为40.故答案为:40【点评】本题考查了待定系数法求一次函数解析式、解直角三角形、一次函数图象上点的坐标特征、平行四边形的面积以及坐标与图形变化中的平移,解题的关键是通过解直角三角形以及一次函数图象上点的坐标特征找出点C、C′的坐标.12.【分析】根据点的对称性可求出ab和a+b的值,从而得出抛物线的解析式,再利用配方法可求其顶点坐标.【解答】解:∵M、N关于y轴对称的点,∴纵坐标相同,横坐标互为相反数∴点M坐标为(a,b),点N坐标为(﹣a,b),∴由点M在双曲线y=上知b=,即ab=1;由点N在直线y=x+3上知b=﹣a+3,即a+b=3,则抛物线y=﹣abx2+(a+b)x=﹣x2+3x=﹣(x﹣)2+,∴抛物线y=﹣abx2+(a+b)x的顶点坐标为(,),故答案为(,),【点评】本题主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.二.选择题(共5小题,满分15分,每小题3分)13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3240万用科学记数法表示为:3.24×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.15.【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.16.【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=2x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x•S+x•2S=6•S+6•S,然后求出x后计算出AC即可.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=2x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴CH=x=4,即此时“U”形装置左边细管内水柱的高度约为4cm.故选:A.【点评】本题考查了解直角三角形的应用,旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.【分析】由折叠的性质可得:∠BAC=∠EAC=∠ACD,可得AO=CO=5cm,根据勾股定理可求DO的长,即可求CD的长.【解答】解:∵折叠∴∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,∴CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查了折叠问题,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共11小题,满分91分)18.【分析】(1)根据实数的混合计算解答即可;(2)根据分式的混合计算解答即可.【解答】解:(1)原式=;(2)原式===.【点评】此题考查分式的混合计算,关键是根据运算法则和顺序解答.19.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)去分母得:5(1﹣x)=20﹣2(x+2),5﹣5x=20﹣2x﹣4,﹣5x+2x=20﹣4﹣5,﹣3x=11,x=﹣;(2)∵解不等式①得:x>﹣2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、解一元一次方程等知识点,能正确根据等式的性质进行变形是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.20.【分析】先根据三角形中位线定理得出∠EDB=∠C,∠B=∠FDC,再由F是AC边的中点得出FC=AC,故可得出DE=FC,利用AAS定理即可得出结论.【解答】证明:∵点D、E分别是BC、AB的中点,∴ED∥AC,ED=AC,∴∠EDB=∠C.又∵F是AC边的中点,∴FC=AC,∴DE=FC,同理可得,∠B=∠FDC,在△EBD和△FDC中,∵,∴△BED≌△DFC(AAS).【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.21.【分析】用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案.【解答】解:作树状图可得:(5分)“两次取的小球的标号相同”的概率为P=(9分)【点评】树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据频数分布表补全条形图即可得;(2)根据中位数的定义求解可得,将成绩在60≤x<70的分数段的人数除以总人数可得百分比;(3)用总人数乘以样本中90分以上(含90分)的人数所占比例可得.【解答】解(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90,∴这次抽取的学生成绩的中位数在80≤x<90的分数段中,这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%,故答案为:80≤x<90,12%;(3).答:该年级参加这次比赛的学生中成绩“优”等的约有105人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】延长AB、DC交于点E,利用等边三角形的判定和三角函数解答即可.【解答】解:分别延长AB、DC交于点E.∵∠BCD=150°°,∴∠BCE=30°.∵AB⊥BC,∠CBE=90°,∴∠AEC=60°.又∠BAD=60°.∴△AED是等边三角形,在Rt△BCE中,∵BC=2,∠BCE=30°,cos30=,EC=4,∴CD=2.【点评】此题考查勾股定理问题,关键是利用等边三角形的判定和勾股定理解答.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.【点评】此题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.26.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b =3,k =10,∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2). ∴BE =5.设直线y =x +3与y 轴交于点C . ∴C 点坐标为(0,3). ∴OC =3.∴S △AOC =OC •AD =×3×2=3,S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键. 27.【分析】(1)利用待定系数法求抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标; (2)先计算出当x =﹣1和x =3对应的函数值,然后根据二次函数的性质解决问题;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为y =(x ﹣2﹣m )2﹣1,利用二次函数的性质,当2+m >5,此时x =5时,y =5,即(5﹣2﹣m )2﹣1=5,;设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y =(x ﹣2+m )2﹣1,利用二次函数的性质得到2﹣m <1,此时x =1时,y =5,即(1﹣2﹣m )2﹣1=5,然后分别解关于m 的方程即可.【解答】解:(1)把(1,0),(0,3)代入y =x 2+bx +c 得,解得,∴抛物线解析式为y =x 2﹣4x +3; ∵y =x 2﹣4x +3=(x ﹣2)2﹣1, ∴抛物线的顶点坐标为(2,﹣1); (2)当x =﹣1时,y =x 2﹣4x +3=8, 当x =3时,y =x 2﹣4x +3=0,∴当﹣1≤x ≤3时,函数值y 的取值范围为﹣1≤x <8;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为y =(x ﹣2﹣m )2﹣1, ∵当自变量x 满足1≤x ≤5时,y 的最小值为5, ∴2+m >5,即m >3,此时x =5时,y =5,即(5﹣2﹣m )2﹣1=5,解得m 1=3+,m 2=3﹣(舍去),设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y =(x ﹣2+m )2﹣1, ∵当自变量x 满足1≤x ≤5时,y 的最小值为5,∴2﹣m<1,即m>1,此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,解得m1=1+,m2=1﹣(舍去),综上所述,m的值为3+或1+.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.也考查了二次函数的性质.28.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG ≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.。

2019年丹阳龙星中学初三下学期第一次抽考考试试题--数学

2019年丹阳龙星中学初三下学期第一次抽考考试试题--数学

2019年丹阳龙星中学初三下学期第一次抽考考试试题--数学 注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!考试时间120分钟,试卷总分值150分一、 选择题〔在每题给出的四个选项中,只有一个是正确的,每题3分,共30分〕1.-12的绝对值是 ()A 、-2B 、-12C、12D 、22.以下运算正确的选项是〔〕A 、222a a a +=B 、22()a a -=-C 、235()a a =D 、32a a a ÷=3.〔06·漳州〕以下运算正确的选项是〔〕 A、y y x y x y =---- B、2233x y x y +=+ C、22x y x y x y +=++ D、y x y x x y +-=--122 4.如图,AB 为⊙O 的直径,点C 、D 、E 均在⊙O 上,且∠BED=300,那么∠ACD的度数是〔〕、A 、600B 、500C 、400D 、3005.要使x 24-有意义,那么字母x 应满足的条件是( ).A 、x =2B 、x <2C 、x ≤2D 、x ≥26.长城总长约为6700010米,用科学记数法表示是〔〕.(保留两个有效数字)A 、6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米7.如图,⊙O 的半径为10,弦AB =16,M 是弦AB 上的动点,那么OM 不可能为〔〕A 、4B 、6C 、8D 、108.假设关于x 的一元二次方程0235)1(22=+-++-m m x x m 有一个根为0,那么m 的值等于〔〕〔A 〕1〔B 〕2〔C 〕1或2〔D 〕09.〔05·漳州〕以下等式成立的是〔〕A 、=+9494+B 、3+3=33C 、2)4(-=-4D 、27=3310.〔11·漳州〕分式方程2x +1=1的解是〔〕 第4题图第12题图A 、-1B 、0C 、1D 、32【二】填空题〔每题4分,共24分〕11.分解因式39x x -=▲.12.〔11·漳州〕如图是一个圆锥形型的纸杯的侧面展开图,圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为_▲cm 2、〔结果保留π〕13.、x 满足方程,0132=+-x x 那么x x 1+=▲ 14.〔06·漳州〕假设方程51122m x x ++=--无解,那么m=▲、 15.〔09·漳州〕假设221m m -=,那么2242007m m -+的值是____▲_______、16.〔11·漳州〕用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第〔用含n 的代数式表示〕【三】解答题〔共96分〕17.〔05·漳州〕〔总分值8分〕计算:(1)-1-2sin45°+|1-2|、例解方程2|1|10x x ---=解:〔1〕当10x -≥,即1x ≥时〔2〕当10x -<,即1x <时2(1)10x x ---=2(1)10x x +--=20x x -=220x x +-=解得:10x =〔不合题设,舍去〕,21x =解得11x =〔不合题设,舍去〕22x =- 综上所述,原方程的解是12x x ==-或第1个图形 第2个图形 第3个图形 …依照上例解法,解方程22|2|40x x ++-=、20.〔总分值10分〕解分式方程:141212-=+--x x x x 21.〔2006.漳州〕〔总分值12分〕如图,AB 是⊙O 的直径,AC 是弦,过点O 作OD ⊥AC 于D ,连结BC 、〔1〕求证:12OD BC =; 〔2〕假设40BAC =∠,求∠ABC 的度数、22.(12分)某中学新建了一栋4有四道门,其中两道正门大小相同,两道侧门大小相同.安全检查中,对四道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.〔1〕求平均每分钟一道正门和一道侧门各可以通过多少名学生?〔2〕检查中发现,紧急情况时因学生拥挤,出门效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造这4道门是否符合安全规定,请说明理由23.〔总分值12分〕为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶、〔1〕如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶? 〔2〕该校准备再次..购买这两种消毒液〔不包括已购买的100瓶〕,使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元〔不包括780元〕,求甲种消毒液最多能再购买多少瓶?24.〔2017.漳州〕〔总分值14分〕如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC 、AC 于D 、E 两点,过点D 作DF ⊥AC ,垂足为点F 、〔1〕求证:DF 是⊙O 的切线;〔2〕假设弧AE=弧DE ,DF=2,求弧AD 的长.龙星中学2018年九年级下学期第一次月考考试数学试题参考答案【一】选择题:题号 1 2 3 4 5 6 78 9 10 答案 D D D D C B AB D C【二】填空题:11、X(x+3)(x-3)12.75π13.314.–415.201716.3n +1【三】解答题: C (第21题)17、解:原式=122222-+⨯-·················· 6分=)1)(1(4-+-x x x ×)1)(4()1(2+-+x x x +11-x …………5分 =12-x …………7分当x=23+1时,原式12-x =11322-+=31…………10分 (2)x=2,y=1、19、解:〔1〕当20x +≥,即2x -≥时,…1分〔2〕当20x +<,即2x <-时,…5分22(2)40x x ++-=22(2)40x x -+-=220x x +=………………3分2280x x +-=………………7分 解得:120,2x x ==-.………4分解得124,2x x ==-〔都不合题设,都舍去〕 …………………………………8分综上所述,原方程的解是0x =或2x =-……………………………………10分20、原方程变形为)1)(1(4121-+=+--x x x x x -------------------------2分 方程两边都乘以)1)(1(-+x x ,去分母并整理得022=--x x ,----------5分 解这个方程得1,221-==x x 。

2019年江苏省镇江市丹阳市吕城片中考数学一模试卷-含详细解析

2019年江苏省镇江市丹阳市吕城片中考数学一模试卷-含详细解析

2019年江苏省镇江市丹阳市吕城片中考数学一模试卷副标题一、选择题(本大题共5小题,共15.0分)1.下列四个数中,是无理数的是()A. B. C. D.2.如图是由6个大小相同的小正方体组成的几何体,它的俯视图是()A.B.C.D.3.有一张平行四边形纸片ABCD,已知∠B=75°,按如图所示的方法折叠两次,则∠BCF的度数等于()A. B. C. D.4.如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A. B. C. D. 65.如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A. 2B. 4C. 5D. 6二、填空题(本大题共12小题,共24.0分)6.-5的倒数是______.7.计算:=______.8.分解因式:a3-4a=______.9.使分式有意义的x的取值范围是______.10.已知一组数据-3,x,-2,3,1,6的众数为3,则这组数据的中位数为______.11.已知二次函数y=x2-2x+m的图象顶点在x轴下方,则m的取值范围是______.12.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为______.13.如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是______.14.已知点A(1,y1),B(m,y2)在二次函数y=x2-4x+1的图象上,且y1>y2,则实数m的取值范围是______.15.如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为______.16.如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′______.17.如图,在平面直角坐标系中,点B(-1,4),点A(-7,0),点P是直线y=x-1上一点,且∠ABP=45°,则点P的坐标为______.三、计算题(本大题共1小题,共8.0分)18.(1)计算(2)化简:(a-2)(a+3)-(a-1)2四、解答题(本大题共10小题,共73.0分)19.(1)解方程:>(2)解不等式组:20.某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?21.九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是______.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.22.为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=______,b=______;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在______分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?23.如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.24.如图,小山坡上有一根垂直于地面的电线杆CD,小明从地面上的A处测得电线杆顶端C点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端C点和电线杆底端D点的仰角分别是60°和30°.求电线杆CD的高度(结果保留根号)25.如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证:=;(3)若AD∥BC,求点B的坐标.26.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.27.如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB,过点P作PE⊥PB,交射线DC于点E,已知AD=3,sin.设AP 的长为x.(1)AB=______;当x=1时,=______;(2)①试探究:否是定值?若是,请求出这个值;若不是,请说明理由;②连接BE,设△PBE的面积为S,求S的最小值.28.如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O 逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.答案和解析1.【答案】C【解析】解:A.=-2,是有理数;B.是分数,属于有理数;C.是无理数;D.()2=3是有理数;故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】C【解析】解:从物体上面看,第一层有3个正方形,第二层的左边有1个正方形.故选:C.细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.3.【答案】A【解析】解:由折叠可得,∠CED=90°=∠BCE,又∵∠D=∠B=75°,∴∠DCE=15°,由折叠可得,∠DCF=2×15°=30°,∴∠BCF=60°,故选:A.由折叠可得∠CED=90°=∠BCE,即可得到∠DCE=15°,由折叠可得∠DCF=2×15°=30°,即可得到∠BCF=60°.本题主要考查了折叠问题以及平行四边形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.【答案】B【解析】解:由图象可知,AB=3,AC=6如图,当x=1时,BP⊥ACRt△ABP中,BP==2,∵PC=6-1=5,∴Rt△CBP中,BC==,故选:B.由图象可知,BP⊥AC时,AP=5,由勾股定理求出BP,再求PC求BC即可.本题以动点的函数图象为背景,考查了数形结合思想.解答时,注意利用勾股定理计算相关数据.5.【答案】B【解析】解:连接OP,PC,OC,∵OP≥OC-PC=2,∴当点O,P,C三点共线时,OP最小,最小值为2,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=4,故选:B.连接OP,PC,OC,根据OP+PC≥OC,求出OP的最小值,根据直角三角形的性质得到AB=2OP,计算得到答案.本题主要考查了几何问题的最值,掌握三角形两边和大于第三边,两边差小于第三边,得到点O,P,C三点共线时,OP最短是解题的关键.6.【答案】【解析】解:因为-5×()=1,所以-5的倒数是.根据倒数的定义可直接解答.本题比较简单,考查了倒数的定义,即若两个数的乘积是1,我们就称这两个数互为倒数.7.【答案】1【解析】解:原式=3-2=1.故答案为:1.直接利用二次根式的性质和绝对值的性质化简,进而得出答案.此题主要考查了实数运算,正确化简各数是解题关键.8.【答案】a(a+2)(a-2)【解析】解:原式=a(a2-4)=a(a+2)(a-2).故答案为:a(a+2)(a-2)原式提取a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.【答案】x≠-3【解析】解:若分式有意义,则x+3≠0,解得:x≠-3.故答案为x≠-3.分式有意义的条件是分母不为0.本题考查的是分式有意义的条件:当分母不为0时,分式有意义.10.【答案】2【解析】解:∵数据-3,x,-2,3,1,6的众数为3,∴3出现的次数是2次,∴x=3,数据重新排列是:-3,-2、1、3、3、6,所以中位数是(1+3)÷2=2.故答案为:2.先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.【答案】m<1【解析】解:因为抛物线图象顶点在x轴下方,且抛物线开口向上,则抛物线与x轴有两个交点,所以(-2)2-4×1×m>0,解得m<1.故答案为m<1.根据题意可知抛物线与x轴有两个交点,根据b2-4ac>0求解即可.本题主要考查二次函数图象的性质以及抛物线与x轴交点情况.12.【答案】3【解析】解:设它的母线长为l,根据题意得×2π×1×l=3π,即它的母线长为3.故答案为3.设它的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×2π×1×l=3π,然后解关于l的方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【答案】55°【解析】解:∵∠D=35°,∴∠AOB=70°,∵OA=OB,∴∠OAB=∠OBA==55°,故答案为:55°.根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠OAB的度数.本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.14.【答案】1<m<3【解析】解:二次函数y=x2-4x+1的对称轴为x=2,∴A(1,y1)的对称点为(3,y1),∵A(1,y1),B(m,y2)为其图象上的两点,且y1>y2,∴1<m<3.故答案为:1<m<3.根据二次函数的对称性求得对称轴,然后根据函数的单调性解答.本题考查了二次函数图象上点的坐标特征.二次函数的对称性和二次函数的性质是关键.15.【答案】10【解析】解:∵BD=AB,BE是∠ABC的平分线,∴AE=DE,∴△BDE的面积与△ABE的面积均为3,又∵点F是AC的中点,∴EF是△ACD的中位线,∴2EF=CD,EF∥DC,∴△AEF∽△ADC,∴S△ACD=4S△AEF,∵四边形CDEF的面积为3,∴△ACD的面积为4,∴△ABC的面积为3+3+4=10.故答案为:10.依据BD=AB,BE是∠ABC的平分线,即可得到AE=DE,进而得出△BDE的面积与△ABE的面积均为3,再根据EF是△ACD的中位线,即可得出△ACD的面积为4,即可得到△ABC的面积为3+3+4=10.本题主要考查了三角形中位线定理以及相似三角形的判定与性质,相似三角形的面积的比等于相似比的平方.16.【答案】=【解析】解:由题意可得:AD∥CD′,故△ADB′∽△D′CB′,则=,设AD=x,则B′C=x,DB′=4-x,AB=CD′=4,故=,解得:x1=-2-2(不合题意舍去),x2=-2+2,则DB′=6-2,故答案为:.直接利用旋转的性质结合相似三角形的判定与性质得出DB′的长进而得出答案.此题主要考查了旋转的性质以及相似三角形的判定与性质,正确得出DB′的长是解题关键.17.【答案】(,)【解析】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,-2),取AA′的中点K(-2,-1),直线BK与直线y=x-2的交点即为点P.∵直线BK的解析式为y=5x+9,由,解得,∴点P坐标为(-,),故答案为:(-,).将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,-2),取AA′的中点K(-2,-1),直线BK与直线y=x-2的交点即为点P.求出直线BK的解析式,利用方程组确定交点P坐标即可本题考查一次函数图象上的点的特征,等腰直角三角形的性质,待定系数法等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.18.【答案】解:(1)原式=+1-=1;(2)原式=a2+3a-2a-6-(a2-2a+1)=3a-7.【解析】(1)先计算负整数指数幂、零指数幂、代入三角函数值,再计算加减可得;(2)先利用多项式乘多项式和完全平方公式计算,再去括号、合并同类项即可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则、完全平方公式及负整数指数幂、零指数幂、特殊锐角三角函数值.19.【答案】解:(1)去分母得:x=2x-1+2,解得:x=-1,经检验x=-1为原方程的解;(2)分别解不等式,得到,所以不等式组解集为-1<x≤4.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:,解得:.答:甲种奖品买了12件,乙种奖品买了18件.【解析】设甲种奖品买了x件,乙种奖品买了y件.根据两种奖品共30件以及共花了396元,即可得出关于x、y的二元一次方程,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.21.【答案】【解析】解:(1)所选的学生性别为女生的概率==,故答案为:;(2)画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴这2名学生来自同一个班级的概率为=.(1)根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.【答案】18 0.18 80≤x<90【解析】解:(1)抽取的总人数是2÷0.04=50(人),a=50×0.36=18,b==0.18;故答案是:18,0.18;(2);(3)中位数会落80≤x<90段,故答案是:80≤x<90;(4)该年级参加这次比赛的350名学生中成绩“优”等的人数约是:350×0.30=105(人).答:约有105人.(1)根据第一组的人数是2,对应的频率是0.04即可求得总人数,然后根据频率的公式即可求得;(2)根据(1)即可补全直方图;(3)根据中位数的定义即可判断;(4)利用总人数乘以对应的频率即可求得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【答案】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.∵BC∥AD,∴∠ADB=∠EBC.∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,∴△ABD≌△ECB;(2)∵△ABD≌△ECB,∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴BD=2AD=6,∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°,∴∠DBC=60°,∴弧CD的长为=2π.【解析】(1)因为这两个三角形是直角三角形,根据旋转的性质得出BC=BD,由AD∥BC推出∠ADB=∠EBC,从而能证明△ABD≌△ECB;(2)由全等三角形的性质得出AD=BE=3.根据30°角所对的直角边等于斜边的一半得出BD=2AD=6,根据平行线的性质求出∠DBC=60°,再代入弧长计本题考查了全等三角形的判定和性质,平行线的性质,旋转的性质,弧长的计算,证明出△ABD≌△ECB是解题的关键.24.【答案】解:延长CD交AB于点E.∵∠DBE=30°,∴设DE=x,则BE=,∵∠CBE=60°,∴CE=,∵∠CBE=45°则,解得:.∴CD=CE-DE=2.【解析】延长CD交AB于点E.根据CE=AE,构建方程求出x即可.本题考查解直角三角形的应用-仰角俯角问题,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.25.【答案】解:(1)∵函数y=(x>0,k是常数)的图象经过A(2,6),∴k=2×6=12,∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,∴mn=12①,BD=m,AE=6-n,∵△ABD的面积为3,∴BD•AE=3,∴m(6-n)=3②,联立①②得,m=3,n=4,∴B(3,4);设直线AB的解析式为y=kx+b(k≠0),则,∴ ,∴直线AB的解析式为y=-2x+10∴BE=m-2,CE=n,DE=2,AE=6-n,∴DE•AE=2(6-n)=12-2n,BE•CE=n(m-2)=mn-2n=12-2n,∴DE•AE=BE•CE,∴(3)由(2)知,,∵∠AEB=∠DEC=90°,∴△DEC∽△BEA,∴∠CDE=∠ABE∴AB∥CD,∵AD∥BC,∴四边形ADCB是平行四边形.又∵AC⊥BD,∴四边形ADCB是菱形,∴DE=BE,CE=AE.∴B(4,3).【解析】(1)先求出k的值,进而得出mn=12,然后利用三角形的面积公式建立方程,联立方程组求解即可;(2)先表示出BE,CE,DE,AE,进而求出BE•CE和DE•CE即可得出结论;(3)利用(2)的结论得出△DEC∽△BEA,进而得出AB∥CD,即可得出四边形ADCB是菱形即可得出点B的坐标.此题是反比例函数综合题,主要考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,解(1)的关键是确定出k 的值,解(2)的关键是表示出DE•AE,BE•CE,解(3)的关键是判断出四边形ADCB是菱形.26.【答案】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD.∴CD=AD=4,AB=BC.∵DE=5,∴,EF=DE=5.∵∠CBD=∠BDE,∴BE=DE=5.∴BF=BE+EF=10,BC=BE+EC=8.∴AB=8.∵DE∥AB,∴△ABF∽△MEF.∴.∴ME=4.∴DM=DE-EM=1.【解析】(1)先得出∠ABD=∠CBD,进而得出OD⊥DF,即可得出结论;(2)连接DC,利用全等三角形的判定得出△ABD≌△CBD,进而解答即可.主要考查了切线的判定,关键是根据全等三角形的判定和性质解答.27.【答案】4【解析】解:(1)作PM⊥AB于M交CD于N.如图1所示:∵四边形ABCD是矩形,∴BC=AD=3,∠ABC=90°,∴sin∠BAC==,∴AB===4.在Rt△APM中,PA=1,PM=,AM=,∴BM=AB-AM=,∵MN=AD=3,∴PN=MN-PM=,∵∠PMB=∠PNE=∠BPE=90°,∴∠BPM+∠EPN=90°,∠EPN+∠PEN=90°,∴∠BPM=∠PEN,∴△BMP∽△PNE,∴===,故答案为4,;(2)①结论:的值为定值.理由如下:当点E在点C左侧时,如图1所示:由PA=x,可得PM=x.∴AM=x,BM=4-x,PN=3-x,∵△BMP∽△PNE,∴===.当点E在点C右侧时,如图2所示:同理得出=.综上所述:的值为定值.②在Rt△PBM中,PB2=BM2+PM2=(4-x)2+(x)2=x2-x+16,∵∴=.∴PE=PB,∴S=•PB•PE=PB2=(x2-x+16)=(x-)2+,∵0<x<5,∴x=时,S有最小值=.(1)作PM⊥AB于M交CD于N.根据三角函数和勾股定理求出AB,求出PN和BM的长,由△BMP∽△PNE,推出=,即可得出结果;(2)①为定值.证明方法类似(1);②利用勾股定理求出PB2,根据三角形的面积公式得出二次函数,再利用二次函数的性质即可解决问题.此题是四边形综合题,考查了矩形的性质、相似三角形的判定和性质、勾股定理、锐角三角函数以及二次函数等知识;熟练掌握矩形的性质和勾股定理,证明三角形相似是解决问题的关键.28.【答案】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=-;(2)由(1)可知抛物线解析式为y=-x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4-m,∵PM⊥x轴,∴△OAB∽△PAN,∴=,即=,∴PN=(4-m),∵M在抛物线上,∴PM=-m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴-m2+m+2=4×(4-m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P1(3,0),且OB=2,∴=,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.【解析】(1)把A点坐标代入可得到关于a的方程,可求得a的值;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使=,可证得△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2化为AP2+QP2,利用三角形三边关系可知当A、P2、Q 三点在一条线上时有最小值,则可求得答案.本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、勾股定理、三角形三边关系等知识.在(2)中用m分别表示出PN和PM是解题的关键,在(3)确定出取得最小值时的位置是解题的关键.本题考查知识点较多,综合性较强,特别是(3)中构造三角形相似,难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丹阳市2019届九年级中考数学模拟试题一.填空题(满分24分,每小题2分)1.1的倒数是.2.计算:|﹣5|﹣=.3.分解因式:4m2﹣16n2=.4.若使代数式有意义,则x的取值范围是.5.5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为.6.若二次函数y=mx2﹣2x+1的图象与x轴有交点,则m的取值范围是.7.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面积等于cm2.8.如图,AB为⊙O的直径,点C在圆上,过点C作AB的垂线交⊙O于点D,连结AD,若的度数为50°,则∠ADC的度数是°.9.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…﹣2 0 2 3 …y…8 0 0 3 …当x=﹣1时,y=.10.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN 与△OBC相似,则CM=.11.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,∠CFE=β,则tanα•tanβ=.12.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.二.选择题(满分15分,每小题3分)13.有下列各数:3.14159,﹣,0.131131113…(相邻两个3之间依次多一个1),﹣π,,﹣,其中无理数有()A.1个B.2个C.3个D.4个14.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.515.有一张平行四边形纸片ABCD,已知∠B=70°,按如图所示的方法折叠两次,则∠BCF的度数等于()A.55°B.50°C.45°D.40°16.如图,AB是⊙O的直径,C、D是AB下方半圆上的点,点P从点O出发,沿OA→→BO的路径运动一周,设∠CPD的度数为y,运动时间为x,则下列图形能大致地刻画y与x之间关系的是()A.B.C.D.17.如图,在⊙O中,A,B,D为⊙O上的点,∠AOB=52°,则∠ADB的度数是()A.104°B.52°C.38°D.26°三.解答题(共11小题,满分81分)18.(8分)计算:(1)2﹣2+﹣sin30°;(2)(x﹣2)2﹣(x+3)(x﹣1).19.(10分)解方程与不等式组:(1)解方程:;(2)解不等式组:20.(6分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价(元/千克)20 40零售价(元/千克)26 50(1)他购进的猕猴桃和芒果各多少千克?(2)如果猕猴桃和芒果全部卖完,他能赚多少钱?21.(6分)小明家将于5月1日进行自驾游,由于交通便利,准备将行程分为上午和下午.上午的备选地点为:A﹣鼋头渚、B﹣常州淹城春秋乐园、C﹣苏州乐园,下午的备选地点为:D﹣常州恐龙园、E﹣无锡动物园.(1)请用画树状图或列表的方法分析并写出小明家所有可能的游玩方式(用字母表示即可);(2)求小明家恰好在同一城市游玩的概率.22.(5分)为了解我校初一年级学生的身高情况,随机对初一男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据调查所得数据绘制如图所示的统计图表.由图表中提供的信息,回答下列问题:组别身高(cm)A x<150B150≤x<155C155≤x<160D160≤x<165E x≥165(1)在样本中,男生身高的中位数落在组(填组别序号);(2)求女生身高在B组的人数;(3)我校初一年级共有男生500人,女生480人,则身高不低于160cm的学生人数.23.(6分)如图,正方形ABCD的边长为1,其中弧DE、弧EF、弧FG的圆心依次为点A、B、C.(1)求点D沿三条弧运动到点G所经过的路线长;(2)判断直线GB与DF的位置关系,并说明理由.24.(6分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)x+b与反比例函数y=的图象交于第一象限内的P(,8),25.(8分)已知一次函数y=k1Q(4,m)两点,与x轴交于A点.(1)写出点P关于原点的对称点P′的坐标;(2)分别求出这两个函数的表达式;(3)求∠P′AO的正切值.26.(8分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.27.(8分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.28.(10分)如图1,在平面直角坐标系中,直线y=x+m与x轴、y轴分别交于点A、点B(0,﹣1),抛物线y=+bx+c经过点B,交直线AB于点C(4,n).(1)分别求m、n的值;(2)求抛物线的解析式;(3)点D在抛物线上,且点D的横坐标为t(0<t<4),DE∥y轴交直线AB于点E,点F在直线AB上,且四边形DFEG为矩形(如图2),若矩形DFEG的周长为p,求p与t的函数关系式和p的最大值.参考答案一.填空题1.解:1的倒数是=.2.解:原式=5﹣3=2.故答案为:2.3.解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)4.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.5.解:因为五个正整数从小到大排列后,其中位数是4,这组数据的唯一众数是6,所以这5个数据分别是x,y,4,6,6,其中x=1或2,y=2或3.所以这5个数的和的最大值是2+3+4+6+6=21.故答案为:21.6.解:由题意可知:,∴,解得:m≤1且m≠0,故答案为:m≤1且m≠07.解:圆锥的侧面积=×2π×4×6=24π,故答案为:24π.8.解:∵AB为⊙O的直径,点C在圆上,过点C作AB的垂线交⊙O于点D,∴,∵的度数为50°,∴的度数为50°,∴∠ADC的度数是25°,故答案为:25.9.解:依据表格可知抛物线的对称轴为x=1,∴当x=﹣1时与x=3时函数值相同,∴当x=﹣1时,y=3.故答案为:3.10.解:∵∠ACB=90°,AO=OB,∴OC=OA=OB,∴∠B=∠OCB,∵∠MON=∠B,若△OMN与△OBC相似,∴有两种情形:①如图1中,当∠MON=∠OMN时,∵∠OMN=∠B,∠OMC+∠OMN=180°,∴∠OMC+∠B=180°,∴∠MOB+∠BCM=90°,∴∠MOB=90°,∵∠AOM=∠ACB,∠A=∠A,∴△AOM∽△ACB,∴=,∴=,∴AM=,∴CM=AC﹣AM=8﹣=.②如图2中,当∠MON=∠ONM时,∵∠BOC=∠OMN,∴∠A+∠ACO=∠ACO+∠MOC,∴∠MOC=∠A,∵∠MCO=∠ACO,∴△OCM∽△ACO,∴OC2=CM•CA,∴25=CM•8,∴CM=,故答案为或.11.解:过C点作MN⊥BF,交BG于M,交EF于N,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE=3,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵=,∠ABG=∠CBE,∴△ABG∽△CBE,∴==,解得,CE=,∵∠MBC=∠CBG,∠BMC=∠BCG=90°,∴△BCM∽△BGC,∴=,即=,∴CM=,∴MN=BE=3,∴CN=3﹣=,∴EN==,∴FN=EF﹣EN=5﹣=,∴tanα•tanβ=•=×=.故答案为:.12.解:如图所示,将线段AB绕点B顺时针旋转90°得到线段BC,则点C的坐标为(﹣4,﹣8),由于旋转可知,△A BC为等腰直角三角形,令线段AC和线段BP交于点M,则M为线段AC的中点,所以点M的坐标为(4,﹣4),又B为(0,4),设直线BP为y=kx+b,将点B和点M代入可得,解得k=﹣2,b=4,可得直线BP为y=﹣2x+4,由于点P为直线BP和直线y=﹣x﹣1的交点,则由解得,所以点P的坐标为(5,﹣6),故答案为(5,﹣6).二.选择题(共5小题,满分15分,每小题3分)13.解:在所列实数中,无理数有0.131131113…,﹣π,这3个,故选:C.14.解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.15.解:由折叠可得,∠CED=90°=∠BCE,又∵∠D=∠B=70°,∴∠DCE=20°,由折叠可得,∠DCF=2×20°=40°,∴∠BCF=50°,故选:B.16.解:当P在由O向A上运动时,可知∠CPD的度数在逐渐减小,当P在上运动时,∠CPD =∠COD,当P在由B向O上运动时,恰好是由O向A运动的相反过程,即逐渐增大.故选:D.17.解:∵∠AOB=52°,∴∠ADB=26°,故选:D.三.解答题(共11小题,满分81分)18.(1)解:原式=+2﹣=2;(2)解:原式=x2﹣4x+4﹣(x2+2x﹣3)=﹣6x+7.19.解:(1)3(x﹣3)=2﹣8x,3x﹣9=2﹣8x,3x+8x=2+9,11x=11,x=1,检验:x=1时,3x=3≠0,∴分式方程的解为x=1;(2)解不等式3x﹣4≤x,得:x≤2,解不等式x+3>x﹣1,得:x>﹣8,则不等式组的解集为﹣8<x≤2.20.解:(1)设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:.答:购进猕猴桃20千克,购进芒果30千克.(2)26×20+50×30﹣1600=420(元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.21.解:(1)列表如下:或树状图;∴小明家所有可能选择游玩的方式有:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)小明家恰好在同一城市游玩的可能有(A,E),(B,D)两种,∴小明家恰好在同一城市游玩的概率==.22.解:(1)∵抽取的样本中,男生人数有2+4+12+14+8=40人,∴男生身高的中位数是第21、22个数的平均数,∴男生身高的中位数落在D组;故答案为:D;(2)∵男生、女生的人数相同,∴女生有40人,∴女生身高在B组的人数有:40×(1﹣20%﹣30%﹣15%﹣5%)=12人;故答案为:12;(3)根据题意得:500×+480×(15%+5%)=275+96=371(人),答:身高不低于160cm的学生人数有371人.23.解:(1)根据弧长公式得所求路线长为: ++=3π.(2)GB⊥DF.理由如下:在△FCD和△GCB中,∵,∴△FCD≌△GCB(SAS),∴∠G=∠F,∵∠F+∠FDC=90°,∴∠G+∠FDC=90°,∴∠GHD=90°,∴GB⊥DF.24.解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则A E=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.25.解:(1)点P关于原点的对称点P′的坐标是(﹣,﹣8);(2)∵P(,8)在y=的图象上∴k2=×8=4∴反比例函数的表达式是:y=∵Q(4,m)在y=的图象上∴4×m=4,即m=1∴Q(4,1)(5分)∵y=k1x+b过P(,8)、Q(4,1)两点∴k1+b=8∴k1=﹣24k1+b=1 b=9∴一次函数的解析式是y=﹣2x+9;(3)作P'B⊥x轴于B,则P'B=8,BO=对于y=﹣2x+9,令y=0,则x=∴AB=+=5在Rt△ABP'中tan∠P′AO==.26.解:(1)连接CD、DE,⊙E中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DEC=2α,△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD==;(2)设∠MBE=x,∵EM=MB,∴∠MEB=∠MBE=x,当EF为⊙D的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90°=90°,∴∠CAD=45°;(3)由(2)得:∠CAD=45°;由(1)得:∠CAD=;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE是等边三角形,∴CD=CE=DE=EF=AD=,Rt△DEM中,∠EDM=30°,DE=,∴EM=1,MF=EF﹣EM=﹣1,△ACB中,∠NCB=45°+30°=75°,△CNE中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE=,∴===2+.27.解:(1)如图1,∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=2,∵AM=t,∠AMN=90°,∴MN=AM=t,AN=AM=t,则BN=AB﹣AN=2﹣t,故答案为:2﹣t.(2)如图2,∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,∴DM=MN=AD﹣AM=4﹣t,∴DN=DM=(4﹣t),∵PM=BC=2,∴PN=2﹣(4﹣t)=t﹣2,∴BP=t﹣2,∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,则NE==,∵DE=2,∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;②若DN=NE,则(4﹣t)=,解得t=3;③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.(3)①当0≤t<2时,如图3,由题意知AM=MN=t,则CM=NQ=AC﹣AM=2﹣t,∴DM=CM+CD=4﹣t,∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,∴NQ=BQ=QG=2﹣t,则NG=4﹣2t,∴S=•t•(4﹣2t+4﹣t)=﹣(t﹣)2+,当t=时,S取得最大值;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=(4﹣t)2=(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=时,S取得最大值.28.解:(1)∵直线y=x+m与y轴交于点B(0,﹣1),∴m=﹣1,∴直线解析式为y=x﹣1,∵直线经过点C(4,n),∴n=×4﹣1=2;(2)∵抛物线经过点C和点B,∴,解得,∴抛物线解析式为y=x2﹣x﹣1;(3)∵点D的横坐标为t(0<t<4),DE∥y轴交直线AB于点E,∴D(t, t2﹣t﹣1),E(t, t﹣1),∴DE=t﹣1﹣(t2﹣t﹣1)=﹣t2+2t,∵DE∥y轴,∴∠DEF=∠ABO,且∠EFD=∠AOB=90°,∴△DFE∽△AOB,∴==,在y=x﹣1中,令y=0可得x=,∴A(,0),∴OA=,在Rt△AOB中,OB=1,∴AB=,∴==,∴DF=DE,EF=DE,∴p=2(DE+EF)=2×(+)DE=DE=(﹣t2+2t)=﹣t2+t=﹣(t ﹣2)2+,∵﹣<0,∴当t=2时,p有最大值.。

相关文档
最新文档