工程光学习题解答--第二章-理想光学系统
工程光学习题答案(附试题样本)
测控09级复习资料工程光学基础教程(课后重点习题答案)测控09级二○一一年六月二日第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
第二章 理想光学系统习题
第二章理想光学系统一:选择题(可以有多选)1.有一个无限远物点,经某一理想光学系统成像,陈述正确的是()A.其像点必在理想光学系统的像方焦点处。
B.其像点必在理想光学系统的像方焦平面上。
C.该物点与像点无穷远点共轭。
D.该物点与其像点可作为此理想光学系统的一对基点。
2.有一个置于空气中的理想光学系统,其垂轴放大率β>0,则()A.物像位于系统的同侧。
B.角放大率γ>0。
C.像高大于物高。
D.光学系统的焦距为正。
3.一物体经理想光学系统后放大的实像。
当物体向光学系统方向移动一微小距离,则()A.其像变大。
B.垂轴放大率β的绝对值变小。
C.角放大率γ的绝对值变小。
D.轴放大率α的绝对值变小。
4.理想光学系统的角放大率γ()A.反映了理想光学系统能够把光束变宽或变窄的能力。
B.角放大率γ的大小取决于物像共轭位置。
C.改变理想光学系统物像方折射率的大小,角放大率γ值不变。
D.垂轴放大率β值越大,角放大率γ越小。
二、填空题1.一双凸透镜两球面的曲率半径都是12cm,透镜玻璃的折射率为1.5,若将此透镜置于空气中,求透镜的焦距_________。
2.共轴理想光学系统的牛顿公式高斯公式3.一个折射率为1.52的双凸薄透镜,其中一个折射面的曲率半径是另一个折射面的2倍,且其焦距为5cm,则这两个折射面的曲率半径分别为______cm和______cm。
4.长60mm,折射率为1.5的玻璃棒,在其两端磨成曲率半径为10mm 的凸球面,其焦距为简答题1、共轴光学系统的成像性质有哪些?画出一对共轭面及两对共轭点已知情况下的物点和像点。
2、图解法求像可供利用的典型光线及性质主要有哪几种情况?四计算题1设一个系统位于空气中,垂轴放大率为β=-10x,由物面到像面距离(共轭面距离)为7200mm,物镜两焦点间距离为1140mm。
求该物镜焦距及两主平面之间距离。
2、两个薄透镜的焦距为f’1=50mm,f’2=100mm,相距50mm,若一个高为25mm的物体位于第一透镜前150mm处,求最后所成像的位置和大小。
工程光学习题参考答案第二章理想光学系统
第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。
解:1.0'>f ()-∞=l a()'2f l b -=()f f l c =-=()/f l d -=()0=l e()/f l f =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′=(6)x ′=3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。
求该物镜焦距,并绘出基点位置图。
解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。
解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。
工程光学习题解答
60 70
A
O
A
A
n0 sin I1 n1 sin I 2 6、解: I 2 900 I m n1 sin I m n2 sin 900 sin I m n2 n1
2 2 n2 n2 2 cos I m 1 2 n0 sin I1 n1 1 2 n12 n2 n1 n1
lr
lp
7-1
或:近视眼的远点距离为 lr 0.5m,其戴上眼睛能看清的远 点距离为物距 l,通过眼镜后成像在眼睛的远点距离 lr 上: 即:由 1 1 2D, 1 1 1 1D 得: l 1m 1000 mm
l lr f 1m l
(5)由于 A R P 8D lr l p 得: l 1 0.11m
H
F2 F1
lH
f
F
d
(lk ) lF
L
第二章 理想光学系统
9、已知一透镜 r1 200mm, r2 300mm, d 50mm, n 1.5 , 求其焦距、光焦度、基点位置。 nr1r2 解: f 1440mm 1.44m (n 1)[ n(r2 r1 ) (n 1)] 1 0.69 D f n 1 n 1 f lH d1 120mm, lH f d 2 80mm n n lH f 1560mm, lF l H f 1360mm lF
tan y / 250 y h P 250 h y 而:y D P 2 250 h 500 h 500 9 2y 10(mm ) 所以: P P 9 50
y
l 200 mm 250 mm
工程光学习题解答
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学习题解答--第二章-理想光学系统
第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。
解:1.0'>f ()-∞=l a()'2f l b -=()f f l c=-=()/f l d -=()0=l e()/f lf =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′=0.5625 (3)x ′=0.703 (4)x ′=0.937 (5)x ′=1.4(6)x ′=2.813.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。
求该物镜焦距,并绘出基点位置图。
解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。
解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少? 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。
工程光学基础教程 习题参考答案
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学第二章练习参考答案
f 2' ' f1 f 2'
D2 20 x 0.714286 tg 2 ' 2 0.09920635 f1 108
5.66557
2 11.331
渐晕50%视场
ω
F1’ F2
D2 20 tg 2' 2 0.07936508 f1 108
8
(2)
100
f o' f e' 100 ' fo f' 8 e
f o' 88.89mm ' f e 11.11mm
第七章 (3)
6
-l=-100
l’
1 1 1 l ' 100 11.11 l ' 12.5mm
第七章 (4)
l1 90, l1 ' 270
第二章
4
l1 90,
l1 ' 270
1 1 1 l1 ' l1 f ' f ' 67.5 1 1 1 270 90 f '
第二章
4
1 1 1 l1 ' l1 f ' 1 1 1 l2 ' l2 f'
1 1 1 3l1 l1 f ' 1 1 1 4l 2 l 2 f'
f '1 f '2 f '1 f '2 f ' d f '1 f 2 f '2 240mm
450 f '2 1200 300 450 f '2
第二章 10
f '1 f '2 f '1 f '2 f ' 100 d f '1 f 2 100 50 100 d 100 50 d 100mm
工程光学基础 习题参考答案-第二章_02
注意: 注意: − l + l ' ≠ 7200mm ,因为对于一般理想光学系统两主面不重合。 4、已知一透镜把物体放大 − 3× 投影在屏幕上, 投影在屏幕上,当透镜向物体移近 18mm 时,物体 将被放大 − 4 × ,试求透镜的焦距, 试求透镜的焦距,并用图解法校核之。 并用图解法校核之。 解:
tan U 1 ' = h1 100 = = 1 = tan U 2 f1 ' 100 h2 90 = 1+ = 2.8 = tan U 3 f2 50 h3 62 = 2 .8 + = 1.56 f3 − 50
h2 = h1 − d1 tan U 1 ' = 100 − 10 = 90 tan U 2 ' = tan U 2 +
3、设一系统位于空气中, 设一系统位于空气中,垂轴放大 率 β = −10 × , 由物面到像面的距离 (共轭距) 共轭距)为 7200mm,物镜两焦点 间距离为 1140mm。求该物镜焦距, 求该物镜焦距, 并绘出基点位置图。 并绘出基点位置图。 解: 由公式 β = − x' f = − (2-4) , f' x
1 1 1 d (2-33) = + − f ' f1 ' f 2 ' f1 ' f 2 '
f1 ' f 2 ' nr1 r2 f ' = − f = − ∆ = ( n − 1)[n( r − r ) + ( n − 1)d ] 2 1 1 Φ = f ' − dr2 l ' = H n( r2 − r1 ) + ( n − 1)d − dr1 l = H n( r2 − r1 ) + ( n − 1)d
工程光学基础 习题参考答案-第二章_02
3、设一系统位于空气中, 设一系统位于空气中,垂轴放大 率 β = −10 × , 由物面到像面的距离 (共轭距) 共轭距)为 7200mm,物镜两焦点 间距离为 1140mm。求该物镜焦距, 求该物镜焦距, 并绘出基点位置图。 并绘出基点位置图。 解: 由公式 β = − x' f = − (2-4) , f' x
f 2 ' = −240mm
8、一短焦距物镜 一短焦距物镜, 焦距物镜,已知其焦距为 35mm,筒长 L=65mm,工作距离 l k ' = 50mm ,按 最简单结构的薄透镜系统考虑, 最简单结构的薄透镜系统考虑,求系统结构。 求系统结构。 解: (仿照 (仿照 P32 P32 例 2) 利用正切计算法,设 h1 = 100mm ,有公式:
1 1 1 d (2-33) = + − f ' f1 ' f 2 ' f1 ' f 2 '
f1 ' f 2 ' nr1 r2 f ' = − f = − ∆ = ( n − 1)[n( r − r ) + ( n − 1)d ] 2 1 1 Φ = f ' − dr2 l ' = H n( r2 − r1 ) + ( n − 1)d − dr1 l = H n( r2 − r1 ) + ( n − 1)d
xx' = ff ' = − f ' 2 ∴ x' = − f2 x
代入数据得:
x = −∞, x' = 0.5625mm x = −10m, x' = 0.703mm x = −6m, x' = 0.9375mm x = −4m, x' = 1.406mm x = −2m, x' = 2.813mm
工程光学Chp2习题答案
A
2
(i ) l = +∞
A' F' H' H F
2.已知照相物镜的焦距 f ' = 75mm ,被摄景物位于(以 F 点为坐标原点) x = −∞ 、-10m、 -8m、 -6m、 -4m、 -2m 处, 试求照相底片应分别放在离物镜的像方焦面多远的地方。 【提示】应用牛顿公式 【解】牛顿公式
xx' = ff '
l1' 1 =− 2 l1
β2 =
− l1 = −l 2 + 100 1 1 1 1 − = ' − l2 l1' l1 l 2
由高斯公式: 解得: f
'
=
− l2 = 100mm 2
7.希望得到一个对无限远成像的长焦距物镜,焦距 f ' = 1200mm ,由物镜顶点到像面的距 离(筒长) L = 700mm ,由系统最后一面到像平面距离(工作距)为 lk = 400mm ,按
则 ϕ1 =
1 40
'
ϕ=
7 1 ϕ2 = 240 240
f 2' = 240mm
可得到 f1 = 40mm
6.有一正薄透镜对某一物成倒立的实像,像高 为物高的一半, 今将物面向物体移近 100mm, 则所得像与物同大小, 求该正透镜组的焦距。 【提示】
5
β1 =
【解】由已知得:
' l2 = −1 l2
H' (A') F'
A F A' H
F' H'
(g) l = f = − f '
(h) l = 2 f = −2 f '
工程光学基础教程课后重点习题答案
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学-问答题整理
几何光学1 几何光学的基本定律答:直线传播定律和这反射定律:直线传播定律:光线在均匀透明介质中按直线传播。
反射定律:反射光线位于入射面内,反射角等于入射角。
折射定律:折射光线位于入射面内,入射角和折射角正弦之比为常数。
马吕斯定律:假定一束光线为某一曲面的法线汇,这些光线经过任意次折射、反射后,该光束的全部光线仍与另一曲面垂直,构成一新的法线汇,并且位于这两个曲面之间的所有光线的光程相等。
费马定律:实际光线传播时沿着光程的极值的路线传播。
2 什么叫做“理想光学系统”?共轴理想光学系统还有哪些性质?答:能产生清晰的、与物貌完全相似的像的光学系统。
光学系统是由透镜、反射镜、棱镜及光阑等多种光学元件按一定次序组合成的整体。
曲率中心在同一直线上的两个或两个以上折射(或反射)球面组成的光学系统称为共轴球面系统。
性质:(1)光学系统物方一个点(物点)对应像方一个点(像点)。
(2)物方每条直线对应像方的一条直线,称共轭线;物方每个平面对应像方的一个平面,称为共轭面。
(3)主光轴上任一点的共轭点仍在主光轴上。
(4)对垂直于主光轴的共轭平面,横向放大率(见凸透镜)为常量。
3 什么叫“孔径光阑”,什么叫“视场光阑”。
答:所有的光孔成像到第一个光孔的物空间,对轴上物点张角最小的那个光孔“像”所共轭的光孔就是孔径光阑。
限制进入光学系统中成像光束口径的光阑为“孔径光阑”。
在实际光学系统中,不仅物面上每一点发出并进入系统参与成像的光束宽度是有限的,而且能够清晰成像的物面大小也是有限的。
把能清晰成像的这个物面范围称为光学系统的物方视场,相应的像面范围称为像方视场,事实上,这个清晰成像的范围也是光学设计者根据仪器性能要求主动地限定的,限定的办法通常是在物面上或在像面上安放一个中间开孔的光阑。
光阑孔的大小就限定了物面或像面的大小,即限定了光学系统的成像范围。
这个限制成像范围的光阑称为“视场光阑”。
4 什么叫“光亮度”,什么叫光出射度?两者描述的发光特性有什么不同?答:光源表面的某一点面元在一给定方向上的发光强度与该面元在垂直于该方向的平面上的正射投影面积之比称为“光亮度”。
工程光学第二版习题解答(李湘宁贾志宏)
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学Chp2习题答案
∴ f1' = −35mm ∴ f 2' = 25mm
9.已知一透镜 r1 = −200mm, r2 = −300mm, d = 50mm, n = 1.5 ,求其焦距,光焦度,基点位置。 【提示】 【解】
ϕ = 1 / f ' = (n − 1)( ρ1 − ρ 2 ) +
f ' = −1440mm
(a ) l = −∞
(b ) l = −2 f
=2f
'
F
H
H'
F'
F
H
H' A'
F'
A
(c ) l = − f
= f
'
(d ) l = − f / 2 =
f '/ 2
F'(A) F H H' A' F H H' A A'
F'
(e ) l = 0
(f ) l =
f / 2 = − f '/ 2
F H(A)
⎧ l1' = = −3 β ⎪ 1 l1 ⎪ ' ⎪ l2 ⎪ β 2 = = −4 l2 ⎪ ⎨− l1 = −l 2 + 18 ⎪ 1 1 1 − = ⎪ ⎪ l '1 l1 f ' ⎪ 1 1 1 ⎪ l' − l = f ' 2 ⎩ 2
⎧ l1 = −288mm ⎪ ⎪ l1 ' = 864mm ⎪ 解得: ⎨l 2 = −270mm ⎪ l ' = 1080mm ⎪2 ⎪ ⎩ f ' = 216mm
h d h2 = h1 − d ⋅ tgu = h1 − d ⋅ 1' = h1 (1 − ' ) f1 f1
理想光学系统习题
第二章 理想光学系统一:选择题(可以有多选)1.有一个无限远物点,经某一理想光学系统成像,陈述正确的是(B )A.其像点必在理想光学系统的像方焦点处。
B.其像点必在理想光学系统的像方焦平面上。
C.该物点与像点无穷远点共轭。
D.该物点与其像点可作为此理想光学系统的一对基点。
2.有一个置于空气中的理想光学系统,其垂轴放大率β>0,则( AB )A.物像位于系统的同侧。
B.角放大率γ>0。
C.像高大于物高。
D.光学系统的焦距为正。
3.一物体经理想光学系统后放大的实像。
当物体向光学系统方向移动一微小距离,则( AC )A.其像变大。
B.垂轴放大率β的绝对值变小。
C.角放大率γ的绝对值变小。
D.轴放大率α的绝对值变小。
4.理想光学系统的角放大率γ(ABD )A.反映了理想光学系统能够把光束变宽或变窄的能力。
B.角放大率γ的大小取决于物像共轭位置。
C.改变理想光学系统物像方折射率的大小,角放大率γ值不变。
D.垂轴放大率β值越大,角放大率γ越小。
二、填空题1、一双凸透镜两球面的曲率半径都是12cm ,透镜玻璃的折射率为1.5,若将此透镜置于空气中,求透镜的焦距__12_ cm ______。
2、共轴理想光学系统的牛顿公式___ xx ’=ff ’______,高斯公式_1''=+lf l f ________。
3、一个折射率为1.52的双凸薄透镜,其中一个折射面的曲率半径是另一个折射面的2倍,且其焦距为5cm ,则这两个折射面的曲率半径分别为_ 7.8 _____cm 和__-3.9____cm 。
4、长60mm ,折射率为1.5的玻璃棒,在其两端磨成曲率半径为10mm 的凸球面,其焦距为____∞简答题1、共轴光学系统的成像性质有哪些?画出一对共轭面及两对共轭点已知情况下的物点和像点。
1、性质1 位于光轴上的物点对应的共轭像点也必然位于光轴上;位于过光轴的某一个截面内的物点对应的共轭像点必位于该平面的共轭像面内;同时,过光轴的任意截面成像性质都是相同的。
工程光学习题答案
第一章习题及答案1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中, n=1.333 时,v=2.25*108m/s,当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s,当光在火石玻璃中,n=1.65 时,v=1.82*108m/s,当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s,当光在金刚石中,n=2.417 时,v=1.24*108m/s。
2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2 sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5 的玻璃球上,求其会聚点的位置。
工程光学习题解答
工程光学习题解答 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第一章习题1、已知真空中的光速c=3m/s,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。
?解:则当光在水中,n=时,v=m/s,当光在冕牌玻璃中,n=时,v=m/s,当光在火石玻璃中,n=时,v=m/s,当光在加拿大树胶中,n=时,v=m/s,当光在金刚石中,n=时,v=m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
?解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm?即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1,n1=,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=的玻璃球上,求其会聚点的位置。
前六章工程光学习题及解答
n sin i1 sin 3.5 sin i1 0.000671442 n 1.5163
0.03847 解之得 i1 =89.96153 而 =90 i1
6.设光纤纤芯折射率 n1 1.75 ,包层折射率 n2 1.50 ,试求光纤端面上入射角在何值范围 内变化时,可保证光线发生全反射通过光纤.若光纤直径 D 40μm ,长度为 100m ,求光 线在光纤内路程的长度和发生全反射的次数. 解:
2 n0 sin I1 n12 n2 1.752 1.52 0.9014
第一次 AOB 面反射式, A2 = A1 -2N1 ( N1 A1 ) (l , m, n) 第二次 BOC 面反射式, A3 = A2 -2N2 ( N2 A2 ) (l , m, n) 第三次 COA 面反射式, A4 = A3 -2 N3 ( N3 A3 ) (l , m, n) A1 说明入射光线 A 1 和出射光线 A4 在空间上是平行的,而且方向相反,即有 180 夹角. 4.已知入射光线 A cos i cos j cos k , 反射光线 A=cos i cos j cos k , 求此时平面反射镜法线的方向. 解:反射定律为 A=A-2N(N A) ,
A1
A x (a, 0, 0)
A4
S S
A2 A1 2( A1 k )k li mj nk 2[(li mj nk ) k ]k li mj nk
反射面 BOC 的法线方向单位矢量为 n2 i , 光线 A2 射向 BOC 后的反射光线 A3 的单位矢 量为
光学课程:第二章部分习题解答
26.6
mv
17 在下图中,设SC=PK=SQ=PQ=1m,
λ=0.5μm,试计算与G点距离为x的X点所对应的
光程(SX+XP)与G点对应的光程(SG+GP)
之差;并估算当此光程差所产生的相位差为
π/2时的x值
解:如图以镜面为X
Y
轴,法线为Y轴,建立
S(-1,1) P(1,1) 坐标,G为原点
X(x,0)
SX XP 1 (x 1)2 (1 x)2 1
2( 1 x 1 x)
C
G
K x 泰勒级数展开:
SX XP 2(1 1 x 1 x2 1 1 x 1 x2 )
28
28
SX XP 2(1 1 x 1 x2 1 1 x 1 x2 )
28
28
略去x2后的高阶项
SX XP 2 2 2 x2 4
1.61018个
光脉冲动量
p nh / E / c 1109 kg m / s
10 试求红外线、可见光、紫外线和X射 线光子的能量、动量和质量
解:
E h hc (J ) hc (eV )
e
Ph/ E/c
m E / c2 h / c
13 已知铯的脱出功为1.9ev,测得从铯表 面发出光电子的最大动能为2.1ev,问入射光的 波长为多少?它属于什么波段?光强为1W/m2 的光束中,1m3内的光子数为多少?若光电转 换的量子效率为0.1(即平均每10个光子可产生 1个光电子)则它照射在面积为1 cm2的铯表面 时产生的光电流为多大?
N cSn 1.56 1014个 光电子数为
N 1.56 1014 0.1 1.56 1013个
产生光电流
I Ne 2.5106 A 2.5A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①
②
③
将①②③代入④中得
∴
方法二:
方法三:
5.一个薄透镜对某一物体成实像,放大率为 ,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少?
解:
6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm,
则所得像与物同大小,求该正透镜组的焦距。
人眼对缩小的虚像的视角总是小于(最多等于)不用凹透镜时直接观察物体的视
角(这是人眼须紧贴凹透镜),故凹透镜的视角放大率不可能大于1。所以凹透
镜不能单独用作放大镜。
4、薄透镜的焦距与它所在介质是否有关?凸透镜一定是会聚透镜吗?凹透镜一
定是发散透镜吗?
⑵
⑶绕过像方节点位置轴旋转, 点处。
14 思考题:
1、同一物体经针孔或平面镜所成的像有何不同?
答:由反射定律可知,平面镜的物和像是关于镜面对称的。坐标由右旋坐标
系变为像的左旋坐标系,因此像和物左右互易上下并不颠倒。即物体经平面镜生
成等大、正立的虚像。
物体经针孔成像时,物点和像点之间相对于针孔对称。右旋坐标系惊针孔所
解:由已知得:
由高斯公式:
解得:
7.希望得到一个对无限远成像的长焦距物镜,焦距 ,由物镜顶点到像面的距离L= ,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。
解:
8.一短焦距物镜,已知其焦距为 ,筒长L= ,工作距 ,按最简单结构的薄透镜系统考虑,求系统结构。
成的像仍为右旋坐标系,因此像和物上下左右都是互易的,而且像的大小与针孔
到接收屏的距离有关。即物体经针孔生成倒立的实像。
2、一束在空气中波长为589.3nm的钠黄光,从空气进入水中时,它的波长将变
为多少?在水中观察这束光时,其颜色会改变吗?
3、凹透镜可否单独用作放大镜?
答:因凹透镜对实物只能生成缩小的虚像,当人眼通过凹透镜观察物体时,
12.一束平行光垂直入射到平凸透镜上,会聚于透镜后 处,如在此透镜凸面上镀银,则平行光会聚于透镜前 处,求透镜折射率和凸面曲率半径。
解:
13.一块厚透镜, 试求该透镜焦距和基点位置。如果物距 时,问像在何处?如果平行光入射时,使透镜绕一和光轴垂直的轴转动,而要求像点位置不变,问该轴应装在何处?
解:
⑴
第二章 理想光学系统
1.针对位于空气中的正透镜组 及负透镜组 ,试用作图法分别对以下物距
,求像平面的位置。
解:1.
2.
2.已知照相物镜的焦距f’=75mm,被摄景物位于(以F点为坐标原点) 处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解:(1)x= -∝,xx′=ff′得到:x′=0
(2)x′=0.5625
(3)x′=0.703
(4)x′=0.937
(5)x′=1.4
(6)x′=2.81
3.设一系统位于空气中,垂轴放大率 ,由物面到像面的距离(共轭距离)为7200mห้องสมุดไป่ตู้,
物镜两焦点间距离为1140mm。求该物镜焦距,并绘出基点位置图。
解:
∵ 系统位于空气中,
由已知条件:
解得:
4.已知一个透镜把物体放大 投影到屏幕上,当透镜向物体移近18mm时,物体将被放大 ,试求透镜的焦距,并用图解法校核之。
解:
9.已知一透镜 ,求其焦距,光焦度,基点位置。
解:已知
求: ,基点位置。
10.一薄透镜组焦距为 ,和另一焦距为 的薄透镜组合,其组合焦距仍为 ,问两薄透镜的相对位置,并求基点位置,以图解法校核之。
解:
11.长 ,折射率为1.5的玻璃棒,在其两端磨成曲率半径为 的凸球面,试求其焦距及基点位置。
解: