五年级奥数题讲解(问题+思路+答案)完美版

合集下载

小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

推理问题专题简析:解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。

通常,我们把主要依靠推理来解的数学题称为推理问题。

推理问题中的条件繁杂交错,解题时必须根据事情的逻辑关系进行合情推理,仔细分析,寻找突破口,并且可以借助于图表,步步深入,这样才能使问题得到较快的解决。

例1有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。

为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;第二次:(5)+(6)比(7)+(8)轻;第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。

那么,两个轻球分别是几号?分析与解答从第一次看,(3)、(4)两球中有一个轻;从第二次看,(5)、(6)两球中有一个轻;从第三次看,(1)、(3)、(5)中有一个轻,(2)、(4)、(8)中也有一个轻。

综合上面的分析可以推出,两个轻球的编号分别是(4)和(5)。

随堂练习:1,甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不比丁高。

请说出他们各是几号。

2,某商品编号是一个三位数,现有五个三位数:874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。

这个商品的编号是多少?例2一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的三种情况,判断每个数字对面上的数字是几。

分析与解答如果直接思考哪个数字的对面是几,有一定的困难。

我们可以这样想:这个数字的对面不会是几。

(1)从(A)、(B)两种摆法中可以看出:4的对面不会是2、5,也不会是1、6,那么,4对面一定是3;(2)从(B)、(C)两种摆法中可以看出:1的对面不会是4、6,也不会是2、3,那么,1的对面一定是5;(3)剩下2的对面一定是6。

随堂练习:1,一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。

(完整版)五年级奥数盈亏问题讲座及练习答案

(完整版)五年级奥数盈亏问题讲座及练习答案

五年级奥数盈亏问题讲座及练习答案盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会不足(亏),求物品的数量和分配对象的数量。

例如:把一袋饼干分给小班的小朋友,每人分 3 块,多12 块,;如果每人分 4 块,少8 块,小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是这们通常说的标准的盈亏问题。

标准盈亏问题的基本数量关系式:(盈+亏)÷两次分配之差=参与分配对象总数;每次分得的数量×份数+盈=总数量;每次分得的数量×份数-亏=总数量还有一些非标准盈亏问题,如:1、两盈:两次分配都有余。

数量关系式为:(大盈-小盈)÷两次分配差=参与分配对象总数2、两亏:两次分配都不够。

数量关系式为:(大亏-小亏)÷两次分配差=参与分配对象总数例1:(一盈一亏问题)一个植树小组,如果每人植 5 棵,还剩14 棵;如果每人植7 棵,就缺 4 棵。

这个植树小组有多少人?一共有多少棵树?分析:由题意可知,植树的人数和棵数是不会变化的,只是两次分配的方案不一样,结果就差了18棵,即第一种方案的结果比第二种多18 棵,这是因为两种分配方案每人植树棵数相差7-5 =2(棵),所以根据一盈一亏解答此题就非常简单了。

人数:(14+4)÷(7-5)=2(人)棵数:5×9+14=59(棵)答:这个植树小组一共有9 人,一共有59 棵树。

【巩固练习1】:幼儿园把一些积木分给小朋友,如果每人分 2 个,则剩下20 个;如果每人分3 个,则差40 个。

幼儿园有多少个小朋友?一共有多少个积木?解,小朋友分积木,每人2个则剩20个,每人3个则少40个,因此这是一亏一盈问题,两种分积木的方案最后相差20+40=60 个,两种方案中每人分得的积木数相差3-2=1 个,所以小朋友的个数为:60÷1=60 人,积木数为:60×2+20=140 个或60×3-40=140 个综合算式为:幼儿园有多少个小朋友? 一共有多少个积木?(20+40)÷( 3-2)60=60÷ 1 =120+2060(个)=140答:幼儿园有 60 个小朋友,一共有 140 个积木 .例 2 :(两亏问题) 学校将一批铅笔奖给三好学生。

小学五年级奥数题及答案解析(五篇)

小学五年级奥数题及答案解析(五篇)

小学五年级奥数题及答案解析(五篇)篇一油库里有6桶油,分别装着汽油、柴油和机油。

油桶上只标明15公升、16公升、18公升、19公升、20公升和31公升,却没有注明是哪一种油。

只知道柴油是机油的2倍,汽油只有一桶。

请你分析一下,各个油桶里装的是什么油?【答案解析】根据“柴油是机油的2倍”这一条件可知,这两种油之和一定是3的倍数。

而六桶油的和为15+16+18+19+20+31=119(公升),119除以3得到的余数为2,说明汽油量是3的倍数还多2公升。

又知“汽油只有一桶”,在油桶上标明的六个数中,只有20是3的倍数多2的数,所以标明20公升这一桶装的是汽油。

从而可求出机油量为(15+16+18+19+31)÷3=33(公升),柴油量为33×2=66(公升)通过观察可知,标明15公升与18公升的两桶装的是机油,标明16公升、19公升与31公升的三桶装的是柴油。

篇二甲、乙、丙三个桶内各装了一些油,先将甲桶内三分之一的油倒入乙桶,再将乙桶内五分之一的油倒入丙桶,这时三个桶内的油一样多,如果最初丙桶内有油48千克,那么最初甲桶内有油_____千克。

乙桶内有油_____千克。

【答案解析】甲桶里面应该有96千克,乙桶里有48千克。

假设甲桶往乙桶倒过油之后乙桶的油是5份,那么它将五分之一给了丙桶,结果两桶一样多,说明丙桶原来有3份,那么三桶都一样的时候都是4份,可以知道,甲桶倒出去三分之一之后还有4份,那么原来就有6份,甲桶往乙桶倒过2份油之后乙桶的油是5份,说明原来乙桶也是3份,那么丙桶的3份相当于48千克,一份就是16千克,最初的甲桶里面应该有96千克,乙桶里有48千克。

篇三学校参加体操表演的学生人数在60~100之间。

把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。

参加这次表演的同学至少有()人。

【答案解析】考点:公因数和公倍数应用题。

分析:按人数平均分成8人一组,或平均分成12人一组都正好分完,那么总人数就是8和12的公倍数,再根据总人数在60~100之间进行求解。

五年级奥数题及答案解析

五年级奥数题及答案解析

1.某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析与解答】通过前两个已知条件,我们可以求出火车的车速和火车的车身长。

(342—234)÷(23—17)= 18(米)车速18×23—342 = 72(米)车身长两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程÷速度和 = 相遇时间”,可以求出两车错车需要的时间。

(72 + 88)÷(18 + 22)= 4(秒)答:两车错车而过,需要4秒钟。

2.(年龄问题)3年前哥哥与弟弟的年龄比为3:1,2年后哥哥和弟弟的年龄比为5:2,问哥哥和弟弟现在的年龄和为多少?【分析与解答】用方程组解,设哥哥和弟弟现在的年龄分别为a和b,则有:(a-3):(b-3)=3:1(a+2):(b+2)=5:2解方程组得:a=48,b=18,所以兄弟两人的年龄和是64。

答:哥哥和弟弟现在的年龄和是64。

3.甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则两人在乙动身2个半小时后相遇;若乙先出发2小时,则在甲动身3小时后两人相遇。

求甲乙两者的速度。

【分析与解答】设甲行走的速度为x km/h,乙行走的速度为y km/h.根据题意得:2x+2.5(x+y)=362y+3(x+y)=36解得:x=6y=3.6答:甲的速度为6千米/时,乙的速度为3.6千米/时.4.有一条长500米的环形跑道,甲乙两人同时从跑到上的某一点出发,如果反方向而跑,则1分钟后相遇,如果同向而跑,则10分钟后追上,已知甲比乙跑的快,问:甲乙两人每分钟各跑多少米?【分析与解答】500÷1=500米/分钟【速度和】【相遇问题】500÷10=50米/分钟【速度差】【追击问题】(500+50)÷2=275米/分钟【甲的速度】(500-50)÷2=225米/分钟【乙的速度】答:甲每分钟跑275米,乙每分钟跑225米.5.某校班级学生.男生占全班总人数的7/15,现在调走1名男生,现在男生占全班人数的5/11,求现在全班有多少人?【分析与解答】男生占全班总人数的7/15,就是说男的占7份,女的占8份,共15份.抓住女生为不变量,总数是女生的15/8;现在男生占全班人数的5/11,就是说男的占5份,女的占6份,共11份.抓住女生为不变量,总数是女生的11/6:1对应15/8-11/6 =1÷﹙15/8-11/6﹚=24人现在的:24×11/6=44人6.甲、乙两车同时从A地出发开往B地。

小学五年级奥数题及答案(附精讲)

小学五年级奥数题及答案(附精讲)

小学五年级奥训练题及答案(精讲)一、工程问题1.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。

技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。

你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。

那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。

9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。

(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。

11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。

新人教版五年级小学数学全册奥数(含答案)

新人教版五年级小学数学全册奥数(含答案)
二、精讲精练
【例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。
练习1:
1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长。
2.下图由1个正方形和2个长方形组成,求这个图形的周长。
【例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。现在这块木板的周长是多少厘米?
第2讲 平均数(二)
精讲精练
【例题1】小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?
练习1:
1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?
2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?
新人教版小学数学五年级全册奥数
附参考答案
第1讲 平均数(一)
一、知识要点
把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?
下面的数量关系必须牢记:
平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数
练习5:
1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。
2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。
3.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?

五年级奥数题及答案

五年级奥数题及答案

五年级奥数题及答案过桥问题(1)1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。

根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。

路程是用桥长加上车长。

火车的速度是已知条件。

总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。

2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。

我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。

可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。

总路程:(米)火车速度:(米)答:这列火车每秒行30米。

3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。

火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。

这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。

总路程:山洞长:(米)答:这个山洞长60米。

和倍问题1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年龄:8×4=32岁综合:40÷(4+1)=8岁8×4=32岁为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算结果符合条件,所以解题正确。

小学五年级奥数题讲解(问题+思路+答案)

小学五年级奥数题讲解(问题+思路+答案)

五年级奥数题讲解,问题+思路+答案1. 有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。

求去掉的两个数的乘积。

解:7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=1682. 有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。

求第三个数。

解:28×3+33×5-30×7=39。

3. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。

问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

4.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。

如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

5. 妈妈每4天要去一次副食商店,每5天要去一次百货商店。

妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次)。

6. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7。

7. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。

已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。

糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。

五年级奥数题及答案流水问题

五年级奥数题及答案流水问题

五年级奥数题及答案:流水问题
【题目】一艘船在流速为每小时1000米左右的河上逆流而上,行至中午12点整,有一乘客的帽子落到了河里。

乘客请求船老大返回追赶帽子,这时船已经开到离帽子 100米远的上游。

已知在静水中这只船的船速为每分钟20米。

假设不计掉头时间,马上开始追赶帽子,问追回帽子应该是几点几分?
【思路】在静水中这只船的船速为每分钟20米-----可知静水船速为每小时1200米,又有条件水速为每小时1000米,那么该船逆水速度为 1200-
1000=200米,同时可知该船的顺水速为1200+1000=2200米;由条件12时帽子落水至船离帽子100米,这一段实为反向而行, 这段时间为:100÷
(200+1000)=1/12小时=5分,而后一段实为追及问题,这段时间为:100÷(2200-1000)=1/12小时=5 分;两者相加,即为离开12时的时间10分,所以追回帽子应该是12点10分.
【详解】船静水时速:20×60=1200米
船逆水时速:1200-1000=200米
船顺水时速:1200+1000=2200米
帽子落水至离开帽子100米的时间:100÷(2200-1000)=1/12小时=5分
船追上帽子的时间,即为追及时间:100÷(2200-1000)=1/12小时=5分
离12时帽子落水总时间为:5+5=10分
答:追回帽子应该是12点10分.
【太阳有言】解流水问题关键是:静水速度(船速)、水速、顺水速度、逆水速度这几个概念要理解,顺水速度=船速+水速、逆水速度=船速-水速这两个公式要牢记,相信只要随时关心这些,其实流水问题并不是什么问题。

(完整)小学五年级奥数题及答案(附精讲)

(完整)小学五年级奥数题及答案(附精讲)

小学五年级奥训练题及答案(精讲)一、工程问题1.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

五年级数学奥数题经典答案解析 (4)

五年级数学奥数题经典答案解析 (4)

五年级数学有趣经典的奥数题及答案解析一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

(完整版)小学五年级奥数题及答案

(完整版)小学五年级奥数题及答案

小学五年级奥数题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 2.A和B是小于100的两个非零的不同自然数。

五年级经典奥数题及答案详解

五年级经典奥数题及答案详解

【五年级】1.求4018和7257的最大公约数。

解答:(7257,4018)=(3239,4018)=(3239,779)=(123,779)=(123,41)=412.把一个自然数的各个数位上的数码相加,所得的和若不是一位数,则再把它的各个数位上的数码相加,直到和是一位数为止。

将1—2009这2009个自然数都经过上述方法处理后,所得到的2009个数中,2和3哪个多?解答:一个数除以9的余数就是它数字和除以9的余数,因此按照题目中的操作办法,每个数最后都会变成它除以 9的余数。

连续9个自然数除以9的余数都互不相同,2009÷9=223……2,说明这2009个数中除以9余2的有224个,余3的有223个,所以在最后得到的2009个数中,2比3多。

1.求528、624、656、848的最大公约数。

解答:(528,624)=(528,96)=(48,96)=48(48,656)=(48,32)=(16,32)=16(16,848)=16因此(528,624,656,848)=162.有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数。

解答:最小的两个约数中一定有一个是1,因此另一个是3,说明最大的约数是第二大的约数的3倍,而最大的两个约数之和为100,100÷(3+1)=25,所以最大的两个约数是25和75,这个自然数就是75。

课内知识:有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?解答:(336,252)=(84,252)=84(84,210)=(84,42)=42 所以可以分成42份礼物苹果:336÷42=8(个) 桔子:252÷42=6(个) 梨:210÷42=5(个)课外趣题:正方形操场四周栽了一圈树,每两棵树相隔5米。

甲乙二人同时从一个角出发,向不同的方向走去(如右图),甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。

(完整版)小学五年级奥数题及答案(附精讲)

(完整版)小学五年级奥数题及答案(附精讲)

小学五年级奥训练题及答案(精讲)一、工程问题1.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

小学五年级奥数题讲解(问题思路答案)

小学五年级奥数题讲解(问题思路答案)

小学五年级奥数题讲解(问题思路答案)小学五年级奥数题讲解(问题思路答案)在小学五年级的数学学习中,奥数题是一种常见的挑战,既能锻炼学生的逻辑思维能力,又能培养他们解决问题的技巧。

本文将为大家详细介绍几道小学五年级奥数题,并给出问题的思路和答案。

题目一:电脑屏幕上有一套数字密码,要求用其中4个数字构成一个最大的4位数,不能重复使用数字。

请问这个最大的4位数是多少?思路:我们需要找出数字中的最大值,然后根据题目要求,确定最大数的组成。

首先,观察到给出的是一套数字密码,因此不重复使用数字的规则是我们需要注意的。

而最大的4位数是9999,因此我们需要找到这个数字中最大的数字,即9。

答案:最大的4位数是9642。

题目二:一个鸡蛋篮里装有若干个鸡蛋,如果每次从篮子中拿走3个鸡蛋,则刚好拿完。

如果每次拿2个鸡蛋,则还剩1个鸡蛋。

请问,这个鸡蛋篮里最少有多少个鸡蛋?思路:根据题目描述可知,鸡蛋个数是一个未知数,我们可以设其为x。

根据题目中的条件,我们可以得到一个方程式:x mod 3 = 0(取3的模为0)和 x mod 2 = 1(取2的模为1)。

我们可以通过求解这个方程组来确定鸡蛋篮里最少的鸡蛋个数。

答案:通过求解方程组,得出最少有7个鸡蛋。

题目三:一个三位数减去一个两位数等于一个两位数,而且这个两位数正好等于三位数中的个位和十位数字的和。

请问,满足这个条件的三位数一共有多少个?思路:题目给出了条件,我们可以设三位数为abc,两位数为de。

根据题目的要求,可以列出以下方程:(100a + 10b + c) - (10d + e) = 10b + c。

通过整理方程,我们可以得到 100a - 10d = 9e。

答案:根据等式,我们可以发现a和d只能是相邻数,因为9e是十位数,因此a和d只有1和2这两个可能性。

而e只能是 1 到 9之间的奇数。

因此,满足这个条件的三位数共有18个。

通过以上几道题目,我们可以看到奥数题的思路和答案求解方法。

小学五年级奥数题全解

小学五年级奥数题全解

小学五年级奥数题全解,五年级是关键的一年,孩子们可能不知道小升初的重要性,其实读一个好的学校往往影响着孩子的一生,虽然说只要有心读就好但是也要有良好的教育环境,而且小学教育要从小开始,五年级也许孩子不知道关键但是家长们,老师们一定要给自己的孩子学生,一个警醒。

从五年级开始锻炼一些小学奥数题目,锻炼这种思维模式,让学生在做题时能够更准的找准方向。

找对思维路线,达到效率与质量的一体化。

可以参考一些小学五年级奥数例题:1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。

那么有多少人两个小组都不参加?答:,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人3、50名同学面向老师站成一行。

老师先让大家从左至右按1,2,3, (49)50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:现在面向老师的同学还有多少名?答:50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=344、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。

按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。

那么游艺会为该项活动准备的奖品铅笔共有多少支?答:100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数题每类型一道,问题+思路+答案9. 有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。

求去掉的两个数的乘积。

解:7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810. 有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。

求第三个数。

解:28×3+33×5-30×7=39。

11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。

问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。

如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

13. 妈妈每4天要去一次副食商店,每5天要去一次百货商店。

妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次)。

14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7。

15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。

已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。

糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。

因此糊得最快的同学最多糊了74×6-70×5=94(个)。

16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。

问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短。

甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

17. 轮船从A城到B城需行3天,而从B城到A城需行4天。

从A城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。

所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

18. 小红和小强同时从家里出发相向而行。

小红每分走52米,小强每分走70米,二人在途中的A处相遇。

若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。

小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。

也就是说,小强第二次比第一次少走4分。

由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。

19. 小明和小军分别从甲、乙两地同时出发,相向而行。

若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。

甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。

所以甲、乙两地相距6×4=24(千米)20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。

求甲原来的速度。

解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。

设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。

因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24。

解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。

乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。

22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。

坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1123. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。

问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米。

24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。

问:(1)A,B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。

已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b。

根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍。

小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

26. 一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。

猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。

所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。

问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

28. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。

求甲、乙两地的距离。

29. 完成一件工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。

问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。

这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。

如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成。

33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。

这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个。

因此9份就是180个所以这批零件共180个34.挖一条水渠,甲、乙两队合挖要6天完成。

甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天。

甲单独挖需要1/(1/6-1/10)=15天。

35. 修一段公路,甲队独做要用40天,乙队独做要用24天。

现在两队同时从两端开工,结果在距中点750米处相遇。

这段公路长多少米?36. 有一批工人完成某项工程,如果能增加8个人,则10天就能完成;如果能增加3个人,就要20天才能完成。

现在只能增加2个人,那么完成这项工程需要多少天?解:将1人1天完成的工作量称为1份。

调来3人与调来8人相比,10天少完成(8-3)×10=50(份)。

这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。

调来2人需100÷(2+2)=25(天)。

37.解:三角形AOB和三角形DOC的面积和为长方形的50%所以三角形AOB占32%16÷32%=5038.解:1/2*1/3=1/6所以三角形ABC的面积是三角形AED面积的6倍。

39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等。

问:哪几个图中的阴影部分与图(1)阴影部分面积相等?解:(2)(4)(7)(8)(9)40. 观察下列各串数的规律,在括号中填入适当的数2,5,11,23,47,(),……解:括号内填95规律:数列里地每一项都等于它前面一项的2倍减141. 在下面的数表中,上、下两行都是等差数列。

相关文档
最新文档