模式识别与机器学习期末考查试题及参考答案(20210221222717)

合集下载

最新模式识别期末考试

最新模式识别期末考试

问答1. 什么是模式?通过对具体个别事物进行观测所得到的具有时间和空间分布的信息称为模式。

模式所指的不是事物本身,而是我们从事物中获得的信息。

2. 模式识别系统主要由哪些部分组成?信息获取,预处理,特征提取与选择,分类决策,后处理。

3. 最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 p ( x |W i ), i =1,2 \ P (X | W j ) P (w j )如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。

4. 怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn | 3 i) = P(x1| 3 i) P(x2| 3 i)…P(xn| 3 i)后验概率: P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i) 类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均 值方差,最后得到类条件概率分布。

方差:var(x) (x^x)A 2 m —1 i 二二:解答1.设有如下三类模式样本集 3 1, 3 2和3 3,其先验概率相等,求 S W 和Sb3 1 : {(1 0) T , (2 0) T , (1 1)、3 2 : {(-1 0) T , (0 1) T, (-1 1)T}3 3: {(-1-1) T, (0 -1) T , (0 -2) T }答:由于三类样本集的先验概率相等,则概率均为1/3。

多类情况的类内散度矩阵,可写成各类的类内散布矩阵的先验概率的加权和,即:ccS w P®i )E{(x —m)(x —mJ T|斜}=送 C ii =1i 4类间散布矩阵常写成:cS b「P(・i)(m i - m °)(m i - m °)T其中,m 。

为多类模式(如共有 c 类)分布的总体均值向量,即:P ( X | W i ) P (W i ) 2利用贝叶斯公式得到后验概率 P(W i | x)二均值:1mmean(x)xim y 其中Ci 是第i 类的协方差矩阵。

模式识别期末试题及答案

模式识别期末试题及答案

模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。

通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。

2.2 请解释监督学习和无监督学习的区别。

监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。

通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。

而无监督学习则没有标签或输出信息。

无监督学习的目标是从未标记的数据中找到模式和结构。

这种学习方法通常用于聚类、降维和异常检测等任务。

3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。

请简要解释逻辑回归模型的原理,并说明它适用的场景。

逻辑回归模型是一种用于解决二分类问题的监督学习算法。

其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。

这个映射的概率可以被解释为某个样本属于正类的概率。

逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。

模式识别期末试题

模式识别期末试题

一、填空及选择填空〔此题答案写在此试卷上,30分〕1、模式识别系统的根本构成单元包括:模式采集、特征提取及选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于〔1〕;判别域代数界面方程法属于〔3〕。

〔1〕无监视分类 (2)有监视分类〔3〕统计模式识别方法〔4〕句法模式识别方法4、假设描述模式的特征量为0-1二值特征量,那么一般采用〔4〕进展相似性度量。

〔1〕距离测度〔2〕模糊测度〔3〕相似测度〔4〕匹配测度5、以下函数可以作为聚类分析中的准那么函数的有〔1〕〔3〕〔4〕。

〔1〕〔2〕 (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在〔2〕中进展。

〔1〕二维空间〔2〕一维空间〔3〕N-1维空间7、以下判别域界面方程法中只适用于线性可分情况的算法有〔1〕;线性可分、不可分都适用的有〔3〕。

〔1〕感知器算法〔2〕H-K算法〔3〕积累位势函数法8、以下四元组中满足文法定义的有〔1〕〔2〕〔4〕。

〔1〕({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)〔2〕({A}, {0, 1}, {A→0, A→ 0A}, A)〔3〕({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)〔4〕({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有〔计算模式距离的测度、〔聚类准那么、类间距离门限、预定的类别数目〕〕。

10、欧式距离具有〔 1、2 〕;马式距离具有〔1、2、3、4 〕。

〔1〕平移不变性〔2〕旋转不变性〔3〕尺度缩放不变性〔4〕不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是〔正〔负〕表示样本点位于判别界面法向量指向的正〔负〕半空间中;绝对值正比于样本点到判别界面的距离。

模式识别与机器学习期末考查试题及参考答案

模式识别与机器学习期末考查试题及参考答案

模式识别与机器学习期末考查试卷研究生姓名:入学年份:导师姓名:试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。

答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。

主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。

机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。

主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。

两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。

机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。

(2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。

模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。

而机器学习的目标是通过学习提高系统性能,分类只是其最简单的要求,其研究更侧重于理论,包括泛化效果、收敛性等。

模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。

许多算法他们都在研究,但是研究的目标却不同。

如SVM 在模式识别中研究所关心的就是其对人类效果的提高,偏工程。

而在机器学习中则更侧重于其性能上的理论证明。

试题2:列出在模式识别与机器学习中的常用算法及其优缺点。

答:(1) K近邻法KNN算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。

在应用KNN算法解决问题的时候,要注意的两个方面是样本权重和特征权重。

优缺点:非常有效,实现简单,分类效果好。

模式识别与机器学习思测试卷附参考标准答案

模式识别与机器学习思测试卷附参考标准答案

模式识别与机器学习期末考查思考题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。

机器学习是研究让机器(计算机)从经验和数据获得知识或提高自身能力的科学。

机器学习和模式识别是分别从计算机科学和工程的角度发展起来的。

然而近年来,由于它们关心的很多共同问题(分类、聚类、特征选择、信息融合等),这两个领域的界限越来越模糊。

机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/ 视频分析、(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。

近年来,机器学习和模式识别的研究吸引了越来越多的研究者,理论和方法的进步促进了工程应用中识别性能的明显提机器学习:要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。

另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这种方式称为机器学习。

机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。

机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。

依赖于这些学科而共同发展。

目前已经取得很大的进展,但还没有能完全解决问题。

模式识别:模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。

如识别物体、地形、图像、字体(如签字)等。

在日常生活各方面以及军事上都有广大的用途。

近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。

特别神经网络方法在模式识别中取得较大进展。

理解自然语言计算机如能“听懂”人的语言(如汉语、英语等),便可以直接用口语操作计算机,这将给人们带来极大的便利。

计算机理解自然语言的研究有以下三个目标:一是计算机能正确理解人类的自然语言输入的信息,并能正确答复(或响应)输入的信息。

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别期末考试试题

模式识别期末考试试题

模式识别期末考试试题# 模式识别期末考试试题## 一、选择题(每题2分,共20分)1. 模式识别中,特征提取的目的是什么?A. 降低数据维度B. 提高计算效率C. 增强数据的可解释性D. 以上都是2. 在K-近邻算法中,K值的选择对结果的影响是什么?A. 无影响B. 影响分类的准确性C. 影响算法的运行时间D. 影响数据的可读性3. 决策树算法中,信息增益的计算是基于以下哪个概念?A. 熵B. 互信息C. 条件熵D. 联合熵4. 支持向量机(SVM)的主要思想是?A. 寻找数据点之间的最大间隔B. 寻找数据点之间的最小间隔C. 寻找数据点的平均间隔D. 寻找数据点的中心点5. 以下哪个算法属于聚类算法?A. K-近邻B. 决策树C. K-均值D. 支持向量机## 二、简答题(每题10分,共30分)1. 描述主成分分析(PCA)的基本原理及其在模式识别中的应用。

2. 解释什么是过拟合(Overfitting)现象,并给出避免过拟合的几种常用方法。

3. 给出神经网络在模式识别中的基本工作原理,并说明其优缺点。

## 三、计算题(每题25分,共50分)1. 给定以下数据点,使用K-均值算法将它们分为两个簇,并说明算法的步骤:- 数据点:(1, 2), (2, 3), (5, 6), (8, 7), (9, 8)2. 假设有一个二维数据集,其中包含两类数据点,分别用圆形和三角形表示。

数据点的特征如下表所示:| 特征1 | 特征2 | 类别 || | | - || 1.5 | 2.5 | 圆形 || 2.0 | 3.0 | 圆形 || 3.5 | 4.5 | 三角形 || 4.0 | 5.0 | 三角形 |使用线性判别分析(LDA)方法,找出最佳线性边界,并将数据点分为两类。

## 四、论述题(共30分)1. 论述深度学习在图像识别领域的应用,并讨论其与传统机器学习方法相比的优势和局限性。

## 五、案例分析题(共30分)1. 假设你是一名数据科学家,你的团队正在开发一个用于识别手写数字的系统。

模式识别期末试题

模式识别期末试题

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

(完整word版)模式识别题目及答案(word文档良心出品)

(完整word版)模式识别题目及答案(word文档良心出品)

一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。

解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。

(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。

解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。

《机器学习》期末考试试卷附答案

《机器学习》期末考试试卷附答案

《机器学习》期末考试试卷附答案一、选择题(每题5分,共25分)1. 机器学习的主要目的是让计算机从数据中____,以实现某些任务或预测未知数据。

A. 抽取特征B. 生成模型C. 进行推理D. 分类标签答案:B. 生成模型2. K-近邻算法(K-NN)是一种____算法。

A. 监督学习B. 无监督学习C. 半监督学习D. 强化学习答案:A. 监督学习3. 在决策树算法中,节点的分裂是基于____进行的。

A. 信息增益B. 基尼不纯度C. 均方误差D. 交叉验证答案:A. 信息增益4. 支持向量机(SVM)的主要目的是找到一个超平面,将不同类别的数据点____。

A. 完全分开B. 尽量分开C. 部分分开D. 不分开答案:B. 尽量分开5. 哪种优化算法通常用于训练深度学习模型?A. 梯度下降B. 牛顿法C. 拟牛顿法D. 以上都对答案:D. 以上都对二、填空题(每题5分,共25分)1. 机器学习可以分为监督学习、无监督学习和____学习。

A. 半监督B. 强化C. 主动学习D. 深度答案:A. 半监督2. 线性回归模型是一种____模型。

A. 线性B. 非线性C. 混合型D. 不确定型答案:A. 线性3. 在进行特征选择时,常用的评估指标有____、____和____。

A. 准确率B. 召回率C. F1 分数D. AUC 值答案:B. 召回率C. F1 分数D. AUC 值4. 神经网络中的激活函数通常用于引入____。

A. 非线性B. 线性C. 噪声D. 约束答案:A. 非线性5. 当我们说一个模型具有很好的泛化能力时,意味着该模型在____上表现良好。

A. 训练集B. 验证集C. 测试集D. 所有集答案:C. 测试集三、简答题(每题10分,共30分)1. 请简要解释什么是过拟合和欠拟合,并给出解决方法。

2. 请解释什么是交叉验证,并说明它的作用。

答案:交叉验证是一种评估模型泛化能力的方法,通过将数据集分成若干个互斥的子集,轮流用其中若干个子集作为训练集,其余子集作为验证集,对模型进行评估。

[模式识别]期末考试试卷02

[模式识别]期末考试试卷02
ห้องสมุดไป่ตู้
1 μ1 μT 2 2 μ2 0
(1)
4 / 3 2 / 3 4 / 3 2 / 3 1 1 由已知条件可计算出 1 和 2 2 / 3 4 / 3 2 / 3 4 / 3 将已知条件μ1 , μ1和 11 , 21计算结果代入(1)式并化简计算,得: x1 x2 4 x2 x1 4 0 即 : ( x1 4)( x2 1) 0, 因此分解决策面由两根直线组成, 一根为x1 4, 另一根为x2 1.
2 0 总的类内离散度矩阵Sw S1 S 2 0 2 a b a b 1 二阶矩阵 的逆 可用逆阵公式A -1 = A*计算出来 A c d c d a b 1 d b 计算公式为: = ad-bc c d c a 1/ 2 0 0 0 1 最优权向量w * S w (μ1 μ 2 ) 0 1/ 2 2 1 选取课件中的第一种阈值计算公式: W 0 Y 1 Y 2 2 2 μ μ2 则有W 0 Y 1 Y 2 w *T 1 0 1 1 2 2 1 则Fisher 准则最佳决策面方程为w *T x W 0, 将求得的数据代入该方程得 x 2 1.
2.解:
-1 -1
1 2 , 且先验概率相等. 基于最小错误率的Bayes决策规则,在两类决策面分界面上的样本x=(x1 , x2 )T 应满足 :
1 1 (x μ1 )T 1 ( x μ1 ) ( x μ2 )T 2 ( x μ2 )
对上式进行分解有 :
T T
1/ 2 1 1/ 2 1 , S2 ,各类样本均值分别为 1 1/ 2 1 1/ 2

(完整版)大学模式识别考试题及答案详解,推荐文档

(完整版)大学模式识别考试题及答案详解,推荐文档
出发点是使期望泛化风险尽可能小。
第 5 页 共 5页




At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
(1)无监督分类 (2)有监督分类 (3)统计模式识别方法(4)句法模式识别方法 4、若描述模式的特征量为 0-1 二值特征量,则一般采用 (4) 进行相似性度量。

模式识别习题及答案-精品资料

模式识别习题及答案-精品资料

第一章绪论1 •什么是模式?具体事物所具有的信息。

模式所指的不是事物本身,而是我们从事物中获得的—信息__。

2. 模式识别的定义? 让计算机来判断事物。

3. 模式识别系统主要由哪些部分组成? 数据获取一预处理一特征提取与选择一分类器设计/分类决策。

第二章贝叶斯决策理论P ( W 2 ) / p ( w 1 ) _,贝V X1. 最小错误率贝叶斯决策过程?答:已知先验概率,类条件概率。

利用贝叶斯公式 得到后验概率。

根据后验概率大小进行决策分析。

2 .最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率P ( W i ), i类条件概率分布p ( x | W i ), i 1 , 2 利用贝叶斯公式得到后验概率P (W i | x)P(X | W j )P(W j )j 1如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。

3. 最小错误率贝叶斯决策规则有哪几种常用的表示形式?决策规则的不同形式(董点)C1^ 如vr, | JV ) = max 戶(vr ] WJ A * U vtvEQ 如杲尹a H ; )2^(ir, ) = max |沪0輕』),则x e HpCx |=尸4 "J"匕< 4) 如!4i= — 1IL | /( JV )] = — 111 戸(兀 | w”. ) -+- 11111r a4. 贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了 (平均)错误率最小。

Bayes 决策是最优决策:即,能使决策错误率最小。

5 .贝叶斯决策是 由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这 个概率进行决策。

6.利用乘法法则和全概率公式证明贝叶斯公式p(AB) p(A|B)p(B) p(B|A)p(A)P (A」B )答:m所以推出贝叶斯公式p(B) p(B|Aj)p(Aj)j 17. 朴素贝叶斯方法的条件独立D (1P (x | W i ) P(W i )i i入)2P(x | W j ) P (w j )j 11 ,2P (x | W i )P(W i )如果 I (x)P(B |A i )P(AJ P ( B ) P ( B | A i ) P ( A i ) 7MP ( B | A j ) P ( A j )2假设是( P(x| 3 i) =P(x1, x2, …,xn | co i)19.=P(x1|3 i) P(x2| 3 i)…P(xn| 3 i))8•怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn |3 i) = P(x1| 3 i) P(x2| 3 i)P(xn| 3 i)后验概率:P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方 差,最后得到类条件概率分布。

模式识别期末试题

模式识别期末试题

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

《模式识别与机器学习》习题和参考答案

《模式识别与机器学习》习题和参考答案

(μ i , i ), i 1, 2 ,可得
r (x) ln p(x | w 1) ln p(x | w 2)
d
1
1

(x μ1 ) 1 (x μ1 ) ln 2 ln | |
2
2
2

d
1
1

(x μ 2 ) 1 (x μ 2 ) ln 2 ln | |
(2-15)可简化为
1
gi ( x) (x μi ) 1 (x μi ).
2
(2-17)
将上式展开,忽略与 i 无关的项 x 1x ,判别函数进一步简化为
1
gi (x) ( 1μi ) x μi 1μi .
2
(2-18)
此时判别函数是 x 的线性函数,决策面是一个超平面。当决策区域 Ri 与 R j 相邻时,
190%
(2-13)
最小风险贝叶斯决策会选择条件风险最小的类别,即 h( x) 1 。
3.
给出在两类类别先验概率相等情况下,类条件概率分布是相等对角协方差
矩阵的高斯分布的贝叶斯决策规则,并进行错误率分析。
答:
(1)首先给出决策面的表达式。根据类条件概率分布的高斯假设,可以
得到
p(x | w i )
2
2
2

1
1
1 ||
(x μ1 ) 1 (x μ1 ) (x μ 2 ) 1 (x μ 2 ) ln
2
2
2 ||
1
(μ 2 μ1 ) 1x (μ1 1μ1 μ 2 1μ 2 ).
2
(2-28)

模式识别期末试题

模式识别期末试题

和模式分类。

3、聚类分析算法属于 (1);判别域代数界面方程法属于 (1)无监督分类 (2)有监督分类 (3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用J-I 1-1J = (S J -- m);-1(3)。

9、 影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、 欧式距离具有( 1、2 );马式距离具有(1、2、3、4)。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、 线性判别函数的正负和数值大小的几何意义是( 正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

)。

12、 感知器算法 丄。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

13、 积累势函数法较之于 H-K 算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况));1、模式识别系统的基本构成单元包括:模式米集 特征提取与选择(1) ({A B }, {0, 1}, {A >01, A-. 0 A 1 ,A-. 1 A0 , B-.BA , B )0}, A )(2) ({ A }, {0, 1}, {A >0, A —; 0 A }, A )(3) ({ S }, { a, b }, { S — 00 S , S 11 S , S -00,S > 11},S )(4) ({ A }, {0, 1}, {A >01, A > 0A 1, A > 1 A 0}, A )8 、下列四元组中满足文法定义的有(1)( 2)( 4)。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、 F 列函数可以作为聚类分析中的准则函数的有(1)( 3)( 4)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模式识别与机器学习期末考查试卷研究生姓名:入学年份:导师姓名:试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。

答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。

主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。

机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。

主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。

两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。

机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/ 视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。

(2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。

模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。

而机器学习的目标是通过学习提高系统性能,分类只是其最简单的要求,其研究更侧重于理论,包括泛化效果、收敛性等。

模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。

许多算法他们都在研究,但是研究的目标却不同。

如在模式识别中研究所关心的就是其对人类效果的提高,偏工程。

而在机器学习中则更侧重于其性能上的理论证明。

试题2:列出在模式识别与机器学习中的常用算法及其优缺点。

答:(1)K 近邻法算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。

在应用算法解决问题的时候,要注意的两个方面是样本权重和特征权重。

优缺点:非常有效,实现简单,分类效果好。

样本小时误差难控制,存储所有样本,需要较大存储空间,对于大样本的计算量大。

(2)贝叶斯决策法贝叶斯决策法是以期望值为标准的分析法,是决策者在处理风险型问题时常常使用的方法。

优缺点:由于在生活当中许多自然现象和生产问题都是难以完全准确预测的,因此决策者在采取相应的决策时总会带有一定的风险。

贝叶斯决策法就是将各因素发生某种变动引起结果变动的概率凭统计资料或凭经验主观地假设,然后进一步对期望值进行分析,由于此概率并不能证实其客观性,故往往是主观的和人为的概率,本身带有一定的风险性和不肯定性。

虽然用期望的大小进行判断有一些风险,但仍可以认为贝叶斯决策是一种兼科学性和实效性于一身的比较完善的用于解决风险型决策问题的方法,在实际中能够广泛应用于组织系统改革、企业效益、市场开发、证券投资等诸多领域。

使用时根据决策者的侧重点,结合变异系数,综合使用货币因素的贝叶斯决策、或效用函数的贝叶斯决策法,都会得到自己想要的结果。

(3)加密算法是(数据加密标准)的缩写,它为密码体制中的对称密码体制,又被称为美国数据加密标准,是1972 年美国公司研制的加密算法。

是一个分组加密算法,他以64 位为分组对数据加密。

同时也是一个对称算法:加密和解密用的是同一个算法。

它的密匙长度是56 位(因为每个第8 位都用作奇偶校验),密匙可以是任意的56 位的数,而且可以任意时候改变。

其中有极少量的数被认为是弱密匙,但是很容易避开他们。

所以保密性依赖于密钥。

优缺点:具有极高安全性,分组比较短,密钥太短,密码生命周期短,运算速度较慢。

(4)决策树学习算法决策树算法是一种混合算法,它综合了多种不同的创建树的方法,并支持多个分析任务,包括回归、分类以及关联。

决策树算法支持对离散属性和连续属性进行建模。

优缺点:决策树算法高效快速且可伸缩,可轻松实现并行化,这意味着所有处理器均可协同工作,共同生成一个一致的模型。

这些特征使决策树分类器成为了理想的数据挖掘工具。

在数据挖掘的各种方法中, 决策树归纳学习算法以其易于提取显式规则、计算量相对较小、可以显示重要的决策属性和较高的分类准确率等优点而得到广泛应用。

决策树的这种易理解性对数据挖掘的使用者来说是一个显著的优点。

然而决策树的这种明确性可能带来误导。

比如,决策树每个节点对应分割的定义都是非常明确毫不含糊的,但在实际生活中这种明确可能带来麻烦。

对决策树常见的批评是说其在为一个节点选择怎样进行分割时使用“贪心”算法。

此种算法在决定当前这个分割时根本不考虑此次选择会对将来的分割造成什么样的影响。

(5)C均值算法C 均值算法是通过不断调整聚类中心使得误差平方和准则函数取得极小值。

优缺点:能够动态聚类,是一种无监督学习算法,算法简单,速度快,局部搜索能力强,能够有效处理大型数据库,与神经网络结合可极大地提高收敛性和精度。

均值算法的一个主要问题是划分类别数必须事先确定,这种主观确定数据子集数目并不一定符合数据集自身的特点,所以对于随机的初始值选取可能会导致不同的聚类结果,甚至存在着无解的情况;在选取聚类中心点时采用随机选取易使得迭代过程陷入局部最优解,容易收敛于局部极小点;该算法对“噪音”和孤立点数据比较敏感,少量的该类数据能够对平均值产生极大的影响。

(6)遗传算法遗传算法()是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

优缺点:遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1. 与问题领域无关切快速随机的搜索能力。

2. 搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较。

3. 搜索使用评价函数启发,过程简单。

4. 使用概率机制进行迭代,具有随机性。

5. 具有可扩展性,容易与其他算法结合。

6. 直接以适应度作为搜索信息,无需导数等其它辅助信息。

7. 使用多个点的搜索信息,具有隐含并行性。

8. 使用概率搜索技术,而非确定性规则。

也存在一些问题:1. 没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。

2. 算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。

3. 算法的并行机制的潜在能力没有得到充分的利用,这也是当前遗传算法的一个研究热点方向。

(7)神经网络算法其学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐单元层逐层处理后,传至输出层。

如果输出层得不到期望输出,那么就转为反向传播,把误差信号沿连接路径返回,并通过修改各层神经元的权值,使误差信号最小。

优缺点:算法能够通过学习带正确答案的实例集自动提取“合理的”求解规则;具有一定的推广能力;学习过程有被“固化”的潜在可能性;它能以任意精度逼近任意非线性函数,而且具有良好的逼近性能,并且结构简单,是一种性能优良的神经网络。

但也存在一些问题,算法是按照均方误差的梯度下降方向收敛的,但均方误差的梯度曲线存在不少局部和全局最小点,这就使得神经网络易陷入局部最小;算法的收敛速度较慢,可能会浪费大量时间;神经网络隐层的结点个数难以确定合适的数值;如何选取合适的学习样本解决网络的推广(泛化)问题,即使网络能正确处理未学习过的输入。

(8)网络算法网络算法作为典型的反馈神经网络,有下列特有的优点和缺点。

1.只有不动点吸引子,没有其它类型的吸引子。

同的这个性质被称为全局稳定性。

2. 网络状态的演化趋于某个二次函数的局部最小点。

3. 很难精确地分析网的性能。

4. 难于找到通用的学习算法。

5. 这类阿络的动力学行为过于筒单。

5. 问只有不动点吸子,是一种消极被动的神经网络。

试题3:简述在模式识别与机器学习中解决问题的主要步骤。

指出那些步骤涉及到学习?在数据的前处理中,特征选择起什么作用?答:(1) 在模式识别与机器学习中解决问题的主要步骤:1.问题描述:准确分析研究目的,并对未来工作做出计划。

2.数据选择:数据选择是根据用户需求从数据库中提取相关数据。

3.知识发现过程:归纳为3 个步骤,即数据挖掘预处理、数据挖掘、数据挖掘后处理。

数据预处理是对数据进行再加工,检查数据的完整性及一致性,对其中的噪音数据进行处理。

对丢失的数据利用统计方法进行填补,形成发掘数据库。

数据变换即从发掘数据库里选择数据,变换的方法主要是利用聚类分析和判别分析。

数据挖掘是根据用户要求,确定知识发现的目标是发现何种类型的知识。

运用选定的知识发现算法。

从数据库中提取用户所需要的知识。

知识评价主要用于对所获得的规则进行价值评定,以决定所得到的规则是否存入基础知识库。

4.选择或设计模型:对同一个问题或许有许多不同的模型可以描述,不同的模型会导致识别和学习结果的不同,因此需要利用已有的经验和知识来选择或设计适当的模型。

在确定了所建立的模型后,就可以估计模型的参数,需要注意的时,应该使得模型对未知数据有良好的适应性。

5.训练所建立的模型:用前面所得的数据分成两组,一组作为训练数据,一组作为测试数据。

设定目标误差,用训练数据对所建立的模型进行训练,达到目标误差,就停止训练,这样就确定了所建立模型的参数。

6.测试、评估、验证模型:测试模型的目的是为了确定所建立模型是否满足实际应用要求。

测试数据应该和训练用的样本数据不一致,否则,测试所得的结果永远都是满意的。

用测试数据对所建立模型进行测试,观察测试结果是否与实际情况是相符合。

若与实际情况相符合,所建立模型就可对未知数据做预测,从而得到进一步的验证。

(2) 在这些步骤中,步骤5 涉及到学习。

(3) 特征选取(也称作属性选择)是简化数据表达形式,是在模式识别中根据一定的原则,选取反映被识别模式本质的那些特征的方法或过程。

模式识别和机器学习方法首先要解决的一个问题就是特征选择。

在数据的前处理中,特征选择是一个非常重要的步骤,特征选择不合理,会影响识别和学习效果。

通过特征选择和提取,我们才可得到所采集数据中最有效的信息,最有效的特征,选择出有利于分类或聚类建立模型的变量,从而实现特征空间维数的压缩,以降低后续处理过程的难度,才能基于这些特征对所建立模型进行训练和测试。

同时特征选取也是降低存储要求,提高分类精度和效率的重要途径。

试题4:在模式识别与机器学习的研究中,还不断有人提出新的算法。

请列举一些可以用来比较算法好坏的方法?答:算法是计算机科学中一个重要的研究方向,是解决复杂问题的关键。

在计算机世界中,算法无处不在。

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。

可以用来比较算法好坏的方法有:1. 正确性一个算法是否正确的,是指对于一切合法的输入数据,该算法经过有限时间(算法意义上的有限)的执行是否都能产生正确(或者说满足规格说明要求)的结果。

相关文档
最新文档