开关电源的纹波和噪声

合集下载

纹波和噪声

纹波和噪声

开关电源的纹波和噪声(图) 日期:2009-08-26 来源:本网作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。

但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。

本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

用这几种方法告诉你如何降低开关电源输出纹波与噪声?

用这几种方法告诉你如何降低开关电源输出纹波与噪声?

用这几种方法告诉你如何降低开关电源输出纹波与噪声?纹波主要在五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声。

1、低频纹波是与输出电路的滤波电容容量相关。

电容的容量不可能无限制地增加,导致输出低频纹波的残留。

交流纹波经 DC/DC 变换器衰减后,在开关电源输出端表现为低频噪声,其大由 DC/DC 变换器的变比和控制系统的增益决定。

电流型控制 DC/DC 变换器的纹波抑制比电压型稍有提高。

但其输出端的低频交流纹波仍较大。

若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。

可采用前级预稳压和增大 DC/DC 变换器闭环增益来消除。

低频纹波抑制的几种常用的方法:a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。

b、采用前馈控制方法,降低低频纹波分量。

2、高频纹波噪声来源于高频功率开关变换电路。

在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。

高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种:a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波。

b、加大输出高频滤波器,可以抑制输出高频纹波。

c、采用多级滤波。

3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。

减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声。

减小输出共模纹波噪声的常用方法:a、输出采用专门设计的 EMI 滤波器。

b、降低开关毛刺幅度。

开关电源输出纹波标准

开关电源输出纹波标准

开关电源输出纹波标准
一、纹波电压
纹波电压是指开关电源输出电压中的交流成分,其幅度和频率都是随着负载的变化而变化的。

根据不同的应用场景,纹波电压的标准也不同,一般要求纹波电压低于输出电压的5%以内。

二、纹波频率
纹波频率是指开关电源输出纹波电压的频率,一般为几百千赫兹到几兆赫兹。

在某些应用场景下,需要关注纹波频率是否与系统中的其他信号频率产生谐振,以避免对系统产生不良影响。

三、纹波系数
纹波系数是指开关电源输出纹波电压与输出直流电压的比值,一般要求低于5%。

该指标可以用来评估开关电源的输出质量。

四、噪声电压
噪声电压是指开关电源输出端子上的随机噪声,一般要求低于输出电压的1%以内。

该指标可以用来评估开关电源对外部干扰的抑制能力。

五、交叉调整率
交叉调整率是指开关电源在负载变化时,输出电压和电流的变化率。

该指标要求越小越好,以保证开关电源在负载变化时能够稳定工作。

六、启动特性
启动特性是指开关电源在启动过程中的性能表现。

要求开关电源在启动过程中,输出电压和电流能够快速达到稳定状态,同时避免产生过大的启动冲击电流或电压。

七、效率
效率是指开关电源输出的有功功率与输入的有功功率的比值。

高效率意味着更少的能量损失和更低的散热需求。

一般要求开关电源的效率在80%以上。

八、保护功能
保护功能是指开关电源本身具备的保护功能,如过流保护、过压保护、欠压保护等。

这些保护功能可以保证开关电源在异常情况下能够自动切断电源或报警,从而保护系统和设备的安全。

5招搞定!抑制纹波、减小高频噪声超简单

5招搞定!抑制纹波、减小高频噪声超简单

5招搞定!抑制纹波、减小高频噪声超简单
5 招搞定!抑制纹波、减小高频噪声超简单
开关电源的纹波和噪声是一个本质问题,换而言之无论纹波和噪声多幺小,也无法从根本上去除,再绝对的讲,开关电源无论成本怎幺提高,也无法完全达到线性电源的性能和特点。

那幺,通常抑制或减少它的做法有五种:
1.加大电感和输出电容滤波
根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。

所以加大电感值和输出电容值可以减小纹波。

同样,输出纹波与输出电容的关系:vripple=Imax/(Co×f)。

可以看出,加大输出电容值可以减小纹波。

通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。

但是电解电容在抑制高频噪声方面效果不是很好,而且ESR 也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。

同时,开关电源工作时,输入端的电压Vin 不变,但是电流是随开关变化的。

这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK 型为例,是SWITcH 附近),并联电容来提供电流。

上面这种做法对减小纹波的作用是有限的。

因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。

所以在要求比较严格时,这种方法并不是很好。

关于开关电源的原理等,可以参考各类开关电源设计手册。

2.二级滤波,就是再加一级LC 滤波器
LC 滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。

低频纹波高频纹波环路纹波共模噪声谐振噪声简介

低频纹波高频纹波环路纹波共模噪声谐振噪声简介

低频纹波低频纹波是与输出电路的滤波电容容量相关。

由于开关电源体积的限制,电解电容的容量不可能无限制地增加,导致输出低频纹波的残留,该输出纹波频率随整流电路方式的不同而不同。

一般的开关电源由AC/DC和DC/DC两部分组成。

AC/DC的基本结构为整流滤波电路,它输出的直流电压中含有交流低频纹波,其频率为输入交流电源频率的二倍,幅值与电源输出功率及滤波电容容量有关,一般控制在10%以内。

该交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。

低频纹波例如:对普通24V电源来说,电压型控制DC/DC变换器的纹波抑制比一般为45~50dB,其输出端的低频交流纹波有效值为60~120mV。

电流型控制DC/DC变换器的纹波抑制比稍有提高,但其输出端的低频交流纹波仍较大。

若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。

可采用前级预稳压和增大DC/DC变换器闭环增益来消除。

低频纹波的抑制a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。

b、采用前馈控制方法,降低低频纹波分量。

高频纹波高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。

高频纹波高频纹波的抑制a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波。

b、加大输出高频滤波器,可以抑制输出高频纹波。

c、采用多级滤波。

共模纹波噪声由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。

减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声。

开关电源纹波和噪声的抑制

开关电源纹波和噪声的抑制

、 .8 No 5 b1 . . 2
Oc . 0 8 t2 0
开关 电源纹波和噪声 的抑制
董玉林 ,王晓明,刘 瑶,周青山
( 宁工业 大学 机 械工 程与 自动 化 学院 ,辽宁 锦 州 110 ) 辽 20 1

要 :分析了开关 电源纹波和噪声的组成成分及哪些成分需要抑制 。通 过铁氧体磁珠抑制基频纹波和高频
文献标识码 :A
文章编号:17 -2 12 0 )50 0 —3 6 436 (0 80 —320
Ri p ea d No s tn a e t M PS p l n ieAte u tswi S h
D ONG Y - n ul , i NG Xi — n , I a , HO Qigs a a mig L U Y o Z U n — n o h
开关 电源 的输入 纹波 和噪 声 ,如 果不滤 波 ,有 时足 以干扰 其他 装置 。因此 ,有必 要采取 适 当的方
刻,如图 1 ,可由示波器准确地测试到。尽管噪声
的重 复频 率 由 S S的开关 频率 决定 ,但 通 常此频 MP 率包 含的 噪声尖 峰频 率高 于开关 频率 ;幅值 的大 小 由 S S的拓 扑 、寄生 电流和 P B 走 线决 定 ,尽 MP C 管 出现 在 高频 ,但 噪声尖 峰极 易受 探头 和实 验结构
第 2 第 5期 8卷 20 0 8年 l 0月
辽宁工业大学学报 ( 自然科学版)
J un l f i nn iesyo eh oo yNa r ce c dt n o ra o a ig L o Unv ri f cn lg ( t a S in e io ) t T ul E i
o jcig tes t ig f q ec p l ad hg rq e c os i er eb a h n b c fr et wi hn r un y r pe n ih f u ny n i w t fr t e d w e uk e n h c e i e e h i

开关电源噪声的产生与抑制措施(5篇模版)

开关电源噪声的产生与抑制措施(5篇模版)

开关电源噪声的产生与抑制措施(5篇模版)第一篇:开关电源噪声的产生与抑制措施噪声的种类开关电源无论在体积、重量和效率方面都有显著的优点,已得到广泛的应用。

但开关电源最大缺点是容易产生噪声。

噪声的产生一般可分为两大类:一是开关电源内部元件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到人为因素和自然界的因素。

1.1 输出脉动噪声主要是在输出端出现的脉冲干扰,产生的原因有:由AC输入频率引起的低频脉动电压;开关电源频率引起的高次谐波脉动电压;开关接通、断开时的尖峰噪声;对上述噪声的振幅最大值可用同轴电缆接到示波器上来观察测定。

1.2 辐射电场强度开关电源产生的噪声会辐射到空间。

辐射噪声的测定方法是:接好天线,开启仪器(场强仪等),用天线接收直射波与反射波。

被测电源放在非金属的实验台上以360°来回转动,天线以上下1~4m距离移动以检测最大值。

测试以垂直与水平两个方向来测定。

1.3 外来突变电压外来突变电压干扰可用噪声模拟器检测。

在输入交流线上同时注入同相杂音(注入电压据开关电源种类而定)。

两者相位以90°、270°为最合适。

确认在这外来突变电压的作用下,输出直流电压有无变动,并观察保护装置等是否产生误动作。

1.4 雷电冲击耐压实验使用雷电冲击发生器,以保险丝以外的元件不损坏为原则,看一看输出电压的变动是否超过附加电压的规定。

噪声产生源 2.1 开关管开关功率管及其散热器与外壳和电源内部的引线间存在分布电容。

当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份。

由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流。

凡有短路电流的导线及这种脉冲电流流经的变压器和电感产生的电磁场形成噪声源。

2.2 二极管的恢复特性PN型硅二极管用作高频整流时,正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。

开关电源 波纹与噪声

开关电源 波纹与噪声

开关电源波纹与噪声一、开关电源输出波纹①开关电源输出纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

②产生原因是开关电源的电流纹波作用在电容的ESR上。

③纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

二、开关电源输出噪声①开关电源输出噪声是指全带宽下输出电压上叠加的交流量。

②产生的原因一种是开关电源自身产生的。

另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

③开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

三、减小纹波和噪声电压的措施①减少EMI的干扰采用金属外壳做屏蔽减小外界电磁场辐射干扰。

为减少从电源线输入的电磁干扰,在电源输入端加EMI 滤波器。

②在输出端采用高频性能好、ESR低的电容采用高分子聚合物固态电解质的铝或钽电解电容作输出电容是最佳的,其特点是尺寸小而电容量大,高频下ESR阻抗低,允许纹波电流大。

它最适用于高效率、低电压、大电流降压式DC/DC转换器及DC/DC模块电源作输出电容。

③采用与产品系统的频率同步为减小输出噪声,电源的开关频率应与系统中的频率同步,即开关电源采用外同步输入系统的频率,使开关的频率与系统的频率相同。

④避免多个模块电源之间相互干扰在同一块PCB上可能有多个模块电源一起工作。

若模块电源是不屏蔽的、并且靠的很近,则可能相互干扰使输出噪声电压增加。

为避免这种相互干扰可采用屏蔽措施或将其适当远离,减少其相互影响的干扰。

⑤增加LC滤波器为减小模块电源的纹波和噪声,可以在DC/DC模块的输入和输出端加LC滤波器。

开关电源产生纹波和噪声的原因和测量方法

开关电源产生纹波和噪声的原因和测量方法

开关电源产生纹波和噪声的原因和测量方法关键字:噪声纹波开关电源本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。

目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。

由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。

用示波器测量纹波和噪声的装置的框图如图2所示。

它由被测开关电源、负载、示波器及测量连线组成。

有的测量装置中还焊上电感或电容、电阻等元件。

图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。

开关电源的纹波

开关电源的纹波
开关纹波是50Hz或者是100Hz有效值波形,那很可能是输入滤波大电解小了,如果纹波是开关频率的有效值波形,那是输出电感或者输出电解小了,如果纹波是高频波形,那可能是反馈电路的元器件参数不对,当然也有可能是线路板排板走线不好,开关管或者整流管与电路配置不佳产生的。原因很多,关键要看纹波的具体波形。
开关电源的纹波过大;电容会发热,过小;成本就高
开关电源的纹波指标是要看输出电压额定值是多少。一般纹波和噪声要控制在5%以内。对于大电压,像12V,24V,48V,纹波可以控制在100mV以内
减小纹波电压,可通过提高输出滤波电容或者输出电感。反激式开关电源可省去输出电感。开关电源的输出滤波电容,不是以计算为主,而是以实际情况来决定。有时候减小纹波电压,不只是依靠增加输出滤波电容的容量来达到,根据实际输出纹波电压波形的特点,可以通过增加输入滤波电容的大小或者改变输出反馈网络的参数来达到。

电源纹波和电源噪声有什么区别?

电源纹波和电源噪声有什么区别?

电源纹波和电源噪声有什么区别?电源纹波和噪声到底有什么区别?怎么测量?我想用这篇文章来梳理一下。

2.纹波纹波(ripple),最常见的定义是指,在直流电源上,不希望出现的交流电压变动量,一般是因为直流电压是利用交流电压转换后产生,其中输出电压中的交流成分无法完全消除所造成。

(来源于维基百科)即电源纹波是指在直流信号上的交流干扰信号,这个干扰信号波动的频率和开关频率相同。

典型的DC-DC电源输出电压波形如下:上面的图片来源于MP16xx芯片输出电压波形,从手册中可以看出,波浪式的周期和开关频率一致。

波浪的幅值即为纹波的峰峰值,所以,在测试DC-DC电源纹波时,比较关注的是输出纹波Vpp。

3.噪声针对噪声的定义比较丰富,但是对电源噪声的定义我查了一些资料,目前其实对电源纹波和电源噪声的定义没有一个共同的协会制定。

在《开关电源噪声的形成及抑制方法》这篇论文中,发现了一个用于电子系统噪声定义:噪声是指在电子电路设计中没有安排的信号,这些信号通常由环境中自然因素或人为因素产生的电磁能量造成。

影响电子电路正常工作的噪声称为“干扰”,而能产生一定能量的任何物质都可以称为“噪声源”。

即电源噪声可以理解为电源模块工作在产品系统中,由系统内部和外部“干扰”引起的非连续的,无规律的电压或者电流尖峰。

接着刚刚MP16xx电源芯片的规格书,可以看到在输出电压波形上,箭头1和箭头2处的尖峰。

从波形图上可以看出:1所示的尖峰,是SW由开通向关断转变的时刻;2所示的尖峰,是SW由关断向开通转变的时刻;再对比左右两幅图可以看出,左边的1和2波动尖峰比较大,右边的1和2波动的尖峰幅值较小。

而造成这种区别的原因是负载电流不一样。

4.纹波和噪声上面的内容是把电压纹波和电压噪声进行了分开定义和说明,但是在实际测试的波形中,如果使用500mV/div的分辨率来看输出电压,看到的是稳定的直流电压,如果用5mV/div分分辨率来看输出电源,看到的是既有开关频率的纹波,也有非连续,无规律的噪声。

开关电源的纹波和噪声

开关电源的纹波和噪声

本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

一.纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

图1 纹波和噪声的波形二.纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。

目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。

由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。

用示波器测量纹波和噪声的装置的框图如图2所示。

它由被测开关电源、负载、示波器及测量连线组成。

有的测量装置中还焊上电感或电容、电阻等元件。

图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。

开关电源纹波噪声测试方法

开关电源纹波噪声测试方法

开关电源纹波噪声测试方法我折腾了好久开关电源纹波噪声测试这事儿,总算找到点门道。

最开始的时候啊,我真是瞎摸索。

我就知道得找个示波器来测,心想这能有多难呢。

就随便拿了个示波器,把探头往电源输出那一端一接,我以为就能看到准确的纹波噪声了,结果大错特错。

那显示出来的数值啊,看起来就很不靠谱。

后来才明白,探头的接地方式太重要了。

如果接地没接好,那测出来的结果就全乱套了。

就好比你要量一个东西的长度,但是尺子没放正一样。

后来我又试了一次,这次我特别注意探头的接地。

我把探头的接地弹簧尽量靠近测试点接地。

这就像是你去钓鱼,要把鱼钩尽可能靠近鱼多的地方一样。

但是又碰到新问题了,测试环境干扰太大了。

周围有其他设备开着的时候,示波器上的波形看起来就有很多毛刺,根本分不清哪些是真正的纹波噪声,哪些是干扰。

又失败了几次后,我就想啊,得把测试环境弄得干净点。

我专门挑了个周围没有什么大型电气设备运行的时间去测试。

还把开关电源单独放在一个绝缘的台子上,减少和其他物体的耦合。

这就像是你要安静地做一件事,就找个没人打扰的小角落一样。

同时呢,示波器的带宽限制也很重要。

我最开始没管这个,后来设置了合适的带宽限制后,发现波形看起来就清晰多了。

我不确定每个型号的示波器这个操作是不是都一样,反正我这个示波器得仔细看说明书才能搞定这个带宽设置呢。

再一个就是测试点的选取。

我最开始就在电源输出线随便找个地方接探头,其实最好是在电容后面,也就是电源滤波之后的地方测。

这地方更能反映纹波经过滤波后的真实情况,就好比你要检测经过净化器后的空气,肯定是要在净化器出风口处检测最准确。

还有采样率,这个设置不好也会影响结果。

要是采样率太低,波形细节就显示不出来,就好像你用低像素的相机拍照,很多细节都看不到了。

我还在不断摸索,但是现在按照这些法子来测试,结果已经靠谱多了。

这就是我在开关电源纹波噪声测试里的一些尝试和经验啦。

开关电源纹波和噪声的抑制

开关电源纹波和噪声的抑制

图9 为一个贴片封装的铁氧体磁珠的典型阻抗频率特性。铁氧体磁珠有一个很小的直流阻抗,使它通过直流电流对系统的效率有很小的影响。它还在变换器出现高频噪声的频带内拥有很大的阻抗。从曲线中可以看出,频率在200 MHz 以上时阻抗大于100 Ω. 在应用了铁氧体磁珠的例子中,有500mA 的额定电流和0.3 Ω 的直流阻抗,这就使附加器件的损耗可以降到最低。
开关电ห้องสมุดไป่ตู้纹波和噪声的抑制
1 纹波和噪声
纹波和噪声电压通常出现在交流电压信号加到DC/DC 变换器的直流输入输出电容器上。SMPS的输出噪声可分为纹波和噪声。纹波就是开关电源充放电时输出电压的波动;噪声就是发生在基频平均值的尖峰,通常称为RMS 噪声。纹波电压波形描述了输入输出电容器的充放电的结果,在最大负载时是极大的。高频噪声尖峰出现在SMPS 的开通和关断时刻,。当在100 MHz 或以上时,不论电容器值的大小,阻抗都呈感性并且很相似。因此,在Buck 电路的输入电容上并联一个较小值的陶瓷电容器并不能有效地减少这种高频噪声。
由于陶瓷电容器在出现噪声的频段内呈感性,因此需要一些用于衰减的元件。在大多数情况下,这些元件仅会在PCB 印制板的走线上产生阻抗。在62 mil FR4 电路板上50 mil 宽2 盎司铜走线的阻抗典型值每英寸约为11 nH. 容量为1 μf、封装为0603的陶瓷电容器的典型感抗约为0.5 nH. 在100 MHz高频输入噪声时,这相当于21 dB 或减少1/12x. 在实际应用中总是期望能得到更多的衰减,但噪声频率决定了L/R 网络的衰减量。加铁氧体虽可增加高频阻抗,但可使直流损耗降到最小。通过实验,测试给出旁路电容对纹波的抑制(。
3 结 论

纹波和噪声

纹波和噪声

开关电源的纹波和噪声(图) 日期:2009-08-26 来源:本网作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。

但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。

本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

纹波和噪声的区别完整版

纹波和噪声的区别完整版

纹波和噪声的区别标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
由于开关电源的开关管工作在高频的开关状态,每一个开关过程,电能从输入端被“泵到”输出端,在输出电容上形成一个充电和放电的过程,从而造成输出电压的波动,而且此波动的频率与开关管的开关频率相同,这个波动就是输出纹波,是叠加在输出直流上的交流成分,纹波的幅值是该交流成分的波峰与波谷之间的峰峰值。

而噪声是开关电源自身产生一种高频脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,噪声的频率比开关频率高的多,噪声电压的大小很大程度上与开关电源的拓扑、变压器的绕制、电路中的寄生参数、测试时外部的电磁环境以及PCB的布线设计有关。

在工程上,在对电源进行测试时,一般并不刻意的去把他们分开,测量的是纹波和噪声两者的合成干扰,用峰峰值(VP-P)表示。

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。

但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。

因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。

首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。

导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。

对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。

常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。

2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。

同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。

3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。

将开关电源的地线与其他设备的接地点连接,共用同一个地线。

对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。

金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。

2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。

同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。

3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。

此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。

2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。

3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。

4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。

开关电源的纹波噪声及测试方法

开关电源的纹波噪声及测试方法

开关电源的纹波和噪声来源:今日电子/21ic作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。

但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。

本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源的纹波和噪声开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。

但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。

本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。

目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。

由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。

用示波器测量纹波和噪声的装置的框图如图2所示。

它由被测开关电源、负载、示波器及测量连线组成。

有的测量装置中还焊上电感或电容、电阻等元件。

图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。

测纹波和噪声电压的要求如下:● 要防止环境的电磁场干扰(EMI)侵入,使输出的噪声电压不受EMI的影响;● 要防止负载电路中可能产生的EMI干扰;● 对小型开关型模块电源,由于内部无输出电容或输出电容较小,所以在测量时要加上适当的输出电容。

为满足第1条要求,测量连线应尽量短,并采用双绞线(消除共模噪声干扰)或同轴电缆;一般的示波器探头不能用,需用专用示波器探头;并且测量点应在电源输出端上,若测量点在负载上则会造成极大的测量误差。

为满足第2点,负载应采用阻性假负载。

经常有这样的情况发生,用户买回的开关电源或模块电源,在测量纹波和噪声这一性能指标时,发现与产品技术规格上的指标不符,大大地超过技术规格上的性能指标要求,这往往是用户的测量装置不合适,测量的方法(测量点的选择)不合适或采用通用的测量探头所致。

几种测量装置1双绞线测量装置双绞线测量装置如图3所示。

采用300mm(12英寸)长、#16AWG线规组成的双绞线与被测开关电源的+OUT及-OUT连接,在+OUT与-OUT之间接上阻性假负载。

在双绞线末端接一个4TμF电解电容(钽电容)后输入带宽为50MHz(有的企业标准为20MHz)的示波器。

在测量点连接时,一端要接在+OUT上,另一端接到地平面端。

图3 双绞线测量装置这里要注意的是,双绞线接地线的末端要尽量的短,夹在探头的地线环上。

2 平行线测量装置平行线测量装置如图4所示。

图4中,C1是多层陶瓷电容(MLCC),容量为1μF,C2是钽电解电容,容量是10μF。

两条平行铜箔带的电压降之和小于输出电压值的2%。

该测量方法的优点是与实际工作环境比较接近,缺点是较容易捡拾EMI干扰。

图4 平行线测量装置3 专用示波器探头图5所示为一种专用示波器探头直接与波测电源靠接。

专用示波器探头上有个地线环,其探头的尖端接触电源输出正极,地线环接触电源的负极(GND),接触要可靠。

图5 示波器探头的接法这里顺便提出,不能采用示波器的通用探头,因为通用示波器探头的地线不屏蔽且较长,容易捡拾外界电磁场的干扰,造成较大的噪声输出,虚线面积越大,受干扰的影响越大,如图6所示。

图6 通用探头易造成干扰4 同轴电缆测量装置这里介绍两种同轴电缆测量装置。

图7是在被测电源的输出端接R、C电路后经输入同轴电缆(50Ω)后接示波器的AC输入端;图8是同轴电缆直接接电源输出端,在同轴电缆的两端串接1个0.68μF陶瓷电容及1个47Ω/1w碳膜电阻后接入示波器。

T形BNC连接器和电容电阻的连接如图9所示。

图7 同轴电缆测量装置1图8 同轴电缆测量装置2图9 T形BNC连接器和电容电阻的连接纹波和噪声的测量标准以上介绍了多种测量装置,同一个被测电源若采用不同的测量装置,其测量的结果是不相同的,若能采用一样的标准测量装置来测,则测量的结果才有可比性。

近年来出台了几个测量纹波和噪声的标准,本文将介绍一种基于JEITA-RC9131A测量标准的测量装置,如图10所示。

图10 基于JEITA-RC9131A测量标准的测量装置该标准规定在被测电源输出正、负端小于150mm处并联两个电容C2及C3,C2为22μF电解电容,C3为0.47μF薄膜电容。

在这两个电容的连接端接负载及不超过1.5m长的50Ω同轴电缆,同轴电缆的另一端连接一个50Ω的电阻R和串接一个4700pF的电容C1后接入示波器,示波器的带宽为100MHz。

同轴电缆的两端连接线应尽可能地短,以防止捡拾辐射的噪声。

另外,连接负载的线若越长,则测出的纹波和噪声电压越大,在这情况下有必要连接C2及C3。

若示波器探头的地线太长,则纹波和噪声的测量不可能精确。

另外,测试应在温室条件下,被测电源应输入正常的电压,输出额定电压及额定负载电流。

不正确与正确测量的比较1探头的选择图11是用AAT1121芯片组成的降压式DC/DC转换器电路及测量正确和不正确的波形图。

若采用普通的示波器探头来测量(如图12所示),由于地线与探头组成的回路面积太大(由剖面线组成的面积),它相当于一根“天线”,极易受到EMI的干扰,其输出的纹波和噪声电压相当大(见图11中右面的示波器波形图中绿色的纹波和噪声波形)。

若采用专用的测量探头(如图13所示),它的地线极短,探头与地线组成回路面积较小,受到EMI干扰极小,其输出纹波和噪声波形如图11右面的红色线所示。

这例子说明一般通用示波器的探头是不能用的。

图11 AAT1121电路测量波形图12 用普通示波器探头测得的波形图13 用专用测量探头测得的波2 探头与测试点的接触是否良好以金升阳公司的1W DC/DC电源模块IF0505RN-1W为例,采用专用探头靠测法,排除外界EMI 噪声干扰,探头接触良好时,测出的纹波和噪声电压为4.8mVp-p,如图14所示。

若触头接触不良时,则测出的纹波和噪声电压为8.4mVp-p,如图15所示。

图14 电源模块IF0505RN-1W测试波形(接触良好)图15 电源模块IF0505RN-1W测试波形(接触不良)这里顺便再用普通示波器探头测试一下,其测试结果是纹波和噪声电压为48mVp-p,如图16所示。

图16 电源模块IF0505RN-1W测试波形(普通探头)减小纹波和噪声电压的措施开关电源除开关噪声外,在AC/DC转换器中输入的市电经全波整流及电容滤波,电流波形为脉冲,如图17所示(图a是全波整流、滤波电路,b是电压及电流波形)。

电流波形中有高次谐波,它会增加噪声输出。

良好的开关电源(AC/DC转换器)在电路增加了功率因数校正(PFC)电路,使输出电流近似正弦波,降低高次谐波,功率因数提高到0.95左右,减小了对电网的污染。

电路图如图18所示。

图17 开关电源整流波形图18 开关电源PFC电路开关电源或模块的输出纹波和噪声电压的大小与其电源的拓扑,各部分电路的设计及PCB 设计有关。

例如,采用多相输出结构,可有效地降低纹波输出。

现在的开关电源的开关频率越来越高;低的是几十kHz,一般是几百kHz,而高的可达1MHz以上。

因此产生的纹波电压及噪声电压的频率都很高,要减小纹波和噪声最简单的办法是在电源电路中加无源低通滤波器。

1减少EMI的措施可以采用金属外壳做屏蔽减小外界电磁场辐射干扰。

为减少从电源线输入的电磁干扰,在电源输入端加EMI滤波器,如图19所示(EMI滤波器也称为电源滤波器)。

图19 开关电源加EMI滤波2 在输出端采用高频性能好、ESR低的电容采用高分子聚合物固态电解质的铝或钽电解电容作输出电容是最佳的,其特点是尺寸小而电容量大,高频下ESR阻抗低,允许纹波电流大。

它最适用于高效率、低电压、大电流降压式DC/DC转换器及DC/DC模块电源作输出电容。

例如,一种高分子聚合物钽固态电解电容为68μF,其在20℃、100kHz时的等效串联电阻(ESR)最大值为25mΩ,最大的允许纹波电流(在100kHz时)为2400mArms,其尺寸为:7.3mm(长)×4.3mm(宽)×1.8mm(高),其型号为10TPE68M(贴片或封装)。

纹波电压ΔVOUT为:ΔVOUT=ΔIOUT×ESR (1)若ΔIOUT=0.5A,ESR=25mΩ,则ΔVOUT=12.5mV。

若采用普通的铝电解电容作输出电容,额定电压10V、额定电容量100μF,在20℃、120Hz 时的等效串联电阻为5.0Ω,最大纹波电流为70mA。

它只能工作于10kHz左右,无法在高频(100kHz以上的频率)下工作,再增加电容量也无效,因为超过10kHz时,它已成电感特性了。

某些开关频率在100kHz到几百kHz之间的电源,采用多层陶电容(MLCC)或钽电解电容作输出电容的效果也不错,其价位要比高分子聚合物固态电解质电容要低得多。

3 采用与产品系统的频率同步为减小输出噪声,电源的开关频率应与系统中的频率同步,即开关电源采用外同步输入系统的频率,使开关的频率与系统的频率相同。

4 避免多个模块电源之间相互干扰在同一块PCB上可能有多个模块电源一起工作。

若模块电源是不屏蔽的、并且靠的很近,则可能相互干扰使输出噪声电压增加。

相关文档
最新文档