北邮模电综合设计实验
模电综合设计实训报告
模电综合设计实训报告一、实验目的本次实验旨在通过模拟电路的设计和实现,加深对模拟电路原理的理解,并掌握相关的设计方法和技巧。
具体目标如下:1. 了解模拟电路的基本概念和常用器件的特性;2. 掌握模拟电路的基本设计方法和步骤;3. 进一步了解运放的工作原理和相关应用;4. 实践并巩固模拟电路的设计和调试能力。
二、实验设备本次实验所用的器件和设备有:1. 电源供应器2. 可变电阻器3. 电容器4. 电感器5. 非线性电阻器6. 示波器7. 麦克风8. 背光液晶显示器三、实验内容及步骤本实验主要分为三个部分:集成运放的基本特性测试、信号处理电路(语音放大电路)设计和实现、以及显示电路设计和实现。
1. 集成运放的基本特性测试首先进行了对集成运放的基本特性进行测试。
通过分别连接电源和示波器,验证了运放的放大倍数、输入电阻、输入偏置电流等性能参数。
实验结果表明运放的性能参数较为理想,符合设计需求。
2. 信号处理电路(语音放大电路)设计和实现在此部分,我们需要设计一个能够将麦克风输入的语音信号放大的电路。
首先进行了信号处理电路的设计,确定了运放的增益、电容和电阻等参数。
然后进行了电路的实现,连接了麦克风、运放等器件,并使用示波器对输出信号进行检测。
经过调试和优化,成功实现了对输入语音信号的放大。
3. 显示电路设计和实现最后一部分是设计一个显示电路,可以将放大后的信号通过背光液晶显示器进行显示。
我们根据液晶显示器的特性和需求,选择了适当的电阻和电容值,成功地将放大的信号传递到了显示器上,并完成了整体的电路设计。
四、实验结果与分析经过实验,我们成功地完成了模拟电路的综合设计实训任务。
基于对模拟电路原理和器件特性的理解,我们完成了集成运放的基本特性测试、语音放大电路的设计和实现,以及显示电路的设计和实现。
通过实验,我们进一步加深了对模拟电路设计方法和步骤的理解,并掌握了一些相关的设计技巧。
此外,我们还学会了使用示波器等仪器进行电路参数测量和信号观测。
北邮电子电路综合实验_声控报警器实验报告资料
电子电路综合实验设计实验名称:声控报警电路设计学院:信息与通信工程学院班级:学号:姓名:班内序号:一、课题名称声控报警电路设计二、摘要和关键词(一)摘要本实验分析并设计了声控报警电路,实现了在麦克近处鼓掌,电路能发出报警声并持续大约5秒。
报告中首先给出设计目标和电路功能分析,然后讨论各级电路具体设计和原理图,后给出实际搭建电路测试的数据和分析,最后总结本次实验。
(二)关键词放大器,比较器,延时,方波振荡三、设计任务要求在驻极体麦克附近鼓掌,麦克捕捉声信号后电路发出报警声,持续时间大约五秒。
1 声音传感器用驻极体式咪头,蜂鸣器用无源式蜂鸣器;2 用LM358构成两级放大器,合理设计放大倍数3用LM358构成电压比较器电路。
4延时电路用RC电路构成,计算时间常数,保证一定的延时时常四、设计思路、总体结构框图(一)设计思路麦克捕捉到声音信号后将其转变成微弱电信号,进入放大器进行放大,之后与电压比较器设定的参考电压进行比较,若高于门限值,比较器输出电平翻转,控制振荡器产生方波信号,使蜂鸣器发声。
为使蜂鸣器发声持续一段时间,要用一个延时电路保持比较器输出电平维持相应的时长。
(二)总体系统框图如图:五、分块电路和总体电路设计(一)麦克偏置电路驻极体话筒由声电转换和阻抗变换两部分组成。
声电转换的关键元件是驻极体振动膜。
它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。
然后再经过高压电场驻极后,两面分别驻有异性电荷。
膜片的蒸金面向外,与金属外壳相连通。
在麦克近处击掌,使麦克可以输出一个瞬时电压脉冲。
麦克直流偏置电路如图所示:电路说明:麦克偏置电压约6V,通过电阻R接地,麦克两端电压通过一个0.1μ电容输出电压。
电容起隔直作用,消除直流的影响,使放大后的电压便于与比较器相比较。
(二)LM358组成的放大器1、说明由于话筒提供的信号非常弱,一般在比较器前面加一个前置放大器。
考虑到设计电路对频率相应及零输入时的噪声、电流、电压的要求,前置放大器选用集成运算放大器LM358。
北邮_模电实验(下)选题讲义
表示有效数字,第三环
表示倍率(乘数),与 前三环距离较大的第四
环表示允许偏差。
精密电阻采用五环标志, 前三环表示有效数字, 第四环表示倍数,与前 四环距离较大的第五环 表示允许偏差。
正确识别首环
1 离端部近的为首环 4.2M ± 5% 2 端头任一环与其它较远的一环为最后一环即误差
2.2K ± 5%
VDW1 VDW2
R2
+
R3:
6.2K 2K 2K 430
R3
uo2
R2: R4: R0:
Rw
R4
Rw: 10K C: 0.01uf(1000pf)
方波-三角波产生电路
UCC RC1 C A T1 RP T3 RE3 RE4 -UEE T2 RL RC2 D B R VCC T4
差动放大器
1
C
0
综合实验三、晶体管放大倍数β检测电路的设计与实现
• 基本要求
– 要求电路能够检测出NPN、PNP三极管的类型; – 要求电路能够将NPN型三极管放大倍数β分为大于250、 200~250、150~200、小于150共四个挡位进行判断; – 要求电路能够手动调节四个挡位值的具体大小; – 要求电路当放大倍数β超出250时能够光闪烁报警。
4
Pol3
Cap
1
0
0
0
0
0
u
F
5
Res2
R16
1.1K
Res2
R15
1
1
Res2
R14
K
K
C
9
1
Pol3
Cap
C
0 8
u
F
综合实验五、自动增益控制电路的设计与实现
北邮模电综合实验报告
电子电路综合实验设计实验名称:阶梯波发生器的设计与实现学院:班级:学号:姓名:班内序号:实验6 阶梯波发生器的设计与实现一. 摘要阶梯波是一种特殊波形,在一些电子设备及仪表中用处极大。
本实验电路是由窄脉冲-锯齿波发生器构成。
通过将运算放大器的几个典型电路:方波发生器、积分器和迟滞电压比较器,加以改进组合,设计成了阶梯波发生器。
实验用两个二极管作为控制门,一个是阶梯波形成控制门,另一个是阶梯波返回控制门,控制阶梯波的周期。
调节相应电位器的阻值就能改变阶梯数、阶梯幅值和阶梯周期。
关键字:阶梯波方波发生器迟滞电压比较器积分器二. 实验任务及设计要求1、 基本要求:1) 利用所给元器件设计一个阶梯波发生器,500,3opp f H z U V ≥≥,阶数6N =;2) 设计该电路的电源电路(不要求实际搭建),用PROTEL 软件绘制完整的电路原理图(SCH )及印制电路板图(PCB )。
2、 提高要求:利用基本要求里设计的阶梯波发生器设计一个三极管输出特性测试电路,在示波器上可以观测到基极电流为不同值时的三极管的输出特性曲线束。
3、 探究环节:能否提供其他阶梯波发生器的设计方案?如果能提供,请通过仿真或实验对结果加以证明;三. 设计思路及结构框图1. 设计思路仔细阅读试验原理及要求分块设计阶梯波发生器窄带脉冲发生器积分器迟滞比较器计算电阻电容等器件参数计算机仿真若波形不符合则重新计算参数在电路板上搭建电路认真检查连接保证正确实验室实际调试2总体结构框图本实验中阶梯波发生器电路是由方波-三角波发生器与迟滞电压比较器构成。
图1中,运算放大器U1构成迟滞电压比较器,U3是积分器,U2为窄脉冲发生器。
两个二极管,其中D1是阶梯形成控制门,D2是阶梯返回控制门。
由于U2的同相输入端加入一个正参考电压,U2输出为负脉冲。
在负脉冲持续期间,二极管D1导通,积分器U3对负脉冲积分,其输出电压上升。
负脉冲消失后,D1截止,积分器输入、输出电位保持不变,则形成一个台阶,积分器U3的输出的阶梯波就是迟滞比较器U1的输入,该值每增加一个台阶,U1的输入电压增加一个值。
北邮模电综合实验-简易电子琴的设计与实现
电子测量与电子电路实验课程设计题目: 简易电子琴的设计和制作姓名孙尚威学院电子工程学院专业电子信息科学与技术班级2013211202学号2013210849班内序号04指导教师陈凌霄2015年4 月目录一、设计任务与要求 (3)1.1 设计任务与要求 (3)1.2 选题目的与意义 (3)二、系统设计分析 (3)2.1系统总体设计 (3)2.2 系统单元电路设计 (4)2.2.1 音频信号产生模块 (4)2.2.2 功率放大电路 (7)2.2.3 开关键入端(琴键) (8)三、理论值计算 (9)3.1 音阶频率对应表 (9)3.2 键入电路电阻计算 (9)四、电路设计与仿真 (10)4.1 电路设计 (10)4.2 Multisim仿真 (11)五、实际电路焊接 (11)六、系统调试 (13)6.1 系统测试方案 (13)6.2 运行结果分析 (14)七、设计体会与实验总结 (15)一、设计任务与要求1.1 设计任务与要求了解由555定时器构成简易电子琴的电路及原理。
设计并利用NE555集成运算电路以及外加电阻,电容在第一级产生不同频率的音乐,再利用LM386功率放大电路对音乐信号进行放大,最后通过扬声器产生21个音符。
1.2 选题目的与意义(1)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程问题的能力。
(2)学习较复杂的电子系统设计的一般方法,了解和掌握模拟,数字电路等知识解决电子信息方面常见实际问题的能力。
(3)学习调试电子电路的方法,提高实际动手能力。
了解由555定时器构成简易电子琴的电路及原理。
二、系统设计分析2.1系统总体设计由555电路组成的多谐振荡器,它的振荡频率可以通过改变振荡电路中的RC元件的数值进行改变。
根据这一原理,通过设定一些不同的RC数值并通过控制电路,按照一定的规律依次将不同值的RC组件接入振荡电路,就可以使振荡电路按照设定的需求,有节奏的发出已设定的音频信号,再利用LM386功率放大电路对音乐信号进行放大,最后通过扬声器产生音符。
北邮模电综合实验报告
电子电路综合实验设计简易声光控照明系统的设计与实现学院:电子工程学院班级:2011211202学号:2011210876姓名:孙月鹏班内序号:05简易声光控照明系统的设计与实现一、摘要声光控照明系统由整流稳压电路,可控硅开关 MCR话筒放大电路,光敏控制电路,音频放大电路,检波电路,延迟电路七部分组成,是一种利用声、光双重控制的的无触点开关照明电路。
它的主要功能是把声信号转化为电信号,经过两级放大电路,在光控电路的控制下,由可控硅开关实现灯的亮灭,并且利用延时器实现一定的延时时间。
是一种又节能又方便的自动开关电路,在生活中有广泛的应用。
关键字:声光控制自动照明延时电路二、设计任务要求1、基本要求a)当环境明亮情况下,照明系统自动关闭;b)当环境昏暗情况下,可以通过声音自动触发照明系统;c)最小照明时间要求不低于10s;d)用PROTEK件绘制电路的印刷电路板图(PCB)。
2、提咼要求a)最小照明时间可调节,调节范围为:5~ 60s;b)照明亮度根据环境亮度可以调节,分为3个等级:暗、普通、高亮<3、探究要求采用非本资料提供的原理及方法,另外设计一种简易自动照明控制系统。
三、设计思路及总体结构框图2总体结构框图首先由整流稳压电路输出12V电压,灯泡在可控硅的控制下实现亮灭。
在光照的情况下,可控硅只能达到低电压,灯泡不亮。
在光暗的情况下,当MIC得到外界的一个声音信号,经由两级放大电路发大,是可控硅通过控制电路得到一个高电压,灯泡导通。
并且由于延迟电路的作用,灯泡会在一段时间后自动熄灭加入声音信号声控电路*两级放大电路ir可控硅开关延时电路四、电路的设计过程1、电路图2、电路分块分析(1)整流稳压电路:由桥式整流电路(由D1〜D4组成),二极管稳压电路D5,加上稳压管DW12V和滤波电容C1构成。
目的是将家庭中常见的220V 交流电压转换成稳定的12V直流电压。
(2)可控硅开关MCR:起开关作用,由这个开关去控制整流电路的工作与否,从而控制灯的亮和灭。
北邮模电实验报告函数发生器
北京邮电大学课程实验报告课程名称:电子测量与电子电路设计题目:函数信号发生器院系:电子工程学院电子科学与技术专业班级: 2013211209学生姓名: 刘博闻学号: 2013211049 指导教师:高惠平摘要函数信号发生器广泛地应用于各大院校和科研场所。
随着科技的进步,社会的发展,单一的函数信号发生器已经不能满足人们的需求,本实验设计的正是多种波形发生器。
本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波—三角波发生电路由自激的单线比较器产生方波,通过RC积分电路产生三角波,在经过差分电路可实现三角波—正弦波的变换。
本电路振荡频率和幅度用电位器调节,输出方波幅度的大小由稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。
它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。
关键词:三角波方波正弦波幅度调节频率调节目录设计要求 (1)1.前言 (1)2.方波、三角波、正弦波发生器方案 (1)2.1原理框图 (1)2.2 系统组成框图 (2)3.各组成部分的工作原理 (2)3.1 方波-三角波产生电路的工作原理 (2)3.2 三角波-正弦波转换电路的工作原理 (4)3.3 总电路图 (6)4.用Mutisim电路仿真 (7)4.1方波—三角波电路的仿真 (7)4.2方波—正弦波电路的仿真 (8)5电路的实验结果及分析 (9)5.1方波波形产生电路的实验结果 (9)5.2 方波---三角波转换电路的实验结果 (10)5.3正弦波发生电路的实验结果 (11)5.4实验结果分析 (12)6.实验总结 (12)7.仪器仪表清单 (13)7.1所用仪器及元器件: (13)7.2仪器清单表 (13)8.参考文献 (16)9.致谢 (166)方波—三角波—正弦波函数信号发生器设计要求1.设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
北邮模电实验报告函数发生器
北京邮电大学课程头验报告课杲程名称:电子测量与电子电路设计题目:函数信号发生器院系: 电子工程学院电子科学与技术专业班级2013211209学生姓名:刘博闻学号2013211049指导教师:咼惠平摘要函数信号发生器广泛地应用于各大院校和科研场所。
随着科技的进步,社会的发展,单一的函数信号发生器已经不能满足人们的需求,本实验设计的正是多种波形发生器。
本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波一三角波发生电路由自激的单线比较器产生方波,通过RC积分电路产生三角波,在经过差分电路可实现三角波—正弦波的变换。
本电路振荡频率和幅度用电位器调节,输出方波幅度的大小由稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。
它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。
关键词:三角波方波正弦波幅度调节频率调节设计要求 (1)1 •前言 (1)2. 方波、三角波、正弦波发生器方案 (1)2.1原理框图 (1)2.2系统组成框图 (2)3. 各组成部分的工作原理 (2)3.1方波-三角波产生电路的工作原理 (2)3.2三角波-正弦波转换电路的工作原理 (4)3.3总电路图 (6)4. 用Mutisim电路仿真 (7)4.1方波一三角波电路的仿真 (7)4.2方波一正弦波电路的仿真 (8)5电路的实验结果及分析 (9)5.1方波波形产生电路的实验结果 (9)5.2方波---三角波转换电路的实验结果 (10)5.3正弦波发生电路的实验结果 (11)5.4实验结果分析 (12)6. 实验总结 (12)7. 仪器仪表清单 (13)7.1所用仪器及元器件: (13)7.2仪器清单表 (13)8. 参考文献 (16)9. 致谢 (166)方波一三角波一正弦波函数信号发生器设计要求1. 设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
北邮数电综合实验报告
北邮数电综合实验报告北邮数电综合实验报告一、实验目的与背景数电综合实验是北邮电子信息工程专业的重要实践环节,旨在通过实际操作,巩固和应用学生在数字电路、模拟电路、通信原理等相关课程中所学到的理论知识。
本实验报告将对数电综合实验的内容、过程和结果进行详细描述和分析。
二、实验内容本次数电综合实验的主要内容为设计一个数字电子钟。
该电子钟具备显示时间、日期、闹钟功能,并能实现闹钟的设置、开关控制等基本操作。
实验中,我们需要使用数字集成电路、显示模块、按键开关、时钟模块等元件进行电路设计和搭建。
三、实验过程1. 硬件设计与连接根据实验要求,我们首先进行电路设计。
根据数字电子钟的功能需求,我们需要选取适当的集成电路和模块。
通过分析电路原理图,我们将各个模块进行连接,保证信号的正确传递和控制。
2. 软件编程与调试在硬件连接完成后,我们需要进行软件编程。
通过使用C语言或者Verilog等编程语言,我们可以实现数字电子钟的各项功能。
在编程过程中,我们需要考虑到时钟频率、显示模块的控制、按键开关的响应等因素。
3. 实验调试与测试完成软件编程后,我们需要进行实验调试和测试。
通过连接电源,观察电子钟的各项功能是否正常工作。
如果发现问题,我们需要进行调试,找出问题所在,并进行修复。
四、实验结果与分析经过实验调试和测试,我们成功实现了数字电子钟的设计和搭建。
该电子钟能够准确显示时间和日期,并能根据用户的设置进行闹钟的开关和响铃。
通过实验过程,我们对数字电路的原理和应用有了更深入的理解。
五、实验心得与收获通过参与数电综合实验,我深刻体会到了理论与实践的结合的重要性。
在实验中,我们需要将课堂上所学的知识应用到实际中,通过实际操作来巩固和加深对知识的理解。
同时,实验中也锻炼了我们的动手能力和解决问题的能力。
在实验过程中,我们还学会了团队合作的重要性。
在设计和搭建电路的过程中,我们需要相互配合,互相帮助,共同解决问题。
通过与同学们的合作,我们不仅解决了实验中遇到的各种问题,还加深了与同学们的交流和友谊。
北邮电子电路综合设计实验报告——晶体管放大倍数检测电路的设计与实验
晶体管放大倍数β检测电路的设计与实现实验报告【摘要】晶体管是工程上常见的一种元器件,放大倍数为其基本参数。
为了检测出不同晶体管的放大倍数的粗略值,本实验利用集成运放和发光二极管,将晶体管的放大倍数分成若干个档位进行测量。
利用本实验的电路,可以成功实现对晶体管类型的判断,对晶体管放大倍数的档位测量,并在β>250时实现报警。
放大倍数的检测对于晶体管的工程应用具有重要意义,对于任意一个晶体管,在工程应用前,都应检测出它的类型及放大倍数。
【关键词】电子电路设计测量晶体管放大倍数β【实验目的】1、加深对晶体管β值意义的理解;2、了解并掌握电压比较器电路和发光二极管的使用;3、提高独立设计电路和验证实验的能力。
【设计任务和要求】【基本要求】1、设计一个简易晶体管放大倍数β检测电路,该电路能够实现对三极管β值大小的初步判断。
系统电源DC±12V2、电路能够检测出NPN、PNP三极管的类型;3、电路能够将NPN型三极管放大倍数β分为大于250、200~250、150~200和小于150四个档位进行判断;4、用发光二极管来指示被测三极管的放大倍数β值属于哪一个档位,当β超出250时二极管能够闪烁报警;5、在电路中可以手动调节四个档位值的具体大小;【提高要求】1、电路能够将PNP型三极管放大倍数β分为大于250、200~250、150~200和小于150四个档位进行判断,并且能手动调节四个档位值的具体大小。
2、NPN、PNP三极管β档位的判断可以通过手动切换。
【设计思路】简易双极型三极管放大倍数β检测电路的设计总体框图如下所示:电路由五部份组成:三极管类型判别电路、三极管放大倍数β档位判断电路、显示电路、报警电路和电源电路。
三极管类型判别电路的功能是利用NPN型和PNP型三极管的射极、基极、集电极电流流向均相反的特性而实现的。
对于一个NPN型的三极管,若要工作在放大区,则其基极与射极之间电压应为正向电压,且集电极的电位要比基极电位高。
北邮模电实验报告 函数信号发生器的设计
北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计学院:班级:姓名:学号:班内序号:课题名称:函数信号发生器的设计摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。
三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。
关键词:方波三角波正弦波一、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。
(1) 输出频率能在1-10KHz范围内连续可调,无明显失真。
(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。
(3) 三角波Uopp=8V(误差小于20%)。
(4) 正弦波Uopp1V,无明显失真。
2.提高要求:(1) 输出方波占空比可调范围30%-70%。
(2) 三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。
二、设计思路和总体结构框图总体结构框图:设计思路:由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。
将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。
利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。
三、分块电路和总体电路的设计过程1.方波-三角波产生电路电路图:设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。
北邮数电综合实验报告
北邮数电综合实验报告1. 引言本报告旨在总结和分析北邮数电综合实验的结果和过程。
该实验旨在培养学生的综合能力,包括数字电路设计、程序编写和硬件调试。
本文将按照实验步骤的顺序,逐步介绍实验的内容和结果。
2. 实验准备在开始实验之前,我们需要准备以下材料和设备:•Altera Quartus II软件:用于数字电路设计和仿真。
•FPGA(现场可编程门阵列)开发板:用于实际测试和验证设计。
•USB数据线:用于将设计传输到FPGA开发板上。
•数字电路实验板:用于连接外部电路和FPGA开发板。
3. 实验步骤3.1 实验一:基本逻辑门电路设计在本实验中,我们首先设计了基本逻辑门电路,包括与门、或门和非门。
通过使用Quartus II软件,我们可以绘制原理图并进行逻辑仿真。
在验证正确性后,将设计下载到FPGA开发板上进行物理验证。
3.2 实验二:二进制加法器设计在第二个实验中,我们设计了一个4位二进制加法器。
通过使用逻辑门和触发器,我们可以将两个4位二进制数相加,并输出结果。
使用Quartus II软件进行综合、布线和仿真,然后将设计下载到FPGA开发板上进行物理验证。
3.3 实验三:7段数码管驱动器设计在本实验中,我们设计了一个7段数码管驱动器。
通过使用逻辑门和触发器,我们可以将4位二进制数转换为相应的7段显示。
使用Quartus II软件进行综合、布线和仿真,然后将设计下载到FPGA开发板上进行物理验证。
3.4 实验四:有限状态机设计在最后一个实验中,我们设计了一个简单的有限状态机。
该状态机可以通过输入信号的变化而改变其状态,并根据当前状态和输入信号来产生输出。
使用Quartus II软件进行综合、布线和仿真,然后将设计下载到FPGA开发板上进行物理验证。
4. 结果与讨论通过对实验的各个步骤进行详细的设计和验证,我们成功完成了北邮数电综合实验。
通过使用Quartus II软件进行仿真和物理验证,我们验证了设计的正确性和可行性。
北邮模电实验基于运算放大器的彩灯显示电路的设计与实现【整理版】
电子电路综合实验报告实验名称:基于运算放大器的彩灯显示电路的设计与实现2016.4姓名:班级:学号:摘要:运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。
关键词:彩灯显示电路方波—三角波发生器运算放大器一、设计任务要求利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光点来回扫描点亮(G1→G2→G3 →G4→G5→G6→G5→G4→G3→G2→G1)。
要求彩灯的变化速度均匀且可以调节,而且人眼能够识别彩灯的变化,所拥有的供电条件为直流电源±12V。
二、设计思路、总体结构框图根据任务要求,可以设计一个如图1所示的电路,图中振荡电路产生频率可调的三角波信号,三角波信号被送入比较器电路与一系列直流电平比较,根据三角波信号瞬时值的大小不同,比较器的输出端会分别输出高电平或低电平,这些高、低电平可以按照任务要求的顺序点亮或熄灭接在比较器输出端的发光管,达到任务要求的彩灯显示效果。
图1三、分块电路和总体电路设计1、方波—三角波振荡电路三角波振荡电路由迟滞电压比较器和反向输入式积分器构成。
积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的反馈。
迟滞电压比较器的输出端接一稳压管,使其输出为高电平Uo1max或低电平U01min。
Uo1=±(Uz+Ud),Uz和Ud分别为稳压管反向击穿电压和正向导通电压。
假设迟滞电压比较器输出Uo1为高电平,高电平经过反向积分器得到线性下降的的输出信号,此线性下降的输出信号又反馈回迟滞电压比较器的输入端,当其下降至比较器的下门限电压Uth-时,迟滞电压比较器的输出跳变为低电平Uo1min,该低电平经过积分器得到线性上升的输出信号。
北邮数电综合实验-简易钢琴游戏实验报告
北京邮电大学数电综合实验报告实验名称:简易钢琴游戏学院:信息与通信工程姓名:班级:学号:班内序号:目录:一:设计课题的任务要求 (1)二:系统设计 (2)2.1 设计思路 (2)2.2 总体框图 (3)2.3 分块设计 (3)三:仿真波形及波形分析 (4)3.1 分频模块仿真 (4)3.2 点阵仿真 (5)3.3 数码管仿真 (7)3.4 总体仿真及分析 (8)四:源程序(略) (9)五:功能说明及资源利用情况 (9)5.1 时钟功能 (9)5.2 点阵及LED指示灯 (9)5.3 数码管 (9)5.4 总体功能及资源利用情况 (9)六:故障及问题分析 (10)七:总结和结论 (10)一:设计课题的任务要求任务:设计制作一个简易钢琴游戏机1、用8×8 点阵进行游戏显示2、BTN1~BTN7 七个按键模拟钢琴演奏时的“1 2 3 4 5 6 7”七个音符。
点阵的第一列对应音符“1”,第二列对应音符“2”,依此类推,低中高音自定。
3、光点在点阵第一行随机出现,逐点下落,下落速度为0.2 秒/行,如图1 所示。
图1 光点下落示意图4、在光点下落到点阵最后一行之前的过程中,如果按下与该列点阵相应的音符键,该光点消失,蜂鸣器演奏相应的音符声音,计分器加1。
如果在光点下落到最后一行依然没有进行相应的按键操作,该光点消失,计分器不加分。
计分器由数码管显示。
5、每隔1 秒在点阵的不同列的第一行出现一个光点,如图2 所示。
图2 点阵随机光点示意图6、游戏时间为30 秒,数码管倒计时显示。
提高要求:1、光点在点阵某行随机出现,然后逐点下落。
2、下落速度随机变化。
3、光点按照存储的乐曲顺序和速度的出现。
4、自拟其它功能。
提示:根据声乐知识,产生音乐的两个因素是音乐频率的持续时间,音乐的十二平均率规定,每两个八音度之间的频率相差一倍,在两个八音度之间,又可分为12个半音。
每两个半音的频率比为4。
另外,音名A(乐谱中的低音6)的频率为440HZ,音名B到C之间,E到F之间为半音,其余为全音。
北邮电子电路综合设计实验报告
北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计学院:信息与通信工程学院 班级:2013211123姓名:周亮学号:2013211123班内序号:9一、 摘要方波与三角波发生器由集成运放电路构成,包括比较器与RC积分器组成。
方波发生器的基本电路由带正反馈的比较器及RC组成的负反馈构成;三角波主要由积分电路产生。
三角波转换为正弦波,则是通过差分电路实现。
该电路振荡频率和幅度便于调节,输出方波幅度大小由稳压管的稳压值决定,方波经积分得到三角波;而正弦波发生电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。
二、关键词: 函数信号发生器 方波 三角波 正弦波三、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。
(1) 输出频率能在1-‐10KHz范围内连续可调,无明显失真。
(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。
(3) 三角波Uopp=8V(误差小于20%)。
(4) 正弦波Uopp1V,无明显失真。
2. 提高要求:(1) 输出方波占空比可调范围30%-‐70%。
(2) 三种输出波形的峰峰值Uopp均可在1V-‐10V内连续可调电源电路 方波-‐三角波发生电路 正弦波发生电路方波输三角波输正弦波输现输出信号幅度的连续调节。
利用二极管的单向导通性,将方波-‐三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。
五、分块电路和总体电路的设计过程1. 方波-‐三角波产生电路设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。
方波要求上升、下降沿小于10us,峰峰值为12V。
LM741转换速率为0.7V/us,上升下降沿为17us,大于要求值。
北邮电子电路综合实验2016年模拟综合实验题目
电子电路综合实验题目实验一函数信号发生器【背景知识】信号发生器又称信号源或振荡器,是用于产生特定参数的电测试信号的仪器。
信号发生器按输出信号的波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。
本实验所要求设计和制作的是能够产生多种波形,如三角波、矩形波(含方波)、正弦波的函数信号发生器。
信号发生器在生产实践和科技领域中有着广泛的应用。
【实验目的】1.通过实验进一步掌握集成运放的使用方法。
2.进一步提高工程设计和实践动手能力,加强系统概念。
【实验要求】1、基本要求:设计制作一个方波-三角波-正弦波信号发生器,供电电源为±12V。
1)输出频率能在1KHZ~10KHZ 范围内连续可调。
2)方波输出电压V OPP=12V(误差<20%),上升、下降沿小于10μS;3)三角波V opp=8V (误差<20%);4)正弦波V opp≥1V,无明显失真。
2、提高要求:1)将输出方波改为占空比可调的矩形波,占空比可调范围为30%‐70%;2)三种波形的输出峰峰值V OPP 均可在1V-10V 范围内连续可调。
【设计提示】根据任务要求可以拟出多种实现方案,如图2-1和图2-2为最常见的两种:图2-1 方案一图2-2 方案二由于实验要求的输出信号的频率较低,正弦振荡可以选用RC 振荡电路,正弦—方波变换电路可以采用电压比较器实现,而方波-三角波变换电路则可以用积分电路来实现。
方波振荡电路可以单独设计,也可以与方波—三角波变换电路合在一起,设计方波—三角波振荡电路,具体的电路结构也有多种可选的方案,在此就不一一赘述了。
三角波→正弦波变换电路的种类很多,有二极管桥式电路、二极管可变分压器电路和差分放大器等。
利用差分放大器传输特性曲线的非线性,实现三角波→正弦波变换的原理如图2-3所示。
由图2-3可见,①差分放大器传输特性曲线越对称,线性区越窄越好;②三角波的幅度应正好使晶体管接近截止区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子电路综合设计实验
实验5自动增益控制电路的设计与实现
信息与通信工程学院
一.课题名称:自动增益控制电路的设计与实现
二.实验目的
1.了解AGC(自动增益控制)的自适应前置放大器的应用;
2.掌握AGC电路的一种实现方法;
3.提高独立设计电路和验证实验的能力。
三.实验摘要
自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小范围内变化的特殊功能电路,简称为 AGC 电路。
本实验采用短路双极晶体管直接进行小信号控制的方法,简单有效地实现AGC功能。
四.设计任务要求
1.基本要求:
设计一个AGC电路,要求设计指标以及给定条件为:
·输入信号:0.5~50mVrms;
·输出信号:0.5~1.5Vrms;
·信号带宽:100~5KHz。
2.提高要求:
设计一种采用其他方式的AGC电路。
五.设计思路与实验各部分功能
自动增益总体框图,主要包括驱动缓冲电路,级联放大电路,输出跟随电路和增益反馈电路四个部分组成。
1.驱动缓冲电路:
输入缓冲极,其设计电路图如图3所示;
输入信号V IN驱动缓冲极Q1,它的旁路射极电阻R3有四个作用:它将Q1的微分输出电阻提高到接近公式(1)所示的值。
该电路中的微分输出电阻增加很多,使R4的阻值几乎可以唯一地确定这个输出电阻。
R D1≈r be+(1+βr ce/r be)(R3//r be) 由于R3未旁路,使Q1电压增益降低至:
A Q1=-βR4/〔r be+(1+β)R3〕≈-R4/ R3
未旁路的R3有助于Q1集电极电流-电压驱动的线性响应。
Q1的基极微分输入电阻升至R dBASE=r be+(1+β)R3,与只有r be相比,它远远大于Q1的瞬时工作点,并且对其依赖性较低。
2.直流耦合互补级联放大电路
该部分利用直流耦合将Q2与Q3进行级联,构成互补放大器,在电路中对信号起到大部分的放大作用。
3.Q4作为射极跟随器作为输出端,R14将Q4与信号输出端隔离开来。
4.自动增益控制部分(AGC),电路图如图6所示,并且在该图基础上加上R4构成。
其中R4构成可变衰减器的固定电阻,类似于图1中的电阻R1,而Q6构成衰减器的可变电阻部分。
Q5为Q6提供集电极驱动电流,Q5的共射极结构只需要很少的基极电流。
电阻R17决定了AGC的释放时间。
电阻R19用于限制通过Q5和Q6的最大直流控制电流。
D1和D2构成一个倍压整流器,从输出级Q4提取信号的一部分,为Q5生成控制电压。
电阻R15决定了AGC的开始时间。
当输入信号变大时,输出跟着增大,Q6的微分电阻就会跟这变小,输入进入放大级的信号就会变小,是输出减小;反之输入变小时,输出自动变大。
从而实现自动增益控制功能。
5.总电路图
六.实验原理
本实验所完成的电路实现了自动增益控制的功能,当输入端输入信号变化时,输出信号由于自动增益控制会基本保持不变,或者是先变化后恢复到原来的输出信号幅值。
具体原理:
AGC是使放大电路的增益自动地随信号强度而调整的自动控制方法。
实现这种功能的电路简称AGC环。
AGC环是闭环电子电路,是一个负反馈系统,它可以分成增益受控放大电路和控制电压形成电路两部分。
增益受控放大电路位于正向放大通路,其增益随控制电压而改变。
控制电压形成电路的基本部件是AGC 检波器和低通平滑滤波器,有时也包含门电路和直流放大器等部件。
放大电路的输出信号u0 经检波并经滤波器滤除低频调制分量和噪声后,产生用以控制增益受控放大器的电压uc 。
当输入信号ui增大时,u0和uc亦随之增大。
uc 增大使放大电路的增益下降,从而使输出信号的变化量显著小于输入信号的变化量,达到自动增益控制的目的。
放大电路增益的控制方法有:①改变晶体管的直流工作状态,以改变晶体管的电流放大系数β。
②在放大器各级间插入电控衰减器。
③用电控可变电阻作放大器负载等。
AGC电路广泛用于各种接收机、录音机和测量仪器中,它常被用来使系统的输出电平保持在一定范围内,因而也称自动电平控制;用于话音放大器或收音机时,称为自动音量控制。
七.故障及问题分析
本实验在搭建面包办的过程中,出现一些错误,首先由于原电路图的一些电阻没有提供,在替换上上出了一些错误,而且,书中图片有一个小错误,在第一遍检查中,及早查出,避免过后的失误。
由于本实验电路相对复杂,在第一次搭建后,同时发现一些搭建小错误:在验证AGC部分电路功能时,发现电路的输出信号不会自动调节,完全符合线性关系。
原因:实验电路部分三级管管脚看错,导致自动控制功能失效。
可能是因为过于复杂,造成连接失误,积极更改后,实验进行顺利,结果与要求相符。
八.实验总结与结论
本次实验与上学期所作有些不同,首先学习了protel,使我们对电路及电路的仿真构成有一定的了解。
在实际搭建过程中,自动增益部分比上学期的搭建难度要大很多,对我们面包板操作,提出很大考验,很大程度上提升了我们电路设计能力与实验动手能力,对今后的实验学习积累了经验。
在搭建电路时最好先初步检测元件的功能是否完好,这样在后期调试电路时能节省很多时间,否则在电路搭建好后再查错相对要困难很多。
本次试验的学习,不仅仅使我了解AGC电路,而且在查阅相关资料的过程中,触类旁通,也让我了解了有关电路的相关知识,锻炼了查阅资料的能力,总之,受益匪浅。
九.Protel与PCB Protel文件:
数据统计
输入
(mv)/
输出
(v)
频率
(kHz)
2k输入10 20 30 40 50 60 70 80 90
输出 3.02 3.14 3.18 3.22 3.22 3.26 3.26 3.26 3.3 输入100 300 400 500 600 700 900
输出 3.3 3.42 3.46 3.52 3.58 3.62 3.66
3k输入10 20 30 40 50 60 70 80 90 输出 3.0 3.06 3.13 3.16 3.18 3.2 3.2 3.24 3.24 输入100 300 500 700 900 1000 1200 1400
输出 3.26 3.40 3.58 3.62 3.7 3.7 3.78 4.06
输出带宽范围200Hz~10kHz
实验数据分析:在各频率下,输入变化10倍以上,输出变化1.3倍左右,符合实验原理。
从示波器的波形可以直观明显地观察到当输入变化。
当输入信号增大时,输出信号先突然增大,信号比较大时出现严重失真,然后减小,保持在1.5v 左右;信号减小时,输出信号先迅速减小,然后又缓慢回到之前的位置。
十.实验元件
十一.参考文献
实验仪器
5k 输入 10 20 30 40 50 60 70 80 90 输出 2.98 3.06 3.12 3.16 3.20 3.22 3.22 3.22 3.26 输入 100 300 500 600 800 1000 1200 输出 3.26 3.46 3.54 3.6 3.66 3.70 3.78
仪器名称 用途
面包板(1个) 三极管(8050 五个,8550一个) 二极管(1N4148两个)
电阻若干
电解电容若干
瓷片电容若干 导线
直流稳压电源提供直流电压
函数信号发生器提供输入小信号
示波器显示波形
交流毫伏表测量输入输出信号有效
值
万用表测量各元件
十一.参考文献
1.电子电路综合设计实验教程,北京:北京邮电大学电路中心
2.百度相关资料,百度百科。
第11 页共11 页。