拉普拉斯的逆变换及其性质

合集下载

拉普拉斯变换表

拉普拉斯变换表

拉普拉斯变换表拉普拉斯变换是一种非常重要的数学工具,它在物理、工程、数学、经济等领域均有广泛的应用。

本文将详细介绍拉普拉斯变换的定义、性质、公式表、逆变换及其应用方面的内容。

一、拉普拉斯变换的定义拉普拉斯变换是一种数学工具,用于将一个函数f(t)在复数域上进行变换。

拉普拉斯变换L{f(t)}的定义如下:L{f(t)}=F(s)=∫_0^∞e^(-st)f(t)dt其中,s是复数域上的变量,f(t)是定义在[0,∞)上的函数。

式中的e^-st可以看作是一个因子,它起到了对f(t)作拉普拉斯变换的影响作用。

二、拉普拉斯变换的性质(1)线性性:L{af(t)+bg(t)}=aL{f(t)}+bL{g(t)}其中,a和b为任意常数。

(2)时移性:L{f(t-k)}=e^(-ks)F(s)其中,k为任意实数。

(3)尺度变换:L{f(at)}=1/aF(s/a)其中,a为任意实数,a≠0。

(4)复合性:若F(s)=L{f(t)},G(s)=L{g(t)},则L{f(g(t))}=F(G(s))。

(5)初值定理:lim_(t→0^+)f(t)=lim_(s→∞)sF(s)(6)终值定理:lim_(t→∞)f(t)=lim_(s→0^+)sF(s)三、拉普拉斯变换表以下是一些常用的函数的拉普拉斯变换表。

f(t) F(s)t^n n!/s^(n+1)e^at 1/(s-a)sin(at) a/(s^2+a^2)cos(at) s/(s^2+a^2)1 1/st 1/s^2(t^n)e^at n!/(s-a)^(n+1)u(t-a) e^(-as)/sexp(-at)u(t) 1/(s+a)1-exp(-at)u(t) 1/(s(s+a))1/(a+t) exp(-as)δ(t-a) e^(-as)t^n u(t) n!/s^(n+1)t^n exp(-at)u(t) n!/(s+a)^(n+1)(t^n sin(bt))u(t) nb^s/(s^2+b^2)^(n+1)(t^n cos(bt))u(t) s^n/(s^2+b^2)^(n+1)其中,δ(t)表示狄拉克函数,u(t)即单位阶跃函数。

拉普拉斯变换及反变换

拉普拉斯变换及反变换
0
t
重要性质





( t ) f ( t ) dt f ( 0 )
( t ) dt ( t ) dt 1
0

0


L[ ( t )]



(t ) e
st
0
dt ( t ) e


st
dt 1
第7页
黄河科技学院
(5)指数函数
f (t )
控制工程基础
f (t )
(k =const)
0 2 f ( t ) kt 1( t ) 1 2 kt t 2 2 1
0
t0
t
t0
0
t
F ( s ) L [ f ( t )]
( b)
跃函数
坡 函 kt 斜 2 数
0

1
2
e
st
dt
k s
3
F s

的原函数;L是表示进行拉氏变换的 符号。
第2页
黄河科技学院
控制工程基础
F ( s ) L [ f ( t )]
f ( t ) L [ F ( s )]
拉氏变换是这样一种变换,即在一定的 条件下,它能把一实数域中的实变函数 f t 变换为一个在复数域内与之等价的 复变函数 F s 。
控制工程基础
2)当解出s有重根时,对F(s)作因式分解:
F (s) br ( s p1 )
r

b r 1 ( s p1 )
r 1

b1 ( s p1 )
r

a r 1 ( s p r 1 )

5.3 拉普拉斯逆变换.

5.3 拉普拉斯逆变换.
A(s)
例如:
F(s)
2s3
7s2 10s s2 3s 2
6
(1
2s)
(s
3s 4 1)(s
2)
(1 2s) 1 2 s1 s 1

f (t) L1[F (s)] (t) 2(' t) (et 2e2t ) (t)
若 F (s) B(s) 为有理真分式, 可直接展开为 A(s)
4
我们来看一下 k1、k2 之间的关系以及响 应与极点的关系.
下面导出有共轭单极点时,简便实用的关系式:
设 As 0 有一对共轭单根
s1 j
s2 j
F s k1 k2
s j s j
可以证明 k2 k1
设 k1 k1 e j
k2 k1 e j
F s k1 e j k1 e j
s j s j
取逆变换,得
f (t ) K1 e j e( j )t K1 e j e( j )t (t )
K1 et e e j(t ) j(t ) (t )
F
s
Ps
Bs As
式中 Bs 的幂次小于As 的幂次。
例如:
Fs
s4
8s3 25s2 31s 15 s3 6s2 11s 6
2s2 3s 3 s 2 s3 6s2 11s 6
t 1, 't s, 't 2 t s 2
下面主要讨论有理真分式的情形。
一、查表法(P417附录五)
例4.3-1
已知
F(s)
s2
s 1 4s
4


F(s)



数f(t)。
解 F(s)可以表示为

拉普拉斯变换及其应用

拉普拉斯变换及其应用

拉普拉斯变换及其应用拉普拉斯变换是一种数学工具,用于将一个函数从时间域转换到频率域。

它在许多领域中都有广泛的应用,包括电路分析、信号处理和控制系统等。

本文将介绍拉普拉斯变换的定义、性质以及在实际问题中的应用。

一、拉普拉斯变换的定义拉普拉斯变换是一种对函数进行积分变换的方法。

对于一个定义在非负实数轴上的函数f(t),它的拉普拉斯变换F(s)定义为:F(s) = L[f(t)] = ∫[0,+∞] f(t)e^(-st) dt其中,s是复数变量,称为变换域变量。

二、拉普拉斯变换的性质拉普拉斯变换具有许多有用的性质,下面列举其中几个常用的性质:1. 线性性质:对于任意的常数a和b,以及两个函数f1(t)和f2(t),有以下公式成立:L[af1(t) + bf2(t)] = aF1(s) + bF2(s)2. 移位性质:对于函数f(t)的拉普拉斯变换F(s),对t进行平移得到f(t-a)的拉普拉斯变换,可以表示为:L[f(t-a)] = e^(-as)F(s)3. 尺度变换:对函数f(t)进行尺度变换,即对t进行缩放,可以表示为:L[f(at)] = 1/a * F(s/a)三、拉普拉斯变换在电路分析中的应用拉普拉斯变换在电路分析中具有重要的应用价值。

通过将电路中的元件和信号用拉普拉斯变换表示,可以将微分方程转化为代数方程,简化分析过程。

例如,考虑一个简单的RC电路,其中电压源为V,电阻为R,电容为C。

假设电路中的电流为i(t),则根据基尔霍夫电压定律有以下微分方程:RC di(t)/dt + i(t) = V(t)将此微分方程应用拉普拉斯变换,可以得到以下代数方程:(I(s) - i(0)) / sC + I(s) / (sRC) = V(s)通过求解这个代数方程,可以得到电路中电流I(s)的表达式。

进一步,可以将其逆变换回时间域得到实际的电流函数。

四、拉普拉斯变换在信号处理中的应用在信号处理中,拉普拉斯变换可以将时域信号转换成对应的频域信号,从而方便进行频域分析和滤波等操作。

拉普拉斯变换及逆变换

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换拉普拉斯(Laplace)变换就是分析与求解常系数线性微分方程得一种简便得方法,而且在自动控制系统得分析与综合中也起着重要得作用。

我们经常应用拉普拉斯变换进行电路得复频域分析。

本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)得基本概念、主要性质、逆变换以及它在解常系数线性微分方程中得应用。

第一节 拉普拉斯变换在代数中,直接计算328.957812028.6⨯⨯=N 53)164.1(⨯就是很复杂得,而引用对数后,可先把上式变换为164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N然后通过查常用对数表与反对数表,就可算得原来要求得数N 。

这就是一种把复杂运算转化为简单运算得做法,而拉氏变换则就是另一种化繁为简得做法。

一、拉氏变换得基本概念定义12、1 设函数()f t 当0t ≥时有定义,若广义积分()pt f t e dt +∞-⎰在P 得某一区域内收敛,则此积分就确定了一个参量为P 得函数,记作()F P ,即dte tf P F pt ⎰∞+-=)()( (12、1)称(12、1)式为函数()f t 得拉氏变换式,用记号[()]()L f t F P =表示。

函数()F P 称为()f t 得拉氏变换(Laplace) (或称为()f t 得象函数)。

函数()f t 称为()F P 得拉氏逆变换(或称为()F P 象原函数),记作)()]([1t f P F L =-,即)]([)(1P F L t f -=。

关于拉氏变换得定义,在这里做两点说明:(1)在定义中,只要求()f t 在0t ≥时有定义。

为了研究拉氏变换性质得方便,以后总假定在0t <时,()0f t =。

(2)在较为深入得讨论中,拉氏变换式中得参数P 就是在复数范围内取值。

为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质得研究与应用。

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换定义函数f(t)的拉普拉斯变换定义为:F(s)=∫e−st∞f(t)dt其中s是一个复数变量。

性质拉普拉斯变换具有以下性质:1.线性性:对于任意常数a和b,以及函数f(t)和g(t),有:L[af(t)+bg(t)]=aL[f(t)]+bL[g(t)]2.时移性:对于任意常数a,有:L[f(t−a)u(t−a)]=e−as F(s)其中u(t)是单位阶跃函数。

3.微分性:对于任意可导函数f(t),有:L[f′(t)]=sF(s)−f(0)L[f″(t)]=s2F(s)−sf(0)−f′(0)4.积分性:对于任意可积函数f(t),有:L[∫ft0(τ)dτ]=F(s)s5.卷积定理:对于任意两个函数f(t)和g(t),有:L[f(t)∗g(t)]=F(s)G(s)其中∗表示卷积运算。

应用拉普拉斯变换在许多领域都有应用,包括:1.微分方程的求解:拉普拉斯变换可以将微分方程转化为代数方程,从而更容易求解。

2.信号处理:拉普拉斯变换可以用于分析和处理信号。

3. 控制理论:拉普拉斯变换可以用于分析和设计控制系统。

4. 电路分析:拉普拉斯变换可以用于分析和设计电路。

逆拉普拉斯变换拉普拉斯变换的逆变换定义为:f (t )=12πi ∫e st γ+i∞γ−i∞F (s )ds 其中 γ 是一个大于所有 F (s ) 的奇点实部的常数。

性质逆拉普拉斯变换具有以下性质:1. 线性性:对于任意常数 a 和 b ,以及函数 f (t ) 和 g (t ),有:L −1[aF (s )+bG (s )]=aL −1[F (s )]+bL −1[G (s )]2. 时移性:对于任意常数 a ,有:L −1[e as F (s )]=f (t −a )u (t −a )3. 微分性:对于任意可导函数 F (s ),有:L −1[sF (s )]=f′(t )L −1[s 2F (s )]=f″(t )4. 积分性:对于任意可积函数 F (s ),有:L −1[F (s )s ]=∫f t 0(τ)dτ 5. 卷积定理:对于任意两个函数 F (s ) 和 G (s ),有:L −1[F (s )G (s )]=f (t )∗g (t )应用逆拉普拉斯变换在许多领域都有应用,包括:1. 微分方程的求解:逆拉普拉斯变换可以将代数方程转化为微分方程,从而更容易求解。

拉普拉斯变换的基本性质、变换及反变换

拉普拉斯变换的基本性质、变换及反变换

拉普拉斯变换的基本性质、变换及反变换t t8 卷积定理L[ [f i(t—l)f2&)dE] =L[ [f i(t)f2(t—l)dl] = F i(s)F2(s)用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设F(s)是s 的有理真分式A(s)二0有重根设A(s) = 0有r 重根s ,F(s)可写为F s-(s-s ,)r(s-s ri ) (s-s n )B(s)b m 「4 g b0A(s)n ,n 」a n S - a n 」s 山…“y s - a 。

式中系数a 0, a i ,..., a n J ,a n , b °,b i , b m 」,b m 都是实常数; 将F(s)展开为部分分式。

分以下两种情况讨论。

m,n 是正整数。

按代数定理可①A(s) = 0无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

i C 2C jC nF(s) 121— s — s i s — S 2s — ss_s nC i(F-1)式中,q,s 2,…,s n 是特征方程 A(s) = 0的根。

C i 为待定常数,称为 可按下式计算:F(s)在S i 处的留数,式中,C =lim (s _sJF (s)S Tic _ B(s) iA(s)s zs iA (s)为A(s)对s 的一阶导数。

根据拉氏变换的性质,从式(4 I l j n C i =L !F (S )】=L 巨一—S — Sj 一 f(t)C in -s it=' Ci e ii =1(F-2)(F-3)F-1 )可求得原函数(F-4)B(s)式中, 其中,& r -(S —S i) (s—s)C if ,s〜) CriS —■S r iG •…©S - s S—S nS i为F(s)的r重根,S r审,…,s n为F(s)的n-r个单根;C r +,…,C n 仍按式(F-2)或(F-3)计算,C r,C rj,…, C i则按下式计算:f(t)为厂c r =lim (s — sj r F(s)T id rC ri =lim [(s -sj F(s)] dss :siC i原函数f (t)二L°〔F(s) I冷冗加(DEi d(7C i _____ . C r i ....(F-5)(s -S i)r 1(s—s i) S —S r*G *…+C nS — S j S —S nt r^ +…+c2t +G e Sit(r-2)! 2 5S i t°e iF-6)欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

拉普拉斯变换及逆变换

拉普拉斯变换及逆变换

第十二章拉普拉斯变换及逆变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。

我们经常应用拉普拉斯变换进行电路的复频域分析。

本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。

第一节拉普拉斯变换(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。

一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。

例12.1求斜坡函数()f t at =(0t ≥,a 为常数)的拉氏变换。

解:0000[]()[]pt ptpt pt a a a L at ate dt td e e e dt p p p +∞+∞+∞---+∞-==-=-+⎰⎰⎰二、单位脉冲函数及其拉氏变换在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为0t =)进入一单位电量的脉冲,现要确定电路上的电流()i t ,以()Q t 表示上述电路中的电量,则 由于电流强度是电量对时间的变化率,即t t Q t t Q dt t dQ t i t ∆∆∆)()(lim)()(0-+==→,所以,当0t ≠时,()0i t =;当0t =时,0000→→→→εεεε,即1)]([=t L δ。

例12.3现有一单位阶跃输入0,()1,t u t t <⎧=⎨≥⎩,求其拉氏变换。

解:00011[()]()1[]pt pt pt L u t u t e dt e dt e p p+∞+∞---+∞===-=⎰⎰,(0)p >。

例12.4求指数函数()at f t e =(a 为常数)的拉氏变换。

解:()001[]atat ptp a t L e e e dt e dt p a+∞+∞---===-⎰⎰,()p a >,即类似可得22[sin ](0)L t p p ωωω=>+;22[cos ](0)pL t p p ωω=>+。

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式拉普拉斯变换公式是数学中的一种重要工具,它在信号与系统、电路分析、控制理论等领域有着广泛的应用。

通过将一个函数或信号从时间域转换到复频域,拉普拉斯变换可以简化复杂的微分方程求解和系统分析问题。

以下是常见的拉普拉斯变换公式及其应用。

1. 原函数定义公式:拉普拉斯变换的第一个公式是原函数定义公式,用于将一个函数从时间域表示转换为复频域表示。

假设函数为f(t),其拉普拉斯变换为F(s),则原函数定义公式为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st) dt其中,s为复变量,表示函数在复频域的频率。

2. 常见的拉普拉斯变换公式:拉普拉斯变换公式包括了一系列常见函数的变换结果,以下是其中的几个常见公式及其应用:- 常数函数:L{1} = 1/s,常数函数在拉普拉斯变换后变为1除以复变量s。

- 单位阶跃函数:L{u(t)} = 1/s,单位阶跃函数在拉普拉斯变换后变为1除以复变量s。

- 指数函数:L{e^(at)} = 1/(s-a),指数函数在拉普拉斯变换后变为1除以复变量s减去常数a。

- 正弦函数:L{sin(at)} = a/(s^2 + a^2),正弦函数在拉普拉斯变换后变为常数a除以复变量s的平方加上a的平方。

- 余弦函数:L{cos(at)} = s/(s^2 + a^2),余弦函数在拉普拉斯变换后变为复变量s除以复变量s的平方加上a的平方。

3. 拉普拉斯变换的性质:拉普拉斯变换具有一系列的性质,这些性质可以方便地应用于信号处理和系统分析中。

以下是常见的拉普拉斯变换性质:- 线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b为常数,f(t)和g(t)为函数,F(s)和G(s)为它们的拉普拉斯变换。

- 平移性质:L{f(t-a)u(t-a)} = e^(-as)F(s),其中a为常数,f(t)为函数,u(t)为单位阶跃函数,F(s)为f(t)的拉普拉斯变换。

拉普拉斯反变换

拉普拉斯反变换

1
p 1 p
2
求拉氏反变换
(1). e
2 ( p 2 )
解:
1 p
(t )
2 ( p 2 )
1 p
e
2 p
( t 2)
2t
p2
p

3 p
e
( 2).
(1 e
)(1 e p
p2
1 e
( t 2) e
p
)
F ( p)
e
3 p
2

2

k22 ( p 2 j1)

4
k11 ( p 2 j1) F ( p )
k12 d dp
2
p 2 j 1

2 4

j
e
1 4 e

[( p 2 j1) F ( p )]
2t
j

2
p 2 j 1
f (t ) [
1 2
te
cos(t

k21 ( p j )
2

k22 ( p j )

N1 ( p) D1 ( p )
系数求得后,可用求得其反变换。由于

可以证明, 21 K11 , K 22 K12 K
设K11 | k11 | e
L [
1
j 1 1
K 22 | k22 | e
] K 22 e
例:求原函数
F ( p)
p 1 [( p 2) 1]
2 2
解:D( p ) 0的根有二重根 1, 2 2 j1, 故F ( p )可展开为 p

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换拉普拉斯变换在工程和数学中是个非常实用的工具。

它不仅能帮助我们解决微分方程,还能简化许多复杂的问题。

今天我们就来聊聊常用的拉普拉斯变换和反变换,看看它们是如何发挥作用的。

一、拉普拉斯变换的基本概念1.1 定义拉普拉斯变换是一个积分变换,它将时间域的函数转换为复频域的函数。

简单来说,它把一个函数从“时间的世界”带到了“频率的世界”。

公式上,拉普拉斯变换可以表示为:\[ \mathcal{L}\{f(t)\} = F(s) = \int_0^{\infty} e^{-st} f(t) dt \]这里的 \( s \) 是复数变量,\( f(t) \) 是我们要变换的时间域函数,\( F(s) \) 则是变换后的结果。

1.2 性质拉普拉斯变换有几个重要的性质,比如线性性、时间延迟和微分等。

这些性质使得在实际应用中,可以灵活地对待不同类型的函数。

例如,线性性让我们可以把两个函数的变换简单相加,这对于解决复杂问题很有帮助。

二、常用的拉普拉斯变换2.1 单位阶跃函数单位阶跃函数 \( u(t) \) 是拉普拉斯变换中最常用的函数之一。

它的变换结果是:\[ \mathcal{L}\{u(t)\} = \frac{1}{s} \]这个简单的公式为很多工程应用奠定了基础,因为很多信号和系统可以用阶跃函数来描述。

2.2 指数函数另一个常见的函数是指数函数 \( e^{at} \)。

它的拉普拉斯变换结果为:\[ \mathcal{L}\{e^{at}\} = \frac{1}{s - a} \]这在处理自然衰减或增长的过程时特别有用,比如在电子电路中,我们经常会遇到这种情况。

2.3 正弦和余弦函数正弦和余弦函数的拉普拉斯变换也很重要。

它们分别为:\[ \mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2} \] \[ \mathcal{L}\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2} \]这些变换结果在振动分析和控制系统中应用广泛,帮助我们理解系统的频率响应。

拉普拉斯变换及反变换

拉普拉斯变换及反变换

初值定理 若ℒ [f(t)]=F(s),且 f(t)在t = 0处无冲激,
则 f (0 ) lim f (t) lim sF (s)
t 0
s
终值定理 f(t)及其导数f (t)可进行拉氏变换,且
lim f (t)存在时
t
f () lim f (t) lim sF(s)
t
s0
例1
u(t)t0
k2(2 ss1)52(s1)2S13 k1dds(2s5)S12
f(t)L1[F(s])2et3tet t0
例2
F(s)
s2 2s2 (s2)3
k1 (s2)
(s k22)2(s k32)3
等式两边乘 (s 2)3
F(s)(s 2)3 k1(s 2)2 k2 (s 2) k3
k3s2(s22 s)32(s2)3S22
lims11 s s
例2 I(s) 5 2 s1 s2
i( 0 ) lis ( m 52) li(m 52) 3 s s 1s 2s 1 1 /s1 2 /s
例3
I(s)ℒ [1e-t]1 1 s s1
11 i(t)t ls i0m s(ss1)1
例4:已知F(s)= 1 ,求f(0)和f(∞) sa
拉普拉斯变换的基本性质表
本讲小结: 拉普拉斯变换定义 常用函数的拉普拉斯变换
拉普拉斯变换的基本性质
(1)
利用 ℒ
• 作业
1、 写出拉普拉斯变换定义式 2、
__
1
(s-1)2
二、拉普拉斯反变换
1、由象函数求原函数 f(t)=L-1[F(s)]
(1)利用公式
f(t) 1 2πj
(S2+a1S+a0)R(S)-(S+a1)r(0-)-r/(0-)=(Sb1+b0)E(s)-b1×0

拉普拉斯逆变换不等式-概述说明以及解释

拉普拉斯逆变换不等式-概述说明以及解释

拉普拉斯逆变换不等式-概述说明以及解释1.引言1.1 概述概述:拉普拉斯逆变换作为一种重要的数学工具,在信号处理、控制理论、电路分析等领域有着广泛的应用。

它是对拉普拉斯变换的逆运算,将复平面上的函数转换回到时间域或空间域。

通过拉普拉斯逆变换,我们可以从频率域得到的信号的复数表达式中恢复出原始信号的时间域表示。

本文将系统地介绍拉普拉斯逆变换的定义、性质和应用,并探讨其在数学和工程领域的重要性和意义,展望其未来的发展方向。

通过本文的阐述,读者将对拉普拉斯逆变换有一个更深入的认识,为进一步研究和应用奠定基础。

1.2 文章结构本文将分为三个部分来探讨拉普拉斯逆变换的相关内容。

首先,我们将在第二部分介绍拉普拉斯逆变换的定义,包括其数学表达式和基本概念。

接着,我们将在第三部分讨论拉普拉斯逆变换的性质,探究其在数学领域中的重要性和应用价值。

最后,我们将在结论部分总结拉普拉斯逆变换的重要性,并展望其在未来发展中可能的应用前景。

通过这种结构,我们能够全面深入地了解拉普拉斯逆变换及其在数学和工程领域中的重要作用。

1.3 目的文章的目的是探讨拉普拉斯逆变换在数学和工程领域的应用和重要性,分析其在实际问题中的解决方法和效果。

同时,目的也包括总结拉普拉斯逆变换的性质和特点,帮助读者更深入理解这一数学工具的作用和意义。

最后,通过探讨拉普拉斯逆变换的未来发展,展望其在数学和工程领域中的进一步应用前景和潜力。

部分的内容2.正文2.1 拉普拉斯逆变换的定义在谈论拉普拉斯逆变换之前,我们首先需要了解拉普拉斯变换。

拉普拉斯变换是一种数学工具,用来将一个函数转换成另一个函数,使得原本复杂的微分方程问题转化为简单的代数方程问题。

具体而言,给定一个函数f(t),其拉普拉斯变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞] e^(-st) * f(t) dt其中,s是一个复数变量,e^(-st) 是指数函数,∫[0,∞] 表示积分运算。

函数的拉普拉斯变换和反变换的性质

函数的拉普拉斯变换和反变换的性质

函数的拉普拉斯变换和反变换的性质函数的拉普拉斯变换和反变换是数学中的重要概念,它们被广泛应用于控制理论、信号处理、电路分析等领域。

在实际应用中,我们需要了解函数的拉普拉斯变换和反变换的性质,以便更好地理解这些概念。

下面我将从理论和实际应用两方面,分别探讨函数的拉普拉斯变换和反变换的性质。

函数的拉普拉斯变换的性质首先,我们来看函数的拉普拉斯变换的基本性质:1. 线性性:如果f(t)和g(t)的拉普拉斯变换分别为F(s)和G(s),那么af(t)+bg(t)的拉普拉斯变换为aF(s)+bG(s),其中a和b是实数或复数。

2. 移位性:如果f(t)的拉普拉斯变换为F(s),那么f(t-a)的拉普拉斯变换为e^(-as)F(s)。

这意味着,在时间上移动f(t)相当于在频率域上乘以一个指数函数e^(-as)。

3. 导数性质:如果f(t)的导数为f'(t),那么f(t)的拉普拉斯变换为F(s),f'(t)的拉普拉斯变换为sF(s)-f(0),其中f(0)是f(t)在t=0时的值。

4. 积分性质:如果f(t)的积分为F_0(t),那么f(t)的拉普拉斯变换为F(s)/s,其中F(s)是f(t)的拉普拉斯变换。

5. 移位定理:如果f(t)的拉普拉斯变换为F(s),那么f(t-a)的拉普拉斯变换为e^(-as)F(s)。

这意味着,在时间上移动f(t)相当于在频率域上乘以一个指数函数e^(-as)。

上述性质是函数的拉普拉斯变换的基本性质,可以帮助我们更好地理解函数的拉普拉斯变换。

函数的反变换的性质接下来,我们来看函数的反变换的性质。

函数的反变换实际上是将函数从频率域转换回时域,因此它的性质更加重要。

对于函数F(s),记它的反变换为f(t),即F(s)的反变换为f(t)=L^(-1){F(s)}。

则函数的反变换的性质如下:1. 线性性:如果F_1(s)和F_2(s)的反变换分别为f_1(t)和f_2(t),那么aF_1(s)+bF_2(s)的反变换为af_1(t)+bf_2(t)。

拉氏逆变换的性质

拉氏逆变换的性质

拉氏逆变换的性质拉普拉斯变换(英文:laplace transform),是工程数学中常用的一种积分变换。

如果定义:f(t),就是一个关于t,的函数,使当t\uc0,时候,f(t)=0,;s, 是一个复变量;mathcal 就是一个运算符号,它代表对其对象展开拉普拉斯分数int_0^infty e^ ,dt;f(s),就是f(t),的拉普拉斯转换结果。

f(t),的拉普拉斯变换由下列式子给出:f(s),=mathcal left =int_ ^infty f(t),e^ ,dt拉普拉斯逆变换,是已知f(s),,求解f(t),的过程。

用符号 mathcal ^ ,表示。

拉普拉斯连分数的公式就是:对于所有的t\ue0,;f(t)= mathcal ^ left=frac int_ ^ f(s),e^ ,dsc,是收敛区间的横坐标值,是一个实常数且大于所有f(s),的个别点的实部值。

为精简排序而创建的实变量函数和为丛藓科扭口藓变量函数间的一种函数转换。

对一个实变量函数并作拉普拉斯转换,并在复数域中并作各种运算,再将运算结果并作拉普拉斯反转换去求出实数域中的适当结果,往往比轻易在实数域中算出同样的结果在排序上难得多。

拉普拉斯转换的这种运算步骤对于解线性微分方程尤为有效率,它可以把微分方程化成难解的代数方程去处置,从而并使排序精简。

在经典掌控理论中,对控制系统的分析和综再分,都就是创建在拉普拉斯转换的基础上的。

导入拉普拉斯转换的一个主要优点,就是可以使用传递函数替代微分方程去叙述系统的特性。

这就为使用直观和方便快捷的图解方法去确认控制系统的整个特性(见到信号流程图、动态结构图)、分析控制系统的运动过程(见到奈奎斯特平衡帕累托、根轨迹法),以及综合控制系统的校正装置(见到控制系统校正方法)提供更多了可能性。

用 f(t)表示实变量t的一个函数,f(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。

拉普拉斯变换的基本性质变换及反变换

拉普拉斯变换的基本性质变换及反变换

拉普拉斯变换的基本性质、变换及反变换1.表A-1 拉氏变换的基本性质2.表A-2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1((F-6)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L1[
2! p3 ]

1 t 2e2t 2
(2) f (t) L1[2 pp25]

2L1[
1p
]

5L1[
1 p2
]
2 5t
(3) f (t) L1[ 4p2p34]

4L1[
p2p4]
3 2
L1[
p224]

4
cos
2t

3 2
sin
2t
(4)
f
(t )
三、进一步的练习
练习1
求下列象函数的逆变换
(1)
F
(
p)

(
1 p3)3
(2)
F( p)

2 p5 p2
(3)
F
(
p)

4 p3 p24
(4)
F( p)
2 p3 p22 p5
解 (1) 由性质2及拉氏变换表得
f
(t)

L1[ (P
1 3)3
]

e
2t
L1[
1 P3
]

e2t 2
再用拉氏逆变换还原为满足初始条件 y(0) 2, y(0) 1
的微分方程解为
y(t) 1 et 4et 7 e2t
3
3
第一节 函数及其图形
精品课件!
第一节 函数及其图形
精品课件!
将初始条件 y(0) 2, y(0) 1 代入上式,得
代数方程的解 ( p2 3 p 2)Y 2 2P 7 P 1

Y 2p2 5p 5
( p 1)( p 1)( p 2)
1
7
将上式分解为 Y 3 4 3 p 1 p 1 p 2
还原为微分方程的解.
练习3 [解二阶常系数线性微分方程] 用拉氏变换求微分方程
y(t) 3y(t) 2y(t) 3et
满足初始条件 y(0) 2, y(0) 1的解.
解 设 L[ y(t)] Y ( p) Y , 并对方程两端进行拉氏
变换,则有
[ p2Y py(0) y(0)] 3[ pY y(0)] 2Y 2 P 1

L1

2P 3 P2 2P
5


L1

2(P 1) (P 1)2

5 4


2L1

(P
P 1 1)2
4


5 2
L1

(P
2 1)2

4


2et
L1

p p2
4


5 2
et
一、案例 [自动控制]
拉氏逆变换是由象函数求原函数.如在自 动控制中,利用拉氏变换可以将常系数微 分方程变换为象函数的代数方程求解,但 最后,又需要再将象函数的代数方程解还 原为微分方程的解.
二、 概念和公式的引出 拉氏逆变换 若F (p)为f (t)的拉氏变换,则称f (t) 为F (p)的拉普拉斯逆变换,记作
L1

2 p2
4

ห้องสมุดไป่ตู้
2et cos 2t 5 sin 2t 2
练习2 [解一阶微分方程]
求微分方程 x(t) 2x(t) 0 满足初始条件 x(0) 3 的解. 解 对方程两端进行拉氏变换,并设 L[x(t)] X ( p) , 则 L[x(t) 2x(t)] L[0] ,即
pX ( p) x(0) 2X ( p) 0 将 x(0) 3 代入上式,有
( p 2)X ( p) 3
所以象函数的解为
X ( p) 3 p2
用拉氏逆变换将象函数的解还原为微分方程,
满足初始条件 x(0) 3的解为
x(t) L1[x( p)] L1[ 3 ] 3e2t p2
注:拉氏变换在解微分方程中具有重要作用,应 用拉氏变换可以将常系数微分方程变换为象函数 的代数方程求解,再通过拉氏逆变换,将象函数 的代数方程解还原为微分方程的解.起到化难为 易的作用.
用拉氏变换求解常系数常微分方程的过程如下: 第一步 对微分方程进行拉氏变换; 第二步 解拉氏变换象函数的代数方程; 第三步 将象函数的代数方程解进行拉氏逆变换,
f (t) L1[F( p)]
拉氏变换具有如下性质: 性质1(线性性质)
L1[a1F1(t) a2F2 (t)] a1 f1( p) a2 f2 (t)
性质2(平移性质)
L1[F( p a)] eat f (t)
性质3(延滞性质)
L1[eapF( p)] f (t a)u(t a)
相关文档
最新文档