贝叶斯实验报告word精品

合集下载

贝叶斯分类 实验报告

贝叶斯分类 实验报告

机电学院通信工程系实验报告课程名称: 模型识别实验名称:贝叶斯分类实验实验地点:信息楼105 指导老师: 侯强实验时间: 2013.06.15 提交时间:2013.06.19 班级: 075102 – 04姓名:肖敬轩学号:20101000639图1引进新样本,分类前(样本为绿色) 图2新样本分类后 从上图可以看出引进的新样本按照分界边界方程把它们分类,即把分类边界左边的归为鲈鱼类,把分类边界右边的归为鲑鱼类。

第二题 1)此题中判别边界与第一题一样,都是一条直线,且垂直于均值的连线,但不一定通过连线的中点,而是通过x0的表达式为:)()(P )(P ln )(21x j i j i 2ji 2j i 0μμωωμμσμμ---+=的点。

故在第一题的基础上求出x0,即可求出判别边界的表达式。

2)编写代码如下:% x 是第一类数据,每一列代表一个样本(两个特征)x1(1,:) = normrnd(10,4,1,20);x1(2,:) = normrnd(12,4,1,20);x2(1,:) = normrnd(11,4,1,20);x2(2,:) = normrnd(14,4,1,20);plot(x1(1,:),x1(2,:),'bo');hold onplot(x2(1,:),x2(2,:),'ro');mx1=mean(x1');%均值mx2=mean(x2');hold on plot(mx1(:,1),mx1(:,2),'g*',mx2(:,1),mx2(:,2),'g*');u=1/2*(x1+x2);%均值估计e=1/2*((x1-u)*(x1-u)'+(x2-u)*(x2-u)');%协方差估计u1=[10;12];u2=[11;14];w=u1-u2;x0=1/2*(u1+u2)-(16/(u1-u2).^2)*log10(2/3)*(u1-u2);%假设先验概率之比为2/3 b=x0(2)-k*x0(1);k=-(mx1(:,1)-mx2(:,1))/(mx1(:,2)-mx2(:,2));%z=(mx1+mx2)/2;%b=z(2)-k*z(1);x=5:20;y=k*x+b;hold onplot(x,y);axis equal3)运行以上代码,得到如下图:(其中绿色*为两类样本的均值)从上图可以看出,判别边界是一条垂直于均值连线但不通过连线中点的直线,因此我们已按照要求把该图像画出。

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。

本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。

由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。

我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。

则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。

4贝叶斯网络实验

4贝叶斯网络实验

实验四贝叶斯网络实验
一、实验目的:
了解不确定性推理的原理和特点,理解贝叶斯网络的推理原理。

二、实验原理:
贝叶斯网络是一种模拟人类推过程中因果关系的不确定性处理模型,其网络拓扑结构是一个有向无环图(DAG),它的节点用随机变量或命题来标识,认为有直接关系的命题或变量则用弧来连接。

通过建立推理规则知识库,设置前提条件和证据可信度,经过贝叶斯推理,得到结论及其可信度。

三、实验条件
1贝叶斯推理网络演示程序界面。

四、实验内容:
1建立贝叶斯网络,包括建立推理规则知识库和前提条件的可信度。

2实际演示贝叶斯推理过程。

五、实验步骤:
1建立推理规则知识库。

规则知识是通过点击“下条知识”按钮,将规则知识逐条加入规则知识库列表框中。

2当规则知识库建立完成后,点击“建库完毕”按钮,表示用户所建立的规则知识库的大小已确定下来。

规则知识库的最大规模不能超过100条。

3建立规则知识前提条件的可信度,用户可以从“证据可信度”的下拉列表框中挑选规则知识前提条件,输入相应的可信度。

4通过点击“下条证据可信度”按钮,将规则知识逐条加入前提条件可信度列表框。

当规则知识前提条件的可信度建立完成后,点击“证据完毕”按钮。

此时用户可以看到“开始推理”按钮被激活,则表示用户可以进行推理。

5用户点击“开始推理”按钮后,可以看到生成的贝叶斯网络推理示意图以及在“推理结果如下”文本框中最后结论的后验概率值。

六、实验报告要求:
1建立的知识库和规则库内容。

2贝叶斯推理网络的推理结果。

3试论述贝叶斯推理网络的推理机制及特点。

贝叶斯实验报告范文

贝叶斯实验报告范文

贝叶斯实验报告范文一、实验目的掌握贝叶斯推断的基本原理和方法,通过实验研究贝叶斯公式在实际问题中的应用。

二、实验原理贝叶斯推断是一种通过先验概率和观测数据来推断未知变量的方法。

根据贝叶斯公式,我们可以通过已知的先验概率和条件概率来推导后验概率,从而对未知变量进行推断。

三、实验过程1.实验准备:准备一个贝叶斯实验案例,例如:假设有一个盒子里有红球和蓝球,我们不知道红球和蓝球的比例。

先验概率分别是P(R)=0.5和P(B)=0.52.实验步骤:a)假设我们从盒子里随机取了一个球,结果是红色,我们要计算取到红色球的概率。

根据贝叶斯公式:P(R,D)=P(D,R)*P(R)/P(D)其中,P(R,D)代表在已知取到红色球的条件下,取到红色球的概率;P(D,R)代表在已知取到红色球的条件下,取到红色球的概率;P(R)代表取到红色球的概率;P(D)代表取到红色球的概率。

根据已知条件,P(D,R)=1,P(D)=P(D,R)*P(R)+P(D,B)*P(B),P(B)=1-P(R)。

将上述条件代入贝叶斯公式,计算P(R,D)的值。

b)假设我们从盒子里随机取了一个球,结果是红色,然后再从盒子里取了一个球,结果也是红色,我们要计算从盒子里取到的两个球都是红色球的概率。

根据贝叶斯公式:P(R2,R1)=P(R1,R2)*P(R2)/P(R1)其中,P(R2,R1)代表在已知第一个球是红色球的条件下,第二个球是红色球的概率;P(R1,R2)代表在已知第二个球是红色球的条件下,第一个球是红色球的概率;P(R2)代表第二个球是红色球的概率;P(R1)代表第一个球是红色球的概率。

根据已知条件,P(R1,R2)=1,P(R1)=P(R1,R2)*P(R2)+P(R1,B2)*P(B2),P(B2)=1-P(R2)。

将上述条件代入贝叶斯公式,计算P(R2,R1)的值。

四、实验结果根据贝叶斯公式的计算,可以得到实验结果。

五、实验分析通过实验研究,我们可以发现贝叶斯推断在解决实际问题时能够有效地利用已知的先验概率和观测数据,从而对未知变量进行推断。

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类一、实验目的通过使用贝叶斯分类算法,实现对数据集中的样本进行分类的准确率评估,熟悉并掌握贝叶斯分类算法的实现过程,以及对结果的解释。

二、实验原理1.先验概率先验概率指在不考虑其他变量的情况下,某个事件的概率分布。

在贝叶斯分类中,需要先知道每个类别的先验概率,例如:A类占总样本的40%,B类占总样本的60%。

2.条件概率后验概率指在已知先验概率和条件概率下,某个事件发生的概率分布。

在贝叶斯分类中,需要计算每个样本在各特征值下的后验概率,即属于某个类别的概率。

4.贝叶斯公式贝叶斯公式就是计算后验概率的公式,它是由条件概率和先验概率推导而来的。

5.贝叶斯分类器贝叶斯分类器是一种基于贝叶斯定理实现的分类器,可以用于在多个类别的情况下分类,是一种常用的分类方法。

具体实现过程为:首先,使用训练数据计算各个类别的先验概率和各特征值下的条件概率。

然后,将测试数据的各特征值代入条件概率公式中,计算出各个类别的后验概率。

最后,取后验概率最大的类别作为测试数据的分类结果。

三、实验步骤1.数据集准备本次实验使用的是Iris数据集,数据包含150个Iris鸢尾花的样本,分为三个类别:Setosa、Versicolour和Virginica,每个样本有四个特征值:花萼长度、花萼宽度、花瓣长度、花瓣宽度。

2.数据集划分将数据集按7:3的比例分为训练集和测试集,其中训练集共105个样本,测试集共45个样本。

计算三个类别的先验概率,即Setosa、Versicolour和Virginica类别在训练集中出现的频率。

对于每个特征值,根据训练集中每个类别所占的样本数量,计算每个类别在该特征值下出现的频率,作为条件概率。

5.测试数据分类将测试集中的每个样本的四个特征值代入条件概率公式中,计算出各个类别的后验概率,最后将后验概率最大的类别作为该测试样本的分类结果。

6.分类结果评估将测试集分类结果与实际类别进行比较,计算分类准确率和混淆矩阵。

贝叶斯分类实验报告doc

贝叶斯分类实验报告doc

贝叶斯分类实验报告篇一:贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯分类年级XX级专业信息与计算科学学生姓名学号 1207010220理学院实验时间:XX年12月2日学生实验室守则一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。

二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。

三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。

四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。

五、实验中要节约水、电、气及其它消耗材料。

六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。

七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。

仪器设备发生故障和损坏,应立即停止实验, 并主动向指导教师报告,不得自行拆卸查看和拼装。

八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。

九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。

十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。

H^一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。

学生所在学院:理学院专业:信息与计算科学班级: 信计121篇二:数据挖掘-贝叶斯分类实验报告实验报告实验课程名称数据挖掘实验项目名称贝叶斯的实现年级专业学生姓名学号00学院实验时间:年月曰13篇三:模式识别实验报告贝叶斯分类器模式识别理论与方法课程作业实验报告实验名称:Generating Pattern Classes 实验编号:Proj02-01规定提交日期:XX年3月30日实际提交日期:XX年3 月24日摘要:在熟悉贝叶斯分类器基本原理基础上,通过对比分类特征向量维数差异而导致分类正确率发生的变化,验证了“增加特征向量维数,可以改善分类结果”。

贝叶斯实验报告

贝叶斯实验报告

贝叶斯实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】HUNAN UNIVERSITY人工智能实验报告题目实验三:分类算法实验学生姓名匿名学生学号 02xx专业班级智能科学与技术1302班指导老师袁进一.实验目的1.了解朴素贝叶斯算法的基本原理;2.能够使用朴素贝叶斯算法对数据进行分类3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器4.学会对于分类器的性能评估方法二、实验的硬件、软件平台硬件:计算机软件:操作系统:WINDOWS10应用软件:C,Java或者Matlab相关知识点:贝叶斯定理:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A 的条件概率,其基本求解公式为:贝叶斯定理打通了从P(A|B)获得P(B|A)的道路。

直接给出贝叶斯定理:朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

朴素贝叶斯分类的正式定义如下:1、设为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合。

3、计算。

4、如果,则。

那么现在的关键就是如何计算第3步中的各个条件概率。

我们可以这么做:1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

2、统计得到在各类别下各个特征属性的条件概率估计。

即3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。

又因为各特征属性是条件独立的,所以有:整个朴素贝叶斯分类分为三个阶段:第一阶段: 准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。

[机器学习实验报告范文-朴素贝叶斯学习和分类文本]

[机器学习实验报告范文-朴素贝叶斯学习和分类文本]

[机器学习实验报告范文-朴素贝叶斯学习和分类文本] (2022年度秋季学期)
实验内容
目标:可以通过训练好的贝叶斯分类器对文本正确分类
实验设计
实验原理与设计:
在比较不同Y值的后验概率时,分母P(某)总是常数,因此可以忽略。

先验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比
例容易地估计。

实验主要代码:
1、
由于中文本身是没有自然分割符〔如空格之类符号〕,所以要获得中
文文本的特征变量向量首先需要对文本进行中文分词。

这里采用极易中文
分词组件
2、
先验概率计算,N表示训练文本集总数量。

3、
条件概率计算,为在条件A下发生的条件事件B发生的条件概率。


给定的文本属性,c给定的分类
4、
对给定的文本进行分类
三、测试数据
训练集文本:
数据样例选用Sogou实验室的文本分类数据的mini版本
类别及标号
测试数据文本:
通过观察可知,该文本预期为IT类文章
实验结果
运行结果如以下图
五、遇到的困难及解决方法、心得体会
通过此次实验,让我对朴素贝叶斯有了更深刻的理解,原本只是了解根本的先验概率公式。

实验过程中学习了中文的分词以及停用词的使用,使分类更加的准确,也认识到了贝叶斯广阔的实用空间,对于机器学习这门课的兴趣也更加浓厚。

机器学习实验报告

机器学习实验报告

机器学习试验报告朴实贝叶斯学习和分类文本(2022年度秋季学期)一、试验内容问题:通过朴实贝叶斯学习和分类文本目标:可以通过训练好的贝叶斯分类器对文本正确分类二、试验设计试验原理与设计:在分类(classification)问题中,经常需要把一个事物分到某个类别。

一 个事物具有许多属性,把它的众多属性看做一个向量,即x=(xl,x2,x3,.∙.,xn), 用x 这个向量来代表这个事物。

类别也是有许多种,用集合Y=yl,y2,…ym 表 示。

假如χ属于yl 类别,就可以给χ打上yl 标签,意思是说χ属于yl 类别。

这就是所谓的分类(Classification)。

x 的集合记为X,称为属性集。

一般X 和Y 的关系是不确定的,你只能在某种程度上说x 有多大可能性属于类yl,比如 说x 有80%的可能性属于类yl,这时可以把X 和Y 看做是随机变量,P(Y ∣X) 称为Y 的后验概率(posterior probability),与之相对的,P(Y)称为Y 的先验 概率(priorprobability) l o 在训练阶段,我们要依据从训练数据中收集的信 息,对X 和Y 的每一种组合学习后验概率P(Y ∣X)o 分类时,来了一个实例x, 在刚才训练得到的一堆后验概率中找出全部的P(Y ∣×),其中最大的那个y, 即为x 所属分类。

依据贝叶斯公式,后验概率为在比较不同Y 值的后验概率时,分母P(X)总是常数,因此可以忽视。

先 验概率P(Y)可以通过计算训练集中属于每一个类的训练样本所占的比例简单 地估量。

在文本分类中,假设我们有一个文档d ∈x, X 是文档向量空间(document space),和一个固定的类集合C={cl,c2,…,cj},类别又称为标签。

明显,文档 向量空间是一个高维度空间。

我们把一堆打了标签的文档集合<d,c>作为训练 样本,<d,c>∈X×Co 例如:<d z c>={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到China,即打上china 标 签。

knime贝叶斯实验报告总结

knime贝叶斯实验报告总结

knime贝叶斯实验报告总结一、引言Knime是一款开源的数据分析平台,可以方便地进行数据处理、建模和可视化等操作。

贝叶斯分类器是其中一种常用的机器学习算法,可以用于分类问题。

本报告旨在介绍使用Knime进行贝叶斯分类器实验的过程和结果。

二、实验目的本次实验旨在探究使用Knime进行贝叶斯分类器的效果,并通过对比不同参数设置下的预测结果,寻找最优参数组合。

三、实验步骤1. 数据准备:选择适合贝叶斯分类器的数据集,并将其导入Knime中。

2. 数据预处理:对数据进行缺失值填充、特征选择、归一化等处理。

3. 模型训练:将处理后的数据集分为训练集和测试集,使用Naive Bayes Learner节点建立贝叶斯分类器模型,并通过Cross Validation节点进行交叉验证。

4. 模型评估:使用Scorer节点对模型进行评估,并根据评估结果调整参数。

5. 结果分析:通过比较不同参数组合下的预测准确率和其他指标,确定最优参数组合。

四、实验结果1. 数据集选择:本次实验选择了UCI Machine Learning Repository中的Iris数据集,该数据集包含150个样本,每个样本有4个特征和一个类别标签。

数据集中的三种不同花卉的类别标签分别为Iris Setosa、Iris Versicolour和Iris Virginica。

2. 数据预处理:对于缺失值填充,使用Missing Value节点将缺失值替换为平均值;对于特征选择,使用Correlation Filter节点选取相关性较弱的特征;对于归一化,使用Normalize节点将特征值缩放到0-1之间。

3. 模型训练:将处理后的数据集分为训练集(70%)和测试集(30%),使用Naive Bayes Learner节点建立贝叶斯分类器模型,并通过Cross Validation节点进行交叉验证。

交叉验证结果显示,在默认参数下,模型在测试集上的准确率为95%。

模式识别贝叶斯方法报告

模式识别贝叶斯方法报告

模式识别贝叶斯方法实验报告姓名与学号:教师:唐柯目录模式识别贝叶斯方法实验报告 (1)目录 (2)1 原理 (3)1.1 基本思想 (3)1.2 工作过程 (3)2 实验记录 (4)2.1 matlab程序 (4)2.2 特殊情况 (4)2.3 实验结果 (4)2.4 实验人员任务分配 (4)附录 (5)1 原理1.1 基本思想①已知类条件概率密度参数表达式(如符合正态分布)和先验概率(有监督,可统计得到) ②利用贝叶斯公式转换成后验概率 ③根据后验概率大小进行决策分类1.2 工作过程1. 每个数据样本用一个n 维特征向量X = {x 1 , x 2 ,..., x n }表示,对应属性A 1, A 2, ..., A n 。

2. m 个类别C 1 ,C 2 ,...,C m (在本实验中只有两类)。

给定一个未知类别的数据样本X ,分类器将预测X 属于具有最高后验概率(条件X 下)的类。

即将未知的样本分配给类C i ,当且仅当:P(C i | X) > P(C j | X) 1 ≤ j ≤ m 且j ≠ i.求令P(C i | X)最大的类Ci 称为最大后验假设。

根据贝叶斯定理P(C i | X) = P(X | C i )*P(C i )/P(X)由于P(X) 对于所有类别为常数,只需要P(X |C i )*P(C i )最大。

类别的先验概率可以统计得到(有监督),所以最大化P(X | C i )P(C i )。

类别的先验概率P(C i ) = 类别C i 的训练样本数/训练样本总数3. 假定各类别样本之间的属性值相互独立,则P(X|C i ) = ΠP(x k |C i ) k=1...n而概率P(x k |C i )可由训练样本估值,按属性离散与否分为 ①离散属性,则P(x k |C i ) = S ik /S iS ik 为在属性A k 上具有值x k 的类别C i 的训练样本数,S i 是类别C i 的样本数。

贝叶斯算法实验报告

贝叶斯算法实验报告

贝叶斯算法实验报告近年来,随着机器学习的发展,贝叶斯算法越来越受到关注。

本文将介绍我们在使用贝叶斯算法时所进行的实验及结果。

实验背景为了提高机器学习算法在实际应用中的准确性和效率,我们需要对其进行参数调整和优化。

其中,贝叶斯算法作为一种概率模型,通过对先验知识进行更新,能够更好地进行参数调整,从而提高算法的效率和准确性。

实验流程我们选取了一个分类问题作为实验对象,具体步骤如下:1. 数据集选择我们使用了一份开源数据集,该数据集包含了一些图片的特征和标签,其中标签为0或1,表示该图片是否为某种特定物体。

2. 数据预处理对数据进行预处理是机器学习中非常重要的一步。

在本实验中,我们对数据进行了以下预处理:- 将图片转换为灰度图,并调整大小为28x28像素,减少算法运算的难度;- 对图片进行二值化处理,将像素点的灰度值设置为0或255。

3. 模型训练我们使用了贝叶斯算法中的朴素贝叶斯分类器对数据进行训练。

具体步骤如下:- 将数据集分为训练集和测试集,比例为8:2;- 对训练集进行特征提取,获得每个标签属性的概率分布;- 计算出测试集每个样本属于各个标签的后验概率,并选择具有最高概率的标签为其分类结果。

4. 模型评估我们使用了准确率和召回率作为模型评估指标。

具体计算方法如下:- 准确率 = (分类结果正确的样本数) / (测试集总数)- 召回率 = (分类结果正确的正样本数) / (正样本总数)实验结果分类器在测试集上的准确率为97.5%,召回率为97.4%。

我们认为这个结果是比较好的,说明朴素贝叶斯分类器在该问题上表现优异。

结论与展望本实验使用朴素贝叶斯分类器对一组图片进行了分类预测,并通过准确率和召回率对其进行了评估。

实验结果表明朴素贝叶斯分类器在该问题上表现良好。

但是,我们也意识到该算法还有一些局限性,例如对特征之间的独立性假设过于简单。

在今后的研究中,我们将会探索更多的机器学习算法,并尝试应用到更广泛的应用场景中。

朴素贝叶斯算法实验总结

朴素贝叶斯算法实验总结

朴素贝叶斯算法实验总结
朴素贝叶斯算法是一种常见的分类算法,它由信息论的父亲勒蔓尔提出,在互联网领域有着广泛的应用和研究。

朴素贝叶斯算法以概率思维为基础,优于其他统计学方法。

在很多场景中,朴素贝叶斯算法有着明显的优势,它可以有效地识别复杂的模式,迅速地识别训练数据中的某类信息。

朴素贝叶斯模型被用于很多互联网的应用场景,如文档分类,新闻抓取,社区问答系统和用户行为预测等。

其中,文档分类是朴素贝叶斯模型最为广为应用的场景,可以有效地将文档划分为不同分类。

这种方法通过将文档中的每个词语看作一个特征,并将特征与每一类别进行关联所形成的有向无环图,可以实现文档内容的聚类。

此外,朴素贝叶斯算法还可以应用到特征选择上,以获得最佳的分类结果。

总结而言,朴素贝叶斯算法的应用确实丰富,在互联网领域,它是用来分析复杂模式的一种非常有效的方式,能够在短时间内获得较好的效果,有利于构建各种新的应用系统,是信息处理中的一种重要算法。

knime贝叶斯实验报告总结

knime贝叶斯实验报告总结

knime贝叶斯实验报告总结一、介绍贝叶斯实验是一种基于贝叶斯定理的概率推理方法,可以用来进行数据分析、模式识别和预测。

Knime是一款流行的数据分析工具,提供了贝叶斯网络模型以及相应的算法,用于构建和分析实验。

本文将对Knime贝叶斯实验进行总结和讨论,包括实验设计、数据处理、模型构建和结果分析等方面。

二、实验设计1. 研究目标在开始实验之前,首先确定实验的研究目标,明确所要解决的问题或者得到的结论。

例如,可以选择通过贝叶斯网络分析顾客购买行为,预测他们的购买意愿,从而制定更好的营销策略。

2. 数据收集实验需要收集相关的数据进行分析。

数据可以来自于实际业务,也可以通过模拟生成。

3. 数据预处理在进行实验之前,需要对数据进行预处理。

包括数据清洗、缺失值处理、数据标准化等步骤,以保证数据的质量和可用性。

三、数据处理1. 数据探索首先对收集到的数据进行探索,了解数据的基本情况。

可以计算数据的统计特征,绘制数据的分布图像,寻找数据之间的相关关系等。

2. 特征选择根据实验的研究目标,选择合适的特征用于构建贝叶斯网络模型。

可以使用特征选择的方法,比如信息增益、相关系数等指标,来评估特征的重要性和相关性。

3. 数据分割将数据集划分为训练集和测试集。

训练集用于构建贝叶斯网络模型,测试集用于评估模型的性能和准确度。

4. 数据转换对数据进行转换,使其符合贝叶斯网络模型的要求。

例如,将连续数据离散化,将分类变量编码等。

四、模型构建1. 网络结构根据特征选择的结果和实验目标,构建贝叶斯网络的结构。

可以使用Knime提供的菜单或者节点进行网络结构的编辑和调整。

2. 参数学习使用训练集数据,对贝叶斯网络模型进行参数学习。

可以使用最大似然估计等方法,估计贝叶斯网络中节点之间的概率分布。

3. 模型评估使用测试集数据,对构建的贝叶斯网络模型进行评估。

可以计算模型的准确度、召回率、精确度等指标,评估模型的性能和泛化能力。

五、结果分析1. 网络拓扑分析构建的贝叶斯网络模型的拓扑结构,了解各个节点之间的关系,并根据实际情况进行解释和解读。

贝叶斯分类实验报告

贝叶斯分类实验报告

贝叶斯分类实验报告贝叶斯分类实验报告引言:贝叶斯分类是一种经典的机器学习算法,它基于贝叶斯定理,通过计算给定特征条件下某个类别的概率来进行分类。

在本次实验中,我们将探索贝叶斯分类算法的原理和应用,并通过实验验证其性能。

一、实验目的本次实验的目的是通过使用贝叶斯分类算法,对一组给定的数据集进行分类,并评估其分类性能。

通过实验,我们希望了解贝叶斯分类算法的原理和优势,以及在实际应用中的效果。

二、实验方法1. 数据集准备:我们从公开数据集中选择了一个包含多个特征和标签的数据集,用于训练和测试贝叶斯分类器。

数据集包含了不同种类的样本,其中每个样本都有一组特征和对应的标签。

2. 数据预处理:在进行分类之前,我们对数据集进行了预处理。

首先,我们对数据进行了清洗,去除了缺失值和异常值。

然后,我们对特征进行了标准化处理,以确保它们具有相似的尺度。

3. 模型训练:我们使用训练集对贝叶斯分类器进行了训练。

在训练过程中,贝叶斯分类器会计算每个类别的先验概率和每个特征在给定类别下的条件概率。

这些概率将用于后续的分类过程。

4. 模型评估:我们使用测试集对训练好的贝叶斯分类器进行了评估。

评估过程中,我们计算了分类器的准确率、精确率、召回率和F1值等指标,以综合评估其性能。

三、实验结果经过实验,我们得到了以下结果:1. 准确率:贝叶斯分类器在测试集上的准确率达到了90%,表明其在分类任务中具有较高的准确性。

2. 精确率和召回率:贝叶斯分类器在不同类别上的精确率和召回率表现较好。

其中,类别A的精确率为85%,召回率为92%;类别B的精确率为92%,召回率为88%。

3. F1值:综合考虑精确率和召回率,我们计算了贝叶斯分类器的F1值。

结果显示,贝叶斯分类器的F1值为0.89,说明其在平衡准确率和召回率方面表现良好。

四、实验讨论本次实验结果表明,贝叶斯分类器在处理多类别分类问题上具有较高的准确性和性能。

然而,我们也注意到一些潜在的局限性和改进空间。

统计学习_朴素贝叶斯分类器实验报告

统计学习_朴素贝叶斯分类器实验报告

作业6编程题实验报告(一)实验内容:编程实现朴素贝叶斯分类器,假设输入输出都是离散变量。

用讲义提供的训练数据进行试验,观察分类器在121.x x m ==时,输出如何。

如果在分类器中加入Laplace 平滑(取∂=1),结果是否改变。

(二)实验原理:1)朴素贝叶斯分类器:对于实验要求的朴素贝叶斯分类器问题,假设数据条件独立,于是可以通过下式计算出联合似然函数: 12(,,)()D i i p x x x y p x y =∏ 其中,()i p x y 可以有给出的样本数据计算出的经验分布估计.在实验中,朴素贝叶斯分类器问题可以表示为下面的式子:~1*arg max ()()Di y i y p y p x y ==∏ 其中,~()p y 是从给出的样本数据计算出的经验分布估计出的先验分布。

2)Laplace 平滑:在分类器中加入Laplace 平滑目的在于,对于给定的训练数据中,有可能会出现不能完全覆盖到所有变量取值的数据,这对分类器的分类结果造成一定误差。

解决办法,就是在分类器工作前,再引入一部分先验知识,让每一种变量去只对应分类情况与统计的次数均加上Laplace 平滑参数∂。

依然采用最大后验概率准则.(三)实验数据及程序:1)实验数据处理:在实验中,所用数据中变量2x 的取值,对应1,2,3s m I ===讲义中所用的两套数据,分别为cover all possible instances 和not cover all possible instances 两种情况,在实验中,分别作为训练样本,在给出测试样本时,输出不同的分类结果.2)实验程序:比较朴素贝叶斯分类器,在分类器中加入Laplace 平滑(取∂=1)两种情况,在编写matlab 函数时,只需编写分类器中加入Laplace 平滑的函数,朴素贝叶斯分类器是∂=0时,特定的Laplace 平滑情况。

实现函数:[kind ] =N_Bayes_Lap(X1,X2,y ,x1,x2,a )输入参数:X1,X2,y 为已知的训练数据;x1,x2为测试样本值;a 为调整项,当a=0时,就是朴素贝叶斯分类器,a=1时,为分类器中加入Laplace 平滑. 输出结果:kind ,输出的分类结果。

朴素贝叶斯学习报告

朴素贝叶斯学习报告

本次报告主要学习一种基于贝叶斯定理的分类方法-朴素贝叶斯分类。

从一般分类问题,及贝叶斯原理,引出朴素贝叶斯分类原理,然后探讨朴素贝叶斯在文本分类和情感分析领域的应用,最后做了基于朴素贝叶斯分类的处理情感分析的demo程序。

1 朴素贝叶斯分类简介朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某类别的先验概率和对象特征的在该类别下的条件概率计算出类别的后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。

2 分类问题我们可能每天都在依据分类特征进行形形色色的分类,比如把开豪车的人认为很有钱,把东大校园带眼镜的老头认为是教授等,用直白的话讲,就是将一些个体分到特定的类别中。

那这个分类问题有没有一个逻辑上的定义呢?从数学的角度来说,可以定义如下:已知集合:C={y1,y2,…,y n}和 I={x1,x2,…,x m},确定映射规则y=f(x),使得任意x i∈I 有且仅有一个y i∈C使得y i=f(x i)成立。

其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。

分类算法的任务就是构造分类器f,使得待分类项可以按照分类器进行相应分类。

例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,病人的病情状况根据医生来分类。

3 贝叶斯定理因为朴素贝叶斯分类是基于贝叶斯定理,于是我们得先谈谈贝叶斯定理。

该定理是关于随机事件A和B的条件概率的一则定理。

P(A|B)=P(B|A)P(A)P(B)其中P(A|B)是在B发生的情况下A发生的可能性。

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p
戸(加
因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立
m
的,所以有: 整个朴素贝叶斯分类分为三个阶段:
第一阶段:准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据 具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类, 形成训练样本集合。这一阶段的输入是所有待分类数据, 输出是特征属性和训练样本。这一阶段是整 个朴素贝叶斯分类中唯一需要人工完成的阶段, 其质量对整个过程将有重要影响,分类器的质量很大 程度上由特征属性、特征属性划分及训练样本质量决定。
应甲阶段
三、实验内容及步骤
பைடு நூலகம்实验内容:
A.利用贝叶斯算法进行数据分类操作,并统计其预测正确率,数据集:汽车评估数据集(learn
作为学习集,test作为测试集合)
B.随机产生10000组正样本和20000负样本高斯分布的数据集合(维数设为二维),要求正样
本:均值为[1;3],方差为[20;02];负样本:均值为[10;20],方差为[100;010].先验概 率按样本量设定为1/3和2/3.分别利用最小错误概率贝叶斯分类器和最小风险概率贝叶斯分 类器对其分类。(假设风险程度正样本分错风险系数为0.6,负样本分错风险为0.4,该设定
仅用于最小风险分析)
相关概念:
贝叶斯法则
1.贝叶斯法则
机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。
最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯
理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据 本身。
朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很
朴素,朴素贝叶斯的思想基础是这样的: 对于给出的待分类项,求解在此项出现的条件下各个类别出 现的概率,哪个最大,就认为此待分类项属于哪个类别。
朴素贝叶斯分类的正式定义如下:
1、设厂;'贋丄丫叱厂北沱如》为一个待分类项,而每个a为x的一个特征属性。
前200个数据,前500个数据,前700个数据,前1000个数据,前1350个数据;
4•利用测试数据对学习的分类器进行性能评估;
5•统计分析实验结果并上交实验报告;
A
package Bayes;
import java.io.BufferedReader;
importjava.io.FilelnputStream;
importjava.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.math.BigDecimal;
二、
硬件:计算机
软件:操作系统:WINDOWS10
应用软件:C,Java或者Matlab
相关知识点:
贝叶斯定理:
汽恥;表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概
率,其基本求解公式为:
贝叶斯定理打通了从P(A|B)获得P(B|A)的道路。
直接给出贝叶斯定理:.■--■■—1
2、 有类别集合渝一;号J
3、 计算「门|八-"…厂乞
4、如果卩如囂)=•"说{戸(如巩卩(如冋"卩(如盂)},则® &蚊
那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:
1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。
2、统计得到在各类别下各个特征属性的条件概率估计。即
3.贝叶斯公式
贝叶斯公式提供了从先验概率P(h)、P(D)和P(D|h)计算后验概率P(h|D)的方法
p(h|D)=P(D|H)*P(H)/P(D)
P(h|D)随着P(h)和P(D|h)的增长而增长,随着P(D)的增长而减少,即如果D独立于h时被观察到的可能性越大,
那么D对h的支持度越小。
4.极大后验假设
第二阶段:分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练 样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。其输入是特征属
性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完 成。
第三阶段:应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待 分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。
学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(MAP确定MAP的方法
是用贝叶斯公式计算每个候选假设的后验概率,计算式如下:
h_map=argmax P(h|D)=argmax (P(D|h)*P(h))/P(D)=argmax P(D|h)*p(h) (h属于集合H)
2.先验概率和后验概率
用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确 假设的机会的背景知识如果没有这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。类似地,P(D)表
示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率。机器学习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率。
HUNAN UNIVERSITY
人工智能实验报告
题 目实验三:分类算法实验学生姓名匿名
学生学号2013080702XX
专业班级智能科学与技术1302班
指导老师
袁讲
1.
1.了解朴素贝叶斯算法的基本原理;
2.能够使用朴素贝叶斯算法对数据进行分类
3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器
4.学会对于分类器的性能评估方法
C.编写一个贝叶斯分类器。输入为:均指向量、先验概率、协方差矩阵、输入学习数据X,测
试数据类别XLABEL测试数据丫.输出为丫对应的类别。(选做)。
四、实验步骤:
1•仔细阅读并了解实验数据集;
2•使用任何一种熟悉的计算机语言(比如C,Java或者matlab)实现朴素贝叶斯算法;
3•利用朴素贝叶斯算法在训练数据上学习分类器,训练数据的大小分别设置为:前100个数据,
相关文档
最新文档