第5章习题解答
第5章 相平衡习题解答
⑵ 图中,组成为 xB=0.800 的液相的泡点: t 110.2 C ; ⑶ 图中,组成为 yB =0.800 的气相的露点: t 112.8 C ; ⑷ 求 105℃时气-液平衡两相的组成: xB 0.417 , yB 0.544 ;
xB
1
xA
0.541
p pA pB 54.22 0.459 136.12 0.541 98.53kPa
yA
pA pA pB
54.22 0.541
0.2526
54.22 0.459 136.12 0.541
yB
pB pA pB
136.12 0.459
0.7474
54.22 0.459 136.12 0.541
答: ⑴ p=98.54kPa,yB=0.7476;⑵ p=80.40kPa,xB=0.3197; ⑶ yB=0.6825,xB=0.4613,nB(l)=1.709mol,nB(g)=3.022mol 5-7 在 101.325kPa 下,水(A) -醋酸(B)系统的气-液平衡数据如下:
t/℃
100
100 92 0.45
2.415
mB (2.415 100 / 92) 18 23.91kg
第五章 相平衡习题解答
5-1 指出下列平衡系统中的物种数 S、组分数 C、相数 P 和自由度数 f。 ⑴ C2H5OH 与水的溶液; ⑵ I2(s)与 I2(g)成平衡; ⑶ NH4HS(s)与任意量的 H2S(g)及 NH3(g)达到平衡; ⑷ NH4HS(s)放入抽空的容器中分解达平衡; ⑸ CaCO3(s)与其分解产物 CaO(s)和 CO2(g)成平衡; ⑹ CHCl3 溶于水中、水溶于 CHCl3 中的部分互溶系统及其蒸气达到相平衡。 解:(1)物种数 S=2,组分数 C=2、相数 P=1,自由度数 f=C-P+2=3;
第5章感应电机习题与解答
C ;D 。
答A
6.★三相异步电动机气隙增大,其他条件不变,则空载电流( )。
A 增大 ; B 减小 ;
C 不变 ; D 不能确定。
答A
7.三相感应电动机等效电路中的附加电阻 上所消耗的电功率应等于():
A输出功率 ;B输入功率 ;
C电磁功率 ;D总机械功率 。
答D
8.与普通三相感应电动机相比,深槽、双笼型三相感应电动机正常工作时,性能差一些,主要是()。
答A
12.★设计在 电源上运行的三相感应电动机现改为在电压相同频率为 的电网上,其电动机的()。
A 减小, 减小, 增大;B 减小, 增大, 减小;
C 减小, 减小, 减小;D 增大, 增大, 增大。
答C
13.一台绕线式感应电动机,在恒定负载下,以转差率 运行,当转子边串入电阻 ,测得转差率将为()( 已折算到定子边)。
。
答1,
4.★感应电动机起动时,转差率 ,此时转子电流 的值, ,主磁通比,正常运行时要 ,因此起动转矩 。
答 1,很大,很小,小一些,不大
5.★一台三相八极感应电动机的电网频率 ,空载运行时转速为735转/分,此时转差率为,转子电势的频率为。当转差率为0.04时,转子的转速为,转子的电势频率为。
答0.02, , ,
6.三相感应电动机空载时运行时,电机内损耗包括,,,和,电动机空载输入功率 与这些损耗相平衡。
答定子铜耗,定子铁耗,机械损耗,附加损耗
7.三相感应电机转速为 ,定子旋转磁场的转速为 ,当 时为运行状态;当 时为运行状态;当 与 反向时为运行状态。
答电动机,发电机,电磁制动
8.增加绕线式异步电动机起动转矩方法有 ,。
A4极, ; B6极, ;
第5章思考题和习题解答
第五章 电气设备的选择5-1 电气设备选择的一般原则是什么?答:电气设备的选择应遵循以下3项原则:(1) 按工作环境及正常工作条件选择电气设备a 根据电气装置所处的位置,使用环境和工作条件,选择电气设备型号;b 按工作电压选择电气设备的额定电压;c 按最大负荷电流选择电气设备和额定电流。
(2) 按短路条件校验电气设备的动稳定和热稳定 (3) 开关电器断流能力校验5-2 高压断路器如何选择? 答:(1)根据使用环境和安装条件来选择设备的型号。
(2)在正常条件下,按电气设备的额定电压应不低于其所在线路的额定电压选择额定电压,电气设备的额定电流应不小于实际通过它的最大负荷电流选择额定电流。
(3)动稳定校验(3)max shi i ≥ 式中,(3)sh i 为冲击电流有效值,max i 为电气设备的额定峰值电流。
(4)热稳定校验2(3)2th th ima I t I t ∞≥式中,th I 为电气设备在th t 内允许通过的短时耐热电流有效值;th t 为电气设备的短时耐热时间。
(5)开关电器流能力校验对具有分断能力的高压开关设备需校验其分断能力。
设备的额定短路分断电流不小于安装地点最大三相短路电流,即(3).max cs K I I ≥5-3跌落式熔断器如何校验其断流能力?答:跌落式熔断器需校验分断能力上下限值,应使被保护线路的三相短路的冲击电流小于其上限值,而两相短路电流大于其下限值。
5-4电压互感器为什么不校验动稳定,而电流互感器却要校验?答:电压互感器的一、二次侧均有熔断器保护,所以不需要校验短路动稳定和热稳定。
而电流互感器没有。
5-5 电流互感器按哪些条件选择?变比又如何选择?二次绕组的负荷怎样计算? 答:(1)电流互感器按型号、额定电压、变比、准确度选择。
( 2)电流互感器一次侧额定电流有20,30,40,50,75,100,150,200,400,600,800,1000,1200,1500,2000(A )等多种规格,二次侧额定电流均为5A ,一般情况下,计量用的电流互感器变比的选择应使其一次额定电流不小于线路中的计算电流。
第5章 相平衡习题解答
5-5 根据下面给出的 I2 的数据,绘制相图。(已知: s l )
三相点
临界点
熔点
t/℃
113
512
114
p/kPa
12.159
11754
101.325
解:碘的相图如下:
答:t=84℃
沸点 184 101.325
解:(1)由表中的数据,绘制水(A) -醋酸(B)系统的温度-组成图如下:
⑵ 图中,组成为 xB=0.800 的液相的泡点: t 110.2 C ; ⑶ 图中,组成为 yB =0.800 的气相的露点: t 112.8 C ; ⑷ 求 105℃时气-液平衡两相的组成: xB 0.417 , yB 0.544 ;
答:⑴ S=2,C=2,P=1,f=2; ⑵ S=1,C=1,P=2,f=1; ⑶ S=3,C=3,P=2,f=2; ⑷ S=3,C=1,P=2,f=1; ⑸ S=3,C=2,P=2,f=2; ⑹ S=2,C=2,P=3,f=1
5-2 试求下列平衡系统的组分数 C 和自由度数 f 各是多少? ⑴ 过量的 MgCO3(s)在密闭抽空容器中,温度一定时,分解为 MgO(s)和 CO2(g); ⑵ H2O(g)分解为 H2(g) 和 O2(g); ⑶ 将 SO3(g)加热到部分分解; ⑷ 将 SO3(g)和 O2(g)的混合气体加热到部分 SO3(g)分解。 解:(1)物种数 S=3,组分数 C=2、相数 P=3,自由度数 f*=C-P+1=0;
所以,压力降到 98.53kPa 时,开始产生气相,此气相的组成 yB=0.7474;
(2)当气相组成: yB 0.541时,
yB
第5章振动和波动习题解答
第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。
频率、周期和初相。
A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。
设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。
第5章 刚体的定轴转动 习题解答
对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
概率论习题解答(第5章)
概率论习题解答(第5章)第5章习题答案三、解答题1. 设随机变量X 1,X 2,…,X n 独⽴同分布,且X ~P (λ),∑==ni i X n X 11,试利⽤契⽐谢夫不等式估计}2|{|λλ<-X P 的下界。
解:因为X ~P (λ),∑∑===?===n i i n i i n nX E n X n E X E 111)(1)1()(λλλλn n nX D n X n D X D n i i n i i 11)(1)1()(2121====∑∑==由契⽐谢夫不等式可得nn X P 4114/1}2|{|-=-≥<-λλλλ 2. 设E (X ) = – 1,E (Y ) = 1,D (X ) = 1,D (Y ) = 9,ρ XY = – 0.5,试根据契⽐谢夫不等式估计P {|X + Y | ≥ 3}的上界。
解:由题知()()()Y X Y X E E E +=+=()11+-=0Cov ()Y X ,=()()Y D X D xy ??ρ=()915.0??-= -1.5()()()()()75.1291,2=-?++=++=+Y X Cov Y D X D Y X D所以{}{}97303≤≥-+P =≥+)(Y X Y X P 3. 据以往经验,某种电器元件的寿命服从均值为100⼩时的指数分布.现随机地取16只,设它们的寿命是相互独⽴的.求这16只元件的寿命的总和⼤于1920⼩时的概率.解:设i 个元件寿命为X i ⼩时,i = 1 ,2 , ...... , 16 ,则X 1 ,X 2 ,... ,X 16独⽴同分布,且 E (X i ) =100,D (X i ) =10000,i = 1 ,2 , ...... , 16 ,4161161106.1)(,1600)(?==∑∑==i i i i D E X X ,由独⽴同分布的中⼼极限定理可知:∑=16i iX近似服从N ( 1600 , 1.6?10000),所以>∑=1920161i i X P =≤-∑=19201161i i X P ???-≤?--=∑=16000016001920100006.116001161i i X P()8.01Φ-==1- 0.7881= 0.21194. 某商店负责供应某地区1000⼈商品,某种商品在⼀段时间内每⼈需要⽤⼀件的概率为0.6,假定在这⼀时间段各⼈购买与否彼此⽆关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某⼀时间段内每⼈最多可以买⼀件).解:设商店应预备n 件这种商品,这⼀时间段内同时间购买此商品的⼈数为X ,则X ~ B (1000,0.6),则E (X ) = 600,D (X ) = 240,根据题意应确定最⼩的n ,使P {X ≤n }= 99.7%成⽴. 则P {X ≤n })75.2(997.0)240600(240600240600ΦΦP ==-≈-≤-=n n X 所以6.64260024075.2=+?=n ,取n =643。
第5章 习题及答案
第五章 汇编语言程序设计1、画图说明下列语句所分配的存储器空间及初始化的数据值。
难度:2(1) BYTE_VAR DB ‘BYTE’,12,-12H ,3 DUP(0,2 DUP(1,2),7) (2) WORD_VAR DW 3 DUP(0,1,2),7,-5,’BY’,’TE’,256H 答:(1) (2)07H BYTE_V AR 42H WORD_V AR 00H 00H 59H 00H FBH 54H 01H FFH 45H 00H 59H 0CH 02H 42H EEH 00H 45H 00H 00H 54H 01H 00H 56H 02H 01H 02H 01H 00H 02H 02H 07H 00H 00H 00H 01H 00H 02H 01H 01H 00H 02H 02H 07H 00H 00H 00H 01H 00H 02H 01H 01H 00H 02H 02H07H00H2、假设程序中的数据定义如下: PARTNO DW ?PNAME DB 16 DUP(?) COUNT DD ? PLENTH EQU $- PARTNO 问:PLENTH 的值为多少?他表示什么意义? 答:PLENTH 的值为22,它表示当前已分配单元空间。
《微型计算机原理》第5章习题与解答3、有符号定义语句如下:难度:2BUF DB 1,2,3,’123’EBUF DB 0L EQU EBUF-BUF问:L的值是多少?答:L的值为6;4、假设成序中的数据定义如下:难度:2LNAME DB 30 DUP(?)ADDRESS DB 30 DUP(?)CITY DB 15 DUP(?)CODE_LIST DB 1,7,8,3,2(1)用一条MOV指令将LNAME的偏移地址存入BX。
(2)用一条指令将CODE_LIST的头两个字节的内容放入SI。
(3)写一条伪指令定义符使CODE_LENGTH的值等于 CODE_LIST域的实际长度。
第5章 反馈放大电路 习题解答
第五章习题参考答案5-1 试判断图5-22所示集成运放电路的反馈类型。
a) b)图5-22题5-1的图答 (a )F R 、1R :引入串联电压负反馈。
(b )F R 、1R :引入了正反馈。
5-2 电路如图5-23所示,解答下列为题: 1)1F R 引入了何种反馈,其作用如何? 2)2F R 引入了何种反馈,其作用如何?图5-23 题5-2图解 1)1F R 、3E R 引入的是直流电流并联负反馈。
其作用是稳定静态电流2E I 。
其稳定过程如下:↓↓→↓→↑→↑→↑→↑→2211122E B C C B E E I I U I I U I2)2F R 引入的是交、直流电压串联负反馈。
其作用是交流电压串联负反馈可改善放大器的性能,如提高电压放大倍数的稳定性、减小非线性失真、抑制干扰和噪声、展宽放大电路的通频带等。
由于是电压负反馈还可使反馈环路内的输出电阻降低)1(AF +倍。
由于是串联反馈可使反馈环路内的输入电阻增加)1(AF +倍。
2F R 引入的直流电压串联负反馈的作用是稳定静态电压2C U ,其稳定过程如下:↓↑→↑→↓→↓→↑→↑→2211112C C C C B E C U I U I I u U5-3 在图5-24所示的两级放大电路中,(1)那些是直流负反馈;(2)哪些是交流负反馈,并说明其类型;(3)如果F R 不接在T 2的集电极,而是接在C 2与L R 之间,两者有何不同?(4)如果F R 的另一端不是接在T 1的发射极,而是接在它的基极,有何不同,是否会变为正反馈?5-24 题5-3图解 1)1E R 、2E R 直流串联电流负反馈,F R 、1E R 直流电压串联负反馈。
2)F R 、1E R 交流电压串联负反馈。
3)如果F R 不接在T 2的集电极,而是接在C 2与L R 之间,则F R 、1E R 只有交流电压串联负反馈,没有直流反馈。
4)如果F R 的另一端不是接在T 1的发射极,而是接在它的基极,则变为正反馈。
第5章 习题解答
− e− j3ω )
(d) f4 (t) = − f1(t −1) − f1(t − 3) = − f2 (t)
所以
F4 ( jω)
=
−Sa 2 (ω )(e− jω 2
+ e − j3ω )
5-3 试写出下列信号的频谱函数, ω 0 为常数。 (1) f (t) = sin ω0t + cosω0 (t − t0 ) (2) f (t) = e−2t cosω0t ⋅ u(t)
∫0
(6) F{e−αtu(−t)} = e−αte− jωtdt = −
1
, α <0
−∞
α + jω
(7) f (−5t) ↔ 1 F (− j ω ) , f (5 − 5t) = f (−5(t −1)) ↔ 1 F (− j ω )e− jω
5
5
5
5
(8)
F{(t − 2) f (t)} =
(b) fb (t) = 2u(−t) + 2 p1 (t − 0.5) + p1 (t −1.5)
所以
Fb ( jω) = 2(πδ (ω) −
1 ) + 2Sa(ω / 2)e− j0.5ω + Sa(ω / 2)e− j1.5ω jω
(c) f (t) = 2 p1 (t − 0.5) + p1 (t −1.5) 所以 F ( jω) = 2Sa(ω / 2)e− j0.5ω + Sa(ω / 2)e− j1.5ω
所以
F3 (
jω)
=
F(
jω)e− jω
+
F1(
jω)e jω
=
F(
jω)e− jω
第5章 负反馈放大电路习题解答
第5章 负反馈放大电路习题解答1. 什么是反馈?为什么要引入反馈? 【解题过程】在电子电路中,把放大电路的输出量(电压或电流)的一部分或者全部通过一定的网络返送回输入回路,以影响放大电路性能的措施,称为反馈。
负反馈可以大大提高增益乃至整个系统的稳定性、负反馈可以扩展通频带、负反馈可以改变输入输出阻抗,使系统更有利于推动后面的负载,所以要引入反馈。
2. 什么是正反馈和负反馈?如何判断电路中引入的是正反馈还是负反馈? 【解题过程】当电路中引入反馈后,反馈信号能削弱输入信号的作用,称为负反馈。
相反,反馈信号加强了输入信号的作用,称为正反馈。
为了判断引入的是正反馈还是负反馈,通常采用的方法是“瞬时极性法”。
具体做法如下:(1)假定放大电路工作在中频信号频率范围,则电路中电抗元件的影响可以忽略; (2)假定电路输入信号在某个时刻的对地极性,在电路中用符号“+”和“-”表示瞬时极性的正和负,并以此为依据,逐级推出电路中各相关点电流的流向和电位极性,从而得出输出信号的极性;(3)根据输出信号的极性判断出反馈信号的极性;(4)根据反馈信号和输入信号的极性及连接方式,判断净输入信号,若反馈信号使基本放大电路的净输入信号增强,则为正反馈;若反馈信号使基本放大电路的净输入信号削弱,则为负反馈。
3. 负反馈放大电路的一般表达式是什么? 【解题过程】负反馈放大电路的一般表达式为F 1AA AF=+4. 负反馈放大电路有哪四种组态?如何判断?【解题过程】负反馈放大电路的四种组态为电压并联负反馈、电压串联负反馈,电流并联负反馈,电流串联负反馈,具体判断方法在正文6.5中有详细描述。
5. 负反馈对电路性能产生什么影响?【解题过程】负反馈对电路性能产生如下影响:提高闭环增益的稳定性、扩展闭环增益的通频带、减小非线性失真、抑制放大电路内部的噪声。
6. 电路如题图6.6 (a)、(b)所示。
(1)判断图示电路的反馈极性及类型;(2)求出反馈电路的反馈系数。
第五章习题解答
习 题 五1. 设V 是数域F 上向量空间,假如V 至少含有一个非零向量α,问V 中的向量是有限多还是无限多?有没有n (n ≥ 2)个向量构成的向量空间? 解 无限多;不存在n (n ≥ 2)个向量构成的向量空间(因为如果F 上一个向量空间V 含有至少两个向量, 那么V 至少含有一个非零向量α , 因此V 中含有α , 2α , 3α , 4α , …,这无穷多个向量互不相等,因此V 中必然含有无穷多个向量).2. 设V 是数域F 上的向量空间,V 中的元素称为向量,这里的向量和平面解析几何中的向量α,空间解析几何中的向量β有什么区别?解 这里的向量比平面中的向量意义广泛得多,它可以是多项式,矩阵等,不单纯指平面中的向量.3. 检验以下集合对所指定的运算是否构成数域F 上的向量空间.(1)集合:全体n 阶实对称矩阵;F :实数域;运算:矩阵的加法和数量乘法;(2)集合:实数域F 上全体二维行向量;运算: (a 1, b 1)+ (a 2, b 2)=(a 1+a 2, 0) k • (a 1, b 1)=(ka 1, 0)(3)集合:实数域上全体二维行向量;运算: (a 1, b 1)+ (a 2, b 2)=(a 1+a 2, b 1+b 2)k •( a 1, b 1)=(0, 0)解 (1) 是; (2) 不是(因为零向量不唯一);(3) 不是(不满足向量空间定义中的(8)).4. 在向量空间中,证明,(1) a (-α)=-a α=(-a ) α ,(2) (a -b )α=a α-b α ,a ,b 是数,α是向量.证明 (1) a a a a =+-=+-))(()(αααα 0= 0ααa a -=-∴)(又 ==+-=+-a a a a a 0))(()(ααα 0ααa a -=-∴)(综上, .)()(αααa a a -=-=-(2) ααααααb a b a b a b a -=-+=-+=-)())(()(.5. 如果当k 1=k 2=…=k r =0时,k 1α1+k 2α2+…+k r αr =0, 那么α1, α2, …, αr 线性无关. 这种说法对吗?为什么?解 这种说法不对. 例如设α1=(2,0, -1), α2=(-1,2,3), α3=(0,4,5), 则0α1+0α2+0α3=0. 但α1, α2, α3线性相关, 因为α1+2α2-α3=0.6. 如果α1, α2, …, αr 线性无关,而αr +1不能由α1, α2, …, αr 线性表示,那么α1, α2,…, αr , αr +1线性无关. 这个命题成立吗?为什么? 解 成立. 反设α1, α2,…, αr , αr +1线性相关,由条件α1, α2, …, αr 线性无关知αr +1一定能由α1, α2, …, αr 线性表示,矛盾.7. 如果α1, α2, …, αr 线性无关,那么其中每一个向量都不是其余向量的线性组合. 这种说法对吗?为什么?解 对. 反设 αi = k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k r αr ,则 k 1α1+k 2α2+…k i -1αi-1+(-1) αi +k i+1αi +1 +…+k r αr =0. 由于-1≠0, 故α1, α2, …, αr 线性相关.8. 如果向量α1, α2, …, αr 线性相关,那么其中每一个向量都可由其余向量线性表示. 这种说法对吗?为什么?解 不对. 设α1=(1,0) , α2=(2,0) , α3=(0,1) , 则α1, α2, α3线性相关, 但α3不能由α1, α2线性表示.9. 设α1= (1, 0, 0), α2= (1, 2, 0), α3=(1, 2, 3)是F 3中的向量,写出α1, α2, α3的一切线性组合. 并证明F 3中的每个向量都可由{α1, α2, α3}线性表示.解 k 1α1+k 2α2+k 3α3 k 1, k 2 , k 3∈F .设k 1α1+k 2α2+k 3α3=0,则有⎪⎩⎪⎨⎧==+=++030220332321k k k k k k , 解得 k 1= k 2 =k 3=0.故α1, α2, α3线性无关.对任意(a,b,c)∈F 3, (a,b,c)=3213)32())322((αααc c b c ba +-+--,所以F 3中的每个向量都可由{α1, α2, α3}线性表示.10. 下列向量组是否线性相关(1) α1= (1, 0, 0), α2= (1, 1, 0), α3=(1, 1, 1);(2) α1=(3, 1, 4), α2=(2, 5, -1), α3=(4, -3, 7).解 (1) 线性无关; (2) 线性无关.11. 证明,设向量α1, α2, α3线性相关,向量α2, α3, α4线性无关,问:(1) α1能否由α2, α3线性表示?说明理由;(2) α4能否由α1, α2, α3线性表示?说明理由.解 (1)因为α2, α3线性无关而α1, α2, α3线性相关,所以α1能由α2, α3线性表示;(2)反设α4能由α1, α2, α3线性表示,但α1能由α2, α3线性表示,故α4能由α2, α3线性表示,这与α2, α3, α4线性无关矛盾,所以α4不能由α1, α2, α3线性表示.12. 设α1= (0, 1, 2), α2= (3, -1, 0), α3=(2, 1, 0),β1= (1, 0, 0), β2= (1, 2, 0), β3=(1, 2, 3)是F 3中的向量. 证明,向量组{α1, α2, α3}与{β1, β2, β3}等价.证明 (β1, β2, β3)=(321,,εεε)A(α1, α2, α3)= (321,,εεε)B其中A=⎪⎪⎪⎭⎫ ⎝⎛300220111, B=⎪⎪⎪⎭⎫ ⎝⎛-002111230.易验证A , B 均可逆, 这样 (β1, β2, β3) = (α1, α2, α3 )(B -1A )(α1, α2, α3) = (β1, β2, β3)(A -1B ) ,故向量组{α1, α2, α3}与{β1, β2, β3}等价.13. 设数域F 上的向量空间V 的向量组{α1, α2, …, αs }线性相关,并且在这个向量组中任意去掉一个向量后就线性无关. 证明,如果∑=s i i ik 1α=0 (k i ∈F ),那么或者k 1=k 2=…=k s =0, 或k 1,k 2,…,k s 全不为零.证明 由条件∑=s i i ik 1α=0 (k i ∈F )知k i αi = - (k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs ) (*)(1) 当k i =0时,(*)式左边等于零,故k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs =0. 由于这s -1个向量线性无关,所以k 1=k 2=…=k s =0.(2) 当k i ≠0时, αi = -ik 1(k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs ),下证对于任意i j s j ≠∈},,2,1{ 时k j ≠0. 反设k j =0, 则αi 可由s -2个向量线性表示.这与任意s -1个向量线性无关矛盾,所以此时k 1,k 2,…,k s 全不为零.14. 设α1=(1, 1), α2=(2, 2), α3=(0, 1) , α4=(1, 0)都是F 2中的向量. 写出{α1, α2, α3, α4}的所有极大无关组.解 α1, α3 ; α1, α4 ; α2 ,α3 ; α2 ,α4 ; α3 ,α4 .15. 设A 1=⎪⎪⎭⎫ ⎝⎛-2001,A 2=⎪⎪⎭⎫ ⎝⎛-0021, A 3=⎪⎪⎭⎫ ⎝⎛0120,A 4=⎪⎪⎭⎫ ⎝⎛-2142∈M 2×2(F ). 求向量空间M 2×2(F )中向量组{A 1, A 2,A 3, A 4}的秩及其极大无关组. 解 秩{A 1, A 2,A 3, A 4}=3, {A 1, A 2,A 3}是向量组{A 1, A 2, A 3, A 4}的一个极大无关组.16.设由F 4中向量组{α1=(3,1,2,5),α2=(1,1,1,2),α3=(2,0,1,3),α4 =(1,-1,0,1),α5 =(4,2,3,7)}. 求此向量组的一个极大无关组.解 (α1,α2,α3,α4,α5)= (4321,,,εεεε)A , 其中A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-71325301122101141213, 则秩A =2. 又(α1,α2 )= (4321,,,εεεε)B , 其中B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛25121113. 秩B =2, 故{α1,α2}线性无关, 它是向量组{α1,α2,α3,α4,α5}的一个极大无关组.17. 证明,如果向量空间V 的每一个向量都可以唯一表成V 中向量α1, α2, …, αn 的线性组合,那么dim V =n .证明 由条件零向量可唯一的表示成α1, α2, …, αn 的线性组合, 这说明α1, α2, …, αn 线性无关, 故可作为V 的基, 从而dim V =n .18. 设β1, β2,…,βn 是F 上n (>0)维向量空间V 的向量,并且V 中每个向量都可以由β1, β2,…,βn 线性表示. 证明, {β1, β2,…,βn }是V 的基.证明 由条件标准正交基{ e 1, e 2, …,e n }可由β1, β2,…,βn 线性表示, 反过来β1, β2,…,βn 又可由{ e 1, e 2, …,e n }线性表示,所以{ e 1, e 2, …,e n }和{β1, β2,…,βn }等价. 由{ e 1, e 2, …,e n }线性无关知{β1, β2,…,βn }线性无关,又因V 中每个向量都可以由β1, β2,…,βn 线性表示, 由基的定义知{β1, β2,…,βn }是V 的基.19. 复数集C 看作实数域R 上的向量空间(运算: 复数的加法,实数与复数的乘法)时,求C 的一个基和维数.解 基为{1, i }; dim C =2.20. 设V 是实数域R 上全体n 阶对角形矩阵构成的向量空间(运算是矩阵的加法和数与矩阵的乘法). 求V 的一个基和维数.解 基为E ii (i =1,2, …,n ); dim V =n .21. 求§5.1中例9给出的向量空间的维数和一个基.解 任意一个不等于1的正实数都可作为V 的基; dim V =1.22. 在R 3中,求向量α=(1, 2, 3)在基ε1=(1, 0, 0),ε2=(1, 1, 0),ε3=(1, 1, 1)下的坐标.解 (-1,-1,3)T .23. 求R 3中由基{α1, α2, αs }到基{β1, β2, β3 }的过渡矩阵,其中α1=(1, 0, -1), α2=(-1, 1, 0), α3=(1, 2, 3),β1=(0, 1, 1), β2=(1, 0, 1), β3=(1, 1, 1).解 所求过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛-32204230061. 24. 设{α1, α2,…, αn }是向量空间V 的一个基,求由这个基到基{α3, α4, …, αn ,α1, α2}的过渡矩阵.解 所求过渡矩阵为⎪⎪⎭⎫ ⎝⎛-0022n I I . 25. 已知F 3中向量α关于标准基ε1=(1, 0, 0),ε2=(0, 1, 0) ,ε3=(0, 0, 1)的坐标是(1, 2, 3),求α关于基β1=(1, 0, 1), β2=(0, 1, 1), β3=(1, 1, 3)的坐标.解 (1,2,0)T .26. 判断R n 的下列子集哪些是子空间(其中R 是实数域,Z 是整数集).(1) {(a 1, 0, …, 0, a n )| a 1, a n ∈R };(2) {(a 1, a 2, …, a n )|∑==ni i a 10,a 1, a 2, …, a n ∈R };(3) {(a 1, a 2, …, a n )|a i ∈Z , i =1, 2, …, n };解 (1) 是; (2) 是; (3) 不是(数乘不封闭).27. 设V 是一个向量空间,且V ≠{0}. 证明,V 不能表成它的两个真子空间的并集.证明 设W 1与W 2是V 的两个真子空间(1) 若21W W ⊆,则W 1⋃W 2= W 2≠V ;(2) 若21W W ⊇,则W 1⋃W 2= W 1≠V ;(3) 若21W W ⊄且12W W ⊄, 取1W ∈α但2W ∉α,2W ∈β但1W ∉β, 那么1W ∉+βα,否则将有1)(W ∈=-+βαβα,这与1W ∉β矛盾, 同理2W ∉+βα, 所以V 中有向量21W W ∉+βα,即V ≠21W W .28. 设V 是n 维向量空间,证明V 可以表示成n 个一维子空间的直和.证明 设{α1, α2,…, αn }是向量空间V 的一个基, (α1), (α2) ,…, (αn )分别是由α1, α2,…, αn 生成的向量空间, 要证(α1+α2+…+αn )= (α1)⊕ (α2)⊕…⊕ (αn )(1) 因为{α1, α2,…, αn }是V 的一个基, 所以V 中任一向量α都可由α1, α2,…, αn 线性表示, 此即(α1+α2+…+αn )= (α1)+ (α2)+…+ (αn ).(2) 对任意i ≠j ∈{1,2,…, n },下证 (αi )∩ (αj )={0}. 反设存在0 ≠∈x (αi )∩ (αj ),由∈x (αi )知存在k F ∈使得x =k αi ; 由 x ∈ (αj )知存在F l ∈使得x =l αj , 从而αi =kl αj , 即α1与α2线性相关, 矛盾, 所以 (αi )∩ (αj )={0}. 综上, (α1+α2+…+αn )= (α1)⊕ (α2)⊕…⊕ (αn ).29. 在R 3中给定两个向量组α1=(2, -1, 1, -1), α2=(1, 0, -1, 1),β1=(-1, 2, -1, 0), β2=(2, 1, -1, 1).求 (α1, α2)+ (β1, β2) 的维数和一个基.解 取R 4的标准正交基{4321,,,εεεε},于是(α1, α2, β1, β2)= (4321,,,εεεε)A ,其中 A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1011111112012112 , 秩A = 4. 故α1, α2, β1, β2线性无关, 又因为 (α1, α2)∩ (β1, β2)={0},所以dim (α1, α2) + dim (β1, β2)= 4,{ α1, α2, β1, β2}是它的基.30. 设W 1, W 2都是向量空间V 的子空间,证明下列条件是等价的:(1) W 1⊆W 2;(2) W 1∩W 2=W 1;(3) W 1+W 2=W 2.证明 (i) (1)⇒(2) 因为W 1⊆W 2 , 所以W 1∩W 2=W 1. (ii) (2)⇒(3) W 1+W 2 ={α1+α2 | α1∈W 1, α2∈W 2} 由(2)知对任意α∈W 1, 都有α∈W 2 , 所以W 1+W 2 ={α1+α2 | α1, α2∈W 2}=W 2 .(iii) (3)⇒(1) W 1+W 2 ={α1,+α2 | α1∈W 1, α2∈W 2}=W 2 , 说明对任意α∈W 1, 都有α∈W 2 , 此即W 1⊆W 2 .31. 设V 是实数域R 上n 阶对称矩阵所成的α2向量空间;W 是数域R 上n 阶上三角矩阵所成的向量空间,给出V 到W 的一个同构映射.解 对∈∀A V (A =(a ij )且a ij = a ji )和B ∈W (B =(a ij ),当i>j 时, a ij =0) 定义f : V → WA B 易验证f 是V 到W 的一个同构映射.32. 设V 与W 都是数域F 上的向量空间,f 是V 到W 的一个同构映射,证明{α1, α2, …, αn }是V 的基当且仅当{f (α1), f (α2), …, f (αn )}是W 的基.证明 设{α1, α2, …, αn }是V 的基.(1) 由α1, α2, …, αn 线性无关知f (α1), f (α2), …, f (αn ) 线性无关.(2) 任取∈ηW , 由f 是同构映射知存在∈ξV 使得f (ξ)=η.但ξ=∑=n i i ia 1α, a i ∈F , f (ξ)=f (∑=n i i i a 1α)=)(1∑=n i i i f a α=η. 由η的任意性知{f (α1), f (α2), …, f (αn )}是W 的基.反过来, {f (α1), f (α2), …, f (αn )}是W 的基(1) 由f (α1), f (α2), …, f (αn )线性无关知α1, α2, …, αn 线性无关.(2) 任取∈ξV , 由f 是同构映射知存在∈ηW 使得f (ξ)=η.但η=∑=n i i i f k 1)(α= f (∑=n i i i k 1α), k i ∈F , 从而ξ=∑=ni i i k 1α, k i ∈F .由ξ的任意性知{ α1, α2, …, αn }是V 的基.补 充 题1. 设W 1, W 2是数域F 上向量空间V 的两个子空间. α,β是V 的两个向量,其中α∈W 2,但α∉ W 1,β∉W2. 证明:(1)对于任意k ∈F ,αβk +∉W 2;(2)至多有一个k ∈F ,使得αβk +∈W 1.证明 (1)反设存在k 1∈F 使得αβ1k +∈W 2 , 又α∈W 2 , 因此β=β+ k 1α-k 1α∈W 2 , 这与β∉W 2矛盾. 所以对于∀k ∈F ,αβk +∉W 2 .(2)若有k 1, k 2∈F , k 1≠k 2使得αβ1k +, αβ2k +∈W 1, 那么。
工程热力学第五章 习题解答
第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。
大学物理习题解答5第五章稳恒电流 (1)
第五章 稳恒电流本章提要1.电流强度· 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。
如果在t ∆时间内通过导体某一截面的电量为q ∆,则通过该截面的电流I 为qI t∆=∆ · 如果电流随时间变化,电流I 的定义式为tqt q I t d d lim 0=∆∆=→∆2.电流密度· 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。
根据电流密度的定义,导体中某一点面元d S 的电流密度为d d Ij S ⊥=· 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即d j S S=⋅⎰⎰I3.欧姆定律· 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式RU U I 21-=其中R 为导体的电阻,21U U -为导体两端的电势差· 欧姆定律的微分形式为E j σ=其中ρσ1=为电导率4.电阻· 当导体中存在恒定电流时,导体对电流有一定的电阻。
导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。
当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为Sl R ρ= 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率5.电动势· 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。
qA 非=ε· 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为l E lk ⎰⋅=d ε6.电源电动势和路端电压· 若电源正负极板的电势分别为U +和U -,电源内阻为r ,电路中电流为I ,则电源电动势为()U U Ir +-ε=--· 路端电压为Ir U U -=--+ε7.接触电动势· 因电子的扩散而在导体接触面上形成的等效电动势。
《电磁场与电磁波》课后习题解答(第五章)
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
第5章-习题解答
第5章-习题解答第5章 习题与答案5-1 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 [ ](A) 其振幅为3 m (B) 其周期为s 31 (C) 其波速为10 m/s (D) 波沿x 轴正向传播 [答案:B]5-2 一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如题5-2图所示. 则x =0处的振动方程为[ ](A)y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) . (C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10-2cos(πt -3π/2)( SI ) . [答案:A]5-3 如题5-3图所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1ux y (10· · · · · · · 0 5 1122- PSS题5-2图题5-3图的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是[ ](A) 0 . (B) π . (C) π /2 . (D) 3π/2 . [答案:B]5-4 一平面简谐波沿ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形如题5-5图中的哪一个? [ ] [答案:B]5-5 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如题5-5图所示.则该时刻 [ ]题5-4图-(A) A 点振动速度大于零 (B)B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [答案:D]5-6 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形如题5-6图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ ][答案:A]5-7 一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如题5-7图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则 [ ] (A) O 点的初相为0=φωS A O ′ωSA ωωSAO ′(A)(B)(C)(D)S题5-5图题5-6图(B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ(D) 3点的初相为π-=213φ[答案:D]5-8 在驻波中,两个相邻波节间各质点的振动[ ](A) 振幅相同,相位相同 (B) 振幅不同,相位相同(C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [答案:B]5-9 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:[ ](A) 它的动能转化为势能. (B) 它的势能转化为动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,题5-7图其能量逐渐减小. [答案:D]5-10 一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是__________,波长是__________,频率是__________,波的传播速度是__________。
运筹学习题答案第五章
第五章习题解答
5.11 某城市可划分为11个防火区,已设有4个消 防站,见下图所示。
page 16 2 January 2024
School of Management
运筹学教程
第五章习题解答
上图中,虚线表示该消防站可以在消防允许时间
内到达该地区进行有效的消防灭火。问能否关闭若干 消防站,但仍不影响任何一个防火区的消防救灾工作。 (提示:对每—个消防站建立一个表示是否将关闭的01变量。)
x1, x2 0,且为整数
解:x1 1, x2 3, Z 4
min Z 5x1 x2
3x1 x2 9
(2)
st
x1 x1
x2 5 8x2 8
.
x1, x2 0,且为整数
解:x1 4, x2 1, Z 5
page 8 2 January 2024
School of Management
School of Management
运筹学教程
第五章习题解答
5.12 现有P个约束条件
n
aij xij bi
j 1
i 1,2,, p
需要从中选择q个约束条件,试借助0-1变量列出 表达式。
解:设yi是0 1变量,i 1,2,, p
n
yi ( aij xij bi ) 0 j 1
i 1,2,, p
运筹学教程
第五章习题解答
5.1 某地准备投资D元建民用住宅。可以建住宅
的造分地价别点为建有d几j;n幢处,,:最才A多能1,可使A造建2,a造j幢…的。,住问A宅n应。总当在数在A最i哪处多几每,处幢试建住建住宅立宅的问, 题的数学模型。
解:设xi表示在Ai处所建住宅的数量, i 1,2,, n。
第五章习题解答
第五章 化学反应系统热力学习题解答1.在298.15K 、p θ时,环丙烷、石墨及氢的θm c H Δ分别为-2092,-393.5及-285.84KJ ·mol -1,若已知丙稀(g )的,θm f H Δ=20.5 KJ ·mol -1,试求(1)环丙烷的θm f H Δ;(2)环丙烷异构化变为丙稀的θm r H Δ。
解:(1)环丙烷的生成反应为:3C(石墨)+3H 2(g)====C 3H 6(g)环丙烷)(氢气)(石墨)环丙烷)(33(θθθθθm c mc m c m f m r H H H H H ∆-∆+∆=∆=∆ =3×(-393.5)+3×(-285.84)-(-2092)=53.98kJ ·mol -1(2)环丙烷的异构化反应为:环丙烷(g )=====丙烯(g )环丙烷)丙烯)((θθθ∆∆∆m f m f m r H H H -==20.5-53.98=-33.48 kJ ·mol -1 2.试判断298K ,标准态下,下列反应能否正向自发? (1)SiO 2(s )+2Cl 2(g )=SiCl 4(g )+O 2(g )(2)SiO 2(s )+2Cl 2(g )+2C (s )=SiCl 4(g )+2CO (g )根据以上结果说明制备SiCl 4时,加碳为何对反应有利?已知298K 时,SiO 2(s ),SiCl 4(g ),CO (g )的θm f G Δ分别为-857,-617,-137 kJ ·mol -1 。
解:(1)SiO 2(s )+2Cl 2(g )=SiCl 4(g )+O 2(g )反应)()()1(24SiO G SiCl G G m f m f m r θθθ∆∆∆-==-617-(-857)=240kJ ·mol -1所以反应正向非自发。
(2)SiO 2(s )+2Cl 2(g )+2C (s )=SiCl 4(g )+2CO (g )反应)()(2)()2(24SiO G CO G SiCl G G m f m f m f m r θθθθ∆∆∆∆-+==-617+2×(-137)-(-857)=-34 kJ ·mol -1则反应正向自发进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章可编程序控制器及其工作原理5-1 可编程序控制器具有哪些特点?答:可编程序控制器特点:1)抗干扰能力强,可靠性高;2)控制系统结构简单、通用性强、应用灵活;3)编程方便,易于使用;4)功能完善,扩展能力强;5)PLC控制系统设计、安装、调试方便;6) 维修方便,维修工作量小;7) 体积小、重量轻,易于实现机电一体化。
5-2 整体式PLC、组合式PLC由哪几部分组成?各有何特点?答:整体式结构的PLC是将中央处理单元(CPU)、存储器、输入单元、输出单元、电源、通信端口、I∕O扩展端口等组装在一个箱体内构成主机。
另外还有独立的I/O扩展单元等通过扩展电缆与主机上的扩展端口相连,以构成PLC不同配置与主机配合使用。
整体式结构的PLC结构紧凑、体积小、成本低、安装方便。
小型机常采用这种结构。
组合式结构的PLC是将CPU、输入单元、输出单元、电源单元、智能I∕O单元、通信单元等分别做成相应的电路板或模块,各模块可以插在带有总线的底板上。
装有CPU的模块称为CPU模块,其他称为扩展模块。
组合式的特点是配置灵活,输入接点、输出接点的数量可以自由选择,各种功能模块可以依需要灵活配置。
5-3 PLC控制与继电器控制比较,有何相同之处?有何不同之处?答:PLC控制与继电器控制的比较见下表:5-4 PLC的硬件指的是哪些部件?它们的作用是什么?答:PLC的基本结构由中央处理器(CPU),存储器,输入、输出接口,电源,扩展接口,通信接口,编程工具,智能I/O接口,智能单元等组成。
1)中央处理器(CPU)中央处理器(CPU)其主要作用有①接收并存储从编程器输入的用户程序和数据。
②诊断PLC内部电路的工作故障和编程中的语法错误。
③用扫描的方式通过I∕O部件接收现场的状态或数据,并存入输入映像存储器或数据存储器中。
④PLC进入运行状态后,从存储器逐条读取用户指令,解释并按指令规定的任务进行数据传送、逻辑或算术运算等;根据运算结果,更新有关标志位的状态和输出映像存储器的内容,再经输出部件实现输出控制、制表打印或数据通信等功能。
2)存储器PLC存储器是用来存放系统程序、用户程序和运行数据的单元。
按其作用有系统存储器与用户存储器。
系统存储器用来存放由PLC生产厂家编写的系统程序,并固化在只读存储器ROM内,用户不能直接更改。
他使PLC具有基本的功能,能够完成PLC设计者规定的各项工作。
系统程序内容主要包括三部分。
第一部分为系统管理程序,他主要控制PLC的运行,使整个PLC按部就班地工作。
第二部分为用户指令解释程序,通过用户解释程序,将PLC的编程语言变为机器语言指令,再由CPU执行这些指令。
第三部分为标准程序模块与系统调用程序,他包括许多不同功能的子程序及其调用管理程序,如完成输入、输出及特殊运算等的子程序。
PLC的具体工作都是由系统程序来完成的,这部分程序的多少也决定了PLC性能的高低。
用户存储器包括用户程序存储器(程序区)和功能存储器(数据区)两部分。
用户程序存储器用来存放用户针对具体控制任务用规定的PLC编程语言编写的各种用户程序。
用户程序存储器根据所选用的存储器单元类型的不同,可以是随机存储器RAM(有掉电保护)、可擦可编程只读存储器EPROM或电擦除可编程只读存储器EEPROM,其内容可以由用户任意修改或增删。
用户功能存储器是用来存放(记忆)用户程序中使用的ON/OF状态、数值数据等,由于这些数据是不断变化的,因此用随机存取存储器RAM来组成功能存储器,他构成PLC的各种内部器件,也称“软元件”。
用户存储器容量的大小,关系到用户程序容量的大小和内部器件的多少,是反映PLC性能的重要指标之一。
3)输入、输出接口输入、输出接口是PLC与外界连接的接口。
输入接口用来接收和采集两种类型的输入信号,一类是由按钮、选择开关、行程开关、继电器触点、接近开关、光电开关、数字拨码开关等的开关量输入信号;另一类是由电位器、测速发电机和各种变换器等传来的模拟量输入信号。
输出接口用来连接被控对象中各种执行元件,如接触器、电磁阀、指示灯、调节阀(模拟量)、调速装置(模拟量)等。
输入、输出接口有数字量(包括开关量)输入、输出和模拟量输入、输出两种形式。
数字量输入、输出接口的作用是将外部控制现场的数字信号与PLC内部信号的电平相互转换;而模拟量输入、输出接口作用是将外部控制现场的模拟信号与PLC内部的数字信号相互转换。
输入、输出接口一般都具有光电隔离和滤波,其作用是把PLC与外部电路隔离开,以提高PLC的抗干扰能力。
4)电源PLC一般使用220V 单相交流电源,电源部件将交流电转换成中央处理器、存储器等电路工作所需的直流电,保证PLC的正常工作。
对于小型整体式可编程控制器内部有一个开关稳压电源,此电源一方面可为CPU、I/O单元及扩展单元提供直流5V 工作电源,另一方面可为外部输入元件提供直流24V 电源。
5)扩展接口扩展接口用于将扩展单元与基本单元相连,使PLC的配置更加灵活,以满足不同控制系统的需求。
6)通信接口为了实现“人—机”或“机—机”之间的对话,PLC配有多种通信接口。
PLC通过这些通信接口可以与监视器、打印机及其他的PLC或计算机相连。
7)智能I/O接口为了满足工业上更加复杂的控制需要,PLC配有多种智能I∕O接口,如满足位置调节需要的位置闭环控制模块,对高速脉冲进行计数和处理的高速计数模块等。
这类智能模块都有其自身的处理器系统。
通过智能I∕O接口,用户可方便的构成各种工业控制系统,实现各种控制功能。
8)编程工具编程工具是供用户进行程序的编制、编辑、调试和监视用的设备。
最常用的是编程器。
编程器有简易型和智能型两类。
简易型的编程器只能联机编程,且往往是先将梯形图转化为机器语言助记符(指令表)后才能输入。
他一般是由简易键盘和发光二极管或其他显示器件组成。
智能型编程器又称图形编程器,他可以联机、也可以脱机编程,具有LCD或CRT图形显示功能,可以直接输入梯形图和通过屏幕对话。
9)智能单元各型PLC都有一些智能单元,他们一般都有自己的CPU,具有自己的系统软件,能独立完成一项专门的工作。
智能单元通过总线与主机相联,通过通信方式接受主机的管理。
10)其他部件PLC还可配有盒式磁带机、EPROM写入器、存储器卡等其他外部设备。
5-5 为什么称PLC的继电器是软继电器?与物理继电器相比,其在使用上有何特点?答:参与PLC应用程序编制的是其内部代表编程器件的存储器,俗称“软继电器”,或称编程“软元件”。
这些“软元件”依编程功能分为输入继电器、输出继电器、定时器、计数器等。
取用这些“软继电器”的常开、常闭触点,实质上为读取存储单元的状态,所以可以认为一个“软继电器”有无数个常开、常闭触点。
5-6 PLC的软件是指什么?其编程语言常用的有哪几种?各有何特点?答:PLC的软件是指系统程序和用户程序。
系统程序由PLC生产厂家固化在控制器内用以控制PLC本身的运作;用户程序则由使用者来编制并输入控制器,用以控制外部对象的运作。
所以,使用者要编制的是用户程序。
编程语言通常有梯形图(LAD)、指令表(STL)和顺序功能流程图(SFC)三种。
梯形图(LAD)编程语言是从继电器控制系统原理图的基础上演变而来的。
梯形图语言简单明了,易于理解,是编程语言的首选。
指令表也叫语句表,和汇编语言有点类似,由助记符和操作数两部分构成,其与梯形图程序有严格的对应关系,是用一系列的指令表达程序的控制要求,它是PLC最基础的编程语言。
顺序功能流程图是一种用来编制顺序控制类程序,它是将一个复杂的顺序控制过程分解为一些小的工作状态,对这些小的工作状态的功能分别处理后,再依一定的顺序控制要求连接组合成整体的控制程序。
5-7 PLC的工作方式是什么?何为PLC的扫描周期?答:PLC的工作方式是一个不断循环的顺序扫描工作方式,每一次扫描所用的时间称为扫描周期或工作周期。
5-8 简述PLC的工作过程。
答:PLC的工作过程为“输入采样”、“程序执行”、“输出刷新”三个阶段。
1)输入采样阶段:PLC在输入采样阶段,首先扫描所有输入端子,并将各输入状态存入内存中各对应的输入映像寄存器中。
此时,输入映像寄存器被刷新。
接着进入程序执行阶段,在程序执行阶段和输出刷新阶段,输入映像寄存器与外界隔离,无论输入信号如何变化,其内容保持不变,直到下一个扫描周期的输入采样阶段,才重新写入输入端的新内容。
2)程序执行阶段:根据PLC梯形图程序扫描原则,PLC按先左后右、先上后下的步序逐点扫描。
但遇到程序跳转指令,则根据跳转条件是否满足来决定程序的跳转地址。
当指令中涉及输入、输出状态时,PLC就从输入映像寄存器中“读入”上一阶段采入的对应输入端子的状态,从输入映像寄存器“读入”对应元件(“软继电器”)的当前状态。
然后进行相应的运算,运算结果再存入元件映像寄存器中。
对元件映像寄存器来说,每一个元件(“软继电器”)的状态会随着程序执行过程而变化。
3)输出刷新阶段:在所有指令执行完毕后,输出映像寄存器中所有输出继电器的状态(接通/断开)在输出刷新阶段转存到输出锁存器中,通过一定方式输出,驱动外部负载。
从上述可知,PLC在一个扫描周期中,对输入状态的扫描只是在输入采样阶段进行。
当PLC进入程序执行阶段后,输入端将被封锁,直到下一个扫描周期的输入采样阶段才对输入状态进行新的扫描,这就是所谓集中采样输入,也就是PLC在一个扫描周期内,集中对输入状态扫描。
在一个扫描周期内,只是在输出刷新阶段将输出状态从输出映像寄存器中送出去,而在其他阶段,输出值一直保存在输出映像寄存器中,这就是集中输出方式。
5-9 PLC的主要性能指标有哪些?各指标的意义是什么?答:PLC的主要性能指标有:(一)存储容量系统程序存放在系统程序存储器中。
这里说的存储容量指的是用户程序存储器的容量,用户程序存储器容量决定了PLC可以容纳的用户程序的长短,一般以字为单位来计算。
每1024个字为1K字。
中、小型PLC的存储容量一般在8K以下,大型PLC的存储容量可达到256K~2M 。
也有的PLC用存放用户程序的指令条数来表示容量。
(二)输入∕输出点数I∕O点数即PLC面板上连接输入、输出信号用的端子的个数,常称为“点数”,用输入点数与输出点数的和来表示。
I∕O点数越多,外部可接入的器件和输出的器件就越多,控制规模就越大。
因此,I∕O点数是衡量PLC性能的重要指标之一。
国际上流行将PLC的点数作为PLC规模分类的标准,I∕O总点数在256点以下为小型PLC,64点及64点以下的为微型PLC,总点数在2048点以上的为大型机等。
(三)扫描速度扫描速度是指PLC执行程序的速度,是衡量PLC性能的重要指标,一般以执行1K字所用的时间来衡量扫描速度。