第五章练习题及参考解答
第五章一元一次方程 单元练习(含答案)浙教版数学七年级上册
七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x ―1B .x ―1=0C .x 2=9D .3x ―52.下列利用等式的基本性质变形错误的是( )A .若x ―2=7,则x =7+2B .若―5x =15,则x =―3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x ―a =0的解,则a 的值是( )A .2B .1C .―1D .―24.由x 2―y3=1可以得到用x 表示y 的式子是( )A .y =3x ―22B .y =32x ―12C .y =3―32xD .y =32x ―35.解方程x ―13=1―3x +16,去分母后正确的是( )A .2x ―1=1―(3x +1)B .2(x ―1)=1―(3x +1)C .2(x ―1)=6―(3x +1)D .(x ―1)=6―3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100―x )=100B .3x +100―x 3=100C .x3―3(100―x )=100D .3x ―100―x 3=1007.下列方程的变形中,正确的是( )A .方程3x ―2=2x +1,移项,得3x ―2x =―1+2;B .方程3―x =2―5(x ―1),去括号,得3―x =2―5x ―1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x ―12―x5=1化成5(x ―1)―2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a ―1|+(ab ―2)2=0,则关于x 的方程xab +x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .―2020C .2019D .―2019二、填空题11.已知4x +2y =3,用含x 的式子表示y = .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为 ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13―6x ―16=1.18.当m 为何值时,关于x 的方程x ―m 2―1=2x +m 3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x ―1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b ―a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4―2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A站B站C站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1―d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32―2x12.【答案】―113.【答案】1914.【答案】2315.【答案】33―216.【答案】15;310517.【答案】x=―3218.【答案】m≤―6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25―x)千米/时.由题意,得{4(25+x)=y6(25―x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120―m25―5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=―121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①56;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1―d2|=d1―d2,∴4t―4.8(t―25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1―d2|=d1―d2,∴360―4.8(t―25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―[360+4(t―110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1―d2|=60.。
人教版七年级上第五章相交线与平行线综合练习题(含解析)
人教版七年级上第五章相交线与平行线综合练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法错误的是()A.两个互余的角都是锐角B.锐角的补角大于这个角本身C.互为补角的两个角不可能都是锐角D.锐角大于它的余角2.下列说法中,正确的有()①两条射线组成的图形叫角;①两点之间,直线最短;①同角(或等角)的余角相等;①连接两点间的线段的长度,叫做这两点的距离.A.1个B.2个C.3个D.4个3.直线AB∥CD,且AD①BC于点E,若①ABE=32°,则①ADC的度数为()A.68°B.58°C.48°D.68°⊥,OG平分①EOF,若4.如图,直线AB,CD交于点O,OE平分①AOC,OF AB∠=,则①AOG等于()48BOCA.10B.12︒C.14D.165.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线B.P是直线l外一点,A,B,C分别是l上的三点,已知P A=1,PB=2,PC=3,则点P 到直线l的距离一定是1C.相等的角是对顶角D.钝角的补角一定是锐角6.如图所示,下列说法错误的是()A.①1和①3是同位角B.①1和①5是同位角C.①1和①2是同旁内角D.①5和①6是内错角7.如图,在①ABC中,点D、E分别是AB、AC的中点,若①B=40°,则①BDE的度数为()A.40°B.50°C.140°D.150°8.如图,已知点B、D、C、F在同一条直线上,AB EF,AB=EF,AC DE,如果BF=6,DC=3,那么BD的长等于()A.1B.32C.2D.39.下列语句中,是命题的是()A.两个相等的角是对顶角B.在直线AB上任取一点C C.用量角器量角的度数D.直角都相等吗?10.下列汽车标志中可以看作是由某图案平移得到的是()A.B.C.D.二、填空题11.如图,直线AB和CD交于O点,OD平分①BOF,OE ①CD于点O,①AOC=40︒,则①EOF=_______.12.如图,直线a①b,直线c与直线a,b相交,若①1=54°,则①3=________度.13.如图,将一副直角三角尺的直角顶点C 叠放在一起,若CE、CD分别平分①ACD 与①ECB,则计算①ECD=___________度.14.如图,将△ABC纸片沿DE折叠,使C落在点C'处,且BC'平分①ABC,AC'平分①BAC的外角,若①1=68°,①2=112°,则①BC A'=______15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西________度.16.如图,把长方形ABCD 沿EF 对折后使两部分重合,若160∠=︒,则∠=AEF _______.17.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.18.命题“正数的平方根的和为零”,写成“如果……,那么……”是____.19.如图,在一块长为a 米、宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为__________平方米.20.将直角梯形ABCD 平移得梯形EFGH ,若10,2,4HG MC MG ===,则图中阴影部分的面积为_________平方单位.三、解答题21.如图,已知①D=①B,DF①AC,BE①AC.(1)求证:AD①BC;(2)若AE=CF,求证:①AFD①①CEB.22.请完成下面的推理过程:如图,已知①D=108°,①BAD=72°,AC①BC于C,EF①BC于F.求证:①1=①2.证明:①①D=108°,①BAD=72°(已知)①①D+①BAD=180°AB CD()①//①①1=()又①AC①BC于C,EF①BC于F(已知)①EF//()①①2=()①①1=①2()23.(1)【自主学习】填空:如图1,点C 是MON ∠的平分线OP 上一点,点A 在OM 上,用圆规在ON 上截取OB OA =,连接BC ,可得OAC ∆≅ ,其理由根据是 ;(2)【理解运用】如图2,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠,试判断BC 和AC 、AD 之间的数量关系并写出证明过程.(3)【拓展延伸】如图3,在ABC ∆中,60A ∠=︒,CD ,BE 分别是ACB ∠,ABC ∠的平分线,CD ,BE 交于点F ,若3CE =,2BD =,请直接写出BC 的长.24.将正方形的四个顶点用线段连接,什么样的连法最短?研究发现,并非对角线最短,而是如图的连法最短(即用线段AE ,DE ,EF ,BF ,CF 把四个顶点连接起来)已知图中30DAE ADE ∠=∠=︒,120AEF BFE ∠=∠=︒,你能证明此时AB EF ∥吗?25.已知:如图,在ABC 中,60A ∠=︒,70C ∠=︒,点D ,E 分别在AB 和AC 上,且DE BC ∥.求证:50ADE ∠=︒.参考答案:1.D【分析】根据补角、余角的定义逐个判断即可得出结论.【详解】解:A、两角互余,和为90°,两角均为锐角,故A不符合题意B、两角互补,和为180°,从而锐角的补角必为钝角,故B不符合题意C、两角互补,和为180°,两锐角的和必小于180°,故C不符合题意D、两角互余,和为90°,从而锐角不一定大于它的余角,也可以小于或者等于它的余角,故D不符合题意故选:D.【点睛】本题主要考查了互为补角、互为余角的定义,解题的关键是熟练掌握互为补角、互为余角的定义.2.B【分析】由角的概念判断①,由线段的性质判断①,由补角与余角的性质判断①,由两点间的距离概念判断①,从而可得答案.【详解】解:有公共端点的两条射线组成的图形叫角,故①说法错误,不符合题意,两点之间,线段最短,故①说法错误,不符合题意;同角(或等角)的余角相等,故①说法正确,符合题意;连接两点间的线段的长度,叫做这两点的距离,故①说法正确,符合题意;故选:.B【点睛】本题考查的是角的概念,线段的性质,补角与余角的性质,两点间的距离,掌握以上知识是解题的关键.3.B【分析】根据AB∥CD,可得①ABE=①BCD,再由直角三角形两锐角互余,可求出答案.【详解】解:①AB∥CD,且①ABE=32°,①①ABE=①BCD=32°;①AD①BC于点E,①①CED=90°,①①ECD+①EDC=90°,①①ADC=58°,故选:B.【点睛】本题考查平行线的性质,垂直的定义,熟练运用性质转化角度关系是解题的关键.4.B【分析】分别求出①AOE和①EOG,然后根据①AOG=①EOG﹣①AOE计算即可得解.【详解】解:①①BOC=48°,①①AOC=180°﹣48°=132°,①OE平分①AOC,①①AOE=①EOC=12①AOC=1132662⨯︒=︒,①OF①AB,①①BOF=90°,①①EOF=360°﹣①EOC﹣①BOC﹣①BOF =360°﹣66°﹣48°﹣90°=156°①OG平分①EOF,①①EOG=①FOG=12EOF∠=11562⨯︒=78°,①①AOG=①EOG﹣①AOE=78°﹣66°=12°,故选:B.【点睛】本题考查了角的计算,主要利用了角平分线的定义,熟记概念并准确识图,理清图中各个角度之间的关系是解题的关键.5.D【分析】分别根据角平分线的定义,点到直线的距离,对顶角定义,钝角、锐角及补角的概念逐项判断即可.【详解】A.分成的两个角不一定相等,不符合题意;B.P A不一定与l垂直,不符合题意;C.相等的两个角不一定是对顶角,不符合题意;D.钝角的补角一定是锐角,符合题意.故选D.【点睛】本题考查了角平分线的定义,点到直线的距离,对顶角定义,钝角、锐角及补角的概念,熟悉概念是解题的关键.6.B【分析】根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A、①1和①3是同位角,故此选项不符合题意;B、①1和①5不存在直接联系,故此选项符合题意;C、①1和①2是同旁内角,故此选项不符合题意;D、①1和①6是内错角,故此选项不符合题意;故选B.【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.7.C【分析】由条件可知DE是①ABC的中位线,即DE①BC,根据平行线的性质即可求出①BDE 的度数为140°.【详解】解:①点D、E分别是AB、AC的中点,①DE是①ABC的中位线,①DE∥BC,即:①B+①BDE=180°,①①BDE=180°-①B=180°-40°=140°.故选:C.【点睛】本题主要考查的是三角形中位线的性质,以及平行线的性质的应用,掌握中位线的性质是解题的关键.8.B【分析】由AB EF得①B=①F,由AC DE得①ACB=①EDF,从而证明①ABC①①EFD得BC=FD,即可求得BD的长.【详解】解:①AB EF,①①B=①F,①AC DE,①①ACB=①EDF,在①ABC和①EFD中,ACB EDF B FAB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABC ①①EFD (AAS ),①BC =FD ,①BC ﹣DC =FD ﹣DC ,①BD =FC ,①BD =12(BF ﹣DC )=12(6﹣3)=32. 故选:B .【点睛】本题主要考查了平行线的性质、三角形全的的判定及性质,熟练掌握三角形全的的判定方法是解题的关键.9.A【分析】根据命题的定义逐一判断即可.【详解】解:A .“两个相等的角是对顶角”做出了判断,是命题;B .“在直线AB 上任取一点C ”没有做出判断,不是命题;C .“用量角器量角的度数”没有做出判断,不是命题;D .“直角都相等吗?”没有做出判断,不是命题;故选:A .【点睛】此题主要考查了命题的含义和应用,解答此题的关键是要明确:判断一件事情的语句叫命题,许多命题都是由题设和结论两部分组成.10.D【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A 、是一个旋转对称图形,不能由平移得到,故此选项不合题意;B 、是一个对称图形,不能由平移得到,故此选项不合题意;C 、是一个旋转对称图形,不能由平移得到,故此选项不合题意;D 、图案自身的一部分沿着直线运动而得到,是平移,故此选项符合题意.故选:D .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,注意分清图形的平移与旋转或翻转.11.130°【分析】根据对顶角性质可得①BOD =①AOC=40°.根据OD 平分①BOF ,可得①DOF =①BOD =40°,根据OE ①CD ,得出①EOD =90°,利用两角和得出①EOF =①EOD +①DOF =130°即可.【详解】解:①AB 、CD 相交于点O ,①①BOD =①AOC=40°.①OD 平分①BOF ,①①DOF =①BOD =40°,①OE ①CD ,①①EOD =90°,①①EOF =①EOD +①DOF =130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.12.54【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a①b ,所以23∠=∠,因为12∠∠,是对顶角, 所以12∠=∠,所以31∠=∠,因为154∠=︒,所以354∠=︒,故答案为:54.【点睛】本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键.13.45【分析】由题意可知90ACD ∠=︒,根据角平分线的性质即可求解.【详解】解:由题意可知90ACD ∠=︒,又①CE 平分ACD ∠ ①1=452ECD ACD ∠=∠︒ 故答案为45【点睛】此题考查了角平分线的性质,熟练掌握角平分线的有关性质是解题的关键. 14.11°##11度【分析】连接CC ',先根据三角形外角的性质和折叠的性质可得①ACB =22°,由角平分线的定义和三角形外角的性质可得结论.【详解】解:如图,连接CC ',由折叠得:CE =C E ',DC =DC ',①DCE =①DC E ',①ECC EC C ''∠=∠,DCC DC C ''∠=∠,①①1=DCC DC C ''∠+∠=68°,①2=ECC EC C ''∠+∠=112°,①DCC '∠=34°,ECC '∠=56°,①①ACB =56°﹣34°=22°,①BC '平分①ABC ,AC '平分①BAC 的外角,①①FAC '12=①F AC ,①ABC '12=①ABC , ①①BC A '=①FAC '﹣①ABC '12=①F AC 12-①ABC 12=①ACB =11°. 故答案为:11°.【点睛】本题主要考查角平分线的定义、图形折叠的性质、三角形外角的性质,熟练掌握相关性质是解决本题的关键.15.48°【详解】先根据题意画出图形,利用平行线的性质解答即可.解:如图,①AC①BD ,①1=48°,①①2=①1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.120︒【分析】如图,先求解120,BFB '∠=︒再利用轴对称的含义求解,BFE ∠ 再利用平行线的性质可得答案. 【详解】解:如图, 160∠=︒,则18060120,BFB '∠=︒-︒=︒由对折可得:160,2BFE BFB '∠=∠=︒ 长方形ABCD ,//,AD BC ∴=180120,AEF BFE ∴∠︒-∠=︒故答案为:120.︒【点睛】本题考查的是长方形的性质,邻补角的定义,轴对称的含义,平行线的性质,掌握以上知识是解题的关键.17.(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键.18.如果一个数为正数,那么它的平方根的和为0.【分析】根据命题都可以写成“如果”、“那么”的形式,“如果”后面是题设,“那么”后面是结论,从而得出答案.【详解】如果一个数为正数,那么它的平方根的和为0.故答案为如果一个数为正数,那么它的平方根的和为0.【点睛】此题考查了命题与定理,解题的关键是了解“如果”后面是题设,“那么”后面是结论. 19.(ab ﹣2b )【分析】根据图形的特点,可以把小路的面积看作是一个底是2米,高是b 米的平行四边形,根据平行四边形的面积=底×高,长方形的面积=长×宽,用长方形的面积减去小路的面积即可.【详解】解:由题可得,草地的面积是(ab ﹣2b )平方米.故答案为:(ab ﹣2b ).【点睛】本题考查了平移的实际应用.化曲为直是解题的关键.20.36【分析】根据图形可知图中阴影部分的面积等于梯形ABCD 的面积减去梯形EFMD 的面积,恰好等于梯形EFGH 的面积减去梯形EFMD 的面积.【详解】根据平移的性质得S 梯形ABCD =S 梯形EFGH ,DC = HG = 10,MC = 2,MG = 4,∴DM = DC - MC = 10 - 2 = 8,∴S 阴影= S 梯形ABCD -S 梯形EFMD=S 梯形EFGH -S 梯形EFMD=S 梯形HGMD =()12DM HG MG + =12×(8+10)×4= 36.故答案为:36.【点睛】主要考查了梯形的性质和平移的性质,要注意平移前后图形的形状和大小不变,本题的关键是能得到:图中阴影部分的面积等于梯形ABCD 的面积减去梯形EFMD 的面积,恰好等于梯形EFGH 的面积减去梯形EFMD 的面积.21.(1)见解析(2)见解析【分析】(1)证明①A =①C ,根据内错角相等,两直线平行即可进行证明;(2)根据AAS 即可证明①AFD ①①CEB .(1)证明:①DF ①AC ,BE ①AC .①①AFD =90°,①BEC =90°,①①D =①B ,①①A =①C ,①AD BC ∥;(2)①AE =CF ,①AE ﹣EF =CF ﹣EF ,①AF =CE ,在①AFD 和①CEB 中,D B A C AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①AFD ①①CEB (AAS ).【点睛】本题主要考查了平行线的判定和三角形全等的判定,熟练掌握平行线的性质和三角形的判定定理是解题的关键.22.见解析【分析】由直线相交及平行的相关定理性质即可得到答案.【详解】解:①①D =108°,①BAD =72°(已知)①①D +①BAD =180°①//AB CD ( 同旁内角互补,两直线平行)①①1=3∠(两直线平行,内错角相等)又①AC ①BC 于C ,EF ①BC 于F (已知)①EF //AC (垂直于同一直线的两条直线平行)①①2=3∠(两直线平行,同位角相等)①①1=①2(等量代换)【点睛】本题考查直线相交及平行的相关定理性质,熟练掌握相关知识是解题的关键. 23.(1)OBC ∆,SAS(2)BC AC AD =+,证明见解析(3)5【分析】(1)由角平分线的定义得出AOC BOC ∠=∠,根据SAS 可证明OAC OBC ∆≅∆; (2)先截取CE CA =,连接DE ,根据SAS 判定CAD CED ∆≅∆,得出AD DE =,60A CED ∠=∠=︒,AC CE =,进而得出结论BC AC AD =+;(3)在BC 上取一点M ,使CM CE =,证明()CEF CMF SAS ∆≅∆,由全等三角形的性质得出60CFE CFM ∠=∠=︒,证明()FBM FBD ASA ∆≅∆,由全等三角形的性质得出BM BD =,则可求出答案.(1) 解:点C 是MON ∠的平分线OP 上一点,AOC BOC ∠=∠∴,在OAC ∆和OBC ∆中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,()OAC OBC SAS ∴∆≅∆,故答案为:OBC ∆;SAS ;(2)BC AC AD =+.证明:在CB 上截取CE CA =,CD 平分ACB ∠,ACD BCD ∴∠=∠,在ACD ∆和ECD ∆中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,()ACD ECD SAS ∴∆≅∆,60CAD CED ∴∠=∠=︒,AD=DE ,90ACB ∠=︒,30B ∴∠=︒,30EDB ∴∠=︒,即EDB B ∠=∠,DE EB ∴=,BC CE BE =+,BC AC DE ∴=+,BC AC AD ∴=+.(3)在BC 上取一点M ,使CM CE =,在ABC ∆中,180A ABC ACB ∠+∠+∠=︒,60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,1180()180()1202BFC BCF CBF ACB ABC ∴∠=︒-∠+∠=︒-∠+∠=︒, 60CFE ∴∠=︒,60BFD CFE ∴∠=∠=︒, CD 平分ACB ∠,ECF MCF ∴∠=∠,在CEF ∆和CMF ∆中,CE CM ECF MCF CF CF =⎧⎪∠=∠⎨⎪=⎩,()CEF CMF SAS ∴∆≅∆,60CFE CFM ∴∠=∠=︒,60BFM BFC CFM ∴∠=∠-∠=︒,60BFM BFD ∴∠=∠=︒, BE 是ACB ∠的平分线,FBM FBD ∴∠=∠,在FBM ∆和FBD ∆中,BFM BFD BF BF FBM FBD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FBM FBD ASA ∴∆≅∆,BM BD ∴=,325BC CM BM CE BD ∴=+=+=+=.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,角平分线的性质以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据线段的和差关系进行推导.24.见解析【分析】根据正方形的性质可得90DAB ∠=︒,结合已知条件可得60EAB ∠=︒, 由已知条件120AEF ∠=︒,进而根据同旁内角互补,两直线平行,即可证明AB EF ∥. 【详解】证明:四边形ABCD 是正方形,∴90DAB ∠=︒,30DAE ∠=︒,903060BAE ∴∠=︒-︒=︒,120AEF ∠=︒,180AEF BAE ∴∠+∠=︒,∴AB EF ∥.【点睛】本题考查了平行线的判定,掌握同旁内角互补,两直线平行是解题的关键. 25.见解析【分析】根据三角形内角和定理求得50B ∠=︒,根据平行线的性质求得ADE B ∠=∠,进而即可证明50ADE ∠=︒.【详解】在ABC 中,①60A ∠=︒,70C ∠=︒ (已知),①18050B A C ∠=︒-∠-∠=︒(三角形内角和定理).又①DE BC ∥(已知),①ADE B ∠=∠(两直线平行,同位角相等).①50ADE ∠=︒(等量代换).【点睛】本题考查了三角形内角和定理,平行线的性质,掌握平行线的性质是解题的关键.。
计量经济学(庞浩)第五章练习题参考解答说课讲解
第五章练习题参考解答练习题5.1 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
5.2 根据本章第四节的对数变换,我们知道对变量取对数通常能降低异方差性,但须对这种模型的随机误差项的性质给予足够的关注。
例如,设模型为u X Y 21ββ=,对该模型中的变量取对数后得如下形式u X Y ln ln ln ln 21++=ββ(1)如果u ln 要有零期望值,u 的分布应该是什么? (2)如果1)(=u E ,会不会0)(ln =u E ?为什么? (3)如果)(ln u E 不为零,怎样才能使它等于零?5.3 由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 801101802601101607912013519012516584115140205115180981301782651301859514019127013519090125137230120200759018925014020574105558014021011016070851522201131507590140225125165651001372301081457410514524011518080110175245140225841151892501202007912018026014524090125178265130185981301912705.4由表中给出1985年我国北方几个省市农业总产值,农用化肥量、农用水利、农业劳动力、每日生产性固定生产原值以及农机动力数据,要求:(1)试建立我国北方地区农业产出线性模型;(2)选用适当的方法检验模型中是否存在异方差;(3)如果存在异方差,采用适当的方法加以修正。
第五章三角函数单元测试卷及参考答案
第五章 三角函数单元测试卷一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知角α的终边经过点(,3)P x -,且3tan 4α=-,则cos α=( ) A .35±B .45±C .45-D .452.已知3cos 4x =,则cos2x =( ) A .14-B .14C .18-D .183.如果函数y =3cos (2x +φ)的图象关于点(43π,0)中心对称,那么|φ|的最小值为( ) A .6πB .4π C .3π D .2π4.已知函数()sin 3f x x x =,则在下列区间使函数()f x 单调递减的是( )A .3,24ππ⎛⎫⎪⎝⎭B .0,4π⎛⎫⎪⎝⎭C .5,4ππ⎛⎫ ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭5.若,αβ为锐角,45sin ,cos()513ααβ=+=,则sin β等于( ) A .1665B .5665C .865D .47656.函数()sin()(0,0)f x A x A ωϕω=+>>的部分图象如图所示,则下列说法中错误的是( )A .()f x 的最小正周期是2πB .()f x 在1931,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 C .()f x 在175,1212ππ⎡⎤--⎢⎥⎣⎦上单调递增D .直线1712x π=-是曲线()y f x =的一条对称轴7.已知7sin 6πα⎛⎫+=⎪⎝⎭2cos 23πα⎛⎫- ⎪⎝⎭=( ) A .23-B .13-C .23D .138.将函数()2sin 2cos 2cos sin sin 22f x x x ππθθθθ⎛⎫=+--<< ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x 的图象都经过点P ⎛ ⎝⎭,则ϕ的值可以是( ) A .53πB .56π C .2π D .6π 二、多选题(每题有多个选项为正确答案,每题5分,共20分) 9.设函数()sin 23f x x π⎛⎫=+⎪⎝⎭,给出下列命题,不正确的是( ). A .()f x 的图象关于直线3x π=对称B .()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 C .把()f x 的图象向左平移12π个单位长度,得到一个偶函数的图象D .()f x 的最小正周期为π,且在06,π⎡⎤⎢⎥⎣⎦上为增函数10.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数 B .在区间0,2π⎛⎫⎪⎝⎭上单调递增 C .最大值为2 D .其图象关于点,04π⎛⎫⎪⎝⎭对称 11.如图是函数sin()()y A x x R ωϕ=+∈在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象.为了得到这个函数的图象,只要将sin ()y x x R =∈的图象上所有的点( ).A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变 B .向左平移6π个单位长度,再把所得各点的横坐标仲长到原来的12,纵坐标不变C .把所得各点的横坐标缩短到原来的12,纵坐标不变,再向左平移6π个单位长度D .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变12.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,将函数()f x 的图像向左平移3π个单位长度后得到()y g x =的图像,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为πC .函数()g x 的图像的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z三、填空题(每题5分,共20分)13.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限. 14.函数()f x =sin 6x π⎛⎫-⎪⎝⎭cos x 的最小值为_________.15.已知1sin 34πα⎛⎫+=⎪⎝⎭,则cos 6πα⎛⎫-= ⎪⎝⎭______.16.已知函数()tan(),(0,0)2f x x πωϕωϕ=+><<的相邻两个对称中心距离为32π,且()f π=,将其上所有点的再向右平移3π个单位,纵坐标不变,横坐标变为原来的13,得()g x 的图像,则()g x 的表达式为_______四、解答题(17题10分,其余每题12分,共70分) 17.已知1tan 42πα⎛⎫+=⎪⎝⎭. (Ⅰ)求tan α的值;(Ⅱ)求()()22sin 22sin 21cos 2sin παπαπαα⎛⎫+-- ⎪⎝⎭--+的值.18.已知函数()24f x x π⎛⎫- ⎝=⎪⎭.(1)求函数()f x 的最小值和最大值及相应自变量x 的集合; (2)求函数()f x 的单调递增区间;(3)画出函数()y f x =区间[]0,π内的图象.19.已知()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ (1)求函数()f x 的单调递减区间;(2)若关于x 的函数()()()22sin 2g x f x k x =-+在区间,122ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围.20.一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间. (1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数;(2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?21.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()02x ,和()0,2x +π-.若将函数()f x 的图象向左平移3π个单位长度后得到的图象关于原点对称. (1)求函数()f x 的解析式;(2)若函数()()10y f kx k =+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,方程()1f kx m +=恰有两个不同的解,求实数m 的取值范围.22.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤⎪⎝⎭的图象如图所示.(1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位长度得到曲线C ,把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,得到的曲线对应的函数记作()y g x =. (i )求函数()()2x h x f g x ⎛⎫=⎪⎝⎭的最大值; (ii )若函数()2()()2F x g x mg x m R π⎛⎫=-+∈ ⎪⎝⎭在()()0,n n N π+∈内恰有2015个零点,求m 、n 的值.参考答案: 一、单选题 1.【答案】D【解析】角α的终边经过点(),3P x -,由3tan 4α=-,可得334x -=-,所以4x =. 所以4cos 5α==.故选D.2.【答案】D【解析】由3cos 4x =得2231cos 22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D .. 3.【答案】A【解析】∵函数y =3cos (2x +φ)的图象关于点4,03π⎛⎫⎪⎝⎭中心对称. ∴4232k ππϕπ⋅+=+∴13()6πϕπ=-∈k k Z 当2k =时,有min ||6πϕ=.故选:A. 4.【答案】C【解析】依题意,函数()2sin(3)3f x x π=-,令3232,232k x k k Z πππππ+≤-≤+∈, 解得52211,183318k k x k Z ππππ+≤≤+∈, 所以函数 在3,24ππ⎛⎫⎪⎝⎭ 上先增后减,在0,4π⎛⎫ ⎪⎝⎭ 上单调递增,在5,4ππ⎛⎫⎪⎝⎭上单调递减, 在,24ππ⎛⎫-- ⎪⎝⎭ 上先增后减.故选C . 5.【答案】A【解析】由角的关系可知根据同角三角函数关系式,可得()312cos ,sin 513ααβ=+= ()sin sin βαβα=+-⎡⎤⎣⎦ ()()sin cos cos sin αβααβα=+-+ 12354135135=⨯-⨯ 1665=所以选A 6.【答案】C【解析】由图可知,2A =,该三角函数的最小正周期7233T πππ=-=,故A 项正确; 所以21Tπω==,则()2sin()f x x ϕ=+. 因为563f f ππ⎛⎫⎛⎫= ⎪⎝ ⎝⎭⎭⎪,所以该函数的一条对称轴为5736212x πππ+==, 将7,212π⎛⎫⎪⎝⎭代入2sin()y x ϕ=+,则72()122k k ππϕπ+=+∈Z ,解得2()12k k πϕπ=-+∈Z ,故()2sin 22sin 1212f x x k x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭.令22()2122k x k k πππππ--+∈Z ,得5722()1212k x k k ππππ-≤≤+∈Z , 令1k =,则1931,1212x ππ⎡⎤∈⎢⎥⎣⎦故函数()f x 在1931,1212ππ⎡⎤⎢⎥⎣⎦上单调递增.故B 项正确; 令322()2122k x k k πππππ+≤-≤+∈Z , 得71922()1212k x k k ππππ+≤≤+∈Z , 令1k =-,175,1212x ππ⎡⎤∈--⎢⎥⎣⎦ 故函数()f x 在175,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减.故C 项错误; 令()122x k k πππ-=+∈Z ,得7()12x k k ππ=+∈Z ,令2k =-,1712x π=-故直线1712x π=-是()f x 的一条对称轴.故D 项正确.故选C. 7.【答案】B【解析】由题意7sin sin sin 666πππαπαα⎛⎫⎛⎫⎛⎫+=++=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以sin 63πα⎛⎫+=⎪⎝⎭, 所以2cos 2cos 2cos 2cos 23336ππππαπααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=-+⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 2212sin 121633πα⎛⎛⎫=+-=⨯--=- ⎪ ⎝⎭⎝⎭. 故选B . 8.【答案】B 【解析】易得()()2sin 2cos 2cos sin sin sin 2cos cos2sin sin 2f x x x x x x θθθθθθ=+-=+=+.因为函数()f x 的图象过点P ⎛ ⎝⎭,22ππθ-<<,所以代入函数解析式得3πθ=. 所以()sin 23f x x π⎛⎫=+⎪⎝⎭.根据题意,得()()sin 23g x x πϕ⎡⎤=-+⎢⎥⎣⎦,又因为()g x 的图象也经过点P ⎛ ⎝⎭,所以代入得sin 23πϕ⎛⎫-=⎪⎝⎭将53πϕ=、56π、2π或6π代入sin 23πϕ⎛⎫-=⎪⎝⎭只有56π成立. 故选B. 二、多选题 9.【答案】ABD【解析】因为sin 03f ππ⎛⎫== ⎪⎝⎭,所以A 不正确; 因为sin 1122f ππ⎛⎫==⎪⎝⎭,所以B 不正确;因为函数()f x 的最小正周期为π,但sin 112226f f πππ⎛⎫⎛⎫==>=⎪ ⎪⎝⎭⎝⎭,所以D 不正确;把函数()f x 的图象向左平移12π个单位长度,得到函数sin 2sin 2cos21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,函数cos 2y x =为偶函数,所以C 正确. 故选:ABD. 10.【答案】AD【解析】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .选项A :()2))()f x x x f x -=-== ,它是偶函数,正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,错误;选项C :()2f x x =,错误;选项D :函数的对称中心为(,0)24k ππ+ ,k Z ∈,当0k =,图象关于点,04π⎛⎫⎪⎝⎭对称, 错误. 故选:AD 11.【答案】AC【解析】由图象知,A=1,T=π,所以ω=2,y=sin (2x+ϕ),将(6π-,0)代入得:sin(ϕ3π-)=0,所以ϕ3π-=kπ,k z ∈,取ϕ=3π,得y=sin (2x+3π),sin y x =向左平移3π,得sin 3y x π⎛⎫=+ ⎪⎝⎭.然后各点的横坐标缩短到原来的12,得sin 23y x π⎛⎫=+ ⎪⎝⎭.故A 正确.sin y x =各点的横坐标缩短到原来的12,得sin 2y x =.然后向左平移6π个单位,得sin 26y x π⎛⎫=+ ⎪⎝⎭sin 23x π⎛⎫=+ ⎪⎝⎭.故C 正确.故选:AC 12.【答案】BD 【解析】由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫ ⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈,即2,Z 3k k πϕπ=-∈.||2ϕπ<,∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦g x x x x R . ∴()g x 既不是奇函数也不是偶函数,故A 错误; ∴()g x 的最小正周期22T ππ==,故B 正确. 令2,32x k k πππ+=+∈Z ,解得,122k x k ππ=+∈Z .则函数()g x 图像的对称轴为直线,122k x k ππ=+∈Z .故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.故D 正确. 故选:BD.三、填空题 13.【答案】二【解析】因为点P (tanα,cosα)在第三象限,所以tanα<0,cosα<0, 则角α的终边在第二象限,故答案为二. 14.【答案】34-【解析】由函数()211sin()cos (sin cos )cos cos cos 62222f x x x x x x x x x π=-=-=-1112(1cos 2)sin(2)44264x x x π=-+=--, 当sin(2)16x π-=-时,即,6x k k Z ππ=-+∈时,函数取得最小值34-. 15.【答案】14【解析】因为1sin()34πα+=,则1cos()sin(())sin()62634ππππααα-=--=+=. 16.【答案】2()tan()9g x x π=+. 【解析】由题意,函数()tan()f x x ωϕ=+的相邻两个对称中心距离为1322w ππ⋅=,解得13w =,且()f π=,即tan()3πϕ+=,因为02πϕ<<,解得3πϕ=,所以1()tan()33f x x π=+,将()f x 图象上的点向右平移3π个单位,可得112()tan[()]tan()33339f x x x πππ=-+=+, 再把所得图象的纵坐标不变,横坐标变为原来的13,可得2()tan()9f x x π=+的图象, 即函数()g x 的解析式为2()tan()9f x x π=+. 故答案为:2()tan()9f x x π=+. 四、解答题17.【答案】(Ⅰ)1tan =-3α;(Ⅱ)15-19.【解析】解:(Ⅰ)tantan 1tan 14tan()41tan 21tantan 4παπααπαα+++===--,解得;(Ⅱ)22sin(22)sin ()21cos(2)sin παπαπαα+----+=22sin 2cos 1cos 2sin αααα-++ 2222sin cos cos 2cos sin ααααα-=+22tan 1152tan 19αα-==-+. 18.【答案】(1,取得最大值时相应x 的集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; 最小值为,取得最小值时相应x 的集合为,8x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭; (2)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(3)图象见解析. 【解析】(1)()f x ,当2242x k πππ-=+,即38x k ππ=+时,等号成立, ∴()f x 取得最大值时相应x 的集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭()f x 的最小值为,当2242x k πππ-=-+,即8x k ππ=-+时,等号成立,∴()f x 取得最大值时相应x 的集合为,8x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭(2)由222242k x k πππππ-+≤-≤+求得388k x k ππππ-+≤≤+, ∴()f x 的单调递增区间是3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈(3)列表:()f x 图像如图所示:19.【答案】(1)()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)14k k ⎧⎪<≤⎨⎪⎩或12k ⎫=-⎬⎭. 【解析】(1)()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭令3222232k x k πππππ+++,k Z ∈,解得71212k xk ππππ++,k Z ∈, ∴()f x 的单调递减区间()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)由(1)知,函数()2sin 23f x x π⎛⎫=+⎪⎝⎭()g x 在,122ππ⎡⎤⎢⎥⎣⎦有零点等价于()()2sin 2f x k x =+在,122ππ⎡⎤⎢⎥⎣⎦有唯一根,∴可得2sin 2sin 23k x x π⎛⎫=+- ⎪⎝⎭1sin 22cos 226x x x π⎛⎫=-+=+ ⎪⎝⎭设()cos 26h x x π⎛⎫=+⎪⎝⎭,,122x ππ⎡⎤∈⎢⎥⎣⎦则72,636x πππ⎡⎤+∈⎢⎥⎣⎦ 根据函数()h x 在,122x ππ⎡⎤∈⎢⎥⎣⎦上的图象, ∵2y k =与()y h x =有唯一交点,∴实数k 应满足1222k -<≤或21k =- ∴144k -<≤或12k =-.故实数k 的取值范围1{|4k k<或1}2k =-.20.【答案】(1)()22sin 1036t h t ππ⎛⎫=-+≥⎪⎝⎭;(2)有1s 时间点P 距水面的高度超过2米. 【解析】(1)设水轮上圆心O 正右侧点为A ,y 轴与水面交点为B ,如图所示:设()sin h a t b ωϕ=++,由1OB =,2OP =,可得03BOP π∠=,所以06AOP π∠=.2a ∴=,1b =,6πϕ=-,由题意可知,函数2sin 16h t πω⎛⎫=-+ ⎪⎝⎭的最小正周期为3T =,223T ππω∴==, 所以点P 距离水面的高度h 关于时间t 的函数为()22sin 1036t h t ππ⎛⎫=-+≥⎪⎝⎭;(2)由22sin 1236t h ππ⎛⎫=-+>⎪⎝⎭,得21sin 362t ππ⎛⎫->⎪⎝⎭, 令[]0,3t ∈,则211,3666t ππππ⎡⎤-∈-⎢⎥⎣⎦, 由256366t ππππ<-<,解得1322<<t ,又31122-=, 所以在水轮转动的任意一圈内,有1s 时间点P 距水面的高度超过2米. 21.【答案】(1)()2sin 3f x x π⎛⎫=-⎪⎝⎭;(2))1,3 【解析】(1)由题意可知函数()f x 的周期2T π=,且2A =,所以21Tπω==,故()()2sin f x x ϕ=+.将函数()f x 的图象向左平移3π个单位长度后得到的图象对应的函数解析式为2sin 3y x ϕπ⎛⎫=++ ⎪⎝⎭,因为函数2sin 3y x ϕπ⎛⎫=++ ⎪⎝⎭的图象关于原点对称,所以()3k k ϕπ+=π∈Z ,即()3k k ϕπ=π-∈Z . 又2πϕ<,所以3πϕ=-,故()2sin 3f x x π⎛⎫=- ⎪⎝⎭.(2)由(1)得函数()12sin 13y f kx kx π⎛⎫=+=-+ ⎪⎝⎭,其周期为23π, 又0k >,所以2323k π==π.令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦, 若sin t s =在2,33ππ⎡⎤⎢⎥⎣⎦-上有两个不同的解,则s ⎫∈⎪⎪⎣⎭,所以当)1,3m ∈时,方程()1f kx m +=在0,3x π⎡⎤∈⎢⎥⎣⎦上恰有两个不同的解,即实数m的取值范围是)1,3.22.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)(i )34;(ii )1m =-,1343n =. 【解析】(1)由图象可得1A =,最小正周期721212T πππ⎛⎫=⨯-=⎪⎝⎭,则22T πω==,由77sin 211212f ππϕ⎛⎫⎛⎫=⨯+=-⎪ ⎪⎝⎭⎝⎭,所以523k πϕπ=-+,k Z ∈,又2πϕ≤,则易求得3πϕ=,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,由222232k x k πππππ-+≤+≤+,k Z ∈,得51212k x k ππππ-+≤≤+,k Z ∈, 所以单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈.(2)(i )由题意得()sin g x x =,()()sin sin 23x h x f g x x x π⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭112cos 2444x x =-+ 11sin 2264x π⎛⎫=-+ ⎪⎝⎭, 所以()()2x h x f g x ⎛⎫=⎪⎝⎭的最大值为34; (ii )令()0F x =,可得22sin sin 10x m x --=,令[]sin 1,1t x =∈-, 得2210t mt --=,易知>0∆,方程必有两个不同的实数根1t 、2t , 由1212t t =-,则1t 、2t 异号, ①当11t >且210t -<<或者101t <<且21t <-时,则方程1sin x t =和2sin x t =在区间()0,n π均有偶数个根,不合题意,舍去;②当101t <<且0201t <<时,则方程1sin x t =和2sin x t =在区间()0,n π均有偶数个根,不合题意,舍去; ③当11t =且212t =-,当()0,2x π∈时,1sin x t =,只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 1x m x --在()0,2x π∈上有三个根,由于201536712=⨯+,则方程22sin sin 10x m x --=在()0,1342π上有2013个根,由于方程1sin x t =在区间()1342,1343ππ上只有一个根,方程2sin x t =在区间()1343,1344ππ上两个根,因此,不合题意,舍去;④当11t =-时,则212t =,当()0,2x π∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x m x --=在()0,2x π∈上有三个根,由于201536712=⨯+,则方程22sin sin 10x m x --=在()0,1342π上有2013个根,由于方程2sin x t =在区间()1342,1343ππ上有两个根,方程1sin x t =在区间()1343,1344ππ上有一个根,此时,满足题意;因此,1343n =,21121022m ⎛⎫⎛⎫⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭, 得1m =-,综上,1m =-,1343n =.。
计量经济学 第五章练习题及参考解答
第五章练习题及参考解答 5.1 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
【练习题5.1参考解答】(1)因为22()i i f X X =,所以取221i iW X =,用2i W 乘给定模型两端,得 312322221i i iii i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=--()()()()()()()***2****22232322322*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x W xW xW x xβ-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x WxWxWx xβ-=-∑∑∑∑∑∑∑其中22232***23222,,i ii ii iiiiW X W XW Y X X Y WWW===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y =-=-=-5.2 对于第三章练习题3.3家庭书刊消费与家庭收入及户主受教育年数关系的分析,进一步作以下分析:1)判断模型123i i i i Y X T u βββ=+++是否存在异方差性。
概率论第五章习题解答(全)
10 ) 1 0.90 n 12
即
(
10 ) 0.95 ,查表得 (1.64) 0.95 n 12
n 443 。
令
10 1.64 ,解得 n 12
即最多可有 443 个数相加,可使得误差总和的绝对值小于 10 的概率不小于 0.90。 4、 设各零件的重量都是随机变量, 它们相互独立, 且服从相同的分布, 其数学期望为 0.5kg, 圴方为 0.1kg,问 5000 只零件的总重量超过 2510kg 的概率是多少? 解 设每只零件的重量为 X i , i 1, 2, ,5000 ,由独立同分布的中心极限定理知
100
i
, 则 X b(100, 0.9) 。 由德莫弗――拉普拉斯定理知,
X 100 0.9 近 100 0.9 0.1
2 10000 i 1
X
i
索赔总金额不超过 2700000 美元的概率
P{ X 2700000} 1` P{ X 270000}
10000
1 P{
X
i 1
i
280 10000
800 100
2700000 2800000 } 80000
10000
1 P{
2 2
X
i 1
16
i
,
于是随机变量
Z
Xi n
i 1
16
2 n
X
i 1
16
i
1600
10000 16
X 1600 近似的服从 N (0,1) 400
P{ X 1920} P{
X 1600 1920 1600 X 1600 } P{ 0.8} 400 400 400 X 1600 1 P{ 0.8} 1 (0.8) = 1 0.7881 0.2119 . 400
第五章定积分习题参考解答
习题5-1 定积分的概念1、利用定积分的几何意义,求下列积分: (1)dx x ⎰-21(2)dx x ⎰--3329解2、估计下列各积分的值:(1)()⎰+ππ4542sin 1dx x (2)⎰-022dx exx3、根据定积分的性质及教材中习题5-1第12题的结论,说明下列各对积分哪一个的值较大: (1)⎰21ln xdx 还是()⎰212ln dx x ?解(1)在区间{1,2}上,由于0ln 1x ≤≤,得()2ln ln x x ≥,因此21ln xdx ⎰比()221ln x dx ⎰大.(2)⎰1dx e x 还是()⎰+11dx x ?解 由于当0x >时()ln 1x x +<,故此时有1xx e +<,因此10x e dx ⎰比()11+x dx ⎰大。
习题5-2 微积分基本公式1、求由参数表达式⎰=t udu x 0sin ,⎰=tudu y 0cos 所确定的函数对x 的导数dxdy.2、求由+⎰y t dt e 00cos 0=⎰x tdt 所确定的隐函数对x 的导数dxdy.3、计算下列各导数:(1) ⎰+2021x dt t dx d ; (2) ()⎰x x dt t dxd cos sin 2cos π. 解 (1)原式=2; (2)原式=()()()()cos sin 222200cos cos sin cos cos cos cos sin x x d t dt t dt x x x x dx ππππ⎡⎤-=--⎢⎥⎣⎦⎰⎰ ()()()()222sin cos sin cos cos sin sin cos cos sin x x x x x x x ππππ=---=-4、 计算下列定积分: (1)⎰-1024x dx; (2)⎰-+++012241133dx x x x ; 解 (1)110arcsin 26x π⎡⎤==⎢⎥⎣⎦⎰(2)42000232211133113arctan 1114x x dx x dx x x x x π---++⎛⎫⎡⎤=+=+=+ ⎪⎣⎦++⎝⎭⎰⎰ (3)⎰42tan πθθd ; (4)⎰π20sin dx x ;解 (3) ()[]2244400tan sec 1tan 14d d ππππθθθθθθ=-=-=-⎰⎰(4)()[][]22200sin sin sin cos cos 4x dx xdx x dx x x πππππππ=+-=-+=⎰⎰⎰(5)⎰20)(dx x f ,其中⎪⎩⎪⎨⎧>≤+=.1,21,1,1)(2x x x x x f 解()11232122010018()12263x x f x dx x dx x dx x ⎡⎤⎛⎫=++=++= ⎪⎢⎥⎣⎦⎝⎭⎰⎰⎰5、求下列极限: ⎰⎰⎪⎭⎫ ⎝⎛→xt xt x dt te dt e 0220022lim .解()222222220020020222limlimlimlim21x x xt x t t x xxx x x x t e dtee dte dtexxe te dt→→→→====⎰⎰⎰⎰6、设⎩⎨⎧∈∈=].2,1[,),1,0[,)(2x x x x x f 求=Φ)(x ⎰x dt t f 0)(在]2,0[上的表达式,并讨论)(x Φ在)2,0(内的连续性.习题5-3 定积分的换元法和分部积分法 1、计算下列各定积分:(1)⎰262ππdu u ; (2))0(0222>-⎰a dx x a x a; 解 (1)()2222666111cos 1cos2sin 222268udu u du u u πππππππ⎡⎤=+=+=-⎢⎥⎣⎦⎰⎰(2)()()4sin 2422220sin cos sin 228x a ua a xa u udu u d u ππ===⎰⎰⎰44422242001sin sin 8442216t ua a a tdt tdt a ππππ====⋅⋅=⎰⎰ 另解()sin 422422220sin cos sin 1sin x a ua xa u udu au u du ===-⎰⎰⎰ππ441312242216a a ⎛⎫=⋅-⋅⋅= ⎪⎝⎭πππ。
七年级数学上册《第五章 生活中的常量与变量》同步练习题及答案(青岛版)
七年级数学上册《第五章生活中的常量与变量》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是( )A.y,t和100都是变量B.100和y都是常量C.y和t是变量D.100和t都是常量2.在圆的周长C=2πr中,常量与变量分别是( )A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.D.2是常量,C、r是变量3.人的身高h随时间t的变化而变化,那么下列说法正确的是( )A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断中,正确的有( )A.1个B.2个C.3个D.4个5.下表是某报纸公布的世界人口数情况:年份1957 1974 1987 1999 2010人口数30亿40亿50亿60亿70亿上表中的变量是( )A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm7.某物体一天中的温度是时间t的函数:T(t)=t3-3t+60,时间单位是小时,温度单位为℃,t=0表示12:00,其后t的取值为正,则上午8时的温度为( )A.8℃B.112℃C.58℃D.18℃8.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a 是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断中,正确的有( )A.1个B.2个C.3个D.4个二、填空题9.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.份数/份 1 2 3 4 …价钱/元…在这个问题中, 是常量;是变量.10.圆柱的高是6cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也随之发生变化.在这个变化过程中,自变量是_____,因变量是_____.11.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=0.12.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,V=0.13.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃0 5 10 15 20声速y/(m/s) 331 334 337 340 343上表中是自变量, 是因变量.照此规律可以发现,当气温x为℃时,声速y达到346 m/s.14.如图,一个四棱柱的底面是一个边长为10 cm的正方形.当它的高变化时,体积也随着变化.(1)若高为h(cm),体积v(cm3),则v与h之间的关系式为 .(2)变量是;常量是 .三、解答题15.已知高度每增加1000米,气温下降6℃,如果某地面气温为22℃(1)分别计算出该地1000米、2000米高空的气温.(2)若h米高空的气温为T,试写出T与h的关系,并指出关系式中的常量和变量.16.一种树苗的高度用h表示,树苗生长的年数用a表示,测得有关数据如下表:(树苗原高100 cm)年数a 高度h/cm1 100+52 100+103 100+154 100+20……(1)试用年数a的代数式表示h;(2)此树苗需多少年就可长到200 cm高?17.一种手机卡的缴费方式为:每月必须缴纳月租费20元,另外每通话1 min要缴费0.2元.(1)如果每月通话时间为x(min),每月缴费y(元),请用含x的代数式表示y.(2)在这个问题中,哪些是常量?哪些是变量?(3)当一个月通话时间为200 min时,应缴费多少元?(4)当某月缴费56元时,此人该月通话时间为多少分钟?18.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.19.在烧水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据: 时间/min 0 2 4 6 8 10 12 14 …温度/℃30 44 58 72 86 100 100 100 …(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?20.父亲告诉小明:“距离地面越高,气温越低.”并给小明出示了下面的表格:距离地面高度/km 0 1 2 3 4 5气温/℃20 14 8 2 -4 -10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?答案1.C2.B3.B4.B5.C6.B7.A8.B9.答案为:0.4;0.8;1.2;1.6;0.4;x,y10.答案为:自变量是:r,因变量是:V.11.答案为:t,V,15.12.答案为:t,V,15.13.答案为:气温;声速;25.14.答案为:v=100h;四棱柱的高、体积,四棱柱的底面边长.15.解:∵离地面距离每升高1 km,气温下降6℃∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T=22﹣6h;(1)把h=1km代入T=22﹣6h=16把h=2km代入T=22﹣6h=22﹣12=10答:该地1000米、2000米高空的气温分别为16℃、10℃;(2)T=22﹣6h,其中22,6是常量,T,h是变量.16.解:(1)由表可知h=100+5a.(2)当h=200 cm时,有200=100+5a,解得a=20.答:此树苗需20年就可长到200 cm高.17.解:(1)每月缴费y(元)与通话时间x(min)的关系式为y=15x+20.(2)在这个问题中,月租费20元和每分钟通话费15元是常量,每月通话时间x(min)与每月缴费y(元)是变量.(3)当x=200时,y=15×200+20=60(元).因此当一个月通话时间为200 min时,应缴费60元.(4)当y=56时,15x+20=56,解得x=180.因此当某月缴费为56元时,此人该月通话时间为180 min.18.解:(1)x,t;y;(2)19.5.19.解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量.(2)水的温度随着时间的增加而增加,到100 ℃时恒定.(3)时间每推移2 min,水的温度增加14 ℃,到10 min时恒定.(4)时间为8 min时,水的温度是86 ℃,时间为9 min时,水的温度是93 ℃.(5)根据表格,时间为16 min和18 min时水的温度均为100 ℃.(6)为了节约能源,应在第10 min后停止烧水.20.解:(1)反映了距离地面高度与气温之间的关系.距离地面高度是自变量,气温是因变量.(2)随着h的升高,t逐渐降低.(3)观察表格,可得距离地面高度每上升1 km,气温下降6 ℃.当距离地面5 km时,气温为-10 ℃,故当距离地面6 km时,气温为-16 ℃.。
《数据结构》第五章习题参考答案
《数据结构》第五章习题参考答案一、判断题(在正确说法的题后括号中打“√”,错误说法的题后括号中打“×”)1、知道一颗树的先序序列和后序序列可唯一确定这颗树。
( ×)2、二叉树的左右子树可任意交换。
(×)3、任何一颗二叉树的叶子节点在先序、中序和后序遍历序列中的相对次序不发生改变。
(√)4、哈夫曼树是带权路径最短的树,路径上权值较大的结点离根较近。
(√)5、用一维数组存储二叉树时,总是以前序遍历顺序存储结点。
( ×)6、完全二叉树中,若一个结点没有左孩子,则它必是叶子结点。
( √)7、一棵树中的叶子数一定等于与其对应的二叉树的叶子数。
(×)8、度为2的树就是二叉树。
(×)二、单项选择题1.具有10个叶结点的二叉树中有( B )个度为2的结点。
A.8 B.9 C.10 D.112.树的后根遍历序列等同于该树对应的二叉树的( B )。
A. 先序序列B. 中序序列C. 后序序列3、二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG 。
该二叉树根的右子树的根是:( C )A. EB. FC. GD. H04、在下述结论中,正确的是( D )。
①具有n个结点的完全二叉树的深度k必为┌log2(n+1)┐;②二叉树的度为2;③二叉树的左右子树可任意交换;④一棵深度为k(k≥1)且有2k-1个结点的二叉树称为满二叉树。
A.①②③B.②③④C.①②④D.①④5、某二叉树的后序遍历序列与先序遍历序列正好相反,则该二叉树一定是( D )。
A.空或只有一个结点B.完全二叉树C.二叉排序树D.高度等于其结点数三、填空题1、对于一棵具有n个结点的二叉树,对应二叉链接表中指针总数为__2n____个,其中___n-1_____个用于指向孩子结点,___n+1___个指针空闲着。
2、一棵深度为k(k≥1)的满二叉树有_____2k-1______个叶子结点。
人工智能教程习题及答案第5章习题参考解答
第五章搜索策略习题参考解答5.1 练习题5.1 什么是搜索?有哪两大类不同的搜索方法?两者的区别是什么?5.2 用状态空间法表示问题时,什么是问题的解?求解过程的本质是什么?什么是最优解?最优解唯一吗?5.3 请写出状态空间图的一般搜索过程。
在搜索过程中OPEN表和CLOSE表的作用分别是什么?有何区别?5.4 什么是盲目搜索?主要有几种盲目搜索策略?5.5 宽度优先搜索与深度优先搜索有何不同?在何种情况下,宽度优先搜索优于深度优先搜索?在何种情况下,深度优先搜索优于宽度优先搜索?5.6 用深度优先搜索和宽度优先搜索分别求图5.10所示的迷宫出路。
图5.10 习题5.6的图5.7 修道士和野人问题。
设有3个修道士和3个野人来到河边,打算用一条船从河的左岸渡到河的右岸去。
但该船每次只能装载两个人,在任何岸边野人的数目都不得超过修道士的人数,否则修道士就会被野人吃掉。
假设野人服从任何一种过河安排,请使用状态空间搜索法,规划一使全部6人安全过河的方案。
(提示:应用状态空间表示和搜索方法时,可用(N m,N c)来表示状态描述,其中N m和N c分别为传教士和野人的人数。
初始状态为(3,3),而可能的中间状态为(0,1),(0,2),(0,3), (1,1),(2,1),(2,2),(3,0),(3,1),(3,2)等。
)5.8 用状态空间搜索法求解农夫、狐狸、鸡、小米问题。
农夫、狐狸、鸡、小米都在一条河的左岸,现在要把它们全部送到右岸去。
农夫有一条船,过河时,除农夫外,船上至多能载狐狸、鸡和小米中的一样。
狐狸要吃鸡,鸡要吃小米,除非农夫在那里。
试规划出一个确保全部安全的过河计划。
(提示:a.用四元组(农夫,狐狸,鸡,米)表示状态,其中每个元素都可为0或1,0表示在左岸,1表示在右岸;b.把每次过河的一种安排作为一个算符,每次过河都必须有农夫,因为只有他可以划船。
)5.9 设有三个大小不等的圆盘A 、B 、C 套在一根轴上,每个圆盘上都标有数字1、2、3、4,并且每个圆盘都可以独立地绕轴做逆时针转动,每次转动90°,初始状态S 0和目标状态S g 如图5.11所示,用宽度优先搜索法和深度优先搜索法求从S 0到S g 的路径。
《电磁场与电磁波》课后习题解答(第五章)
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
北师大版八年级物理上册第五章光现象五物体的颜色练习含答案
五、物体的颜色能力提升1.关于光现象,下列说法正确的是()。
A.用磨砂玻璃作教室的黑板是为了克服漫反射B.看到池子里的水深比实际的浅是由光的折射所致C.雨后天空出现彩虹是由光的反射形成的D.光的色散现象说明彩色光是由白光组成的2.在“人面桃花相映红”这句诗中,用光学知识解释桃花红的原因是()。
A.桃花自己能发出红光B.桃花吸收红光C.桃花反射红光D.以上说法都不对3.广告公司在拍摄水果广告时,为了追求某种艺术效果,在暗室里用红光照射装在白色瓷盘中的红色苹果及黄色香蕉。
站在旁边的摄影师将看到()。
A.苹果呈黑色,瓷盘呈白色,香蕉呈黑色B.苹果呈红色,瓷盘呈黑色,香蕉呈黑色C.苹果呈黑色,瓷盘呈红色,香蕉呈红色D.苹果呈红色,瓷盘呈红色,香蕉呈黑色4.如图5-5-3所示的现象中,属于光的色散现象的是()。
图5-5-35.太阳光经过三棱镜后分解为红、橙、黄、绿、蓝、靛、紫七色光,这种现象叫光的;红、、蓝叫色光的三原色。
6.在光学实验室内,将一辆玩具汽车放置在白色背景板前。
拉上窗帘,打开光源A,让一束白光照向汽车,发现汽车呈现黄色,这是由于汽车(选填“吸收”或“反射”)了黄色光。
若将另外一束红光照向汽车的影子,则影子区域此时呈现色。
图5-5-47.在商店里买布,特别是花布,为了看准颜色,往往把布拿到太阳光下观察,而不是在日光灯下看,这是为什么?探究创新8.小明设计了一个游戏,在一张白纸上画了四个动物的图案,每个动物的颜色如图5-5-5所示。
当小明分别透过红色玻璃纸、蓝色玻璃纸、绿色玻璃纸看白纸上图案时,三次分别看到的是甲、乙、丙三种在所看玻璃纸颜色中的黑色图案,请判断:透过红色玻璃纸看到的是图5-5-6中的图。
图5-5-5图5-5-6参考答案1.B解析:用磨砂玻璃作教室的黑板是为了克服镜面反射,雨后天空出现彩虹是由光的色散形成的,光的色散现象说明白光是由彩色光组成的。
2.C解析:不透明物体的颜色是由它反射的色光颜色决定的。
人工智能教程习题及答案第5章习题参考解答
第五章搜索策略习题参考解答5.1 练习题5.1 什么是搜索?有哪两大类不同的搜索方法?两者的区别是什么?5.2 用状态空间法表示问题时,什么是问题的解?求解过程的本质是什么?什么是最优解?最优解唯一吗?5.3 请写出状态空间图的一般搜索过程。
在搜索过程中OPEN表和CLOSE表的作用分别是什么?有何区别?5.4 什么是盲目搜索?主要有几种盲目搜索策略?5.5 宽度优先搜索与深度优先搜索有何不同?在何种情况下,宽度优先搜索优于深度优先搜索?在何种情况下,深度优先搜索优于宽度优先搜索?5.6 用深度优先搜索和宽度优先搜索分别求图5.10所示的迷宫出路。
图5.10 习题5.6的图5.7 修道士和野人问题。
设有3个修道士和3个野人来到河边,打算用一条船从河的左岸渡到河的右岸去。
但该船每次只能装载两个人,在任何岸边野人的数目都不得超过修道士的人数,否则修道士就会被野人吃掉。
假设野人服从任何一种过河安排,请使用状态空间搜索法,规划一使全部6人安全过河的方案。
(提示:应用状态空间表示和搜索方法时,可用(N m,N c)来表示状态描述,其中N m和N c分别为传教士和野人的人数。
初始状态为(3,3),而可能的中间状态为(0,1),(0,2),(0,3), (1,1),(2,1),(2,2),(3,0),(3,1),(3,2)等。
)5.8 用状态空间搜索法求解农夫、狐狸、鸡、小米问题。
农夫、狐狸、鸡、小米都在一条河的左岸,现在要把它们全部送到右岸去。
农夫有一条船,过河时,除农夫外,船上至多能载狐狸、鸡和小米中的一样。
狐狸要吃鸡,鸡要吃小米,除非农夫在那里。
试规划出一个确保全部安全的过河计划。
(提示:a.用四元组(农夫,狐狸,鸡,米)表示状态,其中每个元素都可为0或1,0表示在左岸,1表示在右岸;b.把每次过河的一种安排作为一个算符,每次过河都必须有农夫,因为只有他可以划船。
)5.9 设有三个大小不等的圆盘A 、B 、C 套在一根轴上,每个圆盘上都标有数字1、2、3、4,并且每个圆盘都可以独立地绕轴做逆时针转动,每次转动90°,初始状态S 0和目标状态S g 如图5.11所示,用宽度优先搜索法和深度优先搜索法求从S 0到S g 的路径。
人教版七年级下第五章同位角、内错角、同旁内角同步练习题含解析
故答案为三.
20.图1中同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.;图2中同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.
【分析】根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.
17.指出图中各对角的位置关系:
(1)∠C和∠D是_____角;
(2)∠B和∠GEF是____角;
(3)∠A和∠D是____角;
(4)∠AGE和∠BGE是____角;
(5)∠CFD和∠AFB是____角.
18.如图,直线AB,CD被直线EF所截,如果∠2=100°,那么∠1的同位角等于____度.
19.平面内四条直线共有三个交点,则这四条直线中最多有________条平行线.
【详解】解:∵题目并未告诉,∠1和∠2是属于两条平行线被截的同旁内角,
∴∠2的度数大小不能确定,
故选D.
【点睛】本题主要考查了同旁内角的定义,解题的关键在于能够熟练掌握相关知识进行求解.
9.C
【分析】根据对顶角、邻补角、同位角、内错角的定义分别分析即可.
【详解】解:A、∠1与∠2是邻补角,故原题说法错误;
内错角有2对,它们是 与 , 与 ;
同旁内角有2对,它们是 与 , 与 ;
对顶角有4对,它们是 与 , 与 , 与 , 与 .
故答案为:4; 与 , 与 , 与 , 与 ;2; 与 , 与 ;2; 与 , 与 ;4; 与 , 与 , 与 , 与
第5章部分习题参考解答
μ 0ε 0
其实,观察题目给定的电场表达式,可知它表征一个沿 + x 方向传播的均匀平面 ω 109 波,其相速为 vp = = = 2 ×108 m/s k 5 1 1 1 1 1 而 vp = = = = × 3 × 108
με
μ 0ε r ε 0
εr
μ 0ε 0
εr
3 故 ε r = ( ) 2 = 2.25 2
G G 5.1 在自由空间中,已知电场 E ( z , t ) = ey 103 sin(ωt − β z ) V/m ,试求磁场强度 G H ( z, t ) 。 解:以余弦为基准,重新写出已知的电场表示式 G π G E ( z , t ) = ey 103 cos(ωt − β z − ) V/m 2 这是一个沿 + z 方向传播的均匀平面波的电场,其初相角为 −90D 。与之相伴的磁 场为 G 1 G G 1 G G π H ( z , t ) = ez × E ( z , t ) = ez × ey 103 cos(ωt − β z − ) η0 η0 2
无损耗媒质中的波阻抗为
9 4
G E E 50 η= G = m = = 500 Ω H H m 0.1
又由于
η=
故
μ r μ0 μr = η0 ε rε 0 εr
(2)
μr η 500 2 ) = ( )2 = ( ε r η0 377
联立式(1)和式(2),得
μr = 1.99 , ε r = 1.13 5.8 在自由空间中,一均匀平面波的相位常数为 β 0 = 0.524 rad/m ,当该波进入到 理想介质后,其相位常数变为 β = 1.81 rad/m 。设该理想介质的 μr = 1 ,试求该理
初二物理第五章练习题及解析
初二物理第五章练习题及解析一、选择题1. 下列关于电流方向和电子流动方向的描述中,正确的是:A. 电子流动的方向和电流的方向一致B. 电子流动的方向和电流的方向相反C. 电子流动的方向和电流无关D. 电子流动的方向和电流的方向不确定解析:B2. 以下哪个选项中,元件的电阻最大:A. 火线B. 零线C. 导线D. 电器设备解析:C3. 电阻为10欧姆的电阻器通过电压为5伏的电源,求通过电阻器的电流大小是多少?A. 0.5安培B. 5安培C. 50安培D. 500安培解析:A4. 当连接一台200V的电视机时,使用的是电压降为110V的变压器,求变压器的变比是多少?A. 0.55B. 1.82C. 1.8D. 0.56解析:D5. 下图中的电子元件是什么?图略A. 电阻器B. 开关C. 变压器D. 电容器解析:B二、填空题1. 下图中电流表的示数是______安。
图略解析:42. 电源电压为6V,通过电阻为2欧姆的电阻器,通过电阻的电流是______安。
解析:33. 在闭合电路中,电源的作用是提供电流的______。
解析:驱动力4. 电流强度的单位是______。
解析:安培5. 电流的方向是根据电子流动的______来确定的。
解析:阴极到阳极的方向三、解答题1. 请解释电流的定义,并给出电流的计量单位。
解析:电流是指单位时间内电荷通过导体的数量。
它的计量单位是安培(A)。
2. 现有一个电路,其中一个电阻为2欧姆,另一个电阻为4欧姆,两个电阻依次连接在6伏的电源上,请计算两个电阻中的电流强度。
解析:根据欧姆定律,电流强度等于电压除以电阻,所以第一个电阻的电流强度为6V/2Ω = 3A,第二个电阻的电流强度为6V/4Ω = 1.5A。
3. 请简述电压的定义,并给出电压的计量单位。
解析:电压是指单位电荷在电场中的势能差。
它的计量单位是伏特(V)。
4. 现有一个电路,电压为12V,电阻为8欧姆,请计算通过该电阻的电流强度。
八年级上册科学《物理》第五章透镜练习题(含答案)
第五章透镜练习题1.如果把一个玻璃球分割成五块,其截面如图所示,再将这五块玻璃a、b、c、d、e分别放在太阳光下,那么能使光发散的是()A.aB.bC.cD.d2.下列关于透镜光学性质的说法正确的是()A.凡是过光心的光,其传播方向都不变B.经透镜后其光是发散的,该透镜肯定是凹透镜C.经透镜后其光是会聚的,该透镜肯定是凸透镜D.以上说法都正确3.一块长方体玻璃砖内有一个呈双凸面(球面)的空气泡,可以看作透镜.一束平行光束按如图所示方式射向气泡,则这束平行光将()A.穿过气泡后仍保持平行B.穿过气泡后会聚C.穿过气泡后发散D.不能穿过气泡,全部被反射4.在如图所示的光路图中,正确的是()5.张家界因山而著名,吸引许多中外游客来旅游,有少数游客在山上游玩时将空纯净水瓶扔在山上,这样做既污染了环境,同时还可能引起山林火灾.这是因为当下雨时纯净水瓶装入水后,就相当于一个透镜.晴天强太阳光照射它时,它对光会产生作用,可能会引起枯叶着火.因此我们在山中游玩时一定要注意保护环境.6.晴朗的夏日中午,往树或花的叶子上浇水,常会把叶子烧焦,其原因是这时叶面上的水珠相当于,它对光起作用,使透过它的光可能而将叶子烧焦.7.往试管里注入清水,用橡皮塞堵住管口,留一稍大的空气泡.让阳光垂直照射试管,发现阳光透过空气泡在白纸上形成一橄榄状的暗影,如图所示,原因是,用掌握的物理知识分析,阳光透过试管的其他部分,呈现在白纸上的是.8.给你一个透镜,不知道是凸透镜还是凹透镜,请你简要写出两种判断方法.(1).(2).9.如图所示,可以利用不同的光学元件来改变入射光线OA的传播方向.请在图中分别画出两种合适的光学元件(只要求画出光学元件大致位置的示意图,但须与光学规律相符)10.小明有3个凸透镜,它们用同种材料制成,形状如图所示.(1)你猜想它们的焦距是否相同?如果不同,你认为哪个焦距大?哪个焦距小?(2)请设计实验证明你的猜想:简要写出实验步骤,画出记录实验数据的表格.(3)小明根据实验观察画出的三组光路图如图所示.根据这个实验记录,你可以得到什么结论?答案:1.B使光线发散,这是凹透镜对光线的作用,而凹透镜的形状是中间薄、边缘厚.2.A凸透镜对光线起会聚作用,凹透镜对光线起发散作用.会聚是指入射光线经透镜折射后,更靠近主光轴,但折射光线可能是会聚的,也可能是发散的.发散是指入射光线经透镜折射后更远离主光轴,但折射光线可能是会聚的,也可能是发散的.3.C在玻璃砖内部的双凸空气泡,易错误地认为是一个凸透镜.用切割法将玻璃砖在气泡处左右拉开一段距离,有气泡的玻璃砖等效为两个玻璃做成的凹透镜.根据凹透镜对光线的发散作用知,平行光先被右侧凹透镜发散,再被左侧凹透镜发散,最终会发散射出玻璃砖,故选C.4.A平行于主光轴的光线经凸透镜折射后将过另一侧的焦点,故A正确;凸透镜对光线有会聚作用,即折射光线偏近主光轴,但B图中光线远离主光轴,故B错误;凹透镜对光线有发散作用,即折射光线偏离主光轴,但C、D图中光线都靠近了主光轴,故C、D错误.5.解析:装入水的纯净水瓶能透光,并且中间厚、边缘薄,此时就是一个水凸透镜,在一些特定的条件下,会因为会聚的阳光恰好使易燃物因温度升高而燃烧,发生火灾.答案:凸;会聚.6.解析:叶面上的水珠相当于凸透镜,它对光起会聚作用,使透过它的光可能会聚于一点而将叶子烧焦.答案:凸透镜;会聚;会聚于一点.7.解析:用作图法分析:画出玻璃管空气泡处截面图和没有水处的剖面图如图所示.可知有空气泡处相当于凹透镜,凹透镜对光线有发散作用,阳光通过这部分后会形成一片阴影区;没有气泡的玻璃管相当于凸透镜,阳光通过凸透镜后会聚于一处,通过试管后会出现一条与试管平行的亮线.答案:空气泡下的水相当于一凹透镜,对光线起发散作用;一条与试管平行的亮线.8.答案:(1)利用透镜的形状进行判断:用手去摸,中间厚、两边薄的是凸透镜;(2)利用透镜对平行光的作用进行判断:让透镜对着太阳光(或平行光源)移动,能会聚光线的是凸透镜,反之是凹透镜.9.解析:可选用平面镜、凸透镜、凹透镜.在选用平面镜时要注意反射角和入射角相等;凸透镜、凹透镜要注意画出主光轴.答案:如图所示(画出两种即可).10.解析:要证明自己的猜想,关键在于测出三个凸透镜的焦距进行比较.测定凸透镜焦点最简单的方法,就是让太阳光平行于主光轴通过凸透镜会聚于一点.答案:(1)不相同;A的焦距最大,C的焦距最小.(2)分别测出3个凸透镜的焦距,具体方法是让凸透镜正对太阳光,在透过阳光的一侧前后移动白纸,直到白纸上出现一个小亮点(焦点),用刻度尺测量焦点到凸透镜光心的距离,就是凸透镜的焦距.比较3个凸透镜焦距的大小,看猜想是否正确.记录数据的表格见下表.(3)同种材料制成的凸透镜,表面越凸,焦距越小(表面越扁平,焦距越大).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章练习题及参考解答 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
【练习题参考解答】(1)因为22()i i f X X =,所以取221i iW X =,用2i W 乘给定模型两端,得 312322221i i iii i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=--()()()()()()()***2****22232322322*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x W xW xW x xβ-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x WxWxWx xβ-=-∑∑∑∑∑∑∑其中22232***23222,,i ii ii i iiiW X W XW Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y =-=-=-对于第三章练习题家庭书刊消费与家庭收入及户主受教育年数关系的分析,进一步作以下分析:1)判断模型123i i i i Y X T u βββ=+++是否存在异方差性。
2。
如果模型存在异方差性,应怎样去估计其参数3)对比分析的结果,你对第三章练习题的结论有什么评价 【练习题参考解答】 建议学生自己独立完成表是2007年我国各地区农村居民家庭人均纯收入与家庭人均生活消费支出的数据数据来源: 中国统计年鉴2008(1)试根据上述数据建立2007年我国农村居民家庭人均消费支出对人均纯收入的线性回归模型。
(2)选用适当方法检验模型是否在异方差,并说明存在异方差的理由。
(3)如果存在异方差,用适当方法加以修正。
【练习题参考解答】解: (1)建立样本回归函数。
ˆ179.1916+0.7195YX = ()()20.895260, F=247.8769R=(2)利用White 方法检验异方差,则White 检验结果见下表:Heteroskedasticity Test: WhiteF-statistic Prob. F(2,28)Obs*R-squared Prob. Chi-Square(2) Scaled explained SSProb. Chi-Square(2)由上述结果可知,该模型存在异方差。
分析该模型存在异方差的理由是,从数据可以看出,一是截面数据;二是各省市经济发展不平衡,使得一些省市农村居民收入高出其它省市很多,如上海市、北京市、天津市和浙江省等。
而有的省就很低,如甘肃省、贵州省、云南省和陕西省等。
(3)用加权最小二乘法修正异方差,分别选择权数2111,2,3w w w X X X===,经过试算,认为用权数3w 的效果最好。
结果如下:结果为2ˆ787.28470.5615(4.5325)(10.0747)0.7778,101.4992YX R F =+==表的数据是2011年各地区建筑业总产值(X)和建筑业企业利润总额(Y)。
表各地区建筑业总产值(X)和建筑业企业利润总额(Y)(单位:亿元)数据来源:国家统计局网站根据样本资料建立回归模型,分析建筑业企业利润总额与建筑业总产值的关系,并判断模型是否存在异方差,如果有异方差,选用最简单的方法加以修正。
【练习题参考解答】建议学生自己独立完成为研究居民收入与交通通讯消费支出的关系,取得了2005年中国各省市区城镇居民人均年可支配收入(X)与人均年交通通讯消费支出(Y)的数据:表 2005年中国各省市区城镇居民人均可支配收入与交通通讯消费支出(单位:元)江苏西藏浙江陕西安徽甘肃福建青海江西宁夏山东新疆河南问题。
2.用两种以上的方法检验模型是否存在异方差性。
【练习题参考解答】1.回归结果2.检验异方差性1)Goldfeld-Quanadt检验将样本数据X递增排序: “Procs/Sort Series/输入”X”/Ascending/ok,去掉中间7个数据, 分为”1-12”和”20-31”两个样本分别回归样本区间1-12的回归2152031.04ie=∑211070530ie=∑F统计量:222110705302.0666552031.04iieFe===∑∑0.05α=,查F分布表0.05(10,10) 2.98F=0.052.06665(10,10) 2.98F F=<=,表明不存在异方差2)White检验:点Wiew/Residual Tests/white heteroskedasticity(no cross terms)结果为220.051.54193(2) 5.9915nRχ==由于220.051.54193(2) 5.9915nRχ=<=,同时p值为,表明无异方差性表为1978年—2011年四川省农村人均纯收入、人均生活费支出、商品零售价格指数的数据。
时间农村人均纯收入X/元农村人均生活消费支出Y/元商品零售价格指数时间农村人均纯收入X/元农村人均生活消费支出Y/元商品零售价格指数1978 19951979 19961980 19971981 19981982 19991983 20001984 20011985 20021986 20031987 20041988 20051989 20061990 20071991 20081992 20091993 2010资料来源:中经网统计数据库1) 如果不考虑价格变动因素,建立回归模型并检验是否存在异方差,如果存在异方差,选用适当方法进行修正。
2)如果考虑价格变动因素,对异方差性的修正应该怎样进行3)对比以上两个回归模型,你有什么体会【练习题参考解答】 建议学生自己独立完成检验异方差性的基本思想,是检验随机误差项的方差与某解释变量X 的变动是否相关。
统计学中的Spearman 等级相关系数也可以度量变量间的相关性,是否能够利用Spearman 等级相关系数去检验随机误差项的方差(可用残差的绝对值代表)与解释变量X 是否存在异方差性呢如果可以,用Spearman 等级相关系数检验本章案例中是否存在异方差,并将其检验结果与其他检验方法相比较。
【练习题参考解答】Spearman 检验计算公式为216(1)is dr n n =--∑其中,i d 为第i 个现象的两种不同特性样本的等级之差,n 为观测现象的等级个数。
设模型为12i i i Y X u ββ=++,用Spearman 检验检验异方差的步骤如下 1) 做Y 对X 的回归,得到残差e 。
2) 求残差e的绝对值e ,将X 按递升或递降划分等级并与e 对应的等级相减,即得到i d 。
3) 将i d 和n 代入计算s r ,根据相关系数的变动范围,可初步判断是否存在异方差。
4)在0:0H ρ=(ρ为总体等级相关系数)成立下,并且8n >,s r 的显著性可通过如下服从自由度为2n -的t 分布的统计量得到检验,即t =。
给定显著性水平α,查t 分布表,得临界值2(2)t n α-,若2(2)t t n α>-,则拒绝原假设,说明序列存在异方差。
否则接受原假设,说明不存在异方差。
由本章案例回归估计后得到残差序列i e ,取i e 的绝对值i e 并得到其等级数。
同样,将解释变量X 取等级数。
计算对应的i e 的等级数与X 的等级数之差i d ,将其平方得到2i d 。
具体计算结果见下表。
等级相关系数检验2i d 的计算结果将表中计算的2i d 代入公式,计算得0.9815s r =。
根据相关系数的规则,可判断i e 与解释变量X 高度相关,所以,初步认为模型存在异方差。
进一步,将有关数据代入计算得31.4272t =,给定显著性水平0.05α=,查t 分布表得临界值0.025(19) 2.093t =。
比较t值与临界值,显然,0.02531.4272(19) 2.093t t =>=,所以,拒绝原假设,表明该模型确实存在异方差。
检验结果与其他检验方法一致。