VM双闭环直流调速系统课程设计报告
双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告
实验目的:
1. 理解双闭环不可逆直流调速系统的原理和特点。
3. 熟悉实验设备的使用和实验过程。
实验原理:
双闭环不可逆直流调速系统由速度环和电流环两个闭环组成,其基本原理如下:
1. 速度环控制
在速度环内部,输入为期望转速,输出为电压控制器的输出信号。
速度环主要根据实
际转速和期望转速之间的差异,计算出电压控制器的控制量,并根据电压控制器的输出改
变电机的电压,以达到调速的目的。
实验步骤:
1. 准备实验设备:电机、电压变压器、电流反馈电阻、示波器、信号源、功率放大器、控制器等。
2. 按照实验原理中的模型,建立电机的电压-转速模型和电机的电流-转矩模型。
3. 根据模型,编写控制算法。
4. 将实验设备连接好,将模型和算法输入控制器。
5. 设置期望转速和电流控制量,并启动电机。
6. 分析实验结果,评估控制系统的性能。
实验结果:
本次实验中,我们成功建立了双闭环不可逆直流调速系统的模型,并利用控制器实现
了系统的控制。
我们通过改变期望转速和电流控制量,观察了系统的实际转速和转矩变化。
实验结果表明,双闭环控制系统的性能稳定,具有较好的调速性能和响应速度。
结论:。
(完整)VM双闭环不可逆直流调速系统

《自动控制系统》课程设计姓名:学号:指导教师:题目名称: V—M双闭环不可逆直流调速系统设计专业名称:所在学院:时间:一主电路选型和闭环系统的组成1。
1双闭环直流调速系统的组成与原理双闭环直流调速系统的组成和原理如图2。
1所示其中包括了三相全空整流电路、调节器、(ASR、ACR)和电动机等。
该方案主要由给定环节、ASR、ACR、触发器和整流装置环节、速度检测环节以及电流检测环节组成.为了使转速负反馈和电流负反馈分别起作用,系统设置了电流调节器ACR和转速调节器ASR.电流调节器ACR和电流检测反馈回路构成了电流环;转速调节器ASR和转速检测反馈回路构成转速环,称为双闭环调速系统。
因转速换包围电流环,故称电流环为内环,转速环为外环。
在电路中,ASR和ACR串联,即把ASR的输出当做ACR的输入,再由ACR得输出去控制晶闸管整流器的触发器。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用具有输入输出限幅功能的PI调节器,且转速和电流都采用负反馈闭环.该方案的原理框图如图所示。
1.2设计要求1。
直流他励电动机:功率Pe =22KW ,额定电压Ue=220V ,额定电流Ie=116A ,磁极对数P=2,Ne=1500r/min ,励磁电压220V,电枢绕组电阻Re=0.112Ω,主电路总电阻R =0.32Ω,L ∑=37.22mH (电枢电感、平波电感和变压器电感之和),电磁系数Ce=0。
138 Vmin /r ,K s =22,电磁时间常数T L =0.116s,机电时间常数Tm=0.157s,滤波时间常数T on =Tci=0。
00235s,β=0。
67V/A,α=0.007Vmin/v,过载倍数λ=1。
5,速度给定最大值 10V U n =*电流给定最大电压值10V ,速度给定最大电压值10V 。
2.稳态无静差,电流超调量σi %≤5%;空载起动到额定转速时的 转速超调σe %≤10%。
双闭环直流调速实验报告

双闭环直流调速实验报告双闭环直流调速实验报告引言:直流电机作为一种常见的电动机类型,广泛应用于工业生产和日常生活中。
为了提高直流电机的调速性能,双闭环直流调速系统应运而生。
本实验旨在通过搭建双闭环直流调速系统,对其性能进行测试和评估。
一、实验目的本实验的主要目的是研究和掌握双闭环直流调速系统的工作原理和性能特点,具体包括以下几个方面:1. 了解双闭环直流调速系统的组成和工作原理;2. 掌握双闭环直流调速系统的参数调节方法;3. 测试和评估双闭环直流调速系统的调速性能。
二、实验原理双闭环直流调速系统由速度环和电流环组成,其中速度环负责控制电机的转速,电流环负责控制电机的电流。
具体工作原理如下:1. 速度环:速度环通过测量电机的转速,与给定的转速进行比较,计算出转速误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电流环。
2. 电流环:电流环通过测量电机的电流,与速度环输出的控制信号进行比较,计算出电流误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电机。
三、实验步骤1. 搭建实验平台:将直流电机与电机驱动器连接,并将驱动器与控制器相连。
2. 参数设置:根据实验要求,设置速度环和电流环的PID参数。
3. 测试电机转速:给定一个转速值,观察电机的实际转速是否与给定值一致。
4. 测试电机负载:通过改变电机负载,观察电机的转速是否能够稳定在给定值附近。
5. 测试电机响应时间:通过改变给定转速,观察电机的响应时间,并记录下来。
6. 测试电流控制性能:通过改变电机负载,观察电机电流的变化情况,并记录下来。
四、实验结果与分析1. 电机转速测试结果表明,双闭环直流调速系统能够准确控制电机的转速,实际转速与给定值之间的误差较小。
2. 电机负载测试结果表明,双闭环直流调速系统能够在不同负载下保持电机的转速稳定,具有较好的负载适应性。
3. 电机响应时间测试结果表明,双闭环直流调速系统的响应时间较短,能够快速响应给定转速的变化。
V-M双闭环不可逆直流调速系统设计报告(含电气原理图)

双闭环直流调速系统课程设计报告摘要:本设计是一个双闭环不可逆直流调速系统,采用了晶闸管---直流调速装置来调节直流电动机的转速。
采用晶闸管的好处是能使该直流电动机进行连续平滑的调速,且具有较宽地转速调速范围(D≥10)。
此装置有可靠的过电压过电流保护措施,该调速装置在5%负载以上变化的运行范围内工作时,晶闸管的输出电流连续,并且具有良好的静特性与动态性能。
关键词:双闭环晶闸管转速调节器电流调节器第1章主电路各器件的选择和计算1.1 变流变压器容量的计算和选择在一般情况下,晶闸管装置所要求的交流供电电压与电网电压往往不一致;此外,为了尽量减小电网与晶闸管装置的相互干扰,要求它们相互隔离,故通常要配用整流变压器,这里选项用的变压器的一次侧绕组采用△联接,二次侧绕组采用Y联接。
S为整流变压器的总容量,S为变压器一次侧的容量,1U为一次侧电压,I为一次侧电流, 2S为变压器二次侧的容量,2U为二次侧电压,1I为二次侧的电流,1m、2m为相数,以下就是各量的推导和计算过程。
2为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压U只能在一个较小的范围内变化,2为此必须精确计算整流变压器次级电压U。
2影响2U 值的因素有:(1)2U 值的大小首先要保证满足负载所需求的最大电流值的max d I 。
(2)晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用T V 表示。
(3)变压器漏抗的存在会产生换相压降。
(4)平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降。
(5)电枢电阻的压降。
综合以上因素得到的2U 精确表达式为:max 2max [1(1)]%[]100d N a T d d K d I U r nU I U I CU A B I ε+-+=-⋅ (4-1)式中 20U U A d =表示当控制角00α=时,整流电压平均值与变压器次级相电压有效值之比;d d U U B α=表示控制角为α时和00α=时整流电压平均值之比; C 是与整流主电路形式有关的系数;%K U 为变压器的短路电压百分比,100千伏安以下的变压器取5%=K U ,100~1000千伏安的变压器取%510K U =~;ε为电网电压波动系数。
双闭环直流调速系统的课程设计报告

课 题:双闭环直流调速系统 班 级:电气工程及其自动化1004 学 号:3100501091 姓 名:贾斌彬 指导老师:康梅、乔薇 日 期:2014年1月9日电 力 传 动 课 程 设 计目录第1章系统方案设计1.1 任务摘要 (3)1.2 任务分析 (3)1.3设计目的、意义 (3)1.4 方案设计 (4)第2章晶闸管直流调速系统参数和环节特性的测定2.1 电枢回路电阻R的测定 (5)2.2主电路电磁时间常数的测定 (6)2.3系统机电时间常数TM的测定 (7)2.4测速电机特性UTG=f(n)的测定 (7)2.5晶闸管触发及整流装置特性Ug=f(Ug)的测定 (7)第3章双闭环调速系统调节器的设计3.1 电流调节器的设计 (7)3.2 转速调节器的设计 (9)第4章系统特性测试4.1系统突加给定 (11)4.2系统突撤给定 (11)4.2.2突加负载时 (11)4.2.3突降负载时 (11)第5章设计体会第1章系统方案设计1.1 设计一个双闭环晶闸管不可逆调速系统设计要求:电流超调σi≤5%转速超调σn≤10%静态特性无静差给定参数:电机额定功率185W额定转速1600r/min额定励磁电流<0.16A额定电流1.1A额定电压220V额定励磁电压220V转速反馈系数ɑ=0.004 V·min/r电流反馈系数β=6V/A1.2 任务分析采用转速、电流双闭环晶闸管不可逆直流调速系统为对像来设计直流电动机调速控制电路,为了实现转速和电流两种负反馈分别起作用,可在系统中设计两个调节器,电流调节器和速度调节器,为了实现电流和转速分别起作用,二者之间实行串级连接,即把转速调节器的输出当做电流调节器的输入,在把电流调节器的输出去控制晶闸管整流器的触发装置。
该双闭环调速系统的两个调节器ASR和ACR都采用PI调节器,以便能保证系统获得良好的静态和动态性能转速调节器在双闭环直流调速系统中的作用是减小转速误差,采用PI调节器可实现无静差;对负载变化起抗扰作用;其输出限幅决定电动机允许的最大电流;电流调节器在双闭环直流调速系统中的作用是使电流紧紧跟随其给定电压的变化;对电网的波动起及时抗干扰作用;加快动态过程;堵转或过载时起快速自动保护作用。
双闭环直流调速系统的课程设计

双闭环直流调速系统的课程设计————————————————————————————————作者:————————————————————————————————日期:自动控制原理课程设计——双闭环直流调速系统课程设计班级电气自动化二班姓名程传伦学号110101225指导教师张琦2013年6月10日目录摘要第1章系统方案设计1.1 任务分析1。
2 方案比较论证1.3 系统方案确定第2章系统主电路设计及参数计算2。
1 主电路结构设计与确定2.2 主电路器件选择与计算2.2.1 整流变压器的参数计算和选择2.2.2 整流元件晶闸管的选型2.3 电抗器的设计2.4 主电路保护电路的设计2.4.1 过压保护设计2。
4.2 过流保护设计第3章双闭环调节系统调节器的设计3.1 电流调节器的设计3.2转速调节器的设计小结心得体会参考文献摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的.该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流.并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
第1章系统方案设计1。
1 任务分析本课题所涉及的调速方案本质上是改变电枢电压调速。
该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案.但电机的开环运行性能远远不能满足要求.按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。
双闭环直流调速系统课程设计(matlab仿真设计)

Hefei University电子信息与电气工程系自动化专业控制系统数字仿真与CAD课程报告课题:直流电动机双闭环调速系统仿真班级:08自动化(1)班*名:**0805070073朱彤0805070068李方舟0805070053指导老师:***摘要:双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。
它具有动态响应快、抗干扰能力强的优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
对最常用的转速、电流双闭环调速系统的工程设计方法进行了详细的推导。
然后采用Matlab/Simulink方法对实际系统进行仿真,找出推导过程被忽略的细节部分对调速系统的影响,给出工程设计和实际系统之间产生差距的原因,有助于在实际中设计出较优的系统。
关键词:直流电机调速系统仿真MatlabAbstract: Double closed loop ( speed loop, current loop DC speed control system ) is a kind of current application is wide, economic, applicable power transmission system.The paper presents the derive ationof engineering design methods in the speed regulation system of speed and current double closed loop in details. Then,a demo is designed and simulated by Matlab/Simulink to study the influence resulted from the details of the derivation,which has been ignored in the speed regulation system. The reason of difference between the engineeringdesign and the real conditions is given to help working out theoptimaldesigninpractice. Keywords: DC motor Speed regulation system Simulation Matlab一、双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。
双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
正文V-M双闭环直流可逆调速系统设计

V-M双闭环直流可逆调速系统设计1设计任务及要求1.1设计任务设计任务:设计V-M双闭环直流可逆调速系统(1)技术数据直流电动机:PN=3KW ,UN=220V,IN=17.5A,nN=1500r/min ; Ra=1.25Ω堵转电流Idbl=2IN,截止电流Idcr=1.5IN,GD2=3.53N.m2。
三相全控整流装置:Ks=40 , Rrec=1. 3Ω。
平波电抗器:RL=0. 3Ω。
电枢回路总电阻 R=2.85Ω,总电感L=200mH。
电动势系数: (Ce= 0.132V.min/r)。
系统主电路:(Tm=0.16s ,Tl=0.07s)。
滤波时间常数:Toi=0.002s , Ton=0.01s。
其他参数:Unm*=10V , Uim*=10V , Ucm=10V ,σi≤5% , σn≤10。
(2)技术指标稳态指标:无静差(静差率s≤10%, 调速范围 D≥20 )。
动态指标:转速超调量δn≤10%,电流超调量δi≤5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)ts≤0.5s。
(3)根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图。
调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)。
(4)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。
绘制V-M双闭环直流可逆调速系统的电气原理总图。
1.2设计要求(1)该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥20),系统在工作范围内能稳定工作。
系统静特性良好,无静差(静差率s≤10%)。
动态性能指标:转速超调量δn<10%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)ts≤0.5s。
V—M双闭环直流调速系统

摘要:直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。
本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。
此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。
该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
关键词: 直流电机 晶闸管 直流调速系统 ACR ASR 双闭环系统一、设计题目V —M 双闭环直流调速系统二、目的意义:本课程设计是自动化专业学生在学完专业课程“拖动控制系统”之后进行的一个实践性教学环节。
通过此环节,使学生能结合已完成的基础课、技术基础课和部分专业课对“拖动控制系统”课程的主要内容进行较为综合的实际运用,进一步培养学生应用已学到的理论知识来解决实际工程设计问题,并为毕业设计奠定基础。
双闭环拖动控制系统是工业生产中重要的拖动控制系统,应用很广泛,也是其他复杂控制的基础。
本专业学生应充分掌握双闭环控制系统的结构、系统构成、设备及器件选择、参数整定计算以及绘制系统电路原理图等内容,并且初步掌握设计的方法和步骤,同时增强独立查阅资料、分析问题和解决问题的能力以及刻苦钻研的工作作风。
本设计以直流电动机为被控对象,设计一套双闭环无静差拖动控制系统。
三、电动机参数和设计要求直流电动机参数:KWP N 28=,VU N 220=,AI N 136=,min/1460r n N =,Ω=2.0a R 。
双闭环直流调速系统(课程设计)

4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
V-M双闭环不可逆直流调速系统设计课程设计

内容摘要双闭环直流调速系统即速度和电流双环直流调速系统,是由单闭环直流调速系统发展起来的,调速系统使用比例积分调节器,可以实现转速的无静差调速。
又采用电流截止负载环节,限制了起(制)动时的最大电流。
这对一般的要求不太高的调速系统,基本上已经能满足要求。
但是由于电流截止负反馈限制了最大电流,加上电动机反电势随着转速的上升而增加,使电流到达最大值后迅速降下来,这样,电动机的转矩也减小了,使起动加速过程变慢,起动的时间久比较长。
在这些系统中为了尽快缩短过渡时间,所以就希望能够充分利用晶闸管元件和电动机所允许的过载能力,使起动的电流保护在最大允许值上,电动机输出最大转矩,从而转速可直线迅速上升,使过渡过程的时间大大的缩短。
另一方面,在一个调节器的输出端综合几个信号,各个参数互相调节比较困难。
为了克服这一缺点就应用转速,电流双环直流调速系统。
关键词:双闭环直流调速系统 MATLAB第一章设计任务书一.题目:V-M双闭环不可逆直流调速系统设计二.技术要求1.该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作2.系统静特性良好,无静差(静差率s≤0.2)3.动态性能指标:转速超调量δn <8%,电流超调量δi<5%,动态Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s 4.系统在5%负载以上变化的运行范围内电流连续5.调速系统中设置有过电压、过电流等保护,并且有制动措施三.设计内容1.根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图2.调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)3.驱动控制电路的选型设计(模拟触发电路、集成触发电路、数字触发器电路均可)4.动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求5.绘制V-M双闭环直流不可逆调速系统的电气原理总图(要求计算机绘图) 6.整理设计数据资料,课程设计总结,撰写设计计算说明书四.技术数据晶闸管整流装置:Rrec =0.032ΩΩ,Ks=45-48。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V M双闭环直流调速系统课程设计报告This model paper was revised by LINDA on December 15, 2012.实训报告课程名称:专业实训专业:班级:学号:姓名:指导教师:成绩:完成日期: 2015 年 1月15 日任务书1 单闭环直流调速系统主电路设计单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。
在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压U f 与给定电压U d 比较后,得偏差电压ΔU ,经放大器FD ,产生触发装置CF 的控制电压U k ,用以控制电动机的转速,如图所示。
图 单闭环直流调速系统原理框图直流电机,额定电压20V ,额定电流7A,励磁电压20V ,最大允许电流40A 。
整流变压器额定参数的计算为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压U 2只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U 2。
(1)二次侧相电流和一次侧相电流在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式:几种整流线路变压器电压计算系统参数,如表所示。
表 几种整流线路变压器电压计算系统电路模式 单相全波 单相桥式 三相半波 三相桥式AC所以变压器二次侧相电压为:2 1.35200.930U V =⨯÷=变压器的二次侧电流I 2的计算公式:几种整流线路变压器电流I d /I 2系数,如表。
表 几种整流线路变压器电流Id/I2电路模式 电阻性负载 电感性负载单相全控桥 1三相全控桥查表得,1A =。
变压器的二次侧电流:27d I I A == 变压器的一次侧电流I 1的计算公式:一次侧电流:2112/7302200.95I I U U A =*=⨯÷=(2)变压器容量整流电路为单相桥式,取121m m m ===。
二次容量:22221307210S m U I W ==⨯⨯=一次容量:111112200.95209S mU I W ==⨯⨯= 平均计算容量:121()209.52S S S W =+= 整流器件晶闸管的参数计算及选择额定电压U TN 、电流I TN 、功率P TN 。
整流元件的最大值电压U TM 和额定电流的计算系数K fb 如表所示。
表 整流元件的最大值电压U TM 和额定电流的计算系数K fb电路模式U TM 电阻性(K fb ) 电感性(K fb ) 单相桥式三相桥式查表得,2Tm U =,0.45fb K =取130TN U V =,40TN I A =,5200TN P W =,选择MEKD-ZL-50型号整流模块一个。
阻容保护电路的参数计算及选择单相变压器交流侧过压过流保护电容C 和电阻R 的计算:变压器励磁电流百分比:在10~1000Kv 情况下,%if 取4~10。
变压器的短路电压百分比:在10~1000Kv情况下,%U取5~10。
K几种常见单相晶闸管阻容保护电路如图所示。
图单相RC保护电路几种常见三相晶闸管阻容保护电路如图,图所示。
图三相RC角型保护电路图三相压敏电阻保护电路控制电路设计单相整流模块参数(1)工作频率f为50Hz。
(2)输入线电压范围VIN(RMS)为30~450VAC。
(3)控制信号电压VCON为0~10VDC。
(4)控制信号ICON≤10μA。
(5)、输出电压不对称度<6%。
(6)输出电压温度系数<600PPM/℃。
(7)模块绝缘电压VISO(RMS)≥2500V。
整流模块内部电路及使用和安装:(1)单相整流模块内部电路,如图所示。
图单相整流模块(2)模块的使用安装模块电流规格选择:为保证设备运转正常,选取的模块电流应为负载电流的~3倍,整个运行过程,负载电流不能超过模块的额定电流。
环境要求:模块的存贮和工作场所应干燥、通风、无尘、无腐蚀性气体。
工作环境温度范围为-25℃~+45℃ 。
安装步骤:①把散热器和风机按通风要求安装好,散热器表面必须平整、光洁。
在模块导热底板与散热器表面均匀涂覆一层导热硅脂,然后用螺钉把模块固定于散热器上,注意用力要均等。
②因模块工作电流较大,必须用带接线鼻的多股铜线进行连接(禁用铝线),导线截面积按电流密度<4A/mm 2 选取。
严禁将铜线直接压接在模块电极上。
③用接线鼻环带将铜线扎紧,以免接触不良而附加发热,然后套上绝缘热缩管,用热风或热水加热收缩。
将接线鼻固定在模块电极上,确保良好的平面接触,并用螺钉紧固。
④注意模块输入输出电极勿掀起,以免损坏模块。
⑤接控制线:接线见图和表所示。
图五脚插座的对应顺序表引脚接线引脚功能引线颜色5脚插座+12 红色 5GND 黑色 4GND 黑色(灰色) 3CON 黄色 2E橙色(褐色) 1CONLM331芯片简介及工作原理LM331采用单电源供电,电源电压VCC,模拟信号Vin的输入范围-VCC~0V,频率范围为1~500KHZ,非线性低于%。
模拟信号经积分器积分处理后,在INPUT端变成与输入电压成正比的稳定电流输入,通过LM331芯片进行V/F转换后,变成与电压成正比的频率信号,FOUT端输出的频率信号送到计算机的计数/定时端口,计算机对频率信号进行采集、处理、存储。
从而实现模拟信号到数字信号的转换。
由于LM331的转换线性度直接影响转换结果的准确性,而通常引起V/F转换产生非线性误差的原因是引脚1的输出阻抗,它使输出电流随输入电压的变化而变化,因而影响转换精度,为克服此缺点,高精度V/F转换器在1脚和7脚间加入了一个积分器,这个积分器是由常规运放LF356和积分电容C4构成的反积分器。
LM331外部扩展电路如图所示。
图 LM331外部扩展电路运算放大LM324芯片简介及工作原理LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是。
它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图所示。
图运算放大器图 lm324功能引脚图LM324的特点:(1)短跑保护输出;(2)真差动输入级;(3)可单电源工作:3V-32V;(4)低偏置电流:最大100nA(LM324A);(5)每封装含四个运算放大器;(6)具有内部补偿的功能;(7)共模范围扩展到负电源;(8)行业标准的引脚排列;(9)输入端具有静电保护功能。
光电编码器光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号。
光电编码器E6B2_C接线如图所示。
图光电编码器接线图无静差调速采用PI调节器的单闭环无静差调速系统控制结构如图所示。
图单闭环无静差调速系统PI调节器控制结构图单闭环调速系统控制电路如图所示。
图单闭环调速系统控制电路图单闭环调速系统主电路如图所示。
图单闭环调速系统主电路2 双闭环直流调速系统双闭环直流调速系统设计双闭环直流调速系统主要由给定环节、ASR、ACR、触发器和整流装置环节、速度检测环节以及电流检测环节组成。
为了使转速负反馈和电流负反馈分别起作用,系统设置了电流调节器ACR和转速调节器ASR。
电流调节器ACR和电流检测反馈回路构成了电流环;转速调节器ASR和转速检测反馈回路构成转速环,称为双闭环调速系统。
因转速换包围电流环,故称电流环为内环,转速环为外环。
在电路中,ASR和ACR串联,即把ASR的输出当作ACR的输入,再由ACR得输出去控制晶闸管整流器的触发器。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用具有输入输出限幅功能的PI调节器,且转速和电流都采用负反馈闭环。
该系统原理框图如图所示。
图双闭环直流调速系统原理框图主电路设计本组双闭环直流调速系统设计参数如下:直流他励电动机:功率P e =,额定电压U e =220V ,额定电流I e =,磁极对数P=1,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =Ω,主电路总电阻R =Ω,K s =27,电磁时间常数T L =,机电时间常数T m =,滤波时间常数T oi =,T on =,过载倍数λ=,电流给定最大值 8V U im=*,速度给定最大值 10V U n =*,β=A ,α= Vmin /。
整流变压器额定参数的计算(1)一次侧相电流和二次侧电流在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式: 查表得,34.2=A 。
所以变压器二次侧相电压为:2 1.3220 2.34122.22U V =⨯÷=变压器的二次侧电流I 2的计算公式: 查表得, 1.22A =。
变压器的二次侧电流:2 6.5 1.22 5.33d I I A =÷≈=变压器的一次侧电流I 1的计算公式:一次侧电流:2112/ 5.33122.22220 2.96I I U U A =*=⨯÷≈ (2)变压器容量整流电路为三相桥式,取123m m m ===。
二次容量:22223122.22 5.331954.3S m U I W ==⨯⨯≈ 一次容量:11113220 2.961953.6S mU I W ==⨯⨯=平均计算容量:121()1953.952S S S W =+=整流器件晶闸管的参数计算及选择额定电压U TN 、电流I TN 、功率P TN 。
查表得,2Tm U =,0.368fb K =。
取598.75TN U V =, 5.382TN I A =,3222.45TN P W =,选择三相整流模块F18系列SD57-16型号。
阻容保护电路的参数计算及选择(1)单相变压器交流侧过压过流保护电容C 和电阻R 的计算: 变压器励磁电流百分比:在10~1000Kv 情况下,%if 取4~10。
变压器的短路电压百分比:在10~1000Kv 情况下,%K U 取5~10。