干货 - 50个公式,50个快速解题法,高考数学
高中数学秒杀口诀50条纯干货

高中数学秒杀口诀50条纯干货一:几何初等函数1.古典三角形:角平分线平行,等腰直角比定理。
2.矩形内角和:四个等边,和为全是360°。
3.三角形内角和:三个直角全等,和为180°。
4.外心内接圆:三角的内接圆两条邻边夹,外心即两角平分线夹。
5.等腰三角形:最大角等于中角,最小边等于两边之和。
6.锐角三角形:最大角大于中角,最小圆大于四分之一。
7.平行四边形:两个对角等于边之和,外心则是两角平分线之和。
8.直角三角形:两条直角等腰,直角大于两角小于90°。
9.梯形内角和:三角形的两个角和一个平角,和为180°。
10.直线的垂直交点:两条直线垂直相交,交点即两角平分线夹。
二:代数初等函数11.二次根式:二次根式的解法,一正一负要多除。
12.简化指数:指数运算把它拆,系数即是乘积啊。
13.分类联立:解三元一次方程,联立好可分析情况。
14.一次函数:一次函数的特征,斜率及截距说明。
15.一元二次:一元二次公式的解法,定理及变量要多算。
16.分式简化:分式的约分乘除,最大公因数要多求。
17.分数分母:分数乘除连除化,分母在最后要求。
18.交互消去:线性联立统一求,直接把变量交换消去。
19.完全平方:平方差和完全平方,两者的系数个数差别大。
20.二次方程:二次方程解决比较复,分类讨论得一套。
三:几何欧氏空间21.向量加减:向量加减法则规律,角平分头尾夹定理。
22.点线距离:点线距离公式的用,要知道夹角及长度。
23. 内积外积:内积叉积的多角度,余弦定理及正弦值。
24.向量积:向量积的乘积和,方向及大小要推算。
25.向量坐标:向量坐标的变换,从任意坐标转换。
26.向量的点积:向量的点积公式求,余弦定理和已知参数。
27.平面向量:平面向量的方向角,余弦及正弦定理求。
28.点在直线上:点在直线上确定位置,向量的夹角来判断。
29.直线平行:两直线平行向量点积,结果余弦定理明确。
高考数学必备公式、结论、方法汇总

(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ 1+tan12θ =tanπ; 4
2.值域:
④ 转换范围法 :针对由已知区间求未知区间的表达
①二次函数求值域用:配方法;
②分式函数求值域,若分子与分母同次用:分离常数法,若分子与分母不同次用:上下同除法.
③二次根式函数求值域用:换元法.当然还有单调性法和导数法。
3.大小比较
(1)指数幂比较大小
①同底幂比较,构造指数函数,用单调性比较;
②换底推广:logab=log1ba, logab·logbc·logcd=logad.
3.二次函数公式
①一般式顶点式:y=ax2+bx+c=a
x+ b 2a
2+4ac-b2.
4a
②顶点是
- b ,4ac-b2 2a 4a
,对称轴是:x=-
b
.
2a
③方程 ax2+bx+c=0(a≠0)求根公式:x=-b± b2-4ac 2a 二、必备结论
(3)伸缩变换
①y=f(x)=y=f(ax)
②y=f(x) 0<a>― a<1,1―,纵―纵坐坐―标标―伸缩长―短为―为原原―来来―的的―aa倍―倍,―,横横―坐坐―标标不→不变变y=af(x)
三、必备方法
1.解析式:
① 待定系数法 :针对已知函数类型;
② 换元法或配凑法 :针对复合函数;
③ 方程组法 :针对 f(x)与 f(1)或 f(-x)形成的表达式 x
(3)周期公式:①y=Asin(ωx+φ)(或 y=Acos(ωx+φ))的最小正周期 T=2π ②y=|Asin(ωx+φ)|的周期 T= π .
|ω|
数学:50个公式,50个快速解题方法

1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学52个秒杀技巧

高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。
以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。
2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。
3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。
4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。
5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。
6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。
7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。
8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。
9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。
10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。
以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。
这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。
高考数学必备50条公式和结论

1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;2、若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4,函数奇偶性:1、对于属于R上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6,数列的终极利器,特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学127个快速解题公式

高中数学127个快速解题公式。
高中数学127个快速解题公式随着科学技术的不断发展,数学作为人类发展进程中不可或缺的重要科目,在学生考试中扮演着越来越重要的角色,这也使得学习数学变得十分重要。
高中数学中有许多解题公式,掌握这些公式是解决高中数学问题的关键。
本文将总结出127个常见的高中数学快速解题公式,按照其实际应用的频率由高到低排列,便于学生更容易掌握:1、抛物线方程的解法:y=ax2+bx+c。
2、一元二次不等式的解法:ax2+bx+c ≥0或≤0,其解集为[-b-√(b2-4ac)/2a, -b+√(b2-4ac)/2a]。
3、椭圆方程的解法:x2/a2+y2/b2=1。
4、三角形内角和的解法:a+b+c=180°。
5、极坐标系中抛物线方程的解法:r=2a cos(θ-α)。
6、双曲线方程的解法:x2/a2-y2/b2=1。
7、圆的标准方程的解法:(x-x0)2+(y-y0)2=r2,其中,x0,y0为圆心坐标,r为半径。
8、一元二次方程的解法:ax2+bx+c=0,其解为:x1=-b+√(b2-4ac)/2a,x2=-b-√(b2-4ac)/2a。
9、二次函数极值点的解法:f'(x)=2ax+b=0,极值点为-b/2a。
10、二次函数零点的解法:f(x)=ax2+bx+c,其零点为x1=-b-√(b2-4ac)/2a,x2=-b+√(b2-4ac)/2a。
以上就是高中数学中127个快速解题公式,把这些公式掌握熟练,在考试时就可以快速解决数学问题,提高效率,节省时间,拿到不错的成绩。
此外,还要借助实际操作,不断的练习,增强解题能力,取得更好的数学成绩。
高中数学高考数学50条秒杀型公式与方法

高中数学高考数学50条秒杀型公式与方法高中数学是高考的重要科目之一,其中有许多公式和方法需要掌握。
本文将介绍50条秒杀型公式和方法,供高中生备考高考使用。
一、代数1. 二次函数顶点坐标公式:对于一般式二次函数f(x)=ax^2+bx+c,顶点坐标为(-b/2a, -Δ/4a),其中Δ=b^2-4ac。
2. 一元二次方程求根公式:对于一元二次方程ax^2+bx+c=0,解为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 幂函数指数规律公式:(a^m)^n=a^(mn),(ab)^n=a^n*b^n,(a^n)^m=a^(nm)。
4. 对数换底公式:loga(b)=logc(b)/logc(a),其中a、b、c为正数且a≠15.平均值与方差的性质公式:n个数的平均值为平方和除以n,方差为平方和减去平均值的平方再除以n。
6. 二次差公式:an=a1+(n-1)d+(n-1)(n-2)/2!c,其中a1表示首项,d表示公差,c表示公差的变化量。
7.等比数列求和公式:Sn=a1(1-q^n)/(1-q),其中Sn表示前n项和,a为首项,q为公比。
二、几何1.圆的周长和面积公式:圆的周长为2πr,面积为πr^2,其中r为圆的半径。
2.直角三角形勾股定理:直角三角形任意一条直角边的平方等于另外两条直角边的平方的和。
3. 三角形面积公式:三角形面积为底乘以高的一半,即S=(1/2)bh。
4. 三角形的正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为三角形的外接圆半径。
5. 三角形的余弦定理:c^2=a^2+b^2-2abcosC,其中a、b、c为三角形的边长,C为对应的角度。
6.直角三角形的高与斜边的关系公式:直角三角形的高为两直角边乘积除以斜边长。
7.正多边形内角和公式:正n边形的内角和为(n-2)180°。
50条高考数学秒杀公式方法

高中数学秒杀型推论函数1.抽貌函数的周期⑴f(a±x)=f(b±x)I=|b-a|(2)f(a±x)=-f(b±x)I=2|b-a|(3)f(x-a)+f(x+a)=f(x)T=6u(4)f(x-u)=f(x+a)I=2u(5)f(x+u)=-f(x)T=2a.奇偶函数概念的推广及其周明:(1)雨于函数f(X).若存在常数a.使得f(a-x)=f(a+x).则称f(x)为广义(I)型偶函数.且当有两个相异实数a. b同时满足时.f(x)为周明函数T=2|b-a|(2)若f(a-x)=-f(a+x).则f(x)是广义(I )型奇函数,当有两个相异实数a,b同时满足时,f(x)为周期函数T=21b-a|3.抽象函数的对称性(1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(学,;)成中心对称(充要)(2)若f(x)满足f(a+x)=f(b-x)则函数关于直线炉号成轴对称(充要)4.洛必达法贝!],设连续可导函数f(x)和g(x)|irn f(x)=f'(x)Hm f(x)=f'(x) E"g(x)g,(x)Rx)*g(x)g'(x) g(x)TO g(x)^oo二、三角1.三角形恒等式4B B C C A (1)在△中,tan-tan-+t an-tan-+tan-tan-=1222222coMcotB+cotBcotC+cotCcotA=1 (2)正切定理&余切定理:任非Ri△中,有tanA+tanB+tanC-taii^tanBtanCA b c ABCcot一 +cot一+cot-=cot一cot一cot一222222 (3)sinA+sinB+sinC=4cos-cos-cos-ABCcosA+cosB+cosC=1 +4sin—sin—sin222(4)sin2A+sin2B+sin2C=2+ZcosAcosBcosCcos2A+cos2B+cos2C=1-2cx)sAcosBcosC (5)2sinAcosBcosC=eye2sinAcosBcosC+sinBcosAcosC+sinCcosAcosB=sinAsinBsinC>cosAsinBsinC=eyecosAsinBsinC+cosBsinAsinC+cosCsinAsinB=cosAcosBcosC一12.任意三角形射影定理(又称第一余弦定理):在ZiABC中a=bcosC+ccosB;h=ccosA+acosC:c-acosB+bcosA3.任意三角形内切圆半径(S为面积),a十u十c外接圆半径R=^=危=七=矗欧拉不等式:R>2r1.梅涅劳斯定理如下图,E.D.F三点共线的充要条件是竺Y竺乂四EA^DC35.塞瓦定理如下图,Al)、BE、CF三线共点的充要条件是AF BD CE访x无=16.斯特瓦尔特定理:如下图,设已知左ABC及其底边上B、C两点间的一点D,则WA1P XDC+AC2XBD-/\D2 XBC=BCxDCxBD7、和差化积公式(只记忆第一条)•I.er、,x+g a—8sin a+sm〃二2sin—-一 os—;—・qc h+£sin zr~si n"=Zcos―-—sin—-—4cos a i cos#=2cqs?;)cos?,'o O a+P«—p cos2-cos/7=-2si n—-—sin——8、积化和差公式Q cos(a+p)-cos(a-P) sin a sm p二---------------2cos acos(a+g)+cos(a一3)2cos3-.c sin(a+B)+sin(a-B)sin a cos p=-------------sin(a+p)-sin(a-p)cos a sm p=-------;------9、万能公式10.三角混合不等式:若xC(0.;),sinx <x<tcinx5当x»0时sinx^x^tauxIL海伦公式变式如下图,图中的圆为大三角形的内切圆,大三角形三边长分别为a.h・c.大三角形面积为S=qxyz(x+y+z)=(a+b+c)(a+b-c)(a+c-b)(b+c-a)*12.双曲函数-X 定义双曲正弦函数Sinhx二二一,双曲余弦函数coshx二二一易知(1)奇偶性:sinhx为奇函数.coshx为偶函数(2)导函数:(si nhx)=coshx,(coshx)=sinhx两角和:sinh(x+y)=sinhxcoshy+coshxsinhycosh(x+y)=coshxcoshy+sinhxsinhy(4)复数域:sinh(ix)=isin(x)(5)cosh定义域:xCR(ix) =icos(x)(6)值域:sinhxCR,coshx£[l,+«□)13.三角形三边a. b.c成等差数列.则讪=;614.三角形不等式(1)在锐角△中.si nA+sinB+sinC>cosA+cosB+cosCtanA+tanB+tanC>cotA+cotB+cotC(2)在△中,x2 +y2+z2>2yzcosA+2xzcosB+2zycosC(3)在△中,sinA>sinB<=>cos2A>cos2B15.ASA的面积公式:a2sinBsinC b2sinAsinC c2sinAsinBS=-------------=--------------=--------------2sin(B+C)2sin(A+C)2sin(A+B)三、成1.欧拉公式(泰勒级数推出)cos e+isine=cM2.棣莫弗定理(欧拉公式推出)(cos sin0)''二c os(nO)+isin(n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干货 | 50个公式,50个快速解题法临考冲刺,快速解题是当前该关注的,50个公式,50个快速解题法,让你考试前定心。
1 . 适用条件[直线过焦点],必有ecosA=(x1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(xk),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(bx)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(bx)的图像关于x=(ba)/2对称;(3)若f(a+x)+f(ax)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)S(n)、S(3n)S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1p),则数列通项公式为an=(a1x)p²(n1)+x,这是一阶特征根方程的运用。
二阶有点麻烦,且不常用。
所以不赘述。
希望同学们牢记上述公式。
当然这种类型的数列可以构造(两边同时加数)7 . 函数详解补充1、复合函数奇偶性:内偶则偶,内奇同外2、复合函数单调性:同增异减3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。
它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。
另外,必有唯一一条过该中心的直线与两旁相切。
8 . 常用数列bn=n×(2²n)求和Sn=(n1)×(2²(n+1))+2记忆方法前面减去一个1,后面加一个,再整体加一个29 . 适用于标准方程(焦点在x轴)爆强公式k椭={(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10 . 强烈推荐一个两直线垂直或平行的必杀技已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!11 . 经典中的经典相信邻项相消大家都知道。
下面看隔项相消:对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/21/(n+1)1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。
自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!12 . 爆强面积公式S=1/2∣mqnp∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题13 . 你知道吗?空间立体几何中:以下命题均错(1)空间中不同三点确定一个平面(2)垂直同一直线的两直线平行(3)两组对边分别相等的四边形是平行四边形(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥注:对初中生不适用。
14 . 一个小知识点所有棱长均相等的棱锥可以是三、四、五棱锥。
15 . 求f(x)=∣x1∣+∣x2∣+∣x3∣+…+∣xn∣(n为正整数)的最小值答案为:当n为奇数,最小值为(n²1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n²/4,在x=n/2或n/2+1时取到。
16 . √〔(a²+b²)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)17 . 椭圆中焦点三角形面积公式S=b²tan(A/2)在双曲线中:S=b²/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。
A为两焦半径夹角。
18 . 爆强定理空间向量三公式解决所有题目:cosA=|{向量a.向量b}/[向量a的模×向量b的模](1)A为线线夹角(2)A为线面夹角(但是公式中cos换成sin)(3)A为面面夹角注:以上角范围均为[0,派/2]。
19 . 爆强公式1²+2²+3²+…+n²=1/6(n)(n+1)(2n+1);1²3+2²3+3²3+…+n²3=1/4(n²)(n+1)²20 . 爆强切线方程记忆方法写成对称形式,换一个x,换一个y举例说明:对于y²=2px可以写成y×y=px+px再把(xo,yo)带入其中一个得:y×yo=pxo+px21 . 爆强定理(a+b+c)²n的展开式[合并之后]的项数为:Cn+22,n+2在下,2在上22 . 转化思想切线长l=√(d²r²)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。
23 . 对于y²=2px过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。
爆强定理的证明:对于y²=2px,设过焦点的弦倾斜角为A那么弦长可表示为2p/〔(sinA)²〕,所以与之垂直的弦长为2p/[(cosA)²]所以求和再据三角知识可知。
(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)24 . 关于一个重要绝对值不等式的介绍爆强∣|a||b|∣≤∣a±b∣≤∣a∣+∣b∣25 . 关于解决证明含ln的不等式的一种思路举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是Sn。
解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)lnn,那么只需证an>bn即可,根据定积分知识画出y=1/x的图。
an=1×1/n=矩形面积>曲线下面积=bn。
当然前面要证明1>ln2。
注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。
说明:前提是含ln。
26 . 爆强简洁公式向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。
记忆方法:在哪投影除以哪个的模27 . 说明一个易错点若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=f(x+a)〔等式右边不是f(xa)〕同理如果f(x+a)为偶函数,可得f(x+a)=f(x+a) 牢记28 . 离心率爆强公式e=sinA/(sinM+sinN)注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N29 . 椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。
比如x²/4+y²=1求z=x+y的最值。
解:令x=2cosay=sina再利用三角有界即可。
比你去=0不知道快多少倍!30 . 仅供有能力的童鞋参考的爆强公式和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θφ)/2]sinθsinφ=2cos[(θ+φ)/2]sin[(θφ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θφ)/2]cosθcosφ=2sin[(θ+φ)/2]sin[(θφ)/2]积化和差sinαsinβ=[cos(αβ)cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(αβ)]/2sinαcosβ= [sin(α+β)+sin(αβ)]/2cosαsinβ=[sin(α+β)sin(αβ)]/231 . 爆强定理直观图的面积是原图的√2/4倍。
32 . 三角形垂心爆强定理(1)向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心)(2)若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。
33 . 维维安尼定理(不是很重要(仅供娱乐))正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角形的高。
34 . 爆强思路如果出现两根之积x1x2=m,两根之和x1+x2=n我们应当形成一种思路,那就是返回去构造一个二次函数再利用△大于等于0,可以得到m、n范围。
35 . 常用结论过(2p,0)的直线交抛物线y²=2px于A、B两点。
O为原点,连接AO.BO。
必有角AOB=90度36 . 爆强公式ln(x+1)≤x(x>1)该式能有效解决不等式的证明问题。
举例说明:ln(1/(2²)+1)+ln(1/(3²)+1)+…+ln(1/(n²)+1)<1(n≥2)证明如下:令x=1/(n²),根据ln(x+1)≤x有左右累和右边再放缩得:左和<11/n<1证毕!37 . 函数y=(sinx)/x是偶函数在(0,派)上它单调递减,(派,0)上单调递增。