七年级数学下册《轴对称图形典型例题》
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
以下是一些轴对称图形的练习题及答案。
练习题1:判断下列图形是否为轴对称图形,并找出对称轴。
1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。
2. 等边三角形是轴对称图形,有3条对称轴。
3. 矩形是轴对称图形,有2条对称轴。
4. 等腰梯形是轴对称图形,有1条对称轴。
5. 五角星是轴对称图形,有5条对称轴。
练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。
请找出下列图形的对称轴数量。
1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。
2. 菱形有2条对称轴。
3. 正六边形有6条对称轴。
4. 半圆形有1条对称轴。
5. 等腰三角形有1条对称轴。
练习题3:在下列图形中,找出不是轴对称图形的图形。
1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。
练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。
根据这个定义,判断下列点是否在对称轴上。
1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。
2. 点B不在对称轴上。
3. 点C在对称轴上。
4. 点D不在对称轴上。
练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。
这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。
通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是一种在几何学中常见的图形,它具有对称轴,使得图形的任何一部分都可以沿着这条轴对折,与另一部分完全重合。
下面是一些轴对称图形的练习题及答案,供学生练习和理解轴对称图形的概念。
练习题1:在下列图形中,哪一个是轴对称图形?A. 正方形B. 圆形C. 五角星D. 所有选项答案:D. 所有选项解析:轴对称图形的定义是:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
正方形、圆形和五角星都满足这个条件,因此它们都是轴对称图形。
练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形的对称轴与地面的夹角是多少度?答案:90度解析:垂直于地面的直线与地面的夹角是90度,这是根据垂直的定义得出的。
练习题3:在平面直角坐标系中,如果点A(2,3)关于x轴对称的点是B,求点B的坐标。
答案:点B的坐标是(2,-3)解析:在平面直角坐标系中,如果一个点关于x轴对称,那么这个点的x坐标保持不变,而y坐标的值变为其相反数。
因此,点A(2,3)关于x轴对称的点B的坐标是(2,-3)。
练习题4:给定一个轴对称图形,如果图形的对称轴是y=x,那么这个图形的中心点是什么?答案:图形的中心点是(0,0)解析:如果一个图形的对称轴是y=x,这意味着图形关于这条直线对称。
对于任何点(x,y)在图形上,其对称点是(y,x)。
因此,图形的中心点是对称轴与原点的交点,即(0,0)。
练习题5:在一个轴对称图形中,如果图形的对称轴是一条斜线y=mx+b,那么这个图形的中心点坐标是什么?答案:图形的中心点坐标是(-b/m, b)解析:对于斜线y=mx+b,这条直线与x轴的交点是(-b/m, 0),与y轴的交点是(0, b)。
由于图形是轴对称的,图形的中心点将位于这两个交点的中点,即(-b/m, b)。
通过这些练习题,学生可以加深对轴对称图形的理解,并掌握如何识别和应用对称轴。
七年级下数学《简单的轴对称图形》典型例题
5.有一个三角形的支架如图所示,
,小明过点 A 和 BC 边的中点
D 又架了一个细木条,经测量
,你在不用任何测量工具的前提下,能得
到
和
的度数吗?
6.请你在纸上画一个等腰三角形 ABC(如图),使得
.
(1)请你判断一下 与 有什么大小关系呢?你的依据是什么? (2)请你再深入地思考一个问题:若只知道 与 相等,请你判断一下 这个三角形是什么形状的呢?并说明你的探索思路. (3)由第(2)你会得到一个什么结论呢?请用一句话概括出来. (4)现在给出两个三角形(如图),请你把图(1)分割成两个等腰三角形, 把图(2)分割成三个等腰三角形.动动脑筋呀!
例 3 分析:由
可知三角形 ADE 是等边三角形,而
和
是等腰三角形,可根据等腰三角形等边对等角的性质求出相关的角的度
数.
解:∵
,(已知)
∴
是等边三角形. ∴
又∵
,∴
.
而
,∴
.
同理可得
,∴
说明:在一个图形中,有时出现不止一个等腰三角形,可以由每个等腰三角
形中的两个底角相等,找出相应的一些角的关系,利用三角形内角和定理,进一
用的,在数学的学习时这样的情况是会经常出现的。
例 2 分析:本题依据线段垂直平分线的性质可以得到.
解: 是 AB 的垂直平分线
∴
∴
厘米
是等腰三角形
∴
厘米
∴
的周长是
厘米
例 3 分析:注意到题中所给的条件 AB=AC,得到三角形为等腰三角形。利
用等腰三角形的性质对问题(1)可得
;对问题(2)考虑到
所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为 可得
七年级数学下册《轴对称现象》典型例题(含答案)
《轴对称现象》典型例题例1 指出下列图形中的轴对称图形例2 指出下列图形中的轴对称图形,并指出轴对称图形的对称轴.(1)正方形;(2)长方形;(3)圆;(4)平行四边形.例3 画出下列图形的对称轴。
例4 指出下边哪组图形是轴对称的,并指出对称轴.(1)任意两个半径相等的圆;(2)正方形的一条对角线把一个正方形分成的两个三角形;(3)长方形的一条对角线把长方形分成的两个三角形;(4)两个全等的三角形.(1) (2) (3) (4)(5) (6) (7) (8)例5找出下面的轴对称图形,并说出它们各有几条对称轴.例6 下列图形中,不是轴对称图形的是()(A)有两个角相等的三角形(B)有一个内角是︒45的直角三角形(C)有一个内角是︒120的三角形30,另一个内角为︒(D)有一个角是︒30的直角三角形例7观察中(1)~(5),它们是不是轴对称图形?有什么共同特点?例8请分别画出下图中3个图形的对称轴.例9如图,(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数"有什么关系?根据你的分析结果回答,正十边形,正十六边形,正二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?参考答案例1分析:正确理解轴对称图形概念.解:轴对称图形是(2)(3)(4)(6)(7)(8)例2 分析:判断一个图形是否是轴对称图形,关键是能否找到一条直线使该图的两部分沿这条直线对折后完全重合.解:(1)、(2)、(3)都是轴对称图形,(4)不是轴对称图形.正方形的对称轴是两条对边中点所在的直线和正方形对角线所在的直线;长方形的对称轴是两条对边中点所在的直线;圆的对称轴是任意一条直径所在的直线.说明:对称轴是一条直线,不是线段.例3分析:依据定义可以画出,但可能是多条.解:如图例4 分析:判断两个图形是否是轴对称,关键是能否找到一条直线使这两个图形沿这条直线对折后能够重合.解:(1)和(2)每组的两个图形都是轴对称的.(3)和(4)每组的两个图形不是轴对称的.(1)的对称轴是连结两个圆心的线段的垂直平分线;(2)的对称轴就是原正方形分成两三角形时的这条对角线所在的直线.说明:对称轴是直线而非线段.例5分析:本题主要考查识别轴对称图形的能力.根据轴对称图形的概念来认真识别.但要注意.图(9)(10)这两个图也有“对称”性,但它们没有对称轴.不能把它们误认为是轴对称图形.解:根据图形可知:(1)是轴对称图形,它有3条对称轴;(2)是轴对称图形,它有5条对称轴;(3)是轴对称图形.它有4条对称轴.(4)是轴对称图形.它有1条对称轴;(5)是轴对称图形,它有2条对称轴;(6)不是轴对称图形;(7)是轴对称图形,它有1条对称轴;(8)是轴对称图形,它有1条对称轴;(9)(10)虽然有“对称”性,但都不是轴对称图形.例6 分析:在(A)中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B)和(C)中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D)中三角形的三个内角各不相等,不是等腰三角形,所以(D)不是轴对称图形.解:选(D)说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.例7分析:本题主要考查两个图形成轴对称图形的理解.可以利用轴对称的概念加以判断,但不能把两个图形成轴对称与一个图形是轴对称图形的概念相混淆.解:它们都是轴对称图形,每一组中都有两个图形.可以沿某一条直线对折使两个图形能完全重合在一起,所以每幅图中的两个图形成轴对称.轴对称图形是一个图形.可以有一条或许多条对称轴.(1)~(5)两个图形成轴对称,一般来说只有一条对称轴.例8分析:找对称轴从不同角度观察,全面分析.解:(1)有6条对称轴;(2)有5条对称轴;(3)有6条对称轴.画图略.例9分析:正多边形并不都是轴对称图形.但是,是轴对称图形的正多边形的对称轴的条数与其边数有着密切的联系,请仔细找出它们之间的规律.解:正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,正六边形就有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴.正多边形对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n条.所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形就有29条对称轴,正五十边形就有50条对称轴,正一百边形就有100条对称轴.。
(完整版)七年级数学简单的轴对称图形练习题
1.1.简单的轴对称图形一、判断题1.角的平分线是角的对称轴.()2.等腰直角三角形不是轴对称图形.()3.等腰三角形底边上的高所在直线是它的对称轴.()4.射线是轴对称图形.()5.线段的垂直平分线是线段的一条对称轴.()二、填空题1.角的平分线上的点到这个角的两边的_________相等.2.线段_________(填是或不是)轴对称图形,它的一条对称轴垂直并_________它,这样的直线叫做这条线段的_________,简称_________.3.线段垂直平分线上的点到这条线段_________的距离_________.4.线段有_________条对称轴.5.角有_________条对称轴. 其对称轴是_______________.三、选择题1.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D.直角三角形2.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边的垂直平分线所在直线3.下面选项对于等边三角形不成立的是()A.三边相等B.三角相等C.是等腰三角形D.有一条对称轴4.等边三角形对称轴的条数是()A.1条B.2条C.3条D.4条1.2 简单的轴对称图形(一、二课时)1. 如下图,l1,l2交于A,P,Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.Al12PQ2. 在△ABC中,AD是∠BAC的平分线,过C作CE∥AD交BA的延长线于点E,则线段AE与AC是否相等,为什么?AB3. 在△PMN中,PM=PN,AB是线段PM的对称轴,分别交PM于A,PN于B,若△PMN的周长为60厘米,△BMN的周为36厘米,则MA的长为()A.6厘米B.12厘米C.24厘米D.36厘米4. 在线段、角、等腰三角形、正三角形中,是轴对称图形有()A.1个B.2个C.3个D.4个5. 下列图形是轴对称图形的是()A.任意三角形B.有一个角等于60°的三角形 C.等腰三角形 D.直角三角形6. 圆是轴对称图形,它的对称轴是_______,所以它有________条对称轴.7. 在△ABC中,DE是AC的垂直平分线,AE=5,△ABC周长是30,则△ABD周长是______.8. 如图,两条公路相交,在A,B两处是两个居民区,邮政局要在居民区旁边修建一个邮筒,为了使邮寄和取送方便,要使邮筒到两条路的距离相等,并且到两个居民区的距离也相等,请你找到一个这样的点.9.△ABC中,AB、BC的中垂线交于M点,则下列结论正确的是()A.点M在AC上 B.点M在△ABC外 C.点M在△ABC内 D.AM=BM=CM10. 到三角形三边距离相等的是()A.三条边中线的交点 B.三个内角平分线的交点C.三条边垂直平分线的交点 D.三条边上高所在直线上的交点11. 如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.两处 C.三处 D.四处12. 在△ABC中,AB=AC,D是AB的中点,且DE⊥AB.已知△BCE的周长为8,且AC-BC=2,求AB、BC的长.l1l3 l2C B13. 下列说法中正确的是( )A .角是轴对称图形,它的平分线就是对称轴B .等腰三角形内角平分线,中线和高三线合一C .直角三角形不是轴对称图形D .等边三角形有三条对称轴 14. 到三角形三个顶点距离相等的点是( ).A .三角形三条角平分线的交点B .三角形三条中线的交点C .三角形三边中垂线的交点D .三角形三条高的交点15. 在△ABC 中,AB =AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( ) A .12cmB .6cmC .7cmD .5cm16. 下列图形中,不一定是轴对称图形的是( ) A .线段 B .角 C .三角形 D .等腰直角三角形 17. 在△ABC 中, ∠C =90°,AD 是∠CAB 的平分线,DE ⊥AB 于E ,且DE =5.6厘米,BC =13.8厘米,则BD =________厘米.18. 下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形,其中是轴对称图形的有(填序号)_____________.19. 如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,DE 是斜边AB 的垂直平分线,请你在图中找出至少两对相等的线段,并说明它们为什么相等.如果ED =2cm ,DB =3cm ,则AC 长为多少?1.2 简单的轴对称图形(三、四课时)1、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴 (B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴 2、等腰三角形的一个内角是50°,那么其它两个内角分别是( )A CB E D A D EC B O PQ M ND B AE C P QM N FAD C BE A Q CP B (A )50°和80° (B )65°和65° (C )50°和80°或65°和65° (D )无法确定3、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ). (A)42° (B)60° (C)36° (D)46°4、如右图,∠ABC 中,AD ⊥BC,AB=AC, ∠BAD=30°,且AD=AE,则∠EDC 等于( ).(A)10° (B)12.5° (C)15° (D)20°5、如右图,PM=PN,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).(A)18° (B)36° (C)48° (D)60° 6、已知△ABC 中,AB=AC,AD ⊥BC 于D,△ABC 的周长为36厘米,△ADC 的周长为30厘米,那么AD 等于( ). (A)6cm (B)8cm (C)12cm (D)20cm7、如右图,PQ 为Rt △MPN 斜边上的高, ∠M=45°,则图中等腰三角形的个数是(A)1个 (B)2个 (C)3个 (D)4个8、在线段、角、等腰三角形、正三角形中,是轴对称图形有( )个(A )1个 (B )2个 (C )3个 (D )4个9、如右图,在△ABC 中,AB=AC,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ).(A)12 (B)10 (C)9 (D)810、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A)等边三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 11、在△ABC 中, ∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )个等腰三角形.(A)6个 (B)5个 (C)4个 (D)3个12、在△ABC 中, ∠ABC=∠ACB,∠ABC 与∠ACB 的平分线交于点D,过D 作EF ∥BC,交AB 于E,交AC 于F,则图中的等腰三角形有____个,分别有______.(第9题) (第10题) (第12题) (第13题)13、如图,在△ABC 中,AB=AC=16cm ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,那么△BCD 的周长是_______cm.14、已知:如下图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数.。
七年级数学下册《轴对称图形典型例题》
轴对称图形典型例题例1 如下图,已知,PB ⊥AB ,PC ⊥AC ,且PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP .证明:∵ PB ⊥AB ,PC ⊥AC ,且PB =PC ,∴ ∠P AB =∠P AC (到角两边距离相等的点在这个角平分线上),∵ ∠APB +∠P AB =90°,∠APC +∠P AC =90°,∴ ∠APB =∠APC ,在△PDB 和△PDC 中,⎪⎩⎪⎨⎧=∠=∠= PD PD APC APB PC PB .,,∴ △PDB ≌△PDC (SAS ),∴ ∠BDP =∠CDP .(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注 利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等. 例2 已知如下图(1),在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A +∠C =180°.(1)证法一:过D 作DE ⊥AB 交BA 的延长线于E ,DF ⊥BC 于F ,∵ BD 平分∠ABC ,∴ DE =DF ,在Rt △EAD 和Rt △FCD 中,⎩⎨⎧==.DF DE DC AD ,(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.)∴ Rt △EAD ≌Rt △FCD (HL ),∴ ∠C =∠EAD ,∵ ∠EAD +∠BAD =180°,∴ ∠A +∠C =180°.证法二:如下图(2),在BC 上截取BE =AB ,连结DE ,证明△ABD ≌△EBD 可得.(2)证法三:如下图(3),延长BA 到E ,使BE =BC ,连结ED ,以下同证法二.(3)注 本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3 已知,如下图,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F . 求证:BE +CF >EF .证法一:在DA 截取DN =DB ,连结NE 、NF ,则DN =DC ,在△BDE 和△NDE 中,⎪⎩⎪⎨⎧=∠=∠=.DE DE NDE BDE ND BD ,,(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)∴ △BDE ≌△NDE (SAS ),∴ BE =NE (全等三角形对应边相等),同理可证:CF =NF ,在△EFN 中,EN +FN >EF (三角形两边之和大于第三边),∴ BE +CF >EF .证法二:延长ED 至M ,使DM =ED ,连结CM 、MF ,在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=.DM DE CDM BDE CD BD ,,(从另一个角度作辅助线)∴ △BDE ≌△NDE (SAS ),∴ CM =BE (全等三角形对应边相等),又∵ ∠BDE =∠A DE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°,∴ ∠ADE +∠ADF =90°,即∠EDF =90°,∴ ∠FDM =∠EDF =90°,在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=.DF DF MDF EDF MD ED ,,∴ △EDF ≌△MDF (SAS ),∴ EF =MF (全等三角形对应边相等),在△CMF 中,CF +CM >EF ,∴ BE +CF >EF .注 本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4 已知,如下图,P 、Q 是△ABC 边BC 上的两点,且BP =PQ =QC =AP =AQ .求:∠BAC 的度数.解:∵ AP =PQ =AQ (已知),∴ ∠APQ =∠AQP =∠P AQ =60°(等边三角形三个角都是60°),∵ AP =BP (已知),(注意观察图形和条件)∴ ∠PBA =∠P AB (等边对等角),∴ ∠APQ =∠PBA +∠P AB =60°(三角形的一个外角等于和它不相邻的两个内角和),∴ ∠PBA =∠P AB =30°,同理∠QAC =30°,∴ ∠BAC =∠BAP +∠P AQ +∠QAC =30°+60°+30°=120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5 已知,如下图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC 于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.证明:∵AB=AC,∴∠B=∠ACB(等边对等角),∵EB=ED,∴∠B=∠EDB,∴∠ACB=∠EDB(等量代换),∴ED∥AC(同位角相等,两直线平行),在△BDE和△AED中,BE=AE=ED,连结AD可得,∠EAD=∠EDA,∠EBD=∠EDB,∠EDA+∠EDB=90°,即AD⊥BC,∴∠EDA+∠EDB=90°,即AD⊥BC,(用什么定理判定三角形全等的?)∴D为BC的中点,∴△BDE≌△CDF,∴∠BED=∠F,而∠BED=∠A,∴∠F=∠A.例6 已知,如下图,△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.证法一:作BC边上的高AD,D为垂足,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD(等腰三角形三线合一),又∵∠BAC=∠E+∠AFE,∠AEF=∠AFE,∴∠CAD=∠E,∴AD∥EF,∵AD⊥BC,∴EF⊥BC.证法二:过A作AG⊥EF于G,∵∠AEF=∠AFE,AG=AG,∠AGE=∠AGF=90°,∴△AGE≌△AGF(ASA),∵AB=AC,∴∠B=∠C,又∠EAF=∠B+∠C,(请对比多种证法的优劣)∴∠EAG+∠GAF=∠B+∠C,∴∠EAG=∠C,∴AG∥BC,∵AG⊥EF,∴EF⊥BC.证法三:过E作EH∥BC交BA的延长线于H,∵AB=AC,∴∠B=∠C,∴∠H=∠B=∠C=∠AEH,∵∠AEF=∠AFE,∠H+∠AFE+∠FEH=180°,∴∠H+∠AEH+∠AEF+∠AFE=180°,∴∠AEF+∠AEH=90°,即∠FEH=90°,∴EF⊥EH,又EH∥BC,∴EF⊥BC.证法四:延长EF交BC于K,∵AB=AC,∴∠B=∠C,∴ ∠B =21(180°-∠BAC ),∵ ∠AEF =∠AFE ,∴ ∠AFE =21(180°-∠EAF ),∵ ∠BFK =∠AFE ,∴ ∠BFK =21(180°-∠EAF ),∴ ∠B +∠BFK =21(180°-∠BAC )+21(180°-∠EAF )∵ =21[360°-(∠EAF +∠BAC )],∴ ∠EAF +∠BAC =180°,∴ ∠B +∠BFK =90°,即∠FKB =90°,∴ EF ⊥BC .注 本题考察等腰三角形性质的应用,解题的关键是通过添加辅助线,建立EF 与BC 的联系,仔细体会以上各种不同的添加辅助线的方法.例7 如下图,AB =AC ,DB =DC ,P 是AD 上一点.求证:∠ABP =∠ACP .证明:连结BC ,∵ AB =AC (已知),∴ ∠ABC =∠ACB (等边对等角),又∵ 点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上),而两点确定一条直线,∴ AD 就是线段BC 的垂直平分线,∴ PB =PC (线段垂直平分线上的点到线段两个端点的距离相等),∴ ∠PBC =∠PCB (等边对等角),(线段垂直平分线的性质)∴ ∠ABC -∠PBC =∠ACB -∠PCB (等式性质),即∠ABP =∠ACP .注 本题若用三角形全等,至少需要证两次,现用线段垂直平分线的判定和性质,就显得比较简洁. 例8 如下图,AB =AC ,DE 垂直平分AB 交AB 于D ,交AC 于E ,若△ABC 的周长为28,BC =8,求△BCE 的周长.解:∵ 等腰△ABC 的周长=28,BC =8,∴ 2AC +BC =28,∴ AC =10, (理由是什么?)∵ DE 垂直平分AB ,∴ AE =BE ,∴ △BCE 的周长=BE +EC +BC=AE +EC +BC=AC +BC =10+8=18.注 本题考察线段垂直平分线的性质定理的运用,关键是运用线段垂直平分线的性质得到线段的等量关系.例9 已知,如下图,△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,EF 交BC 于F ,交AB 于E ,求证:FC BF 21=.证法一:连结AF ,则AF =BF ,∴ ∠B =∠F AB (等边对等角),∵ AB =AC ,∴ ∠B =∠C (等边对等角),∵ ∠BAC =120°,∴ ∠B =∠C =302180=∠-BAC (三角形内角和定理),∴ ∠F AB =30°,∴ ∠F AC =∠BAC -∠F AB =120°-30°=90°,又∵ ∠C =30°,(线段的垂直平分线是常见的对称轴之一)∴ FC AF 21=(直角三角形中30°角所对的直角边等于斜边的一半),∴ FC BF 21=. 证法二:连结AF ,过A 作AG ∥EF 交FC 于G ,∵EF为AB的垂直平分线,∴AF=BF,又∵∠B=30°,∴∠AFG=60°,∠BAG=90°,∴∠A G B=60°,△AFG为等边三角形,又∵∠C=30°,∴∠G AC=30°,∴AG=GC,(构造等边三角形是证明线段相等的一种好方法)∴BF=FG=GC=FC21.例10 已知,如下图,AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=MD.求证:AB=BC.思路分析从结论分析,要证AB=BC,可连结AC,使BC与AB能落在一个三角形内,再看∠BAC与∠BCA能否相等?证明:连结AC,交DM于H,∵∠AMB=75°,∠DMC=45°(已知),∴∠AMD=60°(平角定义)又∵AM=MD,∴△AMD为等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AM=AD(等边三角形三边相等),∵CD⊥BC,∴∠DCM=90°,∵∠DMC=45°,∴∠MDC=45°(三角形内角和定理),∴CD=CM(等角对等边),∴AC是DM的垂直平分线(和线段两端点等距离的点,在线段的垂直平分线上),∴∠MHC=90°,∴∠HCM=45°,∵∠B=90°,∴∠BAC=45°,∴AB=BC(等角对等边).【典型热点考题】例1 如图7—15,等腰△ABC的对称轴与底边BC相交于点D,请回答下列问题:(1)AD 是哪个角的平分线;(2)AD 是哪条线段的垂直平分线;(3)有哪几条相等的边;(4)有哪几对相等的角.点悟:本题主要考查等腰三角形的所有特征.所以应该根据等腰三角形是轴对称图形的性质来解答问题.解:等腰三角形是轴对称图形,直线AD 是它的对称轴.(1)AD 是顶角∠BAC 的平分线.(2)AD 是线段BC 的垂直平分线.(3)AB =AC ,BD =DC .(4)∠BAD =∠CAD ,∠ABC =∠ACB ,∠ADB =∠ADC .例2 如图7—16,已知PB ⊥AB ,PC ⊥AC ,且PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP .点悟:利用三角形全等证明两个角相等最直观,但因为图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形全等同样可以,证明:∵ PB ⊥AB ,PC ⊥AC ,且PB =PC ,∴ ∠PAB =∠PAC(到角两边距离相等的点在这个角的平分线上).∵ ∠APB +∠PAB =90°,∠APC +∠PAC =90°,∴ ∠APB =∠APC .在△PDB 和△PDC 中,⎪⎩⎪⎨⎧=∠=∠=PD PD APCAPB PC PB ∴ △PDB ≌△PDC(SAS)∴ ∠BDP =∠CDP .例3 如图7—17,先找出下列各图形中的轴对称图形,再画出它们的对称轴(有几条,画几条).点悟:先确定是否是轴对称图形,如果是轴对称图形,就将它们的对称轴全部画出来.解:(1)是,它有3条对称轴.(2)是,它有2条对称轴.(3)是,它有2条对称轴.(4)是,它只有一条对称轴.(5)它不是轴对称图形,故没有对称轴.(6)它是轴对称图形,有一条对称轴.图均略.例4 如图7—18,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,将图中的等腰三角形全部写出来,并求出∠B的度数.点悟:图中共有三个等腰三角形,要将它们一一写出来,不能遗漏.在计算∠B的度数时,要充分利用三角形的一个外角等于它的两个不相邻的两个内角的和.解:图中共有三个等腰三角形,它们分别是:△ABC,△ABD,△CAD.设∠B=x,则∠C=x=∠BAD,∠ADC=∠DAC=2x.∴∠B+∠C+∠BAC=∠B+∠C+∠BAD+∠DAC=x+x+x+2x=5x=180°∴︒=︒==∠365180xB.例5 如图7—19,在金水河的同一侧居住两个村庄A、B.要从河边同一点修两条水渠到A、B两村浇灌蔬菜,问抽水站应修在金水河MN何处两条水渠最短?点悟:先将具体问题抽象成数学模型.河流为直线MN,在直线MN的同一侧有A、B两点.在直线MN上找一点P,使P点到A、B两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图7—19所示.作B点关于直线MN的对称点B′,连结AB′,与MN相交于P,则P点即为所求.事实上,如果不是P 点而是P '点时,则连结B P 、P A ''和B P ''.由轴对称性知道,B P PB B P B P '=''=',,所以P '到A 、B 的距离之和,B P P A B P P A ''+'='+',而P 到A 、B 的距离之和B A B P AP PB AP '='+=+在'P B A '∆中,三角形两边之和大于第三边,B A B P P A '>''+'所以P 点即为所求的点.例6 如图7—20,已知,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .点悟:遇到角平分线就可以考虑利用轴对称的性质或全等三角形的性质来解决问题.证法一:在DA 上截取DN =DB .连结NE 、NF .则DN =DC .在△BDE 和△NDE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE DE NDE BDE ND BD ∴ △BDE ≌△NDE .∴ BE =NE .同理可得,CF =NF .在△EFN 中,EN +FN >EF(三角形两边之和大于第三边).∴ BE +CF >EF .证法二:如图7—21,延长DE 至M ,使DM =ED ,连结CM 、MF .在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=,,,DM DE CDM BDE CD BD∴ △BDE ≌△CDM(SAS).∴ CM =BE(全等三角形对应边相等)又∵ ∠BDE =∠ADE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°∴ ∠ADE +∠ADF =90°,即∠EDF =90°.∴ ∠FDM =∠EDF =90°.在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=,,,DF DF MDF EDF MD ED ∴ △EDF ≌△MDF(SAS)∴ EF =MF(全等三角形对应边相等).在△CMF 中,CF +CM >MF ,∴ BE +CF >EF .点拨:本题综合考查角平分线,中线的意义,三角形全等及线段之间的等量关系,关键是要把题目中的已知条件集中巧妙应用.【易错例题分析】例 已知如图7—22,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A +∠C =180°.证法一:如图7—22,过D 作DE ⊥AB 交BA 的延长线于E ,DF ⊥BC 于F .∵ BD 平分∠ABC ,∴ DE =DF在Rt △EAD 和Rt △FCD 中,∵ AD =DC ,DE =DF ,∴ Rt △EAD ≌Rt △FCD(HL)∴ ∠C =∠EAD ,∵ ∠EAD +∠BAD =180°,∴ ∠A +∠C =180°.证法二:如图7—23,在BC 上截BE =AB ,连结DE ,证明△ABD ≌△EBD 可得.证法三:延长BA 到E ,使BE =BC ,连结ED ,以下同证法二,如图7—24.警示:本题直接加以证明则不可能,需要巧妙的添加适当的辅助线,不会添加辅助线或添加不适当的辅助线则是最常见的误区.本题是用一个角的平分线上任意一点到角的两边距离相等的定理来证明线段相等,添加辅助线的方法有多种情况,应该很好感悟尽快掌握.。
《轴对称与坐标变化》典型例题
典型例题例1 如图,已知在平面直角坐标系中有一个正方形ABCO .(1)写出A 、B 、C 、O 四个点的坐标.(2)若A 点向右移动两个单位,B 点也向右移动两个单位,写出A 、B 的坐标,这时四边形ABCO 是什么图形?(3)在(2)的图形中B 、C 两点再怎样的变化使四边形ABCO 为正方形?例2 如图,在直角坐标系中,第一次将OAB ∆变换成11B OA ∆,第二次将11B OA ∆变换成22B OA ∆,第三次将22B OA ∆变换成33B OA ∆.已知)0,16()0,8()0,4()0,2()3,8()3,4()3,2()3,1(321321B B B B A A A A ,,,,,,,.(1)观察每次变换后的三角形有何变化,找出规律,按此规律再将33B OA ∆变换成44B OA ∆,则4A 点的坐标是__________,4B 的坐标是__________.(2)若按第一题找到的规律将OAB ∆进行了n 次变换,得到n n B OA ∆,比较每次变换中三角形顶点坐标有何变化,找出规律,推测n A 的坐标是__________,n B 的坐标是__________.例3 在直角坐标中画出一个以)2,1()1,3()1,2(C B A ,,---为顶点的三角形,试说明“把图形各顶点的坐标都乘以一个正数)1(≠k k ,那么图形将扩大或缩小”。
例4 已知)4,(),3(b N a M 、-,根据下列条件求出b a 、的值;(1)N M 、两点关于x 轴对称; (2)N M 、两点关于y 轴对称;(3)N M 、两点关于原点对称; (4)x MN //轴;(5)N M 、在第一、三象限角平分线上;(6)点M 在某象限角平分线上,点N 到y 轴的距离等于5.例5 将图中的点)3,0(),6,6(),3,6(),0,6(D C B A 做如下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原图案相比有什么变化?(2)纵坐标保持不变,横坐标加2,再将所得点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(3)纵坐标保持不变,横坐标分别乘以-1,所得的图案与原来的图案相比有什么变化?例6中考题)一个平行四边形的三个顶点是)2,2((BA-,求第四个顶点C的坐标.0,3O),),0,0(例7已知点)2-aM在第二象限,则a的取值范围是()a,1(+A.2-<a>a D.1-a C.2<->2<a B.1例8 已知点)3,(a在(a在第一象限内两坐标轴夹角的平分线上,则a的值是______;已知点)3,第二象限内两坐标轴夹角的平分线上,则a的值是_______;若点)P在第一、三象限的角a(b,的平分线上,则a与b的关系是______;若点)P在第二、四象限的角的平分线上,则a,b,a(b的关系是______.例9 在平面直角坐标系内,已知点A(2,1),O为坐标原点,请你在坐标轴上确定点P,使得△AOP成为等腰三角形,在给出的坐标系中把所有这样的点P都找出来,画上实心点,并在旁边标上P1,P2,…,P k(有k个就标到 P k为止,不必写出画法).18.(8分)(2014•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C(1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.。
北师大七下数学《轴对称图形》经典试题
北师大七下数学《轴对称图形》经典试题------------------------------------------作者xxxx------------------------------------------日期xxxx第五章《生活中的轴对称》(2)一.选择题1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C. D.2.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对3.正方形的对称轴的条数为()A.1 B.2 C.3 D.44.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2 B.OP1=OP2 C.OP1⊥OP2且OP1=OP2D.OP1≠OP25.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30° B.45° C.60° D.75°6.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPDD.PC=PD7.用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.8.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE9.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°10.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°11.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73° B.56°C.68° D.146°12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm二.填空题13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.16.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是.17.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.18.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.19.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.三.解答题20.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.21.如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE,∠DBC=∠ECB.(1)说明:其中有几对三角形成轴对称,并指出其对称轴;(2)连接AO,试判断直线OA与线段BC的关系,并说明理由.22.如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)①若DE=6cm,求点D到BC的距离;②当∠ABD=35°,∠DAC=2∠ABD时,求∠BAC的度数.23.如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a.则△BEF的形状如何?24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?25.在等腰三角形中,过其中的一个顶点的直线如果能把这个等腰三角形分成两个小的等腰三角形,我们称这种等腰三角形为“少见的三角形”,这条直线称为分割线,下面我们来研究这类三角形.(1)等腰直角三角形是不是“少见的三角形”?(2)已知如图所示的钝角三角形是一个“少见的三角形”,请你画出分割线的大致位置,并求出顶角的度数;(3)锐角三角形中有没有“少见的三角形”?如果没有,请说明理由;如果有,请画出图形并求出顶角的度数.26. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证:CD BE =,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD BE =是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.27.已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边与∠ACM 的平分线CF 交于点F(1)如图(1)当点E 在BC 边得中点位置时○1猜想AE 与EF 满足的数量关系是 . ○2连结点E 与AB边得中点N,猜想BE和CF满足的数量关系是 .○3请证明你的上述猜想; (2)如图(2)当点E在BC边得任意位置时,AE和EF 有怎样的数量关系,并说明你的理由?图9 图10 图11 图(1)N F A E 图(2)F A28.在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.参考答案与解析一.选择题1.【分析】根据轴对称图形的概念求解.解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.2.【分析】分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C3.【分析】根据正方形的对称性解答.解:正方形有4条对称轴.故选:D.解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选:B.5.【分析】要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选:C.6.【分析】要得到△POC≌△POD,现有的条件为有一对角相等,一条公共边,缺少角,或着是解:A.PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理成立,B.OC=OD,根据SAS判定定理成立,C.∠OPC=∠OPD,根据ASA判定定理成立,D.PC=PD,根据SSA无判定定理不成立,故选D.7.【分析】根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解:A.当长方形如A所示对折时,其重叠部分两角的和中,一个顶点处小于90°,另一顶点处大于90°,故A错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故B错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故C错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,故D正确.故选:D.8.【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.9.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A 关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.10.【分析】根据AD∥BC可得出∠C=∠1=70°,再根据AB=AC即可得出∠B=∠C=70°,结合三角形的内角和为180°,即可算出∠BAC的大小.解:∵AD∥BC,∴∠C=∠1=70°,∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=40°.故选A.11.【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC的度数.解:∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.故选A.12.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.二.填空题13.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.14.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.15.【分析】由等腰三角形的性质证得∠E=∠F=20°,由三角形的外角定理证得∠CDF=∠E+∠F=40°,再由平行线的性质即可求得结论.解:∵DE=DF,∠F=20°,∴∠E=∠F=20°,∴∠CDF=∠E+∠F=40°,∵AB∥CE,∴∠B=∠CDF=40°,故答案为:40°.16.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DC即可得解.解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.17.【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.18.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.三.解答题19.本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.解:正确1个得,全部正确得.20.【分析】首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.21.【分析】过点A作AD⊥BC于点D,利用等HL求得Rt△ABD≌Rt△ACD,由全等三角形的性质就可以得出∠B=∠C.证明:过点A作AD⊥BC于点D,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL).∴∠B=∠C.22.【分析】(1)利用轴对称图形的性质即可得出答案;(2)根据∠DBC=∠ECB得到∠OBC=∠OCB,所以OB=OC,由全等三角形的性质得出AB=AC,OB=OC,说明AO是线段BC的垂直平分线.解:(1)△ABD和△ACE,△BOE和△COD,△EBC和△DBC,都关于AO所在直线对称,其对称轴为AO所在直线;(2)∵∠DBC=∠ECB,∴OB=OC,∴点O在线段BC的垂直平分线上,在△DBC和△ECB中,∴△DBC≌△ECB(SAS),∴∠ABC=∠ACB,∴AB=AC,∴点A在BC的垂直平分线上,因此AO是线段BC的垂直平分线.23.【分析】根据轴对称的性质可得PM=EM,PN=FN,然后求出△PMN的周长=EF.解:∵P点关于OA、OB的对称点分别为E、F,∴PM=EM,PN=FN,∴△PMN的周长=PM+MN+FN=ME+MN+FN=EF,∵EF=15,∴△PMN的周长=15.24.【分析】(1)由BD平分∠ABC,得到∠ABD=∠DBC 根据等腰三角形的性质得到∠D=∠ABD等量代换得到∠D=∠DBC,于是得到结论;(2)解①作DF⊥BC于F.根据角平分线的性质即可得到结论;②根据角平分线的定义得到∠ABC=2∠ABD=70°,由平行线的性质得到∠ACB=∠DAC=70°,于是得到结论.(1)证明:∵BD平分∠ABC,∴∠ABD=∠DBC又∵AB=AD∴∠D=∠ABD∴∠D=∠DBC,∴AD∥BC;(2)解:①作DF⊥BC于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6(cm),②∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,∵AD∥BC,∴∠ACB=∠DAC=70°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.25.【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.【精品文档】【精品文档】。
生活中的轴对称(经典例题)
班级小组姓名成绩(满分120)一、轴对称现象(一)轴对称和轴对称图形(共4小题,每题3分,题组共计12分)例1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例1.变式1.下列图形中对称轴最多是()A.圆B.正方形C.角D.线段例1.变式2.如图所示的图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有条对称轴.例1.变式3.如图所示的方格纸中,请你把任意五个方格涂黑,使这五个方格构成一个轴对称图形(图形不能重复,至少设计三个)二、探索轴对称的性质(一)轴对称的性质(共4小题,每题3分,题组共计12分)例2.下列说法:①长方形的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③两点关于连接它们的线段的垂直平分线对称.其中正确的有()A.1个B.2个C.3个D.0个例2.变式1.如图,△ABC与△A'B'C'关于直线l对称,且∠A=78°,∠C'=48°,则∠B的度数为()A.48°B.54°C.74°D.78°例2.变式2.如图所示,AC垂直平分线段BD,若AB=3cm,CD=5cm,则四边形ABCD的周长是()A.11cmB.13cmC.16cmD.18cm例2.变式3.如图,把一张长方形纸ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF=123°,那么∠BAF=.(三)轴对称的性质及应用(共4小题,每题3分,题组共计12分)例3.轴对称图形对应点连线被,对应角、对应线段都.例3.变式1.如图,∠AOB内有一点P,分别画出P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?例3.变式2.如图,将长方形纸片ABCD沿其对角线AC折叠,使点B落到点B'的位置,AB'与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16B.19C.22D.25例3.变式3.如图,在△ABC中,∠ACB=90°,点D在边AB上,连接CD,将△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于点F,若∠B=α,则∠ADC的度数是(用含α的代数式表示).三、简单的轴对称图形(一)等腰三角形的性质(共4小题,每题3分,题组共计12分)例4.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.腰上的高所在的直线D.顶角平分线所在的直线例4.变式1.等边三角形对称轴的条数是()A.1B.2C.3D.4例4.变式2.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9例4.变式3.等腰三角形中有一个角是50°,那么这个等腰三角形的底角是.(二)等腰三角形的性质二(共4小题,每题3分,题组共计12分)例5.下列说法中正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等三角形一定是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.若A,B两点关于直线MN对称,则AB垂直平分MN例5.变式1.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.例2.变式2.如图,在△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=.例5.变式3.有一个三角形的支架如图所示,AB=AC,小明过点A和BC边的中点D又架了一个细木条,经测量∠B=30°,你在不用任何测量工具的前提下,能得到∠BAD和∠ADC的度数吗?(三)线段和角的轴对称性(共4小题,每题3分,题组共计12分)例6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6例6.变式1.如图所示,下列推理中正确的个数是()①因为OC平分∠AOB,点P,D,E分别在OC,OA,OB上,所以PD=PE;②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE.A.0B.1C.3D.4例6.变式2.小明把一张长方形的纸对折了两次,如图所示,使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为.例6.变式3.如图,已知△ABC中,DE垂直平分AC,且交AC于点E,交BC于点D,△ABD的周长是20,AC=8,你能计算出△ABC的周长吗?(四)等腰(边)三角形的性质的综合应用(共4小题,每题3分,题组共计12分)例7.在△ABC中,若BC=AC,∠A=58°,则∠C=,∠B=.例7.变式1.等边三角形的两条中线相交所成的钝角度数是.例7.变式2.如图P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=.例7.变式3.如图,已知△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.(五)轴对称图形的综合运用(共4小题,每题3分,题组共计12分)例8.如图所示,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=6cm,AC=9cm,BC=12cm,则△AMN的周长为.例8.变式1.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.例8.变式2.如图所示,在△ABC中,AB=AC,AD⊥BC于D,AB+AC+BC=50cm,AB+BD+AD=40cm,则AD=cm.例8.变式3.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;照这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.(六)轴对称图形的综合运用二(共4小题,每题3分,题组共计12分)例9.如图,D,E是△ABC的BC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.例9.变式1.如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE,BD交于点C,试说明AC=BC.例9.变式2.如图所示,△ABC是等边三角形,点D是AC的中点,DE∥AB,AE∥BC,DE与AE交于点E,点G是AE的中点,GF∥DE,EF∥AC,EF交GF于点F,若AB=4cm,则图形ABCDEFG的外围的周长是多少?例9.变式3.如图,△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?四、利用轴对称进行设计(共4小题,每题3分,题组共计12分)例10.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形例10.变式1.如左下图,将一张正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个大小相等的圆洞,最后将正方形纸片展开,得到的图案是右下图中的()例10.变式2.当你面对镜子的时候,右手拿笔向左挥动,对于镜子中的像来说是()A.右手拿笔,向右挥动B.左手拿笔,向左挥动C.右手拿笔,向左挥动D.左手拿笔,向右挥动例10.变式3.某一车牌在平面镜中的像是,则这辆车的实际号码是()。
初一数学简单的轴对称图形试题
初一数学简单的轴对称图形试题1.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】根据轴对称图形的定义依次分析各个图形即可判断.一定是轴对称图形的有(2)(3)(4)(5).【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形.2.角是轴对称图形,它的对称轴是_________________.【答案】角平分线所在的直线【解析】根据角的对称性即可得到结果.角是轴对称图形,它的对称轴是角平分线所在的直线.【考点】本题考查的是角的对称轴点评:解答本题的关键是熟练掌握角是轴对称图形,它的对称轴是角平分线所在的直线.注意角平分线是一条射线,而对称轴是一条直线,故要加上“所在的直线”.3.指出下列图形的所有对称轴数,并画出其中一条对称轴.【答案】(1)5条;(2)5条;(3)2条【解析】根据轴对称图形和对称轴的定义即可得到结果.(1)有5条对称轴;(2)有5条对称轴;(3)有2条对称轴,如图所示:【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫对称轴.4.已知:如图,CF⊥AB于E,且AE=EB,已知∠B=40°,求∠ACD、∠DCF的度数.【答案】∠ACD=80°,∠DCF=130°【解析】由AE=EB可得∠A=∠B,再由CF⊥AB结合三角形的内角和即可求得结果.∵AE=EB,∴∠A=∠B=40°,∵CF⊥AB,∴∠BEC=∠AEC=90°,∴∠BCE=∠ACE=50°,∴∠ACD=80°,∠DCF=130°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是熟记等腰三角形的两个底角相等,三角形的内角和为180°.5.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.【答案】120°【解析】由题意设底角为x°,则顶角为4x°,根据三角形的内角和为180°即可得到关于x的方程,解出即可.设底角为x°,则顶角为4x°,由题意得4x+x+x=180解得x=30,4x=120则它的顶角是120°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是熟记等腰三角形的两个底角相等,三角形的内角和为180°.6.等腰三角形的两边长分别为3厘米和6厘米,这个三角形的周长为_________.【答案】15厘米【解析】题目中没有明确腰或底边,故要分情况讨论,再结合三角形的三边关系即可得到结果.当腰为3厘米时,三边长为3,3,6,而3+3=6,此时无法构成三角形;当底为3厘米时,三边长为3,6,6,此时可以构成三角形,周长为3+6+6=15厘米.【考点】本题考查的是等腰三角形的性质,三角形的三边关系点评:解答本题的关键是熟练掌握三角形的三边关系:三角形的任两边之和大于第三边.7.如图,△ABC中,DE垂直平分AC,AE=3,△ABD的周长为13,那么△ABC的周长为____.【答案】19【解析】由DE垂直平分AC可得AD=DC,再结合△ABD的周长可得AB+BC的值,即可求得结果.∵DE垂直平分AC,AE=3∴AD=DC.AC=2AE=6∵△ABD的周长是13∴AB+BD+AD="13"∴AB+BD+DC=13即AB+BC=13∴AB+BC+AC=19则△ABC的周长为19.【考点】本题考查的是垂直平分线的性质点评:解答本题的关键是熟练掌握垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等.8.如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点D,E,BE=6,则△BCE的周长为__________.【答案】22【解析】由DE垂直平分BC可得BE=CE,即可求得结果.∵DE垂直平分BC∴BE=CE=6∴△BCE的周长=BE+CE+BC=22.【考点】本题考查的是垂直平分线的性质点评:解答本题的关键是熟练掌握垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等.9.如图,求作一点P,使PC=PD,并且使点P到∠AOB的两边的距离相等,并说明你的理由.【答案】如图所示:点P就是所求的点.【解析】使PC=PD,即作CD的中垂线,并且P到∠AOB两边的距离相等,即作角平分线,两线的交点就是点P的位置.如图所示:点P就是所求的点.【考点】本题主要考查了尺规作图的一般作法点评:解答本题的关键是熟练掌握到线段两端距离相等的点在这条线段的垂直平分线上;到角两边距离相等的点在这个角的平分线上.10.如图,已知△ABC中,DE垂直平分AC,交C于点E,交BC于点D,△ABD的周长是20厘米,AC长为8厘米,你能判断出△ABC的周长吗?试试看.【答案】28厘米【解析】由DE垂直平分AC可得AD=DC,再结合△ABD的周长可得AB+BC的值,即可求得结果.∵DE垂直平分AC,∴AD=DC.∵△ABD的周长是20厘米,∴AB+BD+AD="20"∴AB+BD+DC=20即AB+BC=20又AC=8,∴AB+BC+AC=28则△ABC的周长为28厘米.【考点】本题考查的是垂直平分线的性质点评:解答本题的关键是熟练掌握垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等.。
最新北师大版七年级数学下册 第五章生活中的轴对称章节 经典习题
生活中的轴对称1.下列四个图形中,是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1 B.2 C.3 D.42.下列标志中,可以看作是轴对称图形的是( D )3.下列图形中,所有轴对称图形的对称轴条数之和为( B )A.13 B.11 C.10 D.84.图中的六边形ABCDEF是轴对称图形,CF所在的直线是对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小为( B )A.150° B.300° C.210° D.330°5.如图,把长方形中的∠A沿某条直线对折,使点A与BC上的点A′重合,折痕交AB于点E,若∠CDA′=70°,则∠AED的度数为( D )A.70° B.20° C.35° D.80°6.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处,如果∠A′EC=70°,那么∠A′DE的度数为65° .7.如图,直线l是四边形ABCD的对称轴,且AD∥BC.(1)试写出图中三组相等的线段;(2)试写出图中三组相等的角;(3)欢欢认为从图中还能得到以下结论:AB∥CD,AB=CD,AB⊥BC,OA=OC,你认为这些结论都正确吗?说明你的理由.解:(1)AB=AD,BC=DC,OB=OD.(答案不唯一)(2)∠BAC=∠DAC,∠BCA=∠DCA,∠ABC=∠ADC.(答案不唯一)(3)AB∥CD,AB=CD,OA=OC正确,但AB⊥BC不正确.因为直线l是四边形ABCD的对称轴,所以OB=OD.因为AD∥BC,所以∠BCA=∠DAC,∠ADO=∠CBO,所以△ADO≌△CBO,所以OA=OC.因为∠AOB=∠COD,所以△ABO≌△CDO,所以AB=CD,∠BAC=∠ACD,所以AB∥CD.8.点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,点P1,O,P2正好在同一条直线上,请求出∠AOB的大小.解:因为OA和OB分别是点P和点P1,点P2和点P的对称轴,所以∠1=∠2,∠3=∠4.又因为点P1,O,P2在同一条直线上,所以∠AOB=180°÷2=90°.9.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( B )A .30° B.40° C.45° D.60°10.如图,在△ABC 中,AB =AC ,CD 平分∠ACB 交AB 于D 点,AE ∥DC 交BC 的延长线于点E ,已知∠E =36°,则∠B = 72 度.11.如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =BE ,求∠A 的度数.解:因为AB =AC , 所以∠ABC =∠C .因为BC =BD ,所以∠BDC =∠C .所以∠ABC =∠BDC =∠C .又因为AD =DE =BE ,所以∠A =∠DEA ,∠EBD =∠EDB .设∠EBD =∠EDB =x ,则∠A =∠DEA =2x ,∠ABC =∠BDC =∠C =3x .在△ABC 中,∠A +∠ABC +∠C =180°,即2x +3x +3x =180°,解得x =22.5°. 所以2x =45°,即∠A 的度数是45°.12.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( C )A .AB =AD B .AC 平分∠BCD C .AB =BDD .△BEC ≌△DEC13.在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为 105° .14.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC = 70 °.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,D ,F 分别为AB ,AC 的中点,DE ⊥AB ,GF ⊥AC ,点E ,G 均在BC 上,BC =15 cm ,求EG 的长.解:如图,连接AE ,AG ,则AE =BE ,AG =CG . 因为AB =AC ,∠BAC =120°,所以∠B =∠C =30°.所以∠AEG =∠AGE =60°.所以△AEG 为等边三角形.所以AE =EG =AG =BE =CG . 所以EG =13BC =5 cm.16.如图,在Rt△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =m ,AB =n ,则△ABD 的面积是( B )A .mm B.12mm C.13mm D .2mm17.如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为 4 .18.如图,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,DF⊥BD,且BD=CD,那么BE与CF相等吗?说明理由.解:相等.理由如下:因为AD是∠BAC的平分线,DE⊥AB,DF⊥AC,所以DE=DF,∠DEB=∠DFC=90°.因为DF⊥BD,所以∠BDE+∠FDC=90°.又因为∠BDE+∠DBE=90°,所以∠FDC=∠DBE.又因为BD=CD,所以△BED≌△DFC,所以BE=CF.19.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,下图各种作法中,符合要求的是( C )20.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,下图中的设计符合要求的有( A )A.4个 B.3个 C.2个 D.1个21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 13 种.22.如图,在2×2的正方形方格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称图形典型例题例1如下图,已知,PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP=∠CDP.证明:∵PB⊥AB,PC⊥AC,且PB=PC,∴∠P AB=∠P AC(到角两边距离相等的点在这个角平分线上),∵∠APB+∠P AB=90°,∠APC+∠P AC=90°,∴∠APB=∠APC,在△PDB和△PDC中,∴△PDB≌△PDC(SAS),∴∠BDP=∠CDP.(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.已知如下图(1),在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.(1)证法一:过D作DE⊥AB交BA的延长线于E,DF⊥BC于F,∵BD平分∠ABC,∴DE=DF,在Rt△EAD和Rt△FCD中,(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.)∴Rt△EAD≌Rt△FCD(HL),∴∠C=∠EAD,∵∠EAD+∠BAD=180°,∴∠A+∠C=180°.证法二:如下图(2),在BC上截取BE=AB,连结DE,证明△ABD ≌△EBD可得.证法三:如下图(3),延长BA到E,使BE=BC,连结ED,以下同证法二.(3)注本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3已知,如下图,AD为△ABC的中线,且DE平分∠BDA交AB于E,DF 平分∠ADC交AC于F.求证:BE+CF>EF.证法一:在DA截取DN=DB,连结NE、NF,则DN=DC,在△BDE 和△NDE中,(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)∴△BDE≌△NDE(SAS),∴BE=NE(全等三角形对应边相等),同理可证:CF=NF,在△EFN中,EN+FN>EF(三角形两边之和大于第三边),∴BE+CF>EF.证法二:延长ED至M,使DM=ED,连结CM、MF,在△BDE和△CDM中,(从另一个角度作辅助线)∴△BDE≌△NDE(SAS),∴CM=BE(全等三角形对应边相等),又∵∠BDE=∠A DE,∠ADF=∠CDF,而∠BDE+∠ADE+∠ADF+∠CDF=180°,∴∠ADE+∠ADF=90°,即∠EDF=90°,∴∠FDM=∠EDF=90°,在△EDF和△MDF中,∴△EDF≌△MDF(SAS),∴EF=MF(全等三角形对应边相等),在△CMF中,CF+CM >EF,∴BE+CF >EF.注本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4已知,如下图,P、Q是△ABC边BC上的两点,且BP=PQ=QC=A P=AQ.求:∠BAC的度数.解:∵AP=PQ=AQ(已知),∴∠APQ=∠AQP=∠P AQ=60°(等边三角形三个角都是60°),∵AP=BP(已知),(注意观察图形和条件)∴∠PBA=∠P AB(等边对等角),∴∠APQ=∠PBA+∠P AB=60°(三角形的一个外角等于和它不相邻的两个内角和),∴∠PBA=∠P AB=30°,同理∠QAC=30°,∴∠BAC=∠BAP+∠P AQ+∠QAC=30°+60°+30°=120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5已知,如下图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使D F=DE,连结FC.求证:∠F=∠A.证明:∵AB=AC,∴∠B=∠ACB(等边对等角),∵EB=ED,∴∠B=∠EDB,∴∠ACB=∠EDB(等量代换),∴ED∥AC(同位角相等,两直线平行),在△BDE和△AED中,BE=AE=ED,连结AD可得,∠EAD=∠EDA,∠EBD=∠EDB,∠EDA+∠EDB=90°,即AD⊥BC,∴∠EDA+∠EDB=90°,即AD⊥BC,(用什么定理判定三角形全等的?)∴D为BC的中点,∴△BDE≌△CDF,∴∠BED=∠F,而∠BED=∠A,∴∠F=∠A.例6已知,如下图,△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.证法一:作BC边上的高AD,D为垂足,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD(等腰三角形三线合一),又∵∠BAC=∠E+∠AFE,∠AEF=∠AFE,∴∠CAD=∠E,∴AD∥EF,∵AD⊥BC,∴EF⊥BC.证法二:过A作AG⊥EF于G,∵∠AEF=∠AFE,AG=AG,∠AGE=∠AGF=90°,∴△AGE≌△AGF(ASA),∵AB=AC,∴∠B=∠C,又∠EAF=∠B+∠C,(请对比多种证法的优劣)∴∠EAG+∠GAF=∠B+∠C,∴∠EAG=∠C,∴AG∥BC,∵AG⊥EF,∴EF⊥BC.证法三:过E作EH∥BC交BA的延长线于H,∵AB=AC,∴∠B=∠C,∴∠H=∠B=∠C=∠AEH,∵∠AEF=∠AFE,∠H+∠AFE+∠FEH=180°,∴∠H+∠AEH+∠AEF+∠AFE=180°,∴∠AEF+∠AEH=90°,即∠FEH=90°,∴EF⊥EH,又EH∥BC,∴EF⊥BC.证法四:延长EF交BC于K,∵AB=AC,∴∠B=∠C,∴∠B=(180°-∠BAC),∵∠AEF=∠AFE,∴∠AFE=(180°-∠EAF),∵∠BFK=∠AFE,∴∠BFK=(180°-∠EAF),∴∠B+∠BFK=(180°-∠BAC)+(180°-∠EAF)∵=[360°-(∠EAF+∠BAC)],∴∠EAF+∠BAC=180°,∴∠B+∠BFK=90°,即∠FKB=90°,∴EF⊥BC.注本题考察等腰三角形性质的应用,解题的关键是通过添加辅助线,建立EF与BC的联系,仔细体会以上各种不同的添加辅助线的方法.例7 如下图,AB=AC,DB=DC,P是AD上一点.求证:∠ABP=∠ACP.证明:连结BC,∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角),又∵点A、D在线段BC的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上),而两点确定一条直线,∴AD就是线段BC的垂直平分线,∴PB=PC(线段垂直平分线上的点到线段两个端点的距离相等),∴∠PBC=∠PCB(等边对等角),(线段垂直平分线的性质)∴∠ABC-∠PBC=∠ACB-∠PCB(等式性质),即∠ABP=∠ACP.注本题若用三角形全等,至少需要证两次,现用线段垂直平分线的判定和性质,就显得比较简洁.例8如下图,AB=AC,DE垂直平分AB交AB于D,交AC于E,若△ABC的周长为28,BC=8,求△BCE的周长.解:∵等腰△ABC的周长=28,BC=8,∴2AC+BC=28,∴AC=10,(理由是什么?)∵DE垂直平分AB,∴AE=BE,∴△BCE的周长=BE+EC+BC=AE+EC+BC=AC+BC=10+8=18.注本题考察线段垂直平分线的性质定理的运用,关键是运用线段垂直平分线的性质得到线段的等量关系.例9已知,如下图,△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于F,交AB于E,求证:.证法一:连结AF,则AF=BF,∴∠B=∠F AB(等边对等角),∵AB=AC,∴∠B=∠C(等边对等角),∵∠BAC=120°,∴∠B=∠C=(三角形内角和定理),∴∠F AB=30°,∴∠F AC=∠BAC-∠F AB=120°-30°=90°,又∵∠C=30°,(线段的垂直平分线是常见的对称轴之一)∴(直角三角形中30°角所对的直角边等于斜边的一半),∴.证法二:连结AF,过A作AG∥EF交FC于G,∵EF为AB的垂直平分线,∴AF=BF,又∵∠B=30°,∴∠AFG=60°,∠BAG=90°,∴∠A G B=60°,△AFG为等边三角形,又∵∠C=30°,∴∠G AC=30°,∴AG=GC,(构造等边三角形是证明线段相等的一种好方法)∴BF=FG=GC=.例10已知,如下图,AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=MD.求证:AB=BC.思路分析从结论分析,要证AB=BC,可连结AC,使BC与AB能落在一个三角形内,再看∠BAC与∠BCA能否相等?证明:连结AC,交DM于H,∵∠AMB=75°,∠DMC=45°(已知),∴∠AMD=60°(平角定义)又∵AM=MD,∴△AMD为等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AM=AD(等边三角形三边相等),∵CD⊥BC,∴∠DCM=90°,∵∠DMC=45°,∴∠MDC=45°(三角形内角和定理),∴CD=CM(等角对等边),∴AC是DM的垂直平分线(和线段两端点等距离的点,在线段的垂直平分线上),∴∠MHC=90°,∴∠HCM=45°,∵∠B=90°,∴∠BAC=45°,∴AB=BC(等角对等边).【典型热点考题】例1 如图7—15,等腰△ABC的对称轴与底边BC相交于点D,请回答下列问题:(1)AD是哪个角的平分线;(2)AD是哪条线段的垂直平分线;(3)有哪几条相等的边;(4)有哪几对相等的角.点悟:本题主要考查等腰三角形的所有特征.所以应该根据等腰三角形是轴对称图形的性质来解答问题.解:等腰三角形是轴对称图形,直线AD是它的对称轴.(1)AD是顶角∠BAC的平分线.(2)AD是线段BC的垂直平分线.(3)AB=AC,BD=DC.(4)∠BAD=∠CAD,∠ABC=∠ACB,∠ADB=∠ADC.例2 如图7—16,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP 上一点.求证:∠BDP=∠CDP.点悟:利用三角形全等证明两个角相等最直观,但因为图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形全等同样可以,证明:∵ PB⊥AB,PC⊥AC,且PB=PC,∴ ∠PAB=∠PAC(到角两边距离相等的点在这个角的平分线上).∵ ∠APB+∠PAB=90°,∠APC+∠PAC=90°,∴ ∠APB=∠APC.在△PDB和△PDC中,∴ △PDB≌△PDC(SAS)∴ ∠BDP=∠CD P.例3 如图7—17,先找出下列各图形中的轴对称图形,再画出它们的对称轴(有几条,画几条).点悟:先确定是否是轴对称图形,如果是轴对称图形,就将它们的对称轴全部画出来.解:(1)是,它有3条对称轴.(2)是,它有2条对称轴.(3)是,它有2条对称轴.(4)是,它只有一条对称轴.(5)它不是轴对称图形,故没有对称轴.(6)它是轴对称图形,有一条对称轴.图均略.例4 如图7—18,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,将图中的等腰三角形全部写出来,并求出∠B的度数.点悟:图中共有三个等腰三角形,要将它们一一写出来,不能遗漏.在计算∠B的度数时,要充分利用三角形的一个外角等于它的两个不相邻的两个内角的和.解:图中共有三个等腰三角形,它们分别是:△ABC,△ABD,△CAD.设∠B=x,则∠C=x=∠BAD,∠ADC=∠DAC=2x.∴ ∠B+∠C+∠BAC=∠B+∠C+∠BAD+∠DAC=x+x+x+2x=5x=180°∴ .例5 如图7—19,在金水河的同一侧居住两个村庄A、B.要从河边同一点修两条水渠到A、B两村浇灌蔬菜,问抽水站应修在金水河MN何处两条水渠最短?点悟:先将具体问题抽象成数学模型.河流为直线MN,在直线MN 的同一侧有A、B两点.在直线MN上找一点P,使P点到A、B两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图7—19所示.作B点关于直线MN的对称点B′,连结AB′,与MN相交于P,则P点即为所求.事实上,如果不是P点而是点时,则连结和.由轴对称性知道,,所以到A、B的距离之和,,而P到A、B的距离之和在中,三角形两边之和大于第三边,所以P点即为所求的点.例6 如图7—20,已知,AD为△ABC的中线,且DE平分∠BDA 交AB于E,DF平分∠ADC交AC于F.求证:BE+CF>EF.点悟:遇到角平分线就可以考虑利用轴对称的性质或全等三角形的性质来解决问题.证法一:在DA上截取DN=DB.连结NE、NF.则DN=DC.在△BDE和△NDE中,∴ △BDE≌△NDE.∴ BE=NE.同理可得,CF=NF.在△EFN中,EN+FN>EF(三角形两边之和大于第三边).∴ BE+CF>EF.证法二:如图7—21,延长DE至M,使DM=ED,连结CM、MF.在△BDE和△CDM中,∴ △BDE≌△CDM(SAS).∴ CM=BE(全等三角形对应边相等)又∵ ∠BDE=∠ADE,∠ADF=∠CDF,而∠BDE+∠ADE+∠ADF+∠CDF=180°∴ ∠ADE+∠ADF=90°,即∠EDF=90°.∴ ∠FDM=∠EDF=90°.在△EDF和△MDF中,∴ △EDF≌△MDF(SAS)∴ EF=MF(全等三角形对应边相等).在△CMF中,CF+CM>MF,∴ BE+CF>EF.点拨:本题综合考查角平分线,中线的意义,三角形全等及线段之间的等量关系,关键是要把题目中的已知条件集中巧妙应用.【易错例题分析】例已知如图7—22,在四边形ABCD中,BC>BA,AD=CD,BD 平分∠ABC.求证:∠A+∠C=180°.证法一:如图7—22,过D作DE⊥AB交BA的延长线于E,DF⊥BC 于F.∵ BD平分∠ABC,∴ DE=DF在Rt△EAD和Rt△FCD中,∵ AD=DC,DE=DF,∴ Rt△EAD≌Rt△FCD(HL)∴ ∠C=∠EAD,∵ ∠EAD+∠BAD=180°,∴ ∠A+∠C=180°.证法二:如图7—23,在BC上截BE=AB,连结DE,证明△ABD≌△EBD可得.证法三:延长BA到E,使BE=BC,连结ED,以下同证法二,如图7—24.警示:本题直接加以证明则不可能,需要巧妙的添加适当的辅助线,不会添加辅助线或添加不适当的辅助线则是最常见的误区.本题是用一个角的平分线上任意一点到角的两边距离相等的定理来证明线段相等,添加辅助线的方法有多种情况,应该很好感悟尽快掌握.。