河南省郑州市高考数学一轮复习:55 用样本估计总体
用样本的数字特征估计总体-高考数学复习
1. (多选)如图是某班50名学生期中考试数学成绩的频率分布直方
图,其中成绩分组区间是[40,50),
[50,60),[60,70),[70,80),
[80,90),[90,100],则下列说
法正确的是(
)
A. 图中的 x 的值为0.018
B. 该班50 名学生期中考试数学成绩的众数是75
C. 该班50 名学生期中考试数学成绩的中位数是72
目录
1
C O N T E N T S
2
3
知识 逐点夯实
考点 分类突破
课时 跟踪检测
PART
1
知识 逐点夯实
课前自修
必备知识 系统梳理 基础重落实
目录
高中总复习·数学
1. 总体百分位数的估计
(1)百分位数
定义
意义
百 一组数据的第 p 百分位数是这样一个值,
分 它使得这组数据中 至少
有 p %的数据小
为 ,第二层抽取 n 个,即 y 1, y 2,…, yn ,平均数为 ,则
x 1, x 2,…, xm , y 1, y 2,…, yn 的平均数 =
+
+
.
+
(2)中位数:将一组数据按大小依次排列,处于
最中间 位置
的一个数据(或最中间两个数据的平均数)叫做这组数据的
目录
高中总复习·数学
2. 平均数、方差的公式推广
若数据 x 1 , x 2 ,…, x n 的平均数为 ത ,方差为 s 2 ,那么 mx 1 +
a , mx 2 + a , mx 3 + a ,…, mx n + a 的平均数是 m ത + a ,方
新高考数学一轮复习考点知识专题讲解与练习 57 用样本估计总体
新高考数学一轮复习考点知识专题讲解与练习考点知识总结57 用样本估计总体高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中、低等难度考纲研读1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图,并体会它们各自的特点2.理解样本数据标准差的意义和作用,会计算数据的标准差3.能从样本数据中提取基本的数字特征(如平均数、标准差、百分位数),并做出合理的解释4.会计算分层随机抽样的样本均值与样本方差5.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想6.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题一、基础小题1.一组数据90,92,99,97,96,x的众数是92,则这组数据的中位数是() A.94 B.95 C.96 D.97答案A解析数据90,92,99,97,96,x的众数是92,则x=92,所以这组数据为90,92,92,96,97,99,则这组数据的中位数是12×(92+96)=94.故选A.2.如图所示是根据某市3月1日至10日的最低气温(单位:℃)的情况绘制的折线统计图,由图可知这10天最低气温的第80百分位数是()A.-2 B.0C.1 D.2答案D解析由折线图可知,这10天的最低气温按照从小到大的顺序排列为-3,-2,-1,-1,0,0,1,2,2,2,因为共有10个数据,所以10×80%=8,是整数,则这10天最低气温的第80百分位数是2+22=2.3.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积和的14,且样本量为80,则中间一组的频数为() A.0.25 B.0.5 C.20 D.16答案D解析设中间一组的频数为x,依题意有x80=14⎝⎛⎭⎪⎫1-x80,解得x=16.4.研究人员随机调查统计了某地1000名“上班族”每天在工作之余使用手机上网的时间,并将其绘制为如图所示的频率分布直方图,若同一组数据用该区间的中点值作代表,则可估计该地“上班族”每天在工作之余使用手机上网的平均时间是()A.1.78小时B.2.24小时C.3.56小时D.4.32小时答案C解析该地“上班族”每天在工作之余使用手机上网的平均时间是(1×0.12+3×0.2+5×0.1+7×0.08)×2=3.56小时.5.在高一期中考试中,甲、乙两个班的数学成绩统计如下表:班级人数平均分数方差甲20x-2甲乙30x-3乙其中x-甲=x-乙,则两个班数学成绩的方差为()A.3 B.2C.2.6 D.2.5答案C解析由题意可知两个班的数学成绩平均数为x-=x-甲=x-乙,则两个班数学成绩的方差为s2=2020+30×[2+(x-甲-x-)2]+3020+30×[3+(x-乙-x-)2]=2020+30×2+3020+30×3=2.6.6.2022年4月24日下午,随着最后1例新冠肺炎重症患者治愈,武汉重症病例实现了清零,抗疫工作取得了阶段性重大胜利.某方舱医院从出院的新冠肺炎患者中随机抽取100人,将这些患者的治疗时间(都在[5,30]天内)进行统计,制作出频率分布直方图如图所示,则估计该院新冠肺炎患者治疗时间的中位数是()A.16 B.17C.18 D.19答案B解析设这100名新冠肺炎患者治疗时间的中位数是x,∵(0.01+0.05)×5=0.3<0.5,(0.01+0.05+0.1)×5=0.8>0.5,∴x∈[15,20),0.3+(x-15)×0.1=0.5,解得x=17,则该院新冠肺炎患者治疗时间的中位数是17.故选B.7.(多选)乐乐家共有七人,已知今年这七人年龄的众数为35,平均数为44,中位数为55,标准差为19,则5年后,下列说法中正确的是()A.这七人岁数的众数变为40B.这七人岁数的平均数变为49C.这七人岁数的中位数变为60D.这七人岁数的标准差变为24答案ABC解析根据众数、平均数、中位数的概念得5年后,每人的年龄相应增加5,而标准差不变,所以这七人年龄的众数变为40;平均数变为49;中位数变为60;标准差不变,为19.故选ABC.8.(多选)为了解运动健身减肥的效果,某健身房调查了20名肥胖者,测量了他们的体重(单位:千克).健身之前他们的体重情况如三维饼图1所示,经过半年的健身后,他们的体重情况如三维饼图2所示.对比健身前后,关于这20名肥胖者,下列结论正确的是()A.他们健身后,体重在区间[90,100)内的人数不变B.他们健身后,体重在区间[100,110)内的人数减少了2个C.他们健身后,体重在区间[110,120)内的肥胖者体重都有减轻D.他们健身后,这20名肥胖者的体重的中位数位于区间[90,100)答案ACD解析题图1中体重在区间[90,100),[100,110),[110,120)内的人数分别为8,10,2;题图2中体重在区间[80,90),[90,100),[100,110)内的人数分别为6,8,6.故选ACD.二、高考小题9.(2022·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间答案C解析由频率分布直方图,知该地农户家庭年收入低于4.5万元的农户比率估计为(0.02+0.04)×1×100%=6%,故A正确;由频率分布直方图,知该地农户家庭年收入不低于10.5万元的农户比率估计为(0.04+0.02+0.02+0.02)×1×100%=10%,故B正确;由频率分布直方图,知该地农户家庭年收入的平均值约为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),故C不正确;由频率分布直方图,知该地农户家庭年收入介于4.5万元至8.5万元之间的农户比率约为(0.10+0.14+0.20+0.20)×1×100%=64%>50%,故D正确.故选C.10.(多选)(2022·新高考Ⅱ卷)下列统计量中,能度量样本x1,x2,…,x n的离散程度的是()A.样本x1,x2,…,x n的标准差B.样本x1,x2,…,x n的中位数C.样本x1,x2,…,x n的极差D.样本x1,x2,…,x n的平均数答案AC解析由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势.故选AC.11.(多选)(2022·新高考Ⅰ卷)有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数,则() A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同答案CD解析由题可知x-=x1+x2+…+x nn ,y-=y1+y2+…+y nn=x1+x2+…+x nn+c=x-+c ,因为c ≠0,所以x -≠y -,A 错误;若样本数据x 1,x 2,…,x n 的中位数为x k ,因为y i =x i +c ,c ≠0,所以样本数据y 1,y 2,…,y n 的中位数为y k =x k +c ≠x k ,B 错误;设s x 表示样本数据x 1,x 2,…,x n 的标准差,s y 表示样本数据y 1,y 2,…,y n 的标准差,则样本数据y 1,y 2,…,y n 的标准差s y =1n (y 1-y -)2+(y 2-y -)2+…+(y n -y -)2=1n[(x 1+c )-(x -+c )]2+[(x 2+c )-(x -+c )]2+…+[(x n +c )-(x -+c )]2=1n (x 1-x -)2+(x 2-x -)2+…+(x n -x -)2=s x ,所以C 正确;设样本数据x 1,x 2,…,x n 中最大的为x n ,最小的为x 1,因为y i =x i +c ,所以样本数据y 1,y 2,…,y n 中最大的为y n ,最小的为y 1,极差为y n -y 1=(x n +c )-(x 1+c )=x n -x 1,所以D 正确.故选CD.12.(2022·天津高考)从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[66,70),[70,74),…,[94,98],并整理得到如下的频率分布直方图,则评分在区间[82,86)内的影视作品数量是( )A .20B .40 C.64 D .80答案 D解析 由频率分布直方图可知,评分在区间[82,86)内的影视作品数量为400×0.050×4=80.故选D.13.(2022·全国Ⅲ卷)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑4i =1p i =1,则下面四种情形中,对应样本的标准差最大的一组是( ) A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.2答案 B解析 对于A ,该组数据的平均数为x -A =(1+4)×0.1+(2+3)×0.4=2.5,方差为s 2A =(1-2.5)2×0.1+(2-2.5)2×0.4+(3-2.5)2×0.4+(4-2.5)2×0.1=0.65;对于B ,该组数据的平均数为x -B =(1+4)×0.4+(2+3)×0.1=2.5,方差为s 2B =(1-2.5)2×0.4+(2-2.5)2×0.1+(3-2.5)2×0.1+(4-2.5)2×0.4=1.85;对于C ,该组数据的平均数为x -C=(1+4)×0.2+(2+3)×0.3=2.5,方差为s 2C =(1-2.5)2×0.2+(2-2.5)2×0.3+(3-2.5)2×0.3+(4-2.5)2×0.2=1.05;对于D ,该组数据的平均数为x -D =(1+4)×0.3+(2+3)×0.2=2.5,方差为s 2D =(1-2.5)2×0.3+(2-2.5)2×0.2+(3-2.5)2×0.2+(4-2.5)2×0.3=1.45.因此,B 项这一组样本数据的标准差最大.故选B.14.(2022·全国Ⅱ卷)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差答案 A解析 中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.15.(2022·全国Ⅱ卷)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案 0.98解析 平均正点率x -=10×0.97+20×0.98+10×0.9910+20+10=0.98.则经停该站高铁列车所有车次的平均正点率的估计值为0.98.16.(2022·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.答案 53解析 这组数据的平均数为8,故其方差为s 2=16×[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53.三、模拟小题17.(2022·河北张家口第三次模拟)某中学春季运动会上,12位参加跳高半决赛同学的成绩各不相同,按成绩从高到低取前6位进入决赛,如果小明知道了自己的成绩后,则他可根据其他11位同学成绩的哪个数据判断自己能否进入决赛( )A.中位数B.平均数C.极差D.方差答案A解析12位同学参赛,按成绩从高到低取前6位进入决赛,正好一半,因此可根据中位数判断小明是否能进入决赛.故选A.18.(多选)(2022·广东省花都区高三上学期调研)四名同学各掷骰子5次,分别记录每次骰子出现的点数.根据四名同学的统计结果,可以判断出一定没有出现点数6的有()A.中位数为3,众数为3B.平均数为3,众数为4C.平均数为3,中位数为3D.平均数为2,方差为2.4答案BD解析对于A,当掷骰子出现的结果为1,2,3,3,6时,满足中位数为3,众数为3,所以A不能判断;对于B,若平均数为3,且出现点数为6,则其余4个数的和为9,而众数为4,故其余4个数的和至少为10,所以B可以判断;对于C,当掷骰子出现的结果为1,1,3,4,6时,满足平均数为3,中位数为3,可以出现点6,所以C不能判断;对于D,若平均数为2,且出现点数6,则方差s2>12=3.2>2.4,所以当平均数5×(6-2)为2,方差为2.4时,一定不会出现点数6.故选BD.19.(多选)(2022·安徽蚌埠高三模拟)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则下列说法正确的是()A.甲的成绩的平均数等于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的第80百分位数等于乙的成绩的第80百分位数D.甲的成绩的极差大于乙的成绩的极差答案AC解析由题图可得,x-甲=4+5+6+7+85=6,x-乙=3×5+6+95=6,A正确;甲的成绩的中位数为6,乙的成绩的中位数为5,B错误;甲的成绩的第80百分位数为7+82=7.5,乙的成绩的第80百分位数为6+92=7.5,所以二者相等,C正确;甲的成绩的极差为4,乙的成绩的极差也为4,D错误.20.(多选)(2022·广东肇庆第二次统一检测)某大学生暑假到工厂参加生产劳动,生产了100件产品,质检人员测量其长度(单位:厘米),将所得数据分成6组:[90,91),[91,92),[92,93),[93,94),[94,95),[95,96],得到如图所示的频率分布直方图,则关于这100件产品,下列说法中正确的是()A.b=0.25B.长度落在区间[93,94)内的个数为35C.长度的众数一定落在区间[93,94)内D.长度的中位数一定落在区间[93,94)内答案ABD解析对于A,由频率和为1,得(0.35+b+0.15+0.1×2+0.05)×1=1,解得b=0.25,故A正确;对于B,长度落在区间[93,94)内的个数为100×0.35=35,故B正确;对于C,这100件产品长度的众数不一定落在区间[93,94)内,故C错误;对于D,由(0.1×2+0.25)×1=0.45<0.5,(0.1×2+0.25+0.35)×1=0.8>0.5,知这100件产品长度的中位数一定落在区间[93,94)内,故D正确.故选ABD.21.(多选)(2022·湖南师大附中高三第二次月考)甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层随机抽样方法从两所学校一共抽取了110名学生的数学成绩,考生成绩都分布在[70,150]内,并作出了如下频数分布统计表,规定考试成绩在[120,150]内为优秀,则下列说法正确的有()分组[70,80)[80,90)[90,100)[100,110)AB.估计甲校优秀率为25%,乙校优秀率为40% C.估计甲校和乙校众数均为120D.估计乙校的数学平均成绩比甲校高答案ABD解析对于A,甲校抽取110×12002200=60人,乙校抽取110×10002200=50人,故x=10,y=7,故A正确;对于B,估计甲校优秀率为1560=25%,乙校优秀率为2050=40%,故B正确;对于C,甲校众数的估计值为105,115,乙校众数的估计值为115,125,故C 错误;对于D,甲校平均成绩为109.5,乙校平均成绩为114.6,故D正确.22.(多选)(2022·湖南六校联考)下图是某市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择6月1日至13日中的某一天到达该市,并停留2天,下列说法正确的有()A.该市14天空气质量指数的平均值大于100B.此人到达当日空气质量优良的概率为8 13C.此人在该市停留期间只有1天空气重度污染的概率为2 13D.每连续3天计算一次空气质量指数的方差,其中第5天到第7天的方差最大答案AD解析114×(86+25+57+143+220+160+40+217+160+121+158+86+79+37)=113.5,故A正确;在6月1日至13日这13天中,1日,2日,3日,7日,12日,13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率为613,故B不正确;6月1日至14日连续两天包含的样本点有13个,此人在该市停留期间只有1天空气重度污染的样本点是{4,5},{5,6},{7,8},{8,9},共4个,所以此人在该市停留期间只有1天空气重度污染的概率是413,故C不正确;由空气质量指数趋势图可以看出,从3月5日开始连续三天的空气质量指数方差最大,故D正确.故选AD.23.(2022·山东潍坊高三质检)为了调查公司员工的健康状况,用分层随机抽样的方法抽取样本,已知所抽取的所有员工的体重的方差为124,男员工的平均体重为70 kg ,标准差为4,女员工的平均体重为50 kg ,标准差为6.若样本中有20名男员工,则女员工的人数为________.答案 30解析 设男员工的权重为ω男,由题意可知样本的平均数x -=ω男x -男+(1-ω男)x -女=70ω-男+50(1-ω男)=20ω男+50,样本的方差s 2=ω男[s 2男+(x -男-x -)2]+(1-ω男)[s 2女+(x -女-x -)2],即ω男[42+(70-20ω男-50)2]+(1-ω男)[62+(50-20ω男-50)2]=124,解得ω男=0.4,因为样本中有20名男员工,所以样本中女员工的人数为200.4×(1-0.4)=30.一、高考大题1.(2022·全国乙卷)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备 9.8 10.3 10.0 10.2 9.9 新设备10.110.410.110.010.1旧设备 9.8 10.0 10.1 10.2 9.7 新设备10.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x -和y -,样本方差分别记为s 21和s 22.(1)求x -,y -,s 21,s 22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y --x-≥2s 21+s 2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).解 (1)由表中的数据可得:x -=9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.710=10,y -=10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.510=10.3, s 21=110×[(9.8-10)2+(10.3-10)2+(10.0-10)2+(10.2-10)2+(9.9-10)2+(9.8-10)2+(10.0-10)2+(10.1-10)2+(10.2-10)2+(9.7-10)2]=0.036,s 22=110×[(10.1-10.3)2+(10.4-10.3)2+(10.1-10.3)2+(10.0-10.3)2+(10.1-10.3)2+(10.3-10.3)2+(10.6-10.3)2+(10.5-10.3)2+(10.4-10.3)2+(10.5-10.3)2]=0.04.(2)由(1)中的数据可得y --x -=10.3-10=0.3,2s 21+s 2210=20.036+0.0410=20.0076=0.0304,因为0.3=0.09>0.0304,所以y --x ->2s 21+s 2210.所以可以认为新设备生产产品的该项指标的均值较旧设备有显著提高.2.(2022·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表(1)(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解(1)由表中数据可知,甲厂加工出来的一件产品为A级品的概率的估计值为40100=0.4,乙厂加工出来的一件产品为A级品的概率的估计值为28=0.28.100(2)甲分厂加工100件产品的总利润为40×(90-25)+20×(50-25)+20×(20-25)-20×(50+25)=1500元,所以甲分厂加工100件产品的平均利润为15元/件.乙分厂加工100件产品的总利润为28×(90-20)+17×(50-20)+34×(20-20)-21×(50+20)=1000元,所以乙分厂加工100件产品的平均利润为10元/件.故厂家应选择甲分厂承接加工业务.3.(2022·全国Ⅲ卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.(2022·全国Ⅰ卷)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解 (1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m 3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x -1=150×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x-2=150×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计该家庭使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).二、模拟大题5.(2022·河南郑州一模)河阴石榴是河南省荥阳市的特产,距今已有2100多年的历史,河阴石榴籽粒大,色紫红,甜味浓,被誉为“中州名果”.河阴石榴按照果径大小可以分为四类:标准果、优质果、精品果、礼品果.某超市老板从采购的一批河阴石榴中随机抽取100 kg,根据石榴的等级分类标准得到的数据如下表所示:(1)求a(2)用样本估计总体,超市老板参考以下两种销售方案进行销售:方案1:不分类卖出,单价为20元/kg;方案2:分类卖出,分类后的水果售价如下表所示:=0.2.解(1)a=100-10-30-40=20,礼品果所占比例是20100(2)理由一:设方案2的石榴售价的平均数为x -,x -=16×110+18×310+22×410+24×210=20.6,因为x -=20.6>20,所以从超市老板的销售利润角度考虑,采用方案2比较好.理由二:设方案2的石榴售价的平均数为x -,x -=16×110+18×310+22×410+24×210=20.6,虽然x -=20.6>20,但20.6-20=0.6,差额不太大,从超市老板后期对石榴分类的人力资源和时间成本角度考虑,采用方案1比较好.6.(2022·湖南师大附中第一次大练习)某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如图所示的频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]).(1)求成绩在[70,80)的频率,并补全此频率分布直方图;(2)求这次考试平均分的估计值(同一组中的数据以这组数据所在区间中点的值作代表);(3)若从成绩在[40,50)和[90,100]的学生中任选两人,求他们的成绩在同一分组区间的概率.解 (1)成绩在[70,80)的频率为1-(0.005+0.015+0.020+0.030+0.005)×10=0.25.补全频率分布直方图如下:(2)依题意可得,平均分x-=(45×0.005+55×0.015+65×0.020+75×0.025+85×0.030+95×0.005)×10=72.5.故这次考试平均分的估计值为72.5.(3)成绩在[40,50)和[90,100]的人数分别是3和3,所以从成绩在[40,50)和[90,100]内的学生中任选两人,将[40,50)分数段的3人编号为A1,A2,A3,将[90,100]分数段的3人编号为B1,B2,B3,从中任取两人,则样本空间Ω={(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3),(A2,A3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(B1,B2),(B1,B3),(B2,B3)},共有15个样本点,这15个样本点发生的可能性是相等的.其中,在同一分数段内的事件所含样本点有(A1,A2),(A1,A3),(A2,A3),(B1,B2),(B1,B3),(B2,B3),共6个,故所求概率P=615=25.7.(2022·河北省衡水市第一中学高三上学期第一次调研)“2022年全国城市节约用水宣传周”已于5月9日至15日举行.成都市围绕“贯彻新发展理念,建设节水型城市”这一主题,开展了形式多样、内容丰富的活动.进一步增强全民保护水资源,防治水污染,节约用水的意识.为了解活动开展成效,某街道办事处工作人员赴一小区调查住户的节约用水情况,随机抽取了300名业主进行节约用水调查评分,将得到的分数分成6组:[70,75),[75,80),[80,85),[85,90),[90,95), [95,100],得到如图所示的频率分布直方图.(1)求a的值,并估计这300名业主评分的中位数;(2)若先用比例分配的分层随机抽样的方法从评分在[90,95)和[95,100]的业主中抽取5人,然后再从抽出的这5名业主中任意选取2人做进一步访谈,求这2人中至少有1人的评分在[95,100]的频率.解(1)∵第三组的频率为1-(0.020+0.025+0.030+0.035+0.050)×5=0.200,=0.040.∴a=0.2005又第一组的频率为0.025×5=0.125,第二组的频率为0.035×5=0.175,第三组的频率为0.200,∴前三组的频率之和为0.125+0.175+0.200=0.500,∴这300名业主评分的中位数为85.(2)由频率分布直方图,知评分在[90,95)的人数与评分在[95,100]的人数的比值为3∶2,∴采用比例分配的分层随机抽样法抽取5人,评分在[90,95)的有3人,评分在[95,100]的有2人.不妨设评分在[90,95)的3人分别为A1,A2,A3,评分在[95,100]的2人分别为B1,B2,则从5人中任选2人的所有可能情况有{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10种.其中选取的2人中至少有1人的评分在[95,100]的情况有{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共7种.故这2人中至少有1人的评分在[95,100]的概率为P=710.。
备考2020年高考数学复习:55 用样本估计总体
备考2020年高考数学复习:55 用样本估计总体一、单选题(共12题;共24分)1.组数据,,…,的平均值为3,则,,…,的平均值为()A. 3B. 6C. 5D. 22.两名同学近几次信息技术比赛(满分为26分)得分统计成绩茎叶图如图,若甲乙比赛成绩的平均数与中位数分别相等,则有序数对(x,y)为()A. (3,2)B. (2,3)C. (3,1)或(7,5)D. (3,2)或(7,5)3.第十一届全国少数民族传统体育运动会将于2019年9月8日至16日在郑州举行.如下图所示的茎叶图是两位选手在运动会前期选拔赛中的比赛得分,则下列说法正确的是()A. 甲的平均数大于乙的平均数B. 甲的中位数大于乙的中位数C. 甲的方差大于乙的方差D. 甲的极差小于乙的极差4.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列统计结论是不正确的是( )A. 样本中的女生数量多于男生数量B. 样本中有理科意愿的学生数量多于有文科意愿的学生数量C. 样本中的男生偏爱理科D. 样本中的女生偏爱文科5.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数和方差分别为()A. B. C. D. 6.为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:估计该校高一学生参加传统文化活动情况正确的是().A. 参加活动次数是3场的学生约为360人B. 参加活动次数是2场或4场的学生约为480人C. 参加活动次数不高于2场的学生约为280人D. 参加活动次数不低于4场的学生约为360人7.某商场在今年端午节的促销活动中,对6月9日时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为3万元,则11时至12时的销售额为()A. 万元B. 万元C. 万元D. 万元8.如图是年我校举办“激扬青春,勇担责任”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为( )A. 85;87B. 84;86C. 85;86D. 84;859.某公司2018年在各个项目中总投资500万元,下图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占,那么不少于3万元的项目投资共有()A. 56万元B. 万元C. 万元D. 万元10.海水养殖场收获时随机抽取了100个养殖网箱,测量各网箱水产品产量(单位:),其频率分布直方图如图,则估计此样本中位数为()A. 50.00B. 51.80C. 52.35D. 52.5011.空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:如图是某市10月1日-20日指数变化趋势:下列叙述错误的是()A. 这20天中指数值的中位数略高于100B. 这20天中的中度污染及以上的天数占C. 该市10月的前半个月的空气质量越来越好D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好12.空气质量指数是一种反映和评价空气质量的方法,指数与空气质量对应如下表所示:如图是某城市2018年12月全月的指数变化统计图.根据统计图判断,下列结论正确的是()A. 整体上看,这个月的空气质量越来越差B. 整体上看,前半月的空气质量好于后半月的空气质量C. 从数据看,前半月的方差大于后半月的方差D. 从数据看,前半月的平均值小于后半月的平均值二、填空题(共5题;共5分)13.水痘是一种传染性很强的病毒性疾病,易在春天爆发.市疾控中心为了调查某校高一年级学生注射水症疫苗的人数,在高一年级随机抽取5个班级,每个班抽取的人数互不相同,若把每个班级抽取的人数作为样本数据.已知样本平均数为7,样本方差为4,则样本数据中的最大值是________.14.从某校名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在的学生人数为________.15.若根据5名儿童的年龄(岁)和体重的数据用最小二乘法得到用年龄预报体重的回归方程是,已知这5名儿童的年龄分别是3,5,2,6,4,则这5名儿童的平均体重是________ .16.国家气象局统计某市2016年各月的平均气温(单位:C)数据的茎叶图所示,则这组数据的中位数是________.17.某个容量为100的样本的频率分布直方图如下,则在区间[4,5]上的数据的频数为________。
2024年高考指导数学(人教A版理科第一轮复习)目录
课时规范练(A)课时规范练1集合的概念与运算课时规范练3命题及其关系、充要条件课时规范练5函数及其表示课时规范练7函数的奇偶性与周期性课时规范练9指数与指数函数课时规范练11函数的图象课时规范练13函数模型及其应用课时规范练15利用导数研究函数的单调性课时规范练17定积分与微积分基本定理课时规范练19同角三角函数基本关系式及诱导公式课时规范练21简单的三角恒等变换课时规范练23函数y=A sin(ωx+φ)的图象及三角函数的应用课时规范练25平面向量的概念及线性运算课时规范练27平面向量的数量积及其应用课时规范练29数列的概念课时规范练31等比数列课时规范练33二元一次不等式(组)与简单的线性规划问题课时规范练35合情推理与演绎推理课时规范练37数学归纳法课时规范练39空间几何体的表面积与体积课时规范练41空间直线、平面的平行关系课时规范练43空间向量及其运算课时规范练45直线的倾斜角、斜率与直线的方程课时规范练47圆的方程课时规范练49椭圆课时规范练51抛物线课时规范练53算法初步课时规范练55用样本估计总体课时规范练57分类加法计数原理与分步乘法计数原理课时规范练59二项式定理课时规范练61古典概型与几何概型课时规范练63二项分布与正态分布课时规范练65极坐标方程与参数方程课时规范练67绝对值不等式课时规范练(B)课时规范练2简单不等式的解法课时规范练4简单的逻辑联结词、全称量词与存在量词课时规范练6函数的单调性与最大(小)值课时规范练8幂函数与二次函数课时规范练10对数与对数函数课时规范练12函数与方程课时规范练14导数的概念及运算课时规范练16利用导数研究函数的极值、最大(小)值课时规范练18任意角、弧度制及任意角的三角函数课时规范练20两角和与差的正弦、余弦与正切公式及二倍角公式课时规范练22三角函数的图象与性质课时规范练24余弦定理、正弦定理及应用举例课时规范练26平面向量基本定理及向量坐标运算课时规范练28复数课时规范练30等差数列课时规范练32数列求和课时规范练34基本不等式及其应用课时规范练36直接证明与间接证明课时规范练38空间几何体的结构及其三视图、直观图课时规范练40空间点、直线、平面之间的位置关系课时规范练42空间直线、平面的垂直关系课时规范练44空间几何中的向量方法课时规范练46点与直线、两条直线的位置关系课时规范练48直线与圆、圆与圆的位置关系课时规范练50双曲线课时规范练52直线与圆锥曲线的位置关系课时规范练54随机抽样课时规范练56变量间的相关关系、统计案例课时规范练58排列与组合课时规范练60随机事件的概率课时规范练62离散型随机变量及其分布列课时规范练64离散型随机变量的均值与方差课时规范练66极坐标方程与参数方程的应用课时规范练68不等式的证明解答题专项解答题专项一函数与导数的综合问题第1课时利用导数证明不等式第2课时利用导数研究不等式恒(能)成立问题第3课时利用导数研究函数的零点解答题专项二三角函数与解三角形解答题专项三数列解答题专项四立体几何中的综合问题解答题专项五直线与圆锥曲线第1课时圆锥曲线中的最值(或范围)问题第2课时圆锥曲线中的定点(或定值)问题第3课时圆锥曲线中的存在性(或证明)问题解答题专项六概率与统计单元质检卷单元质检卷一集合与常用逻辑用语单元质检卷二函数单元质检卷三导数及其应用单元质检卷四三角函数、解三角形单元质检卷五平面向量、数系的扩充与复数的引入单元质检卷六数列单元质检卷七不等式、推理与证明单元质检卷八立体几何单元质检卷九解析几何单元质检卷十算法初步、统计与统计案例单元质检卷十一计数原理单元质检卷十二概率。
2025届高考数学一轮总复习第10章统计与成对数据的统计分析第2节用样本估计总体新人教A版
B.170
C.171
解析 根据题意,10×60%=6,所以第 60
以 x=171.
D.172
169+
169+
百分位数为 2 ,由已知 2 =170,所
考点二 用样本的数字特征估计总体的数字特征(多考向探究预测)
考向1总体集中趋势的估计(中位数、众数、平均数)
例2(1)(2024·山东济南模拟)某射击运动员连续射击5次,命中的环数(环数
3.一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )
4.对一组数据来说,平均数和中位数总是非常接近.( × )
题组二回源教材
5.(人教A版必修第二册9.2.2节例2改编)某机构调查了解10种食品的卡路里
含量,结果如下:107,135,138,140,146,175,179,182,191,195.则这组数据的第
1 m
2
∑
x
i,s1
m i=1
=
则①w =
m+
;
m+
②s
1 m
2
∑
(x
i-) ,
m i=1
1
=
{m[s12 +(
m+
2
=
1
2
∑
y
i,s2
i=1
=
1
2
∑
(y
i-) .
i=1
− w)2]+n[s22 +( − w)2]}.
常用结论
1.在频率分布直方图中:
(1)最高的小长方形底边中点的横坐标即是众数;
均值和样本方差的计算.
目录索引
1 强基础 固本增分
2023年高考数学一轮复习 新高考方案 课件第九章 统计与成对数据的统计分析
答案:95
• 层级一/ 基础点——自练通关(省时间)
• 基础点(一) 抽样方法
• [题点全训]
• 1.某班有男生36人,女生18人,用分层随机抽样的方法从该班全 体学生中抽取一个容量为9的样本,则抽取的女生人数为
在一组数据中出现次数_最__多__的数
中位数 将一组数据按_大__小__顺__序___依次排列(相同的数据要重复列出), 处在最中间位置的那个数据(或最中间两个数据的平均数)
平均数
一组数据的_算__术__平__均__数___
方差
s2=n1[(x1- x )2+(x2- x )2+…+(xn- x )2](xn 是样本数据,n 是样本容量, x 是样本平均数),其中 s 是标准差
样本量
(3)平均数计算
在分层随机抽样中,如果层数分为 2 层,第 1 层和第 2 层包含的个体数分
别为 M 和 N,抽取的样本量分别为 m 和 n,第 1 层和第 2 层样本的平均数分别
为
x
,
y
,则样本的平均数
w
=
m m+n
x
+m+n n
y
M = M+N
x +M+N N y .
• 3.作频率分布直方图的步骤 • (1)求极_差____ (即一组数据中最大值与最小值的差);
• 8 44 2 17 8 31 57 4 55 6
•88 77 74 47 7 21 76 33 50 63
•解析:生成的随机数中落在编号1~100范围内的有8,44,2,17,8(重 复,舍弃),31……故选中的第5个个体的编号为31.
高考数学第一轮知识点总复习 第二节 用样本估计总体
平.因为公司中少数人的月工资额与大多数人的月工资额差别较大,
这样导致了平均数与中位数的偏差较大,所以平均数不能客观真实
地反映这个公司员工的工资水平.
题型四 综合问题
【例4】(12分)某种瓶装溶液,因为装瓶机的不稳定性,所以很可能每 瓶装的容量都不是标准的容量.我们随机抽出了20瓶,测得它们的容量 (单位:百毫升)如下: 12.1 11.9 12.2 12.2 12.0 12.1 12.9 12.1 12.3 12.5 11.7 12.4 12.3 11.8 11.3 12.1 11.4 11.6 11.2 12.2
1
(2)频率分布直方图如图:
(3)电子元件寿命在100 h~400 h以内的频数为130,则频率 为 13=00.65. 200
(4)寿命在400 h以上的电子元件的频数为70,则频率 为 =700.35. 200
学后反思利用样本的频率分布可近似地估计总体的分布.从本例可 以看出,要比较准确地反映出总体70 分布的情况,必须准确地作出
[140,15 0)
人数
4
8
x
5
3
生产能 力分组 人数
表2:
[110, 120)
6
[120,130) [130,14 0)
y
36
[140,15 0)
18
(1)先确定x、y,再完成下列频率分布直方图,就生产能力而言, A类工人中个体间的差异程度与B类工人中个体间的差异程度哪 个更小?(不用计算,可通过观察直方图直接回答结论)
比;所有组距的频率之和为1;每一组距的频率是频率分布直方图中该
组距所对应的矩形的面积.
解
(1)M=0.102
=50,m=50-(1+4+20+15+8)=2n,N =m1,
高三数学人教版A版数学(理)高考一轮复习教案:用样本估计总体 Word版含答案
第三节用样本估计总体总体分布的估计(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.知识点一频率分布直方图1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.易误提醒 (1)易把直方图与条形图混淆:两者的区别在于条形图是离散随机变量,纵坐标刻度为频数或频率,直方图是连续随机变量,连续随机变量在某一点上是没有频率的.(2)易忽视频率分布直方图中纵轴表示的应为频率组距.必记结论 由频率分布直方图进行相关计算时,需掌握下列关系式: (1)频率组距×组距=频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. [自测练习]1.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为( )A .0.006B .0.005C .0.004 5D .0.002 5解析:由题意知,a =1-(0.02+0.03+0.04)×102×10=0.005.答案:B2.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16,应选D. 答案:D知识点二 茎叶图 茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.易误提醒 在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数据要重复记录,同时不要混淆茎叶图中茎与叶的含义.[自测练习]3.(2015·惠州模拟)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( )A .19、13B .13、19C .20、18D .18、20解析:由茎叶图可知,甲的中位数为19,乙的中位数为13.故选A. 答案:A知识点三 样本的数字特征 1.众数、中位数、平均数 数字特征定义与求法优点与缺点众数一组数据中重复出现次数最多的数众数通常用于描述变量的值出现次数最多的数.但显然它对其他数据信息的忽视使得无法客观地反映总体特征中位数把一组数据按从小到大的顺序排列,处在中间位置的一个数据(或两个数据的平均数)中位数等分样本数据所占频率,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数如果有n 个数据x 1,x 2,…,x n ,那么这n 个数的平均数x =x 1+x 2+…+x nn平均数与每一个样本数据有关,可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低2.标准差、方差(1)标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)方差:标准差的平方s 2s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x 是样本平均数.易误提醒 (1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)平均数反映的是样本个体的平均水平,众数和中位数则反映样本中个体的“重心”.(3)实际问题中求得的平均数、众数和中位数应带上单位.必备方法 利用频率分布直方图求众数、中位数与平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.[自测练习]4.对于一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +C (i =1,2,3,…,n ),其中C ≠0,则下列结论正确的是( )A .平均数与方差均不变B .平均数变,方差保持不变C .平均数不变,方差变D .平均数与方差均发生变化解析:依题意,记原数据的平均数为x ,方差为s 2,则新数据的平均数为(x 1+C )+(x 2+C )+…+(x n +C )n =x +C ,即新数据的平均数改变;新数据的方差为1n {[(x 1+C )-(x +C )]2+[(x 2+C )-(x +C )]2+…+[(x n +C )-(x +C )]2}=s 2,即新数据的方差不变,故选B.答案:B5.(2015·高考陕西卷)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2 015=2×1 010,解得a 1=5.答案:5考点一频率分布直方图及应用|1.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于()A.0.12B.0.012C.0.18 D.0.018解析:依题意,0.054×10+10x+0.01×10+0.006×10×3=1,解得x=0.018,故选D.答案:D2.某市为了节约能源,拟出台“阶梯电价”制度,即制订住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的月用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18,63,43,119,65,77,29,97,52,100.(2)根据已有信息,试估计全市住户的平均月用电量(同一组数据用该区间的中点值作代表);(3)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.解:(1)(2)由题意,用每小组的中点值代表该小组的平均月用电量,则100户住户组成的样本的平均月用电量为10×0.04+30×0.12+50×0.24+70×0.30+90×0.25+110×0.05=65(度).用样本估计总体,可知全市居民的平均月用电量约为65度.(3)计算累计频率,可得下表:的总面积(频率)为0.75,故有0.7+(a-80)×0.012 5=0.75,解得a=84,由样本估计总体,可得临界值a为84.绘制频率分布直方图时需注意(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;(2)频率分布直方图的纵坐标是频率组距,而不是频率.考点二 茎叶图|1.如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值分别为( )A .2,4B .4,4C .5,6D .6,4解析:x 甲=75+82+84+(80+x )+90+936=85,解得x =6,由图可知y =4,故选D.答案:D2.(2016·长沙一模)右面的茎叶图是某班学生在一次数学测验时的成绩:根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是( )A .15名女生成绩的平均分为78B .17名男生成绩的平均分为77C.女生成绩和男生成绩的中位数分别为82,80D.男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重解析:对于A,15名女生成绩的平均分为115×(90+93+80+80+82+82+83+83+85+70+71+73+75+66+57)=78,A正确;对于B,17名男生成绩的平均分为117×(93+93+96+80+82+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B正确;对于D,观察茎叶图,对男生、女生成绩进行比较,可知男生两极分化比较严重,D正确;对于C,根据女生和男生成绩数据分析可得,两组数据的中位数均为80,C错误,故选C.答案:C使用茎叶图时,需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.考点三样本的数字特征|(2015·高考广东卷)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?[解] (1)依题意,20×(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)=1, 解得x =0.007 5.∴直方图中x 的值为0.007 5.(2)由图可知,最高矩形的数据组为[220,240), ∴众数为220+2402=230.∵[160,220)的频率之和为(0.002+0.009 5+0.011)×20=0.45,∴依题意,设中位数为y , ∴0.45+(y -220)×0.012 5=0.5. 解得y =224,∴中位数为224.(3)月平均用电量在[220,240)的用户在四组用户中所占比例为0.012 50.012 5+0.007 5+0.005+0.002 5=511,∴月平均用电量在[220,240)的用户中应抽取11×511=5(户).(1)平均数与方差都是重要的数字特征,是对总体的一种简明地描述,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)利用方差优化比较时方差越小,效果越好.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s2甲,故甲更稳定.答案:甲11.概率与统计的综合问题的答题模板【典例】(12分)(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:[思路点拨](1)因为在频率分布直方图上,纵坐标表示的是频率与组距的比值,根据频数求出频率,进而求出频率与组距的比值,根据频率分布直方图可看出满意度评分的平均值的大小和分散程度,中间的矩形面积越高越集中,越不分散;(2)B地区可直接借助低于70分的频数10求出不满意的概率,A地区利用频率分布直方图中小矩形的面积即为频率,可求出不满意的概率,进而比较大小.[规范解答](1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(6分)(2)A地区用户的满意度等级为不满意的概率大.(7分)记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,(8分)P(C B)的估计值为(0.005+0.02)×10=0.25.(10分)所以A地区用户的满意度等级为不满意的概率大.(12分)[模板形成]分析图表、审核数据↓作出频率分布直方图↓由直方图数据分析相应问题↓利用直方图求概率,作出判断↓反思解题过程注意规范化A组考点能力演练1.(2016·邢台摸底)样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其样本方差为( )A.105B.305C. 2 D .2解析:依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2,选D.答案:D2.10名工人某天生产同一零件,生产的零件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解析:依题意,这些数据由小到大依次是10,12,14,14,15,15,16,17,17,17,因此a <15,b =15,c =17,c >b >a ,选D.答案:D3.(2015·高考全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关解析:根据柱形图易得选项A ,B ,C 正确,2006年以来我国二氧化硫年排放量与年份负相关,选项D 错误.故选D.答案:D4.(2015·高考山东卷)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:由题中茎叶图,知x 甲=26+28+29+31+315=29,s 甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2] =3105; x 乙=28+29+30+31+325=30,s 乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2] = 2.所以x 甲<x 乙,s 甲>s 乙,故选B. 答案:B5.(2016·内江模拟)某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[11,20),[20,30),[30,40]时,所作的频率分布直方图是( )解析:本题考查统计.利用排除法求解.由直方图的纵坐标是频率/组距,排除C 和D ;又第一组的频率是0.2,直方图中第一组的纵坐标是0.02,排除A ,故选B.答案:B6.(2015·郑州二检)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m 、n 的比值mn =________.解析:由茎叶图可知甲的数据为27、30+m 、39,乙的数据为20+n 、32、34、38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数为33,所以乙的平均数也为33,所以有20+n +32+34+384=33,所以n =8,所以m n =38.答案:387.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679解析:由数据表可得出乙班的数据波动性较大,则其方差较大,甲班的数据波动性较小,其方差较小,其平均值为7,方差s 2=15(1+0+0+1+0)=25.答案:258.(2015·高考湖北卷)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 解析:(1)0.1×1.5+0.1×2.5+0.1×a +0.1×2+0.1×0.8+0.1×0.2=1,解得a =3; (2)区间[0.5,0.9]内的频率为1-0.1×1.5-0.1×2.5=0.6,则该区间内购物者的人数为10 000×0.6=6 000.答案:(1)3 (2)6 0009.甲、乙两人参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图.(1)指出学生乙成绩的中位数;(2)现要从中选派一人参加数学竞赛,你认为应该派哪位学生参加? 解:(1)依题意知,学生乙成绩的中位数为83+852=84.(2)派甲参加比较合适,理由如下:x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=35.5,s 2乙=41,∵x 甲=x 乙,且s 2甲<s 2乙,∴甲的成绩比较稳定.10.(2016·唐山统考)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m 名学生进行体育测试.根据体育测试得到了这m 名学生的各项平均成绩(满足100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到频率分布直方图(如图).已知测试平均成绩在区间[30,60)内有20人.(1)求m 的值及中位数n ;(2)若该校学生测试平均成绩小于n ,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?解:(1)由频率分布直方图知第1组,第2组和第3组的频率分别是0.02,0.02和0.06, 则m ×(0.02+0.02+0.06)=20,解得m =200.由直方图可知,中位数n 位于[70,80)内,则0.02+0.02+0.06+0.22+0.04(n -70)=0.5,解得n =74.5.(2)设第i (i =1,2,3,4,5,6,7)组的频率和频数分别为p i 和x i ,由图知,p 1=0.02,p 2=0.02,p 3=0.06,p 4=0.22,p 5=0.40,p 6=0.18,p 7=0.10,则由x i =200×p i ,可得x 1=4,x 2=4,x 3=12,x 4=44,x 5=80,x 6=36,x 7=20, 故该校学生测试平均成绩是x=35x1+45x2+55x3+65x4+75x5+85x6+95x7200=74<74.5,所以学校应该适当增加体育活动时间.B组高考题型专练1.(2015·高考陕西卷)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123C.137 D.167解析:由扇形统计图可得,该校女教师人数为110×70%+150×(1-60%)=137.故选C.答案:C2.(2015·高考湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,故运动员人数为4.答案:43.(2015·高考江苏卷)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 解析:由平均数公式可得这组数据的平均数为4+6+5+8+7+66=6.答案:64.(2015·高考全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2. P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.。
2025年高考数学一轮复习课时作业-用样本估计总体【含解析】
2025年高考数学一轮复习课时作业-用样本估计总体【原卷版】(时间:45分钟分值:70分)【基础落实练】1.(5分)为加强学校体育工作,推动青少年文化学习和体育锻炼协调发展.某学校对高一年级6名学生某日在校体育锻炼时长(单位:分钟)进行了统计,记录如下:45,62,51,70,66,59,则该组数据的80%分位数为()A.51B.62C.66D.642.(5分)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.183.(5分)已知一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,则另一组数据3x1-2, 3x2-2,3x3-2,3x4-2,3x5-2的平均数、方差分别为()A.2,12B.2,1C.4,32D.4,924.(5分)某地为践行“绿水青山就是金山银山”的人与自然和谐共生的发展理念,对该地企业已处理的废水进行实时监测.下表是对A,B两家企业10天内已处理的废水的某项指标值的检测结果.下列说法正确的是()A43727398638665758178B82687137616558687794A.A企业该指标值的极差较大B.A企业该指标值的中位数较小C.B企业该指标值的平均数较大D.B企业该指标值的众数与中位数相等5.(5分)(多选题)(2024·湛江模拟)某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则下列说法正确的有()A.乙同学体温的极差为0.4B.乙同学的体温比甲同学的体温更稳定C.乙同学体温的众数为36.4,中位数与平均数相等D.甲同学体温的第70百分位数为36.56.(5分)某汽车研究院现有300名研究员,他们的学历情况如图所示,该研究院今年计划招聘一批新研究员,并决定不再招聘本科生,且使得招聘后本科生的比例下降到15%,硕士生的比例不变,则该研究院今年计划招聘的硕士生人数为________.7.(5分)(2023·厦门模拟)已知样本数据2,4,8,m的极差为10,其中m>0,则该组数据的方差为__________.8.(10分)甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【能力提升练】9.(5分)某校排球社的同学为训练动作组织了垫排球比赛,以下为根据排球社50位同学的垫球个数画的频率分布直方图,所有同学垫球数都在5至40之间.估计垫球数的样本数据的第75百分位数是()A.17.5B.18.75C.27D.2810.(5分)(多选题)(2023·新高考Ⅰ卷)有一组样本数据x1,x2,x3,x4,x5,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,x3,x4,x5,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,x3,x4,x5,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,x3,x4,x5,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,x3,x4,x5,x6的极差11.(5分)(2024·重庆模拟)某学校为了更好地关注青少年的心理健康,对某年级的全体同学进行了一次心理健康测试,测试成绩满分为100分,其中1600名同学的测试成绩的频率分布直方图如图所示,则这1600名同学测试成绩的第65百分位数为__________.12.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的成绩(成绩均为整数,满分为100分)进行统计,所有学生的成绩都不低于60分,将这50名学生的成绩(单位:分)进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100],得到如图所示的频率分布直方图.(1)求图中m的值,并估计此次竞赛活动学生成绩的中位数;(2)根据频率分布直方图,估计此次竞赛活动成绩的平均数.若对成绩不低于平均数的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.2025年高考数学一轮复习课时作业-用样本估计总体【解析版】(时间:45分钟分值:70分)【基础落实练】1.(5分)为加强学校体育工作,推动青少年文化学习和体育锻炼协调发展.某学校对高一年级6名学生某日在校体育锻炼时长(单位:分钟)进行了统计,记录如下:45,62,51,70,66,59,则该组数据的80%分位数为()A.51B.62C.66D.64【解析】选C.将6名学生该日在校体育锻炼时长记录从小到大排列为45,51,59,62,66,70,因为80%×6=4.8,所以该组数据的80%分位数为66.2.(5分)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.18【解析】选B.志愿者的总人数为20=50,所以第三组的人数为50×0.36=18,(0.24+0.16)×1有疗效的人数为18-6=12.3.(5分)已知一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,则另一组数据3x1-2, 3x2-2,3x3-2,3x4-2,3x5-2的平均数、方差分别为()A.2,12B.2,1C.4,32D.4,92【解析】选D.因为一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,所以另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数为3×2-2=4,方差为32×12=92.4.(5分)某地为践行“绿水青山就是金山银山”的人与自然和谐共生的发展理念,对该地企业已处理的废水进行实时监测.下表是对A,B两家企业10天内已处理的废水的某项指标值的检测结果.下列说法正确的是()A43727398638665758178B82687137616558687794A.A企业该指标值的极差较大B.A企业该指标值的中位数较小C.B企业该指标值的平均数较大D.B企业该指标值的众数与中位数相等【解析】选D.将A,B两家企业10天内已处理的废水的某项指标值的检测结果从小到大排列:A企业:43,63,65,72,73,75,78,81,86,98.B企业:37,58,61,65,68,68,71,77,82,94.A企业该指标值的极差为98-43=55,B企业该指标值的极差为94-37=57,A错误;A企业该指标值的中位数为73+752=74,B企业该指标值的中位数为68+682=68,B错误;A企业该指标值的平均数为43+63+65+72+73+75+78+81+86+9810=73.4,B企业该指标值的平均数为37+58+61+65+68+68+71+77+82+9410=68.1,C错误;由上可知,B企业该指标值的众数与中位数都为68,D正确.5.(5分)(多选题)(2024·湛江模拟)某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则下列说法正确的有()A.乙同学体温的极差为0.4B.乙同学的体温比甲同学的体温更稳定C.乙同学体温的众数为36.4,中位数与平均数相等D.甲同学体温的第70百分位数为36.5【解析】选BCD.选项A,乙同学体温的极差为36.5-36.3=0.2,故A错误;选项B,从题中折线图上可以看出,乙同学的体温比甲同学的体温更稳定,故B正确;选项C,乙同学的体温从低到高依次为36.3℃,36.3℃,36.4℃,36.4℃,36.4℃, 36.5℃,36.5℃,故众数为36.4,而中位数和平均数都是36.4,故C正确;选项D,甲同学的体温从低到高依次为36.2℃,36.2℃,36.4℃,36.4℃,36.5℃, 36.5℃,36.6℃,由70%×7=4.9,可知数据的第70百分位数为第5项数据36.5,故D 正确.6.(5分)某汽车研究院现有300名研究员,他们的学历情况如图所示,该研究院今年计划招聘一批新研究员,并决定不再招聘本科生,且使得招聘后本科生的比例下降到15%,硕士生的比例不变,则该研究院今年计划招聘的硕士生人数为________.【解析】根据题意,设今年计划招聘的硕士生为x人,博士生为y人,又由现有研究员300人,其中本科生有300×20%=60(人),硕士生有300×40%=120(人),=0.15,=0.4,解得 =40, =60.答案:407.(5分)(2023·厦门模拟)已知样本数据2,4,8,m的极差为10,其中m>0,则该组数据的方差为__________.【解析】由题意得m-2=10,所以m=12,所以该组数据的平均数为 =2+4+8+124=132,由方差的计算公式可知:s2=14 2-+(4-132)2+(8-132)2+12- =594.答案:5948.(10分)甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【解析】(1)甲=18×(82+81+79+78+95+88+93+84)=85,乙=18×(92+95+80+75+83+80+90+85)=85,甲2=18×[(82-85)2+(81-85)2+(79-85)2+(78-85)2+(95-85)2+(88-85)2+(93-85)2+(84-85)2] =35.5,乙2=18×[(92-85)2+(95-85)2+(80-85)2+(75-85)2+(83-85)2+(80-85)2+(90-85)2+(85-85)2] =41.(2)由(1)知甲=乙,甲2< 乙2,甲的成绩较稳定,所以派甲参赛比较合适.【能力提升练】9.(5分)某校排球社的同学为训练动作组织了垫排球比赛,以下为根据排球社50位同学的垫球个数画的频率分布直方图,所有同学垫球数都在5至40之间.估计垫球数的样本数据的第75百分位数是()A.17.5B.18.75C.27D.28【解析】选D.垫球数在区间[5,25)内的人数占总人数的(0.01+0.01+0.04+0.06)×5×100%=60%,垫球数在区间[5,30)内的人数占总人数的(0.01+0.01+0.04+0.06+0.05)×5×100%=85%,所以第75百分位数位于区间[25,30)内,且25+5×0.75-0.60.85-0.6=28,所以估计垫球数的样本数据的第75百分位数是28.10.(5分)(多选题)(2023·新高考Ⅰ卷)有一组样本数据x1,x2,x3,x4,x5,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,x3,x4,x5,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,x3,x4,x5,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,x3,x4,x5,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,x3,x4,x5,x6的极差【解析】选BD.对于A,如1,2,2,2,3,5的平均数为2.5,而2,2,2,3的平均数为2.25,不相等,故A错误;对于B,不妨设x1≤x2≤x3≤x4≤x5≤x6,其中位数为 3+ 42,x2,x3,x4,x5的中位数为 3+ 42,所以B正确;对于C,x1,x2,x3,x4,x5,x6的波动更大,所以C错误;对于D,不妨设x1≤x2≤x3≤x4≤x5≤x6,则x5-x2≤x6-x1,故D正确.11.(5分)(2024·重庆模拟)某学校为了更好地关注青少年的心理健康,对某年级的全体同学进行了一次心理健康测试,测试成绩满分为100分,其中1600名同学的测试成绩的频率分布直方图如图所示,则这1600名同学测试成绩的第65百分位数为__________.【解析】因为(0.01+0.01+m+0.02+0.02)×10=1,所以m=0.04,又0.1+0.1+0.4=0.6, 0.1+0.1+0.4+0.2=0.8,所以第65百分位数位于第4组中,设第65百分位数为a,则0.1+0.1+0.4+(a-80)×0.02=0.65,解得a=82.5.答案:82.512.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的成绩(成绩均为整数,满分为100分)进行统计,所有学生的成绩都不低于60分,将这50名学生的成绩(单位:分)进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100],得到如图所示的频率分布直方图.(1)求图中m的值,并估计此次竞赛活动学生成绩的中位数;(2)根据频率分布直方图,估计此次竞赛活动成绩的平均数.若对成绩不低于平均数的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.【解析】(1)由题中频率分布直方图知(0.01+m+0.04+0.02)×10=1,解得m=0.03;设此次竞赛活动学生成绩的中位数为x0,因为数据落在[60,80)内的频率为0.4,落在[60,90)内的频率为0.8,从而可得80<x0<90,由(x0-80)×0.04=0.5-0.4,得x0=82.5,所以估计此次竞赛活动学生成绩的中位数为82.5.(2)由题中频率分布直方图及(1)知, =65×0.1+75×0.3+85×0.4+95×0.2=82,此次竞赛活动学生成绩不低于82的频率为0.2+90-8210×0.4=0.52,则获奖的学生有500×0.52=260(名),所以估计此次竞赛活动成绩的平均数为82,在参赛的500名学生中有260名学生获奖.。
新高考数学一轮复习考点知识专题讲解与练习 55 二项分布与超几何分布、正态分布
新高考数学一轮复习考点知识专题讲解与练习考点知识总结55 二项分布与超几何分布、正态分布高考 概览 高考在本考点的常考题型为选择题、填空题、解答题,分值为5分、12分,中等难度考纲研读1.理解n 次独立重复试验的模型及二项分布2.理解超几何分布及其导出过程,并能进行简单应用3.借助直方图认识正态分布曲线的特点及曲线所表示的意义4.能解决一些简单的实际问题一、基础小题1.设随机变量X ~N (1,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为() A .4 B .6 C.8 D .10答案 A解析 x =0与x =a -2关于x =1对称,则a -2=2,a =4.故选A.2.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)=( )A.516 B .316 C.58 D .38答案 A解析 X ~B ⎝ ⎛⎭⎪⎫6,12,由二项分布可得,P (X =3)=C 36×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-123=516. 3.15个村庄中有7个交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( ) A .P (X =2) B .P (X ≤2) C .P (X =4) D .P (X ≤4) 答案 C解析 X 服从超几何分布,故P (X =k )=C k 7C 10-k 8C 1015,k =4. 4.一试验田某种作物一株生长果实个数x 服从正态分布N (90,σ2),且P (x <70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1 C.0.3 D .0.21答案 B解析 ∵x ~N (90,σ2),且P (x <70)=0.2,∴P (x >110)=0.2,∴P (90≤x ≤110)=0.5-0.2=0.3,∴X ~B (10,0.3),则X 的方差为10×0.3×(1-0.3)=2.1.故选B.5.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25 B .35 C.18125 D .54125答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次抽到黄球的概率为P 1=35,所以3次中恰有2次抽到黄球的概率是P =C 23×⎝ ⎛⎭⎪⎫352×⎝ ⎛⎭⎪⎫1-35=54125.6.(多选)抛掷一枚质地均匀的硬币三次,若记出现“三个正面”“三个反面”“二正一反”“一正二反”的概率分别为P 1,P 2,P 3,P 4,则下列结论中正确的是( )A .P 1=P 2=P 3=P 4B .P 3=2P 1C .P 1+P 2+P 3+P 4=1D .P 4=3P 2答案 CD解析 根据伯努利试验的概率计算公式,可得P 1=⎝ ⎛⎭⎪⎫123=18,P 2=⎝ ⎛⎭⎪⎫123=18,P 3=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-12=38,P 4=C 13×12×⎝ ⎛⎭⎪⎫1-122=38,P 1=P 2<P 3=P 4,故A 错误;P 3=3P 1,故B 错误;P 1+P 2+P 3+P 4=1,故C 正确;P 4=3P 2,故D 正确.故选CD.7.某市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80≤ξ≤100)=0.40,若按成绩采用分层随机抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取的份数为________.答案 10解析 P (ξ>120)=12[1-2P (80≤ξ≤100)]=0.10,所以应从120分以上的试卷中抽取100×0.10=10份.8.甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45;乙第一次射击的命中率为78,若第一次未射中,则乙进行第二次射击,射击的命中率为34,如果又未中,则乙进行第三次射击,射击的命中率为12.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为________,乙射中的概率为________.答案 1256364解析 甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45,则甲击中的次数X ~B ⎝ ⎛⎭⎪⎫3,45,∴甲三次射击命中次数的期望为E (X )=3×45=125.由题意可得乙射中的概率为P =78+18×34+18×14×12=6364.二、高考小题9.(2022·新高考Ⅱ卷)某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等答案 D解析 对于A ,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量在一次测量中大于10的概率为0.5,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量在一次测量中小于9.99的概率与大于10.01的概率相等,故C正确;对于D,因为该物理量在一次测量中落在(9.9,10)的概率与落在(10.2,10.3)的概率不同,所以在一次测量中落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.10.(2022·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X =4)<P(X=6),则p=()A.0.7 B.0.6C.0.4 D.0.3答案B解析∵D(X)=np(1-p),∴p=0.4或p=0.6.∵P(X=4)=C410p4(1-p)6<P(X=6)=C610p6(1-p)4,∴(1-p)2<p2,可知p>0.5.∴p=0.6.故选B.三、模拟小题11.(2022·广东惠州第二次模拟)已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-σ≤X≤μ+σ)≈0.6827,若μ=4,σ=1,则P(5<X≤6)≈()A.0.1359 B.0.1859 C.0.2718 D.0.6827答案A解析由P(3≤X≤5)≈0.6827,得P(4≤X≤5)≈0.68272=0.34135,由P(2≤X≤6)≈0.9545,得P(4≤X≤6)≈0.95452=0.47725,所以P(5<X≤6)=P(4≤X≤6)-P (4≤X ≤5)≈0.47725-0.34135=0.1359.故选A.12.(2022·宁夏吴忠市青铜峡市高级中学月考)有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则P (X ≤2)=( )A.38 B .1314 C.45 D .78答案 D解析 因为是有放回地取产品,所以每次取产品取到次品的概率为48=12.从中取3次,X 为取得次品的次数,则X ~B ⎝ ⎛⎭⎪⎫3,12,P (X ≤2)=P (X =2)+P (X =1)+P (X =0)=C 23×⎝ ⎛⎭⎪⎫122×12+C 13×12×⎝ ⎛⎭⎪⎫122+C 03×⎝ ⎛⎭⎪⎫123=78.故选D. 13.(2022·浙江省杭州市高级中学高考仿真模拟)已知在盒中有红色、黄色、白色的球各4个,现从中任意摸出4个球,则摸出白球个数的期望是( )A.13 B .23 C.43 D .53答案 C解析 设摸出的白球的个数为X ,则X =0,1,2,3,4,所以P (X =0)=C 48C 412=1499,P (X =1)=C 14C 38C 412=224495,P (X =2)=C 24C 28C 412=168495,P (X =3)=C 34C 18C 412=32495,P (X =4)=C 44C 08C 412=1495.所以摸出白球的期望是E (X )=0×1499+1×224495+2×168495+3×32495+4×1495=43.14.(多选)(2022·广东肇庆第二次统一检测)已知两种不同型号的电子元件(分别记为X ,Y )的使用寿命均服从正态分布,X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()参考数据:若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.6827,P(μ-2σ≤Z≤μ+2σ)≈0.9545.A.P(μ1-σ1≤X≤μ1+2σ1)≈0.8186B.P(Y≥μ2)<P(Y≥μ1)C.P(X≤σ2)<P(X≤σ1)D.对于任意的正数t,有P(X≤t)>P(Y≤t)答案ABD解析对于A,P(μ1-σ1≤X≤μ1+2σ1)≈(0.6827+0.9545)×12=0.8186,故A正确;对于B,由正态分布密度曲线,可知μ1<μ2,所以P(Y≥μ2)<P(Y≥μ1),故B正确;对于C,由正态分布密度曲线,可知σ1<σ2,所以P(X≤σ2)>P(X≤σ1),故C错误;对于D,对于任意的正数t,有P(X≤t)>P(Y≤t),故D正确.故选ABD.15.(多选)(2022·辽宁名校联盟高三联考)在3n(n∈N*)次独立重复试验中,每次试验的结果只有A,B,C三种,且A,B,C三个事件之间两两互斥.已知在每一次试验中,事件A,B发生的概率均为25,事件C发生的概率为15.则()A.事件A发生次数的数学期望为6n 5B .A ,B ,C 三个事件发生次数的数学期望之和为3nC .事件B ,C 发生次数的方差之比为43D .A ,B ,C 三个事件各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n 答案 ABD解析 由题意可知,事件B ∪C =∁U A ,A ∪C =∁U B ,A ∪B =∁U C ,所以事件A ,B ,C 均看作二项分布.对于A ,期望值E =3np A =6n 5,即A 正确;对于B ,期望值之和E总=3np A +3np B +3np C =6n 5+6n 5+3n 5=3n ,即B 正确;对于C ,事件B 发生次数的方差D 1=3np B (1-p B )=18n 25,事件C 发生次数的方差D 2=3np C (1-p C )=12n 25,则D 1D 2=1812=32,即C 不正确;对于D ,从3n 次中选择n 次为事件A ,则为C n 3n ,从余下的2n 次中选择n 次为事件B ,则为C n 2n ,所以各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n ,即D 正确. 16.(2022·新高考八省联考)对一个物理量做n 次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差εn ~N ⎝ ⎛⎭⎪⎫0,2n ,为使误差εn 在(-0.5,0.5)内的概率不小于0.9545,至少要测量________次(若X ~N (μ,σ2),则P (|X -μ|<2σ)≈0.9545).答案 32解析 根据正态曲线的对称性知,要使误差εn 在(-0.5,0.5)内的概率不小于0.9545,则(μ-2σ,μ+2σ)⊆(-0.5,0.5),又μ=0,σ=2n ,所以0.5≥22n ,解得n ≥32.17.(2022·福建省宁化第一中学高三9月第二次月考)已知随机变量X ~B (4,p ),方差D (X )的最大值为________,当方差D (X )最大时,⎝⎛⎭⎪⎫4px -1x 6的展开式中1x 2的系数为________.答案 1 60解析 因为随机变量X ~B (4,p ),D (X )=4p (1-p )≤4⎣⎢⎡⎦⎥⎤p +(1-p )22=1,当且仅当p =12时取等号.由题意知⎝ ⎛⎭⎪⎫4px -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,其展开式的通项公式为T r +1=C r 6(2x )6-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r 26-r C r 6x 6-2r ,令6-2r =-2,则r =4,所以展开式中1x 2的系数为(-1)4×22×C 46=60.一、高考大题1.(2022·天津高考)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X ~B ⎝ ⎛⎭⎪⎫3,23,从而P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫133-k ,k =0,1,2,3. 所以随机变量X 的分布列为随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B ⎝ ⎛⎭⎪⎫3,23,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y =1},事件{X =2}与{Y =0}均相互独立,从而由(1)知P (M )=P ({X =3,Y =1}∪{X =2,Y =0})=P (X =3,Y =1)+P (X =2,Y =0)=P (X =3)P (Y =1)+P (X =2)P (Y =0)=827×29+49×127=20243.2.(2022·全国Ⅰ卷)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于E(X)>400,故应该对余下的产品作检验.3.(2022·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x-作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, 0.008≈0.09.解(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望E(X)=16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x -=9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.i =116x 2i ≈16×0.2122+16×9.972≈1591.134, 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09. 二、模拟大题4.(2022·江苏省百校联考高三第一次考试)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届,第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1,在指导后的考核中,甲同学总考核成绩为“优”,能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解(1)记“选出的两所学校参与旱地冰壶人数在30以下”为事件A.参与旱地冰壶人数在30以下的学校共6所,随机选择2所学校共C26=15种,所以P(A)=C26C210=1 3.因此选出的2所学校参与旱地冰壶人数在30以下的概率为13.(2)答案不唯一.示例一:可以认为甲同学在指导后总考核达到“优”的概率发生了变化,理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,一旦发生,就有理由认为甲同学在指导后总考核达到“优”的概率发生了变化.示例二:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定甲同学在指导后总考核达到“优”的概率发生了变化.5.(2022·山东省潍坊市五县市高三联考)2022年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟[155,165)[165,175)[175,185)[185,215]跳绳个数得分17181920(1)(2)若该校初三年级所有学生的跳绳个数X服从正态分布N(μ,σ2),用样本数据的平均值和方差估计总体的数学期望和方差,已知样本方差s2≈169(各组数据用中点值代替),根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步,假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10,现利用所得正态分布模型:①预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为ξ,求随机变量ξ的分布列和数学期望.附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.解(1)由频率分布直方图得,得分为17,18的人数分别为100×0.006×10=6,100×0.012×10=12,由题意知两人得分之和不大于35分,即为两人得分均为17分,或两人中1人得分为17分,1人得分为18分.故两人得分之和不大于35分的概率为P=C 26+C16C112C2100=291650.(2)x-=160×0.06+170×0.12+180×0.34+190×0.30+200×0.1+210×0.08=185(个),又σ2≈s2≈169,∴σ≈13,∴正式测试时,μ=195,σ≈13,∴μ-σ≈182.=0.84135,①P(X>182)≈1-1-0.682720.84135×2000=1682.7≈1683(人).∴预估正式测试每分钟跳182个以上的人数为1683.②在全年级所有学生中任取1人,每分钟跳绳个数在195以上的概率约为0.5,即ξ~B(3,0.5),∴P(ξ=0)≈C03×(1-0.5)3=0.125,P(ξ=1)≈C13×0.5×(1-0.5)2=0.375,P(ξ=2)≈C23×0.52×(1-0.5)=0.375,P(ξ=3)≈C33×0.53=0.125,∴ξ的分布列为E(ξ)≈3×0.5=1.5.6.(2022·辽宁省渤海大学附属高级中学高三上学期第一次考试)随着我国国民消费水平的不断提升,进口水果也受到了人们的喜爱,世界各地鲜果纷纷从空中、海上汇聚中国:泰国的榴莲、山竹、椰青,厄瓜多尔的香蕉,智利的车厘子,新西兰的金果猕猴桃等水果走进了千家万户.某种水果按照果径大小可分为五个等级:特等、一等、二等、三等和等外,某水果进口商从采购的一批水果中随机抽取500个,利用水果的等级分类标准得到的数据如下:(1)求恰好有3个水果是二等级别的概率;(2)若水果进口商进口时,将特等级别与一等级别的水果标注为优级水果,则用分层随机抽样的方法从这500个水果中抽取10个,再从抽取的10个水果中随机抽取3个,Y 表示抽取的优级水果的数量,求Y 的分布列及数学期望E (Y ).解 (1)设从500个水果中随机抽取一个,抽到二等级别水果的事件为A , 则P (A )=250500=12,有放回地随机抽取6个,设抽到二等级别水果的个数为X ,则X ~B ⎝ ⎛⎭⎪⎫6,12,所以恰好抽到3个二等级别水果的概率为P (X =3)=C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫1-123=516. (2)用分层随机抽样的方法从500个水果中抽取10个,则其中优级水果有3个,非优级水果有7个.现从中抽取3个,则优级水果的数量Y 服从超几何分布,所有可能的取值为0,1,2,3. 则P (Y =0)=C 37C 310=724,P (Y =1)=C 27C 13C 310=2140,P (Y =2)=C 17C 23C 310=740,P (Y =3)=C 33C 310=1120.所以Y的分布列如下:所以E(Y)=0×724+1×2140+2×740+3×1120=910.。
高考数学一轮总复习课件:随机抽样、用样本估计总体
6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )
用样本估计总体
0.0005 0.0004 0.0003 0.0002 0.0001
频率/组距
月收入(元)
1000 1500 2000 2500 3000 3500 4000
课堂练习
3.为了解某校高三学生的视力情况,随机地抽
查了该校 100 名高三学生的视力情况,得到频率
分布直方图,如右,由于不慎将部分数据丢失,
但知道前 4 组的频数成等比数列,后 6 组的频数
频率
组成距 等差数列,设最大频率为 a,视力在 4.6 到 5.0
之间的学生数为 b,则 a,b 的值分别为( A )
A. 0.27,78
频率/组距
B. 0.27,83
C. 2.7,78
0.3
D. 2.7,83
0.2
0.16
0.1 0.08
0.1 0.08 0.04
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
同样一组数据,如果组距不同,横轴、纵轴的单位 不同,得到的图的形状也会不同.不同的形状给人以不 同的印象,这种印象有时会影响我们对总体的判断.分 别以1和0.1为组距重新作图,然后谈谈你对图的印象.
第一步: 求极差: (数据组中最大值与最小值的差距) 最大值= 4.3 最小值= 0.2 所以极差= 4.3-0.2 = 4.1
第二步: 决定组距与组数: (注意取整) 当样本容量不超过100时, 按照数据的多少, 常
分成5~12组.
为方便组距的选择应力求“取整”.
本题如果组距为0.5(t).
则
组数=
频率 组距 0.5 0.4 0.3 0.2 0.1
2025年高考数学一轮复习课件第九章概率与统计-专题突破18概率与统计综合问题
返回至目录
解:(1)设 =“小张选择甲类问题”, =“小张答对所选问题”, =“小张至少答对
一个问题”,则 =“小张选择乙类问题”, =“小张未答对所选问题”, =
“小张一个问题都没答对”.
由题意,知 = = 0.5, | = 0.9, | = 0.1, | = 0.7,
= 0 × 0.3 + 50 × 0.07 + 80 × 0.63 = 53.9.
因为 > ,所以小张应选择先回答甲类问题.
【点拨】概率中的比赛问题是高考命题热点,常以生活中常见赛制为背景,通过设
置一定的限制条件,考查考生逻辑思维能力及利用概率知识解决实际问题的能力.
返回至目录
(1)根据频率分布直方图,求重量超过505 g的产品数量;
(2)在抽取的40件产品中任取2件,设为重量超过505 g的产品数量,求的分布列;
(3)从流水线上任取5件产品,求恰有2件产品的重量超过505 g的概率.
返回至目录
解:(1)根据频率分布直方图,可知重量超过505 g的频率为 0.05 + 0.01 × 5 = 0.3.
第九章 概率与统计
专题突破18 概率与统计综合问题
核心考点
课时作业
考点一 概率中的比赛问题
例1 某学校组织“数学文化”知识竞赛,有甲、乙两类问题.每位参加比赛的选手先在两
类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该选手比赛结束;若
回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该选手比
种选法,
所以某箱产品抽检被记为B的概率 = 1 −
C2 +C22
C2+2
=1−
高三一轮复习概率教案
教学过程一、课堂导入1.该部分常考内容有几何概型、古典概型、离散型随机变量的概率分布、均值、方差,常与相互独立事件的概率、n次独立重复试验交汇考查.2.从考查形式上来看,两种题型都有可能出现,填空题突出考查基础知识、基本技能,有时会在知识交汇点处命题;解答题则着重考查知识的综合运用,考查统计、古典概型、二项分布以及离散型随机变量的概率分布等,都属于中、低档题.二、复习预习(1)随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1;不可能事件的概率为0.(2)古典概型的概率公式P(A)=mn=A中所含的基本事件数基本事件总数.(3)几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).三、知识讲解考点1 条件概率在A发生的条件下B发生的概率:P(B|A)=P(AB) P(A).相互独立事件同时发生的概率P(AB)=P(A)P(B).考点2 独立重复试验如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k,k=0,1,2,…,n.考点3 超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.此时称随机变量X服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M,N,n.考点4 离散型随机变量的分布列(1)设离散型随机变量ξ可能取的值为x1,x2,…,x i,…,ξ取每一个值x i的概率为P(ξ=x i)=p i,则称下表:为离散型随机变量ξ的概率分布表.(2)离散型随机变量ξ的概率分布具有两个性质:①p i≥0,②p1+p2+…+p i+…=1(i=1,2,3,…).(3)E(ξ)=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.V(ξ)=(x1-E(ξ))2·p1+(x2-E(ξ))2·p2+…+(x n-E(ξ))2·p n+…叫做随机变量ξ的方差.(4)性质①E(aξ+b)=aE(ξ),V(aξ+b)=a2V(ξ);②X~B(n,p),则E(X)=np,V(X)=np(1-p);③X~两点分布,则E(X)=p,V(X)=p(1-p).四、例题精析考点一相互独立事件的概率例1 如图,用K、A1、A2三类不同的元件连结成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为________.【规范解答】0.864由题意知K,A1,A2正常工作的概率分别为P(K)=0.9,P(A1)=0.8,P(A2)=0.8,∵K,A1,A2相互独立,∴A1,A2至少有一个正常工作的概率为P(A1A2)+P(A1A2)+P(A1A2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96.∴系统正常工作的概率为P(K)[P(A1A2)+P(A1A2)+P(A1A2)]=0.9×0.96=0.864.【总结与反思】本题考察了求相互独立事件的概率,属于基础题。
第55讲 │ 用样本估计总体
用样本估计总体
第55讲 │ 考纲要求 考纲要求
1.了解分布的意义和作用,会列频率分布表,会画频率分布 直方图、频率折线图、茎叶图,理解它们各自的特点. 2.理解样本数据标准差的意义和作用,会计算数据标准差. 3. 能从样本数据中提取基本的数字特征(如平均数、 标准差), 并作出合理的解释. 4.会用样本的频率分布估计总体分布,会用样本的基本数字 特征估计总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些 简单的实际问题.
第55讲 │ 知识梳理 知识梳理
1.用样本的频率分布估计总体分布 (1)样本中所有数据(或者数据组)的频数和样本容量的比, 就
频率 是该数据的________, 所有数据(或者数据组)的频率的分布变化 频率分布直方图 规律叫做________,可以用频率分布表、______________、频 频率分布
第55讲 │ 要点探究
[点评] 样本的频率分布直方图只刻画了样本的频率分布, 在这个直方图上已经没有样本容量,可以用这个样本的频率分 布去估计总体的频率(概率)分布.如果根据频率分布直方图求解 一些样本数量时,必须知道另外的条件,如某个段上的样本频 数.在样本的频率分布直方图上,小矩形的高是样本在该组的 频率除以组距,不是样本在该组的频率,只有组距等于 1 时, 才是样本在该组的频率,这点也要特别注意.
组数 组距 ________增加,________减小,相应的频率折线图会越来越接
近于一条________,统计中称这条________为总体密度曲线. 光滑曲线 光滑曲线
第55讲 │ 知识梳理
(4)茎叶图:统计中还有一种被用来表示数据的图叫茎叶 图,茎是指中间的________,叶是从茎的旁边________. 一列数 生长出来的数 在样本数据较少时, 用茎叶图表示数据的效果较好, 茎叶 图表示数据有两个突出的优点: 一是它较好地保留了________ 原始数据 分布 信息,二是能够展示数据的________情况,方便记录与表示. 2.样本的数字特征
用样本估计总体
思考1:上述100个数据中的最大值和最 小值分别是什么?由此说明样本数据的 变化范围是什么?
0.2~4.3
思考2:样本数据中的最大值和最小值 的差称为极差.如果将上述100个数据 按组距为0.5进行分组,那么这些数据 共分为多少组?
(4.3-0.2)÷0.5=8.2
思考3:以组距为0.5进行分组,上述100 个数据共分为9组,各组数据的取值范围 可以如何设定?
(2)大部分居民的月均用水量集中在一个中间值 附近,只有少数居民的月均用水量很多或很少;
(3)居民月均用水量的分布有一定的对称性等.
思考4:样本数据的频率分布直方图是 根据频率分布表画出来的,一般地,频 率分布直方图的作图步骤如何?
第一步,画平面直角坐标系.
第二步,在横轴上均匀标出各组分点, 在纵轴上标出 [153.5,156.5) [156.5,159.5) [159.5,162.5) [162.5,165.5) [165.5,168.5) [168.5,171.5) [171.5,174.5) [174.5,177.5) [177.5,180.5]
合计
频数 1 1 4 5 8 11 6 2 1 1 40
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
上图称为频率分布直方图,其中横轴 表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的和高 度在数量上有何特点?
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2
2020届高考数学一轮复习第九篇统计专题9.2用样本估计总体及统计图表练习(含解析)
专题9.2 用样本估计总体及统计图表【考试要求】1.能根据实际问题的特点,选择恰当的统计图表对数据进行可视化描述,体会合理使用统计图表的重要性;2.能用样本估计总体的集中趋势参数(平均数、中位数、众数),理解集中趋势参数的统计含义;3.能用样本估计总体的离散程度参数(标准差、方差、极差),理解离散程度参数的统计含义;4.了解样本估计总体的取值规律;5.能用样本估计百分位数,理解百分位数的统计含义.【知识梳理】1.频率分布直方图(1)频率分布表的画法:第一步:求极差,决定组数和组距,组距=极差组数; 第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图(如图)横轴表示样本数据,纵轴表示频率组距,每个小矩形的面积表示样本落在该组内的频率. 2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把a 1+a 2+…+a n n称为a 1,a 2,…,a n 这n 个数的平均数. (4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x -,则这组数据的标准差和方差分别是 s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2], s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].4.百分位数如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数.可表示为:一组n 个观测值按数值大小排列.如,处于p %位置的值称第p 百分位数.【微点提醒】1.频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是mx -+a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.3.中位数相当于第50百分位数.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(2)一组数据的方差越大,说明这组数据越集中.( )(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越大.( )【答案】 (1)√ (2)× (3)√【解析】 (1)正确.平均数、众数与中位数都在一定程度上反映了数据的集中趋势.(2)错误.方差越大,这组数据越离散.(3)正确.小矩形的面积=组距×频率组距=频率. 【教材衍化】2.(必修3P1002(1)改编)一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( )A.4B.8C.12D.16 【答案】 B【解析】 设频数为n ,则n 32=0.25,∴n =32×14=8. 3.(必修3P70示例改编)若某校高一年级8个班参加合唱比赛的得分分别为87,89,90,91,92,93,94,96,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和92【答案】 A【解析】 ∵这组数据为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5, 平均数x -=87+89+90+91+92+93+94+968=91.5. 【真题体验】4.(2018·全国Ⅰ卷)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】 A【解析】 法一 设新农村建设前经济收入为a ,则新农村建设后经济收入为2a ,则由饼图可得新农村建设前种植收入为0.6a ,其他收入为0.04a ,养殖收入为0.3a .新农村建设后种植收入为0.74a ,其他收入为0.1a ,养殖收入为0.6a ,养殖收入与第三产业收入的总和为1.16a ,所以新农村建设后,种植收入减少是错误的.法二 因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A 是错误的.5.(2019·新余二模)为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数【答案】 C【解析】 由题图,可得是否倾向选择生育二胎与户籍有关、性别无关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,倾向选择生育二胎的人员中,男性人数为60×60%=36,女性人数为40×60%=24,不相同.故选C.6.(2019·上海黄浦区质检)已知样本容量为200,在样本的频率分布直方图中,共有n 个小矩形,若中间一个小矩形的面积等于其余(n -1)个小矩形面积和的13,则该组的频数为________. 【答案】 50【解析】 设除中间一个小矩形外的(n -1)个小矩形面积的和为p ,则中间一个小矩形面积为13p ,p +13p =1,p =34,则中间一个小矩形的面积等于13p =14,200×14=50,即该组的频数为50.【考点聚焦】考点一 频率分布直方图【例1】 (2019·石家庄模拟)“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x 人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45],得到如图所示的频率分布直方图,已知第一组有6人.(1)求x ;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.(ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;(ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.【答案】见解析【解析】(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,∴x =120. (2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5,∴a =953≈32,则中位数为32. (3)(ⅰ)5个年龄组成绩的平均数为x -1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x -2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.(ⅱ)从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定(感想合理即可).【规律方法】 1.频率分布直方图的性质.(1)小长方形的面积=组距×频率组距=频率; (2)各小长方形的面积之和等于1;(3)小长方形的高=频率组矩,所有小长方形的高的和为1组距. 2.要理解并记准频率分布直方图与众数、中位数及平均数的关系.【训练1】 某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表. A 地区用户满意度评分的频率分布直方图图①B 地区用户满意度评分的频率分布表(1)在图②中作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户和满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【答案】见解析【解析】(1)作出频率分布直方图如图:通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.考点二样本的数字特征【例2】 (1)(2017·全国Ⅰ卷)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x 1,x 2,…,x n 的平均数B.x 1,x 2,…,x n 的标准差C.x 1,x 2,…,x n 的最大值D.x 1,x 2,…,x n 的中位数(2)(2019·聊城模拟)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则( )A.x -=4,s 2<2B.x -=4,s 2>2 C.x ->4,s 2<2 D.x ->4,s 2>2 【答案】 (1)B (2)A【解析】(1)刻画评估这种农作物亩产量稳定程度的指标是标准差.(2)∵某7个数的平均数为4,∴这7个数的和为4×7=28,∵加入一个新数据4,∴x -=28+48=4. 又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s 2=7×2+(4-4)28=74<2,故选A. 规律方法 1.平均数反映了数据取值的平均水平,而方差、标准差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.2.用样本估计总体就是利用样本的数字特征来描述总体的数字特征.【训练2】 抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.【答案】 2【解析】 x -甲=15(87+91+90+89+93)=90,x -乙=15(89+90+91+88+92)=90,s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4, s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.【反思与感悟】1.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.2.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大.3.频率分布表和频率分布直方图都可直观描述样本数据的分布规律.【易错防范】直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.【核心素养提升】【数据分析】——百分位数的统计含义1.数据分析是指针对研究对象获取数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养.数据分析过程主要包括:收集数据,整理数据,提取信息,构建模型,进行推断,获得结论.2.数据分析是研究随机现象的重要数学技术,是大数据时代数学应用的主要方法,也是“互联网+”相关领域的主要数学方法,数据分析已经深入到科学、技术、工程和现代社会生活的各个方面.3.数据分析主要表现为:收集和整理数据,理解和处理数据,获得和解释结论,概括和形成知识.4.百分位数是统计学述语,百分位数用于描述一组数据某一百分位置的水平,多个百分位数结合应用,可全面描述一组观察值的分布特征;百分位数还可用于确定非正态分布资料的医学参考值范围.但应用百分位数时,样本含量要足够大,否则不宜取太靠近两端的百分位数.【案例】 阶梯电价的设计(此材料见2017版课程标准P130)【情境】为了实现绿色发展,避免浪费能源,某市政府计划对居民用电采用阶梯收费的方法.为此,相关部门在该市随机调查了200户居民六月份的用电量(单位:kW·h),以了解这个城市家庭用电量的情况.数据如下:107 101 78 99 208 127 74 223 31 131214 135 89 66 60 115 189 135 146 127203 97 96 62 65 111 56 151 106 8162 91 67 93 212 159 61 63 178 194194 216 101 98 139 78 110 192 105 9622 50 138 251 120 112 100 201 98 84137 203 260 134 156 61 70 100 72 164174 131 93 100 163 80 76 95 152 18288 247 191 70 130 49 114 110 163 202265 18 94 146 149 147 177 339 57 109107 182 101 148 274 289 82 213 165 224142 61 108 137 90 254 201 83 253 113130 82 170 110 108 63 250 237 120 84154 288 170 123 172 319 62 133 130 127107 71 96 140 77 106 132 106 135 132167 82 258 542 51 107 69 98 72 48109 134 250 42 320 113 180 144 116 530200 174 135 160 462 139 133 304 191 283121 132 118 134 124 178 206 626 120 274141 80 187 88 324 136 498 169 77 57根据以上数据,应当如何确定阶梯电价中的电量临界值,才能使得电价更为合理?【答案】见解析【解析】选取六月份调查,是因为这个城市六月份的部分时间需要使用空调,因此六月份的用电量在一年12个月中处于中等偏上水平.如果阶梯电价临界值的确定依赖于居民月用电量的分布,例如计划实施3阶的阶梯电价,有人给出一个分布如下:75%用户在第一档(最低一档),20%用户在第二档,5%用户在第三档(最高一档).这样,需要通过样本数据估计第一档与第二档、第二档与第三档的两个电量临界值,即75%和95%这两个电量临界值.通过样本估计总体百分位数的要领是对样本数据进行排序,得到有序样本(在统计学中称之为顺序统计量).利用电子表格软件,对上面的样本数据进行排序,可以得到下面的结果:8 18 22 31 42 48 49 50 51 5657 57 60 61 61 61 62 62 63 6365 66 67 69 70 70 71 72 72 7476 77 77 78 78 80 80 82 82 8283 84 84 88 88 89 90 91 93 9394 95 96 96 96 97 98 98 98 99100 100 100 101 101 101 105 106 106 106107 107 107 107 108 108 109 109 110 110110 111 112 113 113 114 115 116 118 120120 120 121 123 124 127 127 127 130 130130 131 131 132 132 132 133 133 134 134134 135 135 135 135 136 137 137 138 139139 140 141 142 144 416 146 147 148 149151 152 154 156 159 160 162 163 163 164165 167 169 170 170 172 174 174 177 178178 180 182 182 187 189 191 191 192 194194 200 201 201 202 203 203 206 208 212213 214 216 223 224 237 247 250 250 251253 254 258 260 265 274 274 283 288 289304 319 320 324 339 462 498 530 542 626样本数据总共有200个,最小值是8,最大值是626,说明200户居民六月份的最小用电量为8 kW·h,最大用电量为626 kW·h,极差为618.初中统计内容中学过的中位数,相当于50%分位数.因为数据量是200,那么这组数据的样本中位数就是有序样本第100个数130和101个数130的平均数,即130,说明这个城市六月份居民用电量的中间水平大约在130 kW·h左右.下面确定75%和95%这两个电量临界值.类似中位数的计算,因为200×75%=150,所以第一个临界值为有序样本中第150个数178和第151个数178的平均数,仍然是178.因为200×95%=190,所以第二个临界值为有序样本中第190个数289和第191个数304的平均数,这个平均数为296.5(因为是对百分位数的估计,估计值可以是289和304之间任何一个数,为了便于操作可以取值为297).依据确定了的电量临界值,阶梯电价可以规定如下:用户每月用电量不超过178 kW·h(或每年用电量不超过2 136 kW·h),按第一档电价标准缴费;每月用电量(单位:kW·h)在区间(178,297]内(或每年用电量在区间(2 136,3 564]内),其中的178 kW·h按第一档电价标准缴费,超过178 kW·h的部分按第二档电价标准缴费;每月用量超过297 kW·h(或每年用电量超过3 564 kW·h),其中的178 kW·h按第一档电价标准缴费,(297-178)=119 kW·h按第二档电价标准缴费,超过297 kW·h的部分按第三档电价标准缴费. 社会上对这种制定阶梯电价的原则和方法存在不同意见,可以讨论制定合理阶梯电价的原则和方法.【评析】分位数是用于衡量数据的位置的量度,但它所衡量的,不一定是中心位置.百分位数提供了有关各数据项如何在最小值与最大值之间分布的信息.对于无大量重复的数据,第p百分位数将它分为两个部分.大约有p%的数据项的值比第p百分位数小;而大约有(100-p)%的数据项的值比第p百分位数大.对第p百分位数,严格的定义如下:第p百分位数是这样一个值,它使得至少有p%的数据项小于或等于这个值,且至少有(100-p)%的数据项大于或等于这个值.【案例应用1】对于考试成绩的统计,如果您的成绩处在95的百分位数上,则意味着95%的参加考试者得到了和您一样的考分或还要低的考分,而不是您答对了95%的试题.也许您只答对了20%,即使如此,您取得的成绩也与95%的参加考试者一样好,或者比95%的参加考试者更好.【案例应用2】假设想为退休存够钱.可创建一个包括所有不确定变量的模型,如投资年回报率、通货膨胀、退休时的开支等,得到概率分布的结果如下图所示,如果选择平均值,钱不够的概率就会有50%.所以选第90百分位数所对应的投资数,这样钱不够的概率将只有10%.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.某班的全体学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A.45B.50C.55D.60【答案】 B【解析】 由频率分布直方图,知低于60分的频率为(0.010+0.005)×20=0.3.∴该班学生人数n =150.3=50.2.甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( )A.甲B.乙C.丙D.丁【答案】 C【解析】 由题表中数据可知,丙的平均环数最高,且方差最小,说明技术稳定,且成绩好.3.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【答案】 C【解析】 由图可得,x -甲=4+5+6+7+85=6,x -乙=3×5+6+95=6,A 项错误; 甲的成绩的中位数为6,乙的成绩的中位数为5,B 项错误;s 2甲=(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)25=2, s 2乙=3×(5-6)2+(6-6)2+(9-6)25=2.4,C 项正确;甲的成绩的极差为4,乙的成绩的极差也为4,D 项错误.4.(2019·茂名联考)甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是( )A.极差B.平均数C.中位数D.都不相同【答案】 B【解析】 由题中数据的分布,可知极差不同,甲的中位数为16+212=18.5,乙的中位数为14+182=16, x -甲=5+16+12+25+21+376=583, x -乙=1+6+14+18+38+396=583, 所以甲、乙的平均数相同.故选B.二、填空题5.某校女子篮球队7名运动员身高(单位:cm)的数据分别为:171,172,17x ,174,175,180,181,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.【答案】 2【解析】 170+17×(1+2+x +4+5+10+11)=175, 17×(33+x )=5,即33+x =35,解得x =2. 6.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.【答案】 (1)0.04 (2)440【解析】 设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h +0.07+0.06+0.02)=1,解得h =0.04.则志愿者年龄在[25,35)年龄组的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.7.已知样本数据x 1,x 2,…,x n 的平均数x -=5,则样本数据2x 1+1,2x 2+1,…,2x n +1的平均数为________.【答案】 11【解析】 由x 1,x 2,…,x n 的平均数x -=5,得2x 1+1,2x 2+1,…,2x n +1的平均数为2x -+1=2×5+1=11.三、解答题8.某校2019届高三文(1)班在一次数学测验中,全班N 名学生的数学成绩的频率分布直方图如下,已知分数在110~120的学生有14人.(1)求总人数N 和分数在120~125的人数n ;(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?【答案】见解析【解析】(1)分数在110~120内的学生的频率为p 1=(0.04+0.03)×5=0.35,所以该班总人数N =140.35=40. 分数在120~125内的学生的频率为p 2=1-(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.10,分数在120~125内的人数n =40×0.10=4.(2)由频率分布直方图可知,众数是最高的小矩形底边中点的横坐标,即为105+1102=107.5.设中位数为a ,∵0.01×5+0.04×5+0.05×5=0.50,∴a =110.∴众数和中位数分别是107.5,110.9.(2017·北京卷)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】见解析【解析】(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6, 所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.所以总体中分数在区间[40,50)内的人数估计为400×5100=20. (3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30. 所以样本中的男生人数为30×2=60,女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2. 所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.【能力提升题组】(建议用时:20分钟)10.(2019·湖北部分重点中学模拟)某商场对某一商品搞活动,已知该商品每一个的进价为3元,销售价为8元,每天售出的第20个及之后的半价出售.该商场统计了近10天这种商品的销量,如图所示,设x (个)为每天商品的销量,y (元)为该商场每天销售这种商品的利润.从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率是( )A.19B.110C.15D.18【答案】 B【解析】 由题意知y =⎩⎪⎨⎪⎧5x ,x =18,19,95+(x -19)(4-3),x =20,21,即y =⎩⎪⎨⎪⎧5x ,x =18,19,76+x ,x =20,21. 当日销量不少于20个时,日利润不少于96元.当日销量为20个时,日利润为96元.当日销量为21个时,日利润为97元.日利润为96元的有3天,记为a ,b ,c ,日利润为97元的有2天,记为A ,B ,从中任选2天有(a ,A ),(a ,B ),(a ,b ),(a ,c ),(b ,A ),(b ,B ),(b ,c ),(c ,A ),(c ,B ),(A ,B )共10种情况, 其中选出的这2天日利润都是97元的有(A ,B )1种情况,故所求概率为110. 11.(2019·北京海淀区模拟)已知样本x 1,x 2,…,x n 的平均数为x ;样本y 1,y 2,…,y m 的平均数为y (x ≠y ),若样本x 1,x 2,…,x n ,y 1,y 2,…,y m 的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m (n ,m ∈N *)的大小关系为( )A.n =mB.n ≥mC.n <mD.n >m 【答案】 C【解析】 由题意得z =1n +m (nx +my )=n n +m x +⎝ ⎛⎭⎪⎫1-n n +m y ,∴a =n n +m, ∵0<a <12,∴0<n n +m <12, 又n ,m ∈N *,∴2n <n +m ,∴n <m .12.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.【答案】 16【解析】 依题意,x 1,x 2,x 3,…,x 10的方差s 2=64.则数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.13.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?【答案】见解析【解析】(1)样本数据的频率分布直方图如图所示:(2)质量指标值的样本平均数为x -=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省郑州市高考数学一轮复习:55 用样本估计总体姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一下·大连期中) 样本a1 , a2 , a3 ,…,a10的平均数为,样本b1 , b2 , b3 ,…,b10的平均数为,那么样本a1 , b1 , a2 , b2 ,…,a10 , b10的平均数为()A . +B . ( + )C . 2( + )D . ( + )2. (2分)(2019·石家庄模拟) 甲、乙两人次测评成绩的茎叶图如图,由茎叶图知甲的成绩的平均数和乙的成绩的中位数分别是()A .B .C .D .3. (2分)一组数据的茎叶图如图所示,则数据落在区间内的概率为()A . 0.2B . 0.4C . 0.5D . 0.64. (2分)从某鱼池中捕得1200条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得1000条鱼,计算其中有记号的鱼为100条,试估计鱼池中共有鱼的条数为()A . 10000B . 12000C . 1300D . 130005. (2分) (2018高一下·长春期末) 抽样统计甲、乙两位同学5次数学成绩绘制成如图所示的茎叶图,则成绩较稳定的那位同学成绩的方差为()A .B .C .D .6. (2分)(2020·泉州模拟) 每年的台风都对泉州地区的渔业造成较大的经济损失.某保险公司为此开发了针对渔船的险种,并将投保的渔船分为I,II两类,两类渔船的比例如图所示.经统计,2019年I,II两类渔船的台风遭损率分别为15%和5%.2020年初,在修复遭损船只的基础上,对I类渔船中的20%进一步改造.保险公司预估这些经过改造的渔船2020年的台风遭损率将降为3%,而其他渔船的台风遭损率不变.假设投保的渔船不变,则下列叙述中正确的是()A . 2019年投保的渔船的台风遭损率为10%B . 2019年所有因台风遭损的投保的渔船中,I类渔船所占的比例不超过C . 预估2020年I类渔船的台风遭损率会小于II类渔船的台风遭损率的两倍D . 预估2020年经过进一步改造的渔船因台风遭损的数量少于II类渔船因台风遭损的数量7. (2分)一次考试某简答题满分5分,以0.5分为给分区间.这次考试有100人参加,该题没有得零分的人,所有人的得分按(0,1],(1,2],...(4,5]分组所得的频率分布直方图如图所示.设其众数、中位数、平均分最大的可能值分别为m0,mc,,则()A .B .C .D .8. (2分)如图所示的茎叶图记录了长郡中学的甲、乙两名同学在校级运动会的五次一千米训练成绩(单位:秒),通过茎叶图比较两人训练成绩的平均值及方差,并从中推荐一人参加运动会,①甲的成绩的平均值高于乙的成绩的平均值,推荐乙参加运动会②甲的成绩的平均值低于乙的成绩的平均值,推荐甲参加运动会③甲的成绩的方差高于乙的成绩的方差,推荐乙参加运动会④甲的成绩的方差低于乙的成绩的方差,推荐甲参加运动会,其中正确结论的编号为()A . ①③B . ②④C . ②D . ③9. (2分)为了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组的个数叫做()A . 频数B . 样本容量C . 频率D . 累计频数10. (2分)从某校高三年级中随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其结果的频率分布直方图如图所示,若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为()A . 10B . 20C . 8D . 1611. (2分)(2020·安庆模拟) 改革开放40多年来,城乡居民生活从解决温饱的物质需求为主逐渐转变到更多元化的精神追求,消费结构明显优化.下图给出了1983~2017年部分年份我国农村居民人均生活消费支出与恩格尔系数(恩格尔系数是食品支出总额占个人消费支出总额的比重)统计图.对所列年份进行分析,则下列结论错误的是()A . 农村居民人均生活消费支出呈增长趋势B . 农村居民人均食品支出总额呈增长趋势C . 2011年至2015年农村居民人均生活消费支出增长最快D . 2015年到2017年农村居民人均生活消费支出增长比率大于人均食品支出总额增长比率12. (2分) (2020高一下·常熟期中) 一个样本a,3,4,5,6的平均数是b,且不等式x2-6x+c<0的解集为(a,b),则这个样本的标准差是()A . 1B .C .D . 2二、填空题 (共5题;共5分)13. (1分) (2016高一下·驻马店期末) 某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷”.则抽取的100名观众中“体育迷”有________名.14. (1分)(2020·上海模拟) 已知样本数据的每个数据都是自然数,该样本的平均数为4,方差为5,且样本数据两两互不相同,则样本数据中的最大值是________15. (1分) (2016高一下·南市期中) 某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示,则这组数据的中位数与众数分别为________.16. (1分) (2016高一下·抚顺期末) 某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是________.17. (1分) (2019高一下·郑州期末) 水痘是一种传染性很强的病毒性疾病,易在春天爆发.市疾控中心为了调查某校高一年级学生注射水症疫苗的人数,在高一年级随机抽取5个班级,每个班抽取的人数互不相同,若把每个班级抽取的人数作为样本数据.已知样本平均数为7,样本方差为4,则样本数据中的最大值是________.三、解答题 (共5题;共60分)18. (10分)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了x•46%=230人,回答问题统计结果如图表所示.组号分组回答正确的人数回答正确的人数占本组的概率第1组[15,25)50.5第2组[25,35)a0.9第3组[35,45)27x第4组[45,55)b0.36第5组[55,65)3y(Ⅰ)分别求出a,b,x,y的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.19. (10分) (2016高一下·揭西开学考) 某校高三年级在高校自主招生期间,把学生的平时成绩按“百分制”折算并排序,选出前300名学生,并对这300名学生按成绩分组,第一组[75,80),第二组[80,85),第三组[85,90),第四组[90,95),第五组[95,100],如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列.(Ⅰ)请在图中补全频率分布直方图;(Ⅱ)若B大学决定在成绩高的第4,5组中用分层抽样的方法抽取6名学生,并且分成2组,每组3人进行面试,求95分(包括95分)以上的同学被分在同一个小组的概率.20. (10分)第十三届全运会将在2017年8月在天津举行,组委会在2017年1月对参加接待服务的10名宾馆经理进行为期半月的培训,培训结束,组织了一次培训结业测试,10人考试成绩如下(满分为100分):75 84 65 90 88 95 78 85 98 82(1)以成绩的十位为茎个位为叶作出本次结业成绩的茎叶图,并计算平均成绩与成绩中位数;(2)从本次结业成绩在80分以上的人员中选3人,这3人中成绩在90分(含90分)以上的人数为,求的分布列与数学期望.21. (15分)某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求a的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.22. (15分)某班同学利用国庆节进行社会实践,对[20,50]岁的临汾市“低头族”(低头族电子产品而忽视人际交往的人群)人群随是因使用机抽取1000人进行了一次调查,得到如下频数分布表:(1)在答题卡上作出这些数据的频率分布直方图;(2)估计[20,50]年龄段的“低头族”的平均年龄(同一组中的数据用该组区间的中点值作代表);(3)从年龄段在[25,35)的“低头族”中采用分层抽样法抽取6人接受采访,并从6人中随机选取2人作为嘉宾代表,求选取的2名嘉宾代表中恰有1人年龄在[25,30)岁的概率.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共60分)18-1、19-1、20-1、20-2、21-1、21-2、22-1、。