小学六年级奥数题行程问题流水行舟

合集下载

小学奥数之流水行船问题

小学奥数之流水行船问题

流水行船问题【例1】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【解析】乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。

水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。

甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。

甲船返【例2小时。

由.【例32710小时,【例4】一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。

求水流的速度。

【解析】两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的1.5倍。

将第一次航行看成是16时顺流航行了120+80×1.5=240(千米),由此得到顺流速度为240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。

【例5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。

客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。

客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。

客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇。

求水流的速度。

【解析】5÷1/6=30(千米/小时),所以两处的静水速度均为每小时30千米。

50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇。

由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米。

50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。

奥数题:行程问题流水行舟练习题

奥数题:行程问题流水行舟练习题

奥数题:行程问题流水行舟练习题奥数题:行程问题流水行舟练习题1.一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?2. 一只小船静水中速度为每小时 30 千米 . 在 176 千米长河中逆水而行用了 11 个小时 . 求返回原处需用几个小时。

3. 一只船每小时行14 千米,水流速度为每小时6 千米,问这只船逆水航行 112 千米,需要几小时?4. 一只船顺水每小时航行12 千米,逆水每小时航行8 千米,问这只船在静水中的速度和水流速度各是多少?5.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?6.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?7.甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?8.A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲船追上乙船,求两船在静水中的速度。

9.甲河是乙河的`支流,甲河水流速度为每小时3 千米,乙河水流速度为每小时 2 千米,一艘船沿乙河逆水航行 6 小时,行了 84 千米到达甲河,在甲河还要顺水航行133 千米,这艘船一共航行多少小时?10. 一条小河流过 A 、 B 、 C 三镇。

A 、 B 两镇间有汽船来往,汽船在静水中的速度为每小时 11 千米。

B 、 C 两镇间有木船摆渡,木船在静水中的速度为每小时 3.5 千米。

已知 A 、 C 两地水路相距 50千米,水流速度为每小时 1.5 千米。

(小学奥数)流水行船

(小学奥数)流水行船

流水行船教學目標1、掌握流水行船的基本概念2、能夠準確處理流水行船中相遇和追及的速度關係知識精講一、參考系速度通常我們所接觸的行程問題可以稱作為“參考系速度為0”的行程問題,例如當我們研究甲乙兩人在一段公路上行走相遇時,這裏的參考系便是公路,而公路本身是沒有速度的,所以我們只需要考慮人本身的速度即可。

二參考系速度——“水速”但是在流水行船問題中,我們的參考系將不再是速度為0的參考系,因為水本身也是在流動的,所以這裏我們必須考慮水流速度對船隻速度的影響,具體為:①水速度=船速+水速;②逆水速度=船速-水速。

(可理解為和差問題)由上述兩個式子我們不難得出一個有用的結論:船速=(順水速度+逆水速度)÷2;水速=(順水速度-逆水速度)÷2此外,對於河流中的漂浮物,我們還會經常用到一個常識性性質,即:漂浮物速度=流水速度。

三、流水行船問題中的相遇與追及①兩只船在河流中相遇問題,當甲、乙兩船(甲在上游、乙在下遊)在江河裏相向開出:甲船順水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同樣道理,如果兩只船,同向運動,一只船追上另一只船所用的時間,與水速無關.甲船順水速度-乙船順水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.說明:兩船在水中的相遇與追及問題同靜水中的及兩車在陸地上的相遇與追及問題一樣,與水速沒有關係.模組一、基本的流水行船問題【例 1】一艘每小時行25千米的客輪,在大運河中順水航行140千米,水速是每小時3千米,需要行幾個小時?【巩固】某船在靜水中的速度是每小時15千米,它從上游甲地開往下游乙地共花去了8小時,水速每小時3千米,問從乙地返回甲地需要多少時間?【例 2】一只小船在靜水中的速度為每小時25千米.它在長144千米的河中逆水而行用了8小時.求返回原處需用幾個小時?【巩固】一只小船在靜水中速度為每小時30千米.它在長176千米的河中逆水而行用了11小時.求返回原處需用幾個小時?【例 3】兩個碼頭相距352千米,一船順流而下,行完全程需要11小時.逆流而上,行完全程需要16小時,求這條河水流速度。

第十一讲-六年级奥数-流水行船问题

第十一讲-六年级奥数-流水行船问题

第十一讲流水行船问题【知识导航】解答这类题的要素有下列几点: 水速、流速、船速、距离, 解答这类题与和差问题相似。

划速相当于和差问题中的大数, 水速相当于小数, 顺流速相当于和数, 逆流速相当于差速。

顺流船速=船速+水速;逆流船速=船速—水速;船速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=逆流船速+水速×2;逆流船速=顺流船速—水速×2。

例题1: 一条轮船往返于A.B两地之间, 由A地到B地是顺水航行, 由B地到A 地是逆水航行。

已知船在静水中的速度是每小时20千米, 由A地到B地用了6小时, 由B地到A地所用的时间是由A地到B地所用时间的倍, 求水流速度。

答: 水流速度为每小时()千米。

【随堂练习1】水流速度是每小时15千米。

现在有船顺水而行, 8小时行320千米。

若逆水行320千米需几小时答: 若逆水行320千米需()小时。

例题2:有一船行驶于120千米长的河中, 逆行需10小时, 顺行要6小时, 求船速和水速。

答: 船速是每小时行()千米, 水速是每小时行()千米。

【随堂练习2】有只大木船在长江中航行。

逆流而上5小时行5千米, 顺流而下1小时行5千米。

求这只木船每小时划船速度和河水的流速各是多少答: 木船每小时行()千米;河水的流速是每小时行()千米。

例题3:轮船以同一速度往返于两码头之间。

它顺流而下, 行了8小时;逆流而上, 行了10小时。

如果水流速度是每小时3千米, 求两码头之间的距离。

在同一线段图上做下列游动性示意图36-1演示:答: 两码头之间相距()千米。

【随堂练习3】一艘轮船以同样的速度往返于甲、乙两个港口, 它顺流而下行了7小时, 逆流而上行了10小时。

如果水流速度是每小时千米, 求甲、乙两个港口之间的距离。

答: 甲、乙两个港口之间的距离是()千米。

例题4:甲、乙、丙三人沿着湖边散步, 同时从湖边一固定点出发。

奥数专题_流水行船问题(带答案完美排版)#(精选.)

奥数专题_流水行船问题(带答案完美排版)#(精选.)

流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

六年级奥数 流水行船问题

六年级奥数 流水行船问题

第十一讲流水行船问题【知识导航】解答这类题的要素有下列几点:水速、流速、船速、距离,解答这类题与和差问题相似。

划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。

顺流船速=船速+水速;逆流船速=船速—水速;船速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=逆流船速+水速×2;逆流船速=顺流船速—水速×2。

例题1:一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A 地是逆水航行。

已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的倍,求水流速度。

答:水流速度为每小时()千米。

【随堂练习1】水流速度是每小时15千米。

现在有船顺水而行,8小时行320千米。

若逆水行320千米需几小时?答:若逆水行320千米需()小时。

例题2:有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

答:船速是每小时行()千米,水速是每小时行()千米。

【随堂练习2】有只大木船在长江中航行。

逆流而上5小时行5千米,顺流而下1小时行5千米。

求这只木船每小时划船速度和河水的流速各是多少?答:木船每小时行()千米;河水的流速是每小时行()千米。

例题3:轮船以同一速度往返于两码头之间。

它顺流而下,行了8小时;逆流而上,行了10小时。

如果水流速度是每小时3千米,求两码头之间的距离。

在同一线段图上做下列游动性示意图36-1演示:答:两码头之间相距()千米。

【随堂练习3】一艘轮船以同样的速度往返于甲、乙两个港口,它顺流而下行了7小时,逆流而上行了10小时。

如果水流速度是每小时千米,求甲、乙两个港口之间的距离。

答:甲、乙两个港口之间的距离是()千米。

例题4:甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。

甲按顺时针方向行走,乙与丙按逆时针方向行走。

甲第一次遇到乙后114分钟第一次遇到丙,再过334分钟第二次遇到乙。

六年级下小升初典型奥数之流水行船问题

六年级下小升初典型奥数之流水行船问题

六年级下小升初典型奥数之流水行船问题在六年级的奥数学习中,流水行船问题是一个常常让同学们感到有些头疼,但又十分有趣和具有挑战性的知识点。

今天,咱们就一起来深入探讨一下这个问题,把它彻底搞明白!首先,咱们来了解一下什么是流水行船问题。

想象一下,一艘船在平静的水面上行驶,这很好理解,速度就是船本身的速度。

但如果这条河不是静止的,而是有水流在流动,那么船的实际速度就会受到水流的影响。

这就是流水行船问题的核心所在。

在流水行船问题中,有几个关键的概念咱们得清楚。

船在静水中的速度,通常用“船速”来表示。

这个速度就是船在没有水流影响时,自己能行驶的速度。

水流的速度,咱们称为“水速”。

而当船顺着水流行驶时,我们把这时船的速度叫做“顺水速度”。

很容易理解,顺水速度=船速+水速。

因为水流推着船走,船会跑得更快。

相反,当船逆着水流行驶时,船的速度就叫做“逆水速度”。

逆水速度=船速水速。

这是因为水流在阻碍船前进,船就会变慢。

为了更好地理解这些概念,咱们来看几个具体的例子。

假设一艘船在静水中的速度是每小时 20 千米,水流的速度是每小时 5 千米。

那么当船顺水行驶时,它的速度就是 20 + 5 = 25 千米/小时。

当船逆水行驶时,速度就是 20 5 = 15 千米/小时。

接下来,咱们看看流水行船问题中常见的题型和解题方法。

题型一:求船速和水速比如,一艘船顺水行驶 100 千米用了 4 小时,逆水行驶 80 千米用了 5 小时,求船速和水速。

我们先求出顺水速度:100÷4 = 25(千米/小时)逆水速度:80÷5 = 16(千米/小时)然后根据公式:船速=(顺水速度+逆水速度)÷ 2,水速=(顺水速度逆水速度)÷ 2船速=(25 + 16)÷ 2 = 205(千米/小时)水速=(25 16)÷ 2 = 45(千米/小时)题型二:求路程比如,一艘船在静水中的速度是每小时 18 千米,水流速度是每小时 2 千米。

(完整版)奥数.流水行船学生版

(完整版)奥数.流水行船学生版

学如逆水行舟,不进则退流水行船扶梯问题知识框架一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。

二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①水速度=船速+水速;②逆水速度=船速-水速。

(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。

三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.[温故而知新]1/ 11学如逆水行舟,不进则退例题精讲【例 1】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?【巩固】一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?【例 2】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。

【奥数专项】人教版小学数学6年级上册奥数思维拓展第三讲流水行船问题

【奥数专项】人教版小学数学6年级上册奥数思维拓展第三讲流水行船问题

奥数思维拓展第三讲流水行船问题一.选择题(共4小题)1.一艘轮船往返于甲乙两个码头之间,如果船速不变,当水流速度增加时,轮船往返一次所用时间()A.不变B.增多C.减少D.增多、减少都有可能2.两地相距280千米,一艘轮船从甲地到乙地是顺水航行.船在静水中的速度是每小时行17千米,水速是每小时3千米.这艘轮船在甲、乙两地往返一次,共需()小时.A.以下都错B.33C.36D.343.轮船从A城到B城匀速行驶需行3天,而从B城到A城匀速行驶需行4天,从A城放一个无动力的木筏,它漂到B城需()天.A.24B.25C.26D.274.商场自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了30级到达楼上,男孩走了90级到达楼下.如果男孩单位时间内走的楼梯级数是女孩的3倍.问当时扶梯静止时,扶梯可看到的梯级共有()级.A.30B.45C.60D.75二.填空题(共10小题)5.一种飞机所带的燃料最多可飞行5小时,飞出时顺风每小时飞行1500千米,返回时逆风每小时飞行1000千米,这架飞机最多能飞出千米就应往回飞.6.A、B两地有一条河流,长210km,一只船从A顺水而下2小时可以到达B地,返回时却用了14个小时,则船在静水中的速度是km/h.7.一艘轮船从A港到B港到顺水航行需6小时,从B到A逆水行进需8小时,若在静水条件下,从A港到B港需小时.8.一游客上午9时在码头租了一条小船划出,按规定他必须在12时之前回到码头.已知小船的静水速度是每小时5千米,河水流速是每小时2千米.游客每划半小时就要休息10分钟,中途不允许改变方向,并且恰好在某次休息后开始往回划.这位游客最远可划离码头千米.9.船从甲地到乙地要行驶2小时,从乙地到甲地要行驶3小时,现有一条木筏从甲地漂流到乙地要小时.10.一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行.11.甲乙两港相距247.5千米,一艘轮船从甲港驶向乙港用了4.5小时,返回时因为逆水比去时多用1小时,则水流速度为.12.两码头相距108km,一艘轮船顺水行完全程需10小时,逆水行完全程需12小时,这艘轮船的静水速度是.13.一艘轮船往返于甲、乙两个码头之间,如果船速不变,当水流速度增加时,轮船往返一次所用的时间(①不变②增加③减少).14.有两个顽皮的小孩子逆着自动扶梯行驶的方向行走.该扶梯共有150级台阶,男孩每秒可以走3级台阶,女孩每秒可以走2级台阶,结果从扶梯的一端到达另一端,女孩走了300秒,那么男孩走了秒.三.应用题(共7小题)15.轮船以同一速度往返于两码头之间,它顺流而下行了10小时,逆流而上行了12小时,如果水流速度是每小时4千米,则两码头之间的距离是多少千米?16.甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的,两人相遇后继续前进,甲到达B地、乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点2000米,求A、B两地的距离.17.一艘轮船从甲地开往乙地,去时顺水,每小时行25千米,回来时逆水,每小时行15千米,这样来回共用了4小时,甲乙两地相距多少千米?18.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时.求水流的速度.19.东阳船厂新造了一艘船,在静水中行驶,每小时行30千米,比在顺水时慢了,这艘船在顺水时每小时可以行驶多少千米?20.快船从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回到B码头,共用10小时,若A、B相距20千米,快船在静水中的速度是40千米/时,河水的流速是10千米/时.求B、C间的距离.21.今有A、B两个港口,A在B的上游60千米处。

流水行船题练习及答案(六年级奥数)

流水行船题练习及答案(六年级奥数)

流水行船题练习及答案1、水流速度是每小时4千米。

现在有一艘船逆水在60千米长的河中航行需5小时,顺水航行需几小时?解:60÷5+4=16〔千米/小时〕60÷〔16+4〕=3〔小时〕答:顺水航行需要3小时。

2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?解:15+3=18〔千米/小时〕,18×8=144〔千米〕,15—3=12〔千米/小时〕,144÷12=12〔小时〕。

答:从乙地返回甲地需要12小时。

3、有一艘船行驶于100千米的长河中,逆行需要10小时,顺行需要5小时,求船速和水速。

解:100÷10=10〔千米/小时〕10÷5=20〔千米/小时〕〔10+20〕÷2=15〔千米/小时〕〔20-10〕÷2=5〔千米/小时〕答:船速是每小时15千米,水速是每小时5千米4、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

解:顺水速度:208÷8=26〔千米/小时〕逆水速度:208÷13=16〔千米/小时〕船速:〔26+16〕÷2=21〔千米/小时〕水速:〔26—16〕÷2=5〔千米/小时〕答:船在静水中的速度为每小时21千米,水流速度每小时5千米。

5、一艘轮船每小时行21千米,在长120千米的河中逆流航行要10小时到达,返回需要几小时?解:21-120÷10+21=30〔千米/小时〕120÷30=4〔小时〕答:返回需要4小时。

6、两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。

解:〔352÷11-352÷16〕÷2=5〔千米/小时〕。

六年级奥数之流水行船问题

六年级奥数之流水行船问题

流水行船问题1.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。

已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。

2.水流速度是每小时15千米。

现在有船顺水而行,8小时行320千米。

若逆水行320千米需几小时?3.水流速度每小时5千米。

现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?4.一船从A地顺流到B地,航行速度是每小时32千米,水流速度是每小时4千米,212天可以到达。

次船从B 地返回到A 地需多少小时?5.有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

6.有只大木船在长江中航行。

逆流而上5小时行5千米,顺流而下1小时行5千米。

求这只木船每小时划船速度和河水的流速各是多少?7.有一船完成360千米的水程运输任务。

顺流而下30小时到达,但逆流而上则需60小时。

求河水流速和静水中划行的速度?8.一海轮在海中航行。

顺风每小时行45千米,逆风每小时行31千米。

求这艘海轮每小时的划速和风速各是多少?9.轮船以同一速度往返于两码头之间。

它顺流而下,行了8小时;逆流而上,行了10小时。

如果水流速度是每小时3千米,求两码头之间的距离。

10.一走轮船以同样的速度往返于甲、乙两个港口,它顺流而下行了7小时,逆流而上行了10小时。

如果水流速度是每小时3.6千米,求甲、乙两个港口之间的距离。

11.一艘渔船顺水每小时行18千米,逆水每小时行15千米。

求船速和水速各是多少?12.沿河有上、下两个市镇,相距85千米。

有一只船往返两市镇之间,船的速度是每小时18.5千米,水流速度每小时1.5千米。

求往返依次所需的时间。

13.汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?14.当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。

(完整版)奥数专题_流水行船问题(带答案完美排版)

(完整版)奥数专题_流水行船问题(带答案完美排版)

流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

奥数——流水行船问题

奥数——流水行船问题

行程问题——流水行船问题船在流水中航行的问题叫做行船问题。

行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。

行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。

船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺水而行的速度叫顺水速度;船从下游往上游逆水而行的速度叫逆水速度。

除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。

顺水速度=船速速+水(1)逆水速度=船速-水速(2)公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速,船速=顺水速度-水速由公式(2)可得:水速=船速-逆水速度,船速=逆水速度+水速这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知*船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回时的速度,也就是说路程、速度和时间三者关系很重要,只是速度上要注意是顺水速度还是逆水速度。

奥数行程问题——流水行程 练习题

奥数行程问题——流水行程 练习题

行程——流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:(1)顺水速度=船速+水速(2)逆水速度=船速-水速这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:(3)水速=顺水速度-船速(4)船速=顺水速度-水速由公式(2)可得:(5)水速=船速-逆水速度(6)船速=逆水速度+水速这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:(7)船速=(顺水速度+逆水速度)÷2(8)水速=(顺水速度-逆水速度)÷21、一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?2、一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。

水流的速度是多少千米每小时?3、一只船,顺水每小时行20千米,逆水每小时行12千米。

水流的速度是多少千米每小时?4、两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需多少小时?5、某船在静水中每小时行18千米,水流速度是每小时2千米。

六年级下册奥数第36讲 流水行船问题

六年级下册奥数第36讲  流水行船问题

第36讲流水行船问题讲义知识要点当你逆风骑自行车时有什么感党?是的,逆风时很大力气,因为面对的是迎面吹来的风。

当顺风时,借着风力,相对而言用力较少。

在你的生活中是否也遇到过类似的如流水行船题?解答这类题的要素有下列几点:水速、流速、划速、距离。

解答这类题与和差问题相似:划速相当于和差问题中的大数,水速相当于小数,顺流速度相当于和数,逆流速度相当于差数。

划速=(顺流船速+逆流船速)÷2;水速=(顺流船速-逆流船速)÷2;顺流船速=划速+水速;逆流船速=划速-水速;顺流船速=逆流船速+水速×2;逆流船速=顺流船速-水速×2。

例1、一条轮船往返于AB两地之回,由A地到B地是顺水航行,由B地到A地是逆水航行。

已知船在静水中的速度是20千米/时,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。

练习:1、水流速度是15千米/时。

现在有船顺水而行,8小时行320千米。

若逆水行320千米需几小时?2、水流速度是5千米/时。

现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?3、一船从A地顺流到B地,船在静水中的速度是32千米/时水流速度是4千米/时,212天可以到达。

此船从B地返回至A地需多少小时?例2、有一船行驶于120千米长的河中,逆行需10小时,顺行需6小时,求划速和水速。

练习:1、有只大木船在长江中航行。

逆流而上5小时行5千米,顺流而下1小时行5千米。

求这只木船的划船速度和河水的流速各是多少?2、有一船完成360千米的水程运输任务。

顺流而下30小时到达,但逆流而上则需60小时。

求河水流速和静水中划行的速度各是多少3、一海轮在海中航行。

顺风每小时行45千米,逆风每小时行31千米。

求这艘海轮的划行速度和风速各是多少?例3、轮船以同一速度往返于两码头之间。

它顺流而下,行了8小时;逆流而上,行了10小时。

如果水流速度是3千米/时,求两码头之间的距离。

(奥数)顺水行舟数学问题

(奥数)顺水行舟数学问题

(奥数)顺水行舟数学问题不管怎么样,还是方法最重要啦,后面再放一些题目,你自己想想,(最后5道无答案).各种速度之间的关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1、甲、乙两港的水路长270千米。

一只船从甲港开往乙港,顺水航行15小时到达乙港,从乙港返回甲港,逆水航行18小时到达甲港,求船在静水中的速度和水流速度。

1 原题:小船航行时有2条路线,一条船头指向上游,一条指向下游,2条航线与垂直于河对岸的航线的夹角相同,那么它们渡河所用的时间相等吗?相等2 一艘货轮在甲、乙两个码头之间往返航行。

逆水时,要航行9天9夜;顺水时,要航行6天6夜。

假如水流速度始终是相同的,请问,这艘货轮如果在静水中航行,从甲码头到达乙码头需要( 7 )个1天1夜。

3 A船与B船以不变的速度逆流行驶.在两船相距20米的时候,A船上的甲把帽子掉进了水里.不久甲发现了,便跳下船去追帽子.他追到帽子时,正好遇到B船.此时两船相距16米.恰好B船上的乘客乙的帽子也掉进了水里.问:当B船追上A船时,帽子离B船__80____米?4 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。

解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。

5 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。

奥数行程问题——流水行程 练习题

奥数行程问题——流水行程 练习题

行程——流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:(1)顺水速度=船速+水速(2)逆水速度=船速-水速这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:(3)水速=顺水速度-船速(4)船速=顺水速度-水速由公式(2)可得:(5)水速=船速-逆水速度(6)船速=逆水速度+水速这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:(7)船速=(顺水速度+逆水速度)÷2(8)水速=(顺水速度-逆水速度)÷21、一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?2、一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。

水流的速度是多少千米每小时?3、一只船,顺水每小时行20千米,逆水每小时行12千米。

水流的速度是多少千米每小时?4、两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需多少小时?5、某船在静水中每小时行18千米,水流速度是每小时2千米。

(完整版)小升初奥数流水行船问题

(完整版)小升初奥数流水行船问题
的逆水速度=船速-水速,故:速度差=(船速+水速)-(船速-水速)=2×水速,即:
每小时甲船比乙船多走6×2=12(千米).
4小时的距离差为12×4=48(千米)
顺水速度 - 逆水速度
速度差=(船速+水速)-(船速-水速)
=船速+水速 -船速+水速
=2×6=12(千米)
12×4=48(千米)
例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路, 用了3小时.甲船返回原地比去时多用了几小 时?
所以返回原处需要:144÷32=4.5(小时)
例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺 水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?
解析:(船速+6)×4=(船速-6)×7,
可得船速=22,两港之间的距离为:
6×7+6×4=66,
66÷(7-4)=22(千米/时)
(22+6)×4=112千米.
例7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小
时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差 多少千米?
解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什 么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船
小升初奥数 流水行船问题
流水行船问题
流水问题是研究船在流水中的行程问题, 因此,又叫行船问题。 在小学数学中 涉及到的题目, 一般是匀速运动的问题。 这类问题的主要特点是, 水速在船逆行 和顺行中的作用不同。
流水问题有如下两个基本公式:
顺水速度=船的静水速+水速(1)

奥数之复习八行程问题流水行船问题及答案

奥数之复习八行程问题流水行船问题及答案

复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。

从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。

2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。

一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。

结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。

问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。

船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。

问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。

这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。

小学六年级奥数题:行程问题流水行舟练习题五

小学六年级奥数题:行程问题流水行舟练习题五

小学六年级奥数题:行程问题流水行舟练习题五编者小语:行程问题在六年级奥数题中经常出现。

小升初测试和奥数杯赛都对行程问题青睐。

编辑为六年级的同学准备了六年级奥数题中关于行程问题流水行舟的练习题五,希望能更好让同学们掌握相关知识。

1、一条大河,河中间(主航道)水速为每小时8千米,沿岸边水速为每小时6千米,一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原出发地点,需要多少小时?2、一支运货船队第一次顺水航行42千米,逆水航行8千米,共用了11小时;第二次用同样的时间,顺水航行了24千米,逆水航行了14千米,求这支船队在静水中的速度和水流速度?3、已知从河中A地到海口60千米,如船顺流而下,4小时到达海口,已知水速为每小时6千米。

船返回已航行4小时后,因海水涨潮,由海向河的水速为每小时3千米,问此船回到原地还需再航行几小时?4、一条船从A地顺流而下,每小时35千米到达B地后,又逆流而上回到A地。

逆流比顺流多用4小时,已知水速是每小时5千米,则A、B两地相距多少千米?5、一架飞机所带油料最多可以用9小时,飞机去时顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,问这架飞机最多可以飞出多少千米就需要往回飞?6、一摩托车顶风行40千米用了2小时,风速为每小时2千米,则这辆摩托车顺风行驶时每小时行多少千米?7、一条河水的宽、窄水域流速分别为每小时5千米和每小时8千米,当有一条小船顺水在这条河中的宽水域用2小时航行了50千米进入窄水域后,则再用2小时小船可航行多少千米?8、小梅划一条小船向上游划去,将草帽放在了船尾,草帽被风吹进了河中,当他发现并调过船头时,草帽已与船相距1千米,若船是以每小时5千米的速度行驶,水流速度每小时2千米,那么,他追上草帽需要几小时?9、一只船在河里航行,顺流而行时每小时20千米,已知此船顺水航行3小时和逆水航行5小时所行的路程相等,则船速和水速各是多少?其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数题:行程问题流水行舟练习题七编者小语:行程问题在六年级奥数题中经常出现。

小升初测试和奥数杯赛都对行程问题青睐。

编辑为六年级的同学准备了六年级奥数题中关于行程问题流水行舟的练习题七,希望能更好让同学们掌握
相关知识。

1.船行于120千米一段长的江河中,逆流而上用10小明,顺流而下用6小时,水速_______,船速________.
2.一只船逆流而上,水速2千米,船速32千米,4小时行________千米.(船速,水速按每小时算)
3.一只船静水中每小时行8千米,逆流行2小时行12千米,水速________.
4.某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲、乙两地相距_______千米.
5.两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用________小时.
6.两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用________小时.
7.A河是B河的支流,A河水的水速为每小时3千米,B河水的水流速度是2千米.一船沿A河顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,这船还要行_______小时.
8.甲乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开A港______千米.
9.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船顺流而下需5小时,问乙船逆流而上需要_______小时.
10.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口.已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行______小时.。

相关文档
最新文档