2003年高考试题——数学文(全国卷)及答案
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A(0,0),B(2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2003年高考试题数学文科-(全国卷)
19.(I)解∵ (II)证明:由已知
= 所以 20.解(I)
所以函数的最小正周期为π,最大值为. (Ⅱ)由(Ⅰ)知
1
1
1
故函数在区 间上的图象是
21.解:如图建立坐标系:以O为原点,正东方向为x轴正向. 在时刻:t(h)台风中心的坐标为 此时台风侵袭的区域是,其中t+60, 若在t时,该城市O受到台风的侵袭,则有 即 即, 解得. 答:12小时后该城市开始受到台风气侵袭
19.(本小题满分12分) 已知数列满足
(Ⅰ)求; (Ⅱ)证明
20.(本小题满分12分) y O O O x
已知函数
(Ⅰ)求函数的最小正周期和最大值; (Ⅱ)在给出的直角坐标系中,画出函数在区间上的图象
21.(本小题满分12分)
在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市 O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北 方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以 10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭? O 北 东O y 线 岸 O x O r(t) P 海
22.(本小题满分14分) 已知常数,在矩形ABCD中,,,O为AB的中点,点E、F、G分别在
BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在 两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐 标及此定值;若不存在,请说明理由
O P A G D F E C B x y
”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底 面面积间的关系,可以得出的正确结论是:“设三棱锥的三个侧面两两 互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π210.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是.(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a s n 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321 ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r∈<<≤++且是集合t s r b stn 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试4数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2r z 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)3sin D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴======∴∠==∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(2222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π210.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是.(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a s n 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321 ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r∈<<≤++且是集合t s r b stn 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试4数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2r z 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)3sin D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴======∴∠==∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(2222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。
2003年高考全国卷文科数学真题及答案
2003年高考全国卷文科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)直线y=2x关于x轴对称的直线方程为( )A.B.C.y=﹣2x D.y=2x2.(5分)已知x∈(,0),cos x,则tan2x等于( )A.B.C.D.3.(5分)抛物线y=ax2的准线方程是y=2,则a的值为( )A.B.C.8 D.﹣84.(5分)等差数列{a n}中,已知a1,a2+a5=4,a n=33,则n为( )A.48 B.49 C.50 D.515.(5分)双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( )A.B.C.D.6.(5分)设函数若f(x0)>1,则x0的取值范围是( )A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣∞,﹣1)∪(1,+∞)7.(5分)已知f(x5)=lgx,则f(2)=( )A.lg2 B.lg32 C.D.8.(5分)函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ=( )A.0 B.C.D.π9.(5分)已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=( )A.B.C.D.10.(5分)已知圆锥的底面半径为R,高为3R,它的内接圆柱的底面半径为,该圆柱的全面积为( )A.2πR2B.C.D.11.(5分)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB 上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=( )A.B.C.D.112.(5分)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3D.6π二、填空题(共4小题,每小题4分,满分16分)13.(4分)不等式的解集是 .14.(4分)在的展开式中,x3的系数是 (用数字作答)15.(4分)在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则 .”16.(4分)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)三、解答题(共6小题,满分74分)17.(12分)已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.18.(12分)已知复数z的辐角为60°,且|z﹣1|是|z|和|z﹣2|的等比中项.求|z|.19.(12分)已知数列{a n}满足a1=1,a n=3n﹣1+a n﹣1(n≥2).(Ⅰ)求a2,a3;(Ⅱ)证明.20.(12分)已知函数f(x)=2sin x(sin x+cos x).(1)求函数f(x)的最小正周期和最大值;(2)在给出的直角坐标系中,画出函数y=f(x)在区间上的图象.21.(12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?22.(14分)已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.2003年全国统一高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)直线y=2x关于x轴对称的直线方程为( )A.B.C.y=﹣2x D.y=2x 【解答】解:∵直线y=f(x)关于x对称的直线方程为y=﹣f(x),∴直线y=2x关于x对称的直线方程为:y=﹣2x.故选:C.2.(5分)已知x∈(,0),cos x,则tan2x等于( )A.B.C.D.【解答】解:∵cos x,x∈(,0),∴sin x.∴tan x.∴tan2x.故选:D.3.(5分)抛物线y=ax2的准线方程是y=2,则a的值为( )A.B.C.8 D.﹣8 【解答】解:抛物线y=ax2的标准方程是x2y,则其准线方程为y2,所以a.故选:B.4.(5分)等差数列{a n}中,已知a1,a2+a5=4,a n=33,则n为( )A.48 B.49 C.50 D.51【解答】解:设{a n}的公差为d,∵,a2+a5=4,∴d4d=4,即5d=4,解得d.∴an(n﹣1),令a n=33,即33,解得n=50.故选:C.5.(5分)双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( )A.B.C.D.【解答】解:根据双曲线对称性可知∠OMF2=60°,∴tan∠OMF2,即c b,∴a b,∴e.故选:B.6.(5分)设函数若f(x0)>1,则x0的取值范围是( )A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:当x0≤0时,,则x0<﹣1,当x0>0时,则x0>1,故x0的取值范围是(﹣∞,﹣1)∪(1,+∞),故选:D.7.(5分)已知f(x5)=lgx,则f(2)=( )A.lg2 B.lg32 C.D.【解答】解:令x5=2,∴得x,∵f(x5)=lgx,∴f(2)=lg lg2.故选:D.8.(5分)函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ=( )A.0 B.C.D.π【解答】解:当φ=0时,y=sin(x+φ)=sin x为奇函数不满足题意,排除A;当φ时,y=sin(x+φ)=sin(x)为非奇非偶函数,排除B;当φ时,y=sin(x+φ)=cos x,为偶函数,满足条件.当φ=π时,y=sin(x+φ)=﹣sin x,为奇函数,故选:C.9.(5分)已知点(a,2)(a>0)到直线l:x﹣y+3=0的距离为1,则a=( )A.B.C.D.【解答】解:由点到直线的距离公式得:,∵a>0,∴a.故选:C.10.(5分)已知圆锥的底面半径为R,高为3R,它的内接圆柱的底面半径为,该圆柱的全面积为( )A.2πR2B.C.D.【解答】解:设圆锥内接圆柱的高为h,则,解得,所以圆柱的全面积为:s=2.故选:B.11.(5分)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB 上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=( )A.B.C.D.1【解答】解:由于若P4与P0重合,故P2、P3也都是所在边的中点,因为ABCD是长方形,根据对称性可知P0P1的斜率是,则tgθ.故选:C.12.(5分)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3D.6π【解答】解:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的体对角线就是球的直径.则球的半径R,∴球的表面积为3π,故选:A.二、填空题(共4小题,每小题4分,满分16分)13.(4分)不等式的解集是 (2,4] .【解答】解:∵x0,∴x>0,∵不等式,两边平方得,4x﹣x2<x2,∴2x2﹣4x>0,解得,x>2,x<0(舍去),∵4x﹣x2≥0,∴0≤x≤4,∴综上得:不等式的解集为:(2,4],故答案为(2,4].14.(4分)在的展开式中,x3的系数是 (用数字作答)【解答】解:根据题意,对于,有T r+1=C99﹣r•x9﹣r•()r=()r•C99﹣r•x9﹣2r,令9﹣2r=3,可得r=3,当r=3时,有T4x3,故答案.15.(4分)在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则 S△ABC2+S△ACD2+S△ADB2=S△BCD2 .”【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S△ABC2+S△ACD2+S△ADB2=S△BCD2.故答案为:S△ABC2+S△ACD2+S△ADB2=S△BCD2.16.(4分)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有 72 种.(以数字作答)【解答】解:由题意,选用3种颜色时:涂色方法C43•A33=24种4色全用时涂色方法:C21•A44=48种所以不同的着色方法共有72种.故答案为:72三、解答题(共6小题,满分74分)17.(12分)已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.【解答】解:(1)取BD中点M.连接MC,FM.∵F为BD1中点,∴FM∥D1D且FM D1D.又EC CC1且EC⊥MC,∴四边形EFMC是矩形∴EF⊥CC1.又FM⊥面DBD1.∴EF⊥面DBD1.∵BD1⊂面DBD1.∴EF⊥BD1.故EF为BD1与CC1的公垂线.(Ⅱ)解:连接ED1,有V E﹣DBD1=V D1﹣DBE.由(Ⅰ)知EF⊥面DBD1,设点D1到面BDE的距离为d.则.∵AA1=2,AB=1.∴,,∴.∴故点D1到平面DBE的距离为.18.(12分)已知复数z的辐角为60°,且|z﹣1|是|z|和|z﹣2|的等比中项.求|z|.【解答】解:设z=(r cos60°+r sin60°i),则复数z的实部为.由题设|z﹣1|2=|z|•|z﹣2|,即:(z﹣1)(1)=|z|∴r2﹣r+1=r,整理得r2+2r﹣1=0.解得r1,r1(舍去).即|z|1.19.(12分)已知数列{a n}满足a1=1,a n=3n﹣1+a n﹣1(n≥2).(Ⅰ)求a2,a3;(Ⅱ)证明.【解答】解:(Ⅰ)∵a1=1,∴a2=3+1=4,∴a3=32+4=13;(Ⅱ)证明:由已知a n﹣a n﹣1=3n﹣1,n≥2故a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1.n≥2当n=1时,也满足上式.所以.20.(12分)已知函数f(x)=2sin x(sin x+cos x).(1)求函数f(x)的最小正周期和最大值;(2)在给出的直角坐标系中,画出函数y=f(x)在区间上的图象.【解答】解:(1)f(x)=2sin2x+2sin x cos x=1﹣cos2x+sin2x所以函数的最小正周期为π,最大值为;(2)由(1)列表得:xy 11111故函数y=f(x)在区间上的图象是:21.(12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?【解答】解:如图建立坐标系:以O为原点,正东方向为x轴正向.在时刻:t(h)台风中心P(x,y)的坐标为令(x′,y′)是台风边缘线上一点,则此时台风侵袭的区域是(x′﹣x)2+(y′﹣y)2≤[r(t)]2,其中r(t)=10t+60,若在t时,该城市受到台风的侵袭,则有(0﹣x)2+(0﹣y)2≤(10t+60)2,即,即t2﹣36t+288≤0,解得12≤t≤24.答:12小时后该城市开始受到台风侵袭.22.(14分)已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.【解答】解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到定点距离的和为定值.按题意有A(﹣2,0),B(2,0),C(2,4a),D(﹣2,4a)设k(0≤k≤1),由此有E(2,4ak),F(2﹣4k,4a),G(﹣2,4a﹣4ak).直线OF的方程为:2ax+(2k﹣1)y=0,①直线GE的方程为:﹣a(2k﹣1)x+y﹣2a=0.②从①,②消去参数k,得点P(x,y)坐标满足方程2a2x2+y2﹣2ay=0,整理得.当时,点P的轨迹为圆弧,所以不存在符合题意的两点;当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长;当时,点P到椭圆两个焦点的距离之和为定值;当时,点P到椭圆两个焦点的距离之和为定值2a.。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是 。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a sn 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321Λ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r ∈<<≤++且是集合t s r b st n 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos οοr r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)31262,.2,22,23, 3.3622sin .arcsin .3D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴=⨯=====∴===∴∠==⋅=∴Q Q L L Q 分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又Θ.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x Θ20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。
2003年高考数学试题及答案(北京文)
绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长. )]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232c o s -=α”是“Z k k ∈+=,1252ππα”的 ( ) A .必要非充分条件 B .充分非必要条件 C .充分必要条件 D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n ,则m//nB .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a nn n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为 . 12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AB=a . (Ⅰ)求证:直线A 1D ⊥B 1C 1; (Ⅱ)求点D 到平面ACC 1的距离;(Ⅲ)判断A 1B 与平面ADC 的位置关系,并证明你的结论.18.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上. 19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=13km ,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小, 点P 应位于何处? 20.(本小题满分14分)。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π210.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是.(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a s n 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321 ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r∈<<≤++且是集合t s r b stn 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试4数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2r z 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)3sin D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴======∴∠==∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(2222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。
2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案
绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长. )]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232cos -=α”是“Z k k ∈+=,1252ππα”的 ( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n ,则m//nB .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a nn n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241 B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AB=a.(Ⅰ)求证:直线A1D⊥B1C1;(Ⅱ)求点D到平面ACC1的距离;(Ⅲ)判断A1B与平面ADC的位置关系,并证明你的结论.CBC B118.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上.19.(本小题满分14分)有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的 .|)()(|],1,1[,v u v f u f v u -=--∈都有若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高等学校招生全国统一考试 数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:由,323n n n nn a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力.满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC ,又A 1A ⊥底面ABC ,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点, ∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E , ∵平面ACC 1⊥平面ABC ,∴DE ⊥平面ACC 1于E ,即DE 的长为点D 到平面ACC 1的 距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.43a AC AD CD DE =⋅=CC 1解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACD C V V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a 43. (Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F ,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B , 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B ,∴AD ∥平面A 1D 1B ,且C 1D ∥平面A 1D 1B ,∴平面ADC 1∥平面A 1D 1B ,∵A 1B ⊂平面A 1D 1B ,∴A 1B ∥平面ADC 1.图(2)图(1)C 11C18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分. (Ⅰ)解:由图可知,.3a b ,4,522=-===c c a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x(Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -, 其中,500<<x 则,19252020=+y x ……① 直线A 1P ,P 1A 的方程分别为:),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③ ②式除以③式得,555500-+=-+x x x x 化简上式得,250x x =代入②式得,50x y y =于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(0x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+y x .19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为 .146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0(解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当 由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC 所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2,这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M重合时,P 到三镇的最远距离最小.答:点P 的坐标是);24119,0( 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-= 即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==- 对任意的]1,1[,-∈v u ,当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时 当0,u <⋅v不妨设],1,0(),0,1[∈-∈v u 有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=-所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下:假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ①由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D(0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2003年高考数学试题(全国卷)评析
2003年高考数学试题(全国卷)评析海盐元济高级中学胡水林2003年高考,受到了社会各界从未有过的关注。
高考时间的提前,SARS 的突袭,新旧教材的交替,考后的强烈反应等等,将会在一段时间内给人留下一份挥之不去的记忆。
我们处于一个改革锐进的时代,教育的理念,思维的方式都在发生变化,2003年高考数学试题反映了这种变化,它向传统的教学方式提出了挑战。
本文着重评价03年试题特色和教学的启示。
一、03年高考教学试题的特点03年试题的题型结构,考题份量与近年历届的试题持平,各分科所占比例大致合理。
1.突出基础知识和数学思想方法的考查1.1 高中数学的主干知识构成试题的主体如同以往,今年的高考试题继续坚持“高中数学的主干知识构成试题的主体”,试题中保持了较高的比例,并达到了必要的深度。
代数着重考查函数、数列、不等式、三角等主要内容;立体几何着重考查线面关系、线线关系,特别是它们之间的垂直关系;解析几何着重考查圆锥曲线和直线,以及它们之间的位置关系。
如函数作为高中代数中最基本、最重要的内容,在理科试题第(1)、(3)、(4)、(9)、(14)、(19)、(22)题,文科试题第(2)、(6)、(7)、(8)、(13)、(20)中,从不同的侧面,对函数进行了全面考查。
又如文科第(17)题、理科第(18)题,考查的是立体几何中点在平面上的射影、斜线与平面所成的角、点到平面的距离、异面直线及其公垂线等概念,以及棱柱的概念与性质等重点知识,将空间问题转化为平面问题的思考等重点方法。
1.2 抓住知识网络的交汇点设计命题。
今年的高考命题提纲挈领地抓住知识网络的交汇点,设计出具有综合性的新颖的试题,以达到较全面地考查学生的数学基础和数学素养的目的。
如理科的第(19)题,以最基本的指数函数、含有绝对值的不等式为载体,考查了函数的概念、函数的单调性、函数的最值等性质,含有绝对值不等式的解法,集合的概念与运算,以及对“有且只有”严谨的数学语言的解读。
2003年高考数学试题(全国文)及答案
2003年普通高等学校招生全国统一考试(全国卷)数学(文史类)注意事项:1. . 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. . 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.答案,不能答在试题卷上.3. . 考试结束,监考人将本试卷和答题卡一并收回.考试结束,监考人将本试卷和答题卡一并收回.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:参考公式:三角函数的积化和差公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式正棱台、圆台的侧面积公式正棱台、圆台的侧面积公式)]sin()[sin(21cos sin b a b a b a -++=× l c c S )(21+¢=台侧 其中其中c ¢、c 分别表示分别表示)]sin()[sin(21sin cos b a b a b a --+=× 上、下底面周长,上、下底面周长,l 表示斜高或母线长表示斜高或母线长. .)]cos()[cos(21cos cos b a b a b a -++=× 球体的体积公式:球体的体积公式:334R V p =球 ,其中R)]cos()[cos(21sin sin b a b a b a --+-=× 表示球的半径表示球的半径表示球的半径. . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.直线2y x x =关于对称的直线方程为对称的直线方程为 ( )(A )12y x =- (B )12y x =(C )2y x =- (D )2y x =2.已知,02x p æöÎ-ç÷èø,54cos =x ,则2tg x = ( )(A )247 (B )247- (C )724 (D )724- 3.抛物线2y a x =的准线方程是2,y a =则的值为的值为 ( ) (A )18(B )18-(C )8 (D )8-4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为(为( )(A )48 (B )49 (C )50 (D )51 5.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F F M F Ð=°,则双曲线的离心率为(,则双曲线的离心率为( ) (A )3 (B )62(C )63(D )336.设函数ïîïíì-=--2112)(xx f x00>£x x ,若1)(0>x f ,则0x 的取值范围是的取值范围是 ( ) (A )(1-,1) (B )(1-,¥+)(C )(¥-,2-)È(0,¥+) (D )(¥-,1-)È(1,¥+) 7.已知5()lg ,(2)f x x f ==则( ) (A )lg 2 (B )lg 32 (C )1lg32(D )1lg 258.函数sin()(0)y x R j j p j =+££=是上的偶函数,则( ) (A )0 (B )4p(C )2p(D )p9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) (A )2(B )22- (C )21- (D )21+10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为(,该圆柱的全面积为( )(A )22R p (B )249R p (C )238R p (D )252R p11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB夹角为q 的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合,则tg q = ( ) (A )31 (B )52 (C )21(D )1 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为(,四个顶点在同一球面上,则此球的表面积为( ) (A )p 3 (B )p 4 (C )p 33 (D )p 62003年普通高等学校招生全国统一考试数 学(文史类)第Ⅱ卷(非选择题共90分)分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上 13.不等式24x x x -<的解集是____________________. 14.92)21(xx -的展开式中9x 系数是系数是 ________ . 15.在平面几何里,有勾股定理:“设222,,A B C A B A C A B A C B C+= 的两边互相垂直则”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A B C D-的三个侧面A B C A C 、、两两互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,个行政区域,现给地图现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________(以数字作答)(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)分)已知正四棱柱111111112A B C D A B C D A B A A E C C F B D -==,,,点为中点,点为点中点 (Ⅰ)证明11E F B D C C 为与的公垂线的公垂线(Ⅱ)求点1D D B DEE 到面的距离18.(本小题满分12分)分)已知复数z 的辐角为°60,且|1|-z 是||z 和|2|-z 的等比中项,求||z . 1919..(本小题满分12分)分)已知数列{}n a 满足1111,3(2).n n n n a a a n --==+³(Ⅰ)求23,a a ;(Ⅱ)证明312nn a -=20.(本小题满分12分)分)已知函数()2sin (sin cos )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期和最大值;的最小正周期和最大值;()y f x =在(Ⅱ)在(Ⅱ)在给出给出的直角坐标系中,画出函数区间,22p p éù-êúëû上的图象21.(本小题满分12分)分)2 1 5 3 4 EDBACB D CAFMy O 2p2p-x 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南2(cos )10q q =方向西偏北°45方向300km 的海面P 处,并以20km/h 的速度向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?的侵袭?22.(本小题满分14分)分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADC CDCF BCBE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一考试数学试题(文)参考解答及评分标准说明:一. . 本解答指出了每题要考查的主要知识和能力,本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. . 对计算题,对计算题,对计算题,当考生的解答在某一步出现错误时,当考生的解答在某一步出现错误时,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,如果后继部分的解答未改变该题的内容和难度,如果后继部分的解答未改变该题的内容和难度,可视可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,O P A G D F E C B x y q O 北东y 线岸 O x Pr(t) P 45°海三. . 解答右端所注分数,表示考生正确做到这一步应得的累加分数.解答右端所注分数,表示考生正确做到这一步应得的累加分数.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. . 只给整数分数.选择题和填空题不给中间分.只给整数分数.选择题和填空题不给中间分.只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.]4,2( 14.221- 15.2222BCD ADB ACD ABC S S S S D D D D =++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点,中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC ,∴四边形EFMC 是矩形是矩形 ∴EF ⊥CC 1又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1Ì面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线的公垂线 (II )解:连结ED 1,有V 由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF . ∵AA 1=2·AB=1. 22,2====\EF ED BE BD 23)2(2321,2222121=××==××=\D D DBC DBD S S 故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数+2,r z z r z z ==+\由题设|2||||1|2-×=-z z z即)2)(2(||)1)(1(--=--z z z z z 42122+-=+-r rrr r12120122--=-==-+r r r r 解得(舍去)(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=\=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a aaaa a n n n nn+-++-+-=---.2)n s(22(Ⅱ)由(Ⅰ)知(Ⅱ)由(Ⅰ)知x83p -8p-8p83p85py1 21-1 21+1 ]p p )台风中心),(y x P ïíì´+´=´-´=22102722102t y t x ))y x -))--y x 22102722102´+´´-´t t的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(££===k k DADC CDCF BCBE ,由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ). 直线OF 的方程为:0)12(2=-+y k ax , ① 直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a ,整理得1)(21222=-+aa y x . 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212¹a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长. 当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2. 当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2. 。
2003年招生全国统一考试数学试题(天津卷)文科试卷及答案
普通高校招生数学(文)统一考试(天津卷)(文史类)第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=P (A )+P (B ) S=4πR 2 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P.334R V π=那么n 次独立重复试验中恰好发生k 次的概 率 其中R 表示球的半径k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.不等式x x x <-24的解集是( )A .(0,2)B .(2,+∞)C .(2,4)D .(-∞,0)∪(2,+∞) 2.抛物线y=ax 2 的准线方程是y=2,则a 的值为 ( )A .81B .-81 C .8 D .-83.=+-2)3(31i i( )A .i 4341+ B .i 4341--C .i 2321+ D .i 2321-- 4. 已知==-∈x x x 2tan ,54cos ),0,2(则π( )7724245.等差数列为则已知中n a a a a a n n ,33,4,31,}{521==+=( )A .48B .49C .50D .51 6.双曲线虚轴的一个端点为M ,两个焦点为F 1,F 2,∠F 1MF 2=120°,则双曲线的离心率为( )A .3B .26C .36 D .33 7.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞) 8.O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ).,0[|||(+∞∈++=λλACAB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 9.函数),1(,11ln+∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xx B .),0(,11+∞∈-+=x e e y xxC .)0,(,11-∞∈+-=x e e y xx D .)0,(,11-∞∈-+=x e e y xx 10.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为( )A .33aB .43aC .63aD .123a11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2,P 3和P 4(入射角等于反射角)若P 4与P 0重合,则tan θ= ( )A .31B .52 C .21 D .112.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( )第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.92)21(xx展开式中9x 的系数是 14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆15.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系可以得出的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,则 ”16.将3种作物种植在如图5块试验田里,每块种植一种 作物且相邻的试验田不能种植同一作物,不同的种植 方法共有 种.(以数字答)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知正四棱柱ABCD —A 1B 1C 1D 1.AB=1,AA 1=2,点E 为CC1中点,点P 为BD 1中点. (1)证明EF 为BD 1与CC 1的公垂线; (2)求点D 1到面BDE 的距离.18.(本小题满分12分)已知抛物线C1:y=x2+2x和C:y=-x2+a,如果直线l同时是C1和C2的切线,称l是C1和C2的公切线,公切线上两个切点之间的线段,称为公切线段.(Ⅰ)a取什么值时,C1和C2有且仅有一条公切线?写出此公切线的方程;(Ⅱ)若C1和C2有两条公切线,证明相应的两条公切线段互相平分.19.(本题满分12分)已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足 (Ⅰ)求;,32a a(Ⅱ)证明.213-=n n a20.(本小题满分12分)在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率. (精确到0.001)21.(本小题满分12分)已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 是R 上的偶函数,其图象关于点 )0,43(πM 对称,且在区间]2,0[π上是单调函数.求ωϕ和的值.22.(本小题满分14分)已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.2003年普通高校招生数学(文)统一考试(天津卷) 答案一、选择题:本题考查基本知识和基本运算每小题5分,满分60分1.C 2.B 3.B 4.D 5.C 6.B 7.D 8.B 9.B 10.C 11.C 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.221-14.6,30,10 15.S 2△ABC + S 2△ACD + S 2△ADB = S 2△BCD 16.42 三、解答题17.本小题主要考查线面关系和四棱柱等基础知识,考查空间想象能力和推理能力,满分12分(1)证法一:取BD 中点M.连结MC ,FM .∵F 为BD 1中点 , ∴FM ∥D 1D 且FM=21D 1D . 又EC21CC 1且EC ⊥MC ,∴四边形EFMC 是矩形 ∴EF ⊥CC 1. 又CM ⊥面DBD 1 .∴EF ⊥面DBD 1 .∵BD 1⊂面DBD 1 . ∴EF ⊥BD 1 . 故EF 为BD 1 与CC 1的公垂线.证法二:建立如图的坐标系,得B (0,1,0),D 1(1,0,2),F (21,21,1),C 1(0,0,2),E (0,0,1). ,0,0).2,1,1().2,0,0(),0,21,21(1111=⋅=⋅∴-=∴==∴BD CC BD CC 即EF ⊥CC 1,EF ⊥BD 1 . 故EF 是为BD 1 与CC 1的公垂线.(Ⅱ)解:连结ED 1,有V E -DBD 1=V D 1-DBE .由(Ⅰ)知EF ⊥面DBD 1 ,设点D 1到面BDE 的距离为d..3322322223)2(2321.22221,22,2.1,2.2111=⨯=∴⋅=⋅⋅==⋅⋅=∴====∴==⋅=⋅∆∆∆∆d S S EF ED BE BD AB AA EF S d S DBEDBD DBD DBE 则 故点D 1到平面DBE 的距离为332. 18.本小题主要考查导数、切线等知识及综合运用数学知识解决问题的能力,满分12分(Ⅰ)解:函数y=x 2+2x 的导数y ′=2x+2,曲线C 1在点P (x 1,x 21+2x 1)的切线方程是:y -(x 21+2x 1)=(2x 1+2)(x -x 1),即 y=(2x 1+2)x -x 21 ①函数y=-x 2+a 的导数y ′=-2x, 曲线C 2 在点Q (x 2,-x 22+a )的切线方程是即y -(-x 22+a)=-2x 2(x -x 2). y=-2x 2x+x 22+a . ②如果直线l 是过P 和Q 的公切线,则①式和②式都是l 的方程,x 1+1=-x 2所以- x 21=x 22+a.消去x 2得方程 2x 21+2x 2+1+a=0.若判别式△=4-4×2(1+a )=0时,即a=-21时解得x 1=-21,此时点P 与Q 重合. 即当a=-21时C 1和C 2有且仅有一条公切线,由①得公切线方程为 y=x -41.(Ⅱ)证明:由(Ⅰ)可知.当a<-21时C 1和C 2有两条公切线设一条公切线上切点为:P (x 1,y 1), Q (x 2 , y 2 ). 其中P 在C 1上,Q 在C 2上,则有 x 1+x 2=-1,y 1+y 2=x 21+2x 1+(-x 22+a)= x 21+2x 1-(x 1+1)2+a=-1+a . 11a +-同理,另一条公切线段P ′Q ′的中点也是).21,21(a +-- 所以公切线段PQ 和P ′Q ′互相平分.19.本小题考查数列,等比数列,等比数列求和等基础知识,考查运算能力,满分12分. (Ⅰ)∵a 1=1 . ∴a 2=3+1=4, a 3=32+4=13 .(Ⅱ)证明:由已知a n -a n -1=3n -1,故.2131333)()()(21112211-=++++=+-++-+-=-----n n n n n n n n a a a a a a a a 所以证得213-=n n a . 20.本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分.解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C.(Ⅰ)P (A )=0.90,P (B )=P (C )=0.95.P )(A =0.10 , P )(B =P )(C =0.05.因为事件A ,B ,C 相互独立,恰有一件不合格的概率为P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C )+P (A )·P (B )·P (C ) =2×0.90×0.95×0.05+0.10×0.95×0.95=0.176答:恰有一件不合格的概率为0.176.(Ⅱ)解法一:至少有两件不合格的概率为P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+ P (A ·B ·C ) =0.90×0.052+2×0.10×0.05×0.95+0.10×0.052=0.012.答:至少有两件不合格的概率为0.012.解法二:三件产品都合格的概率为P (A ·B ·C )=P (A )·P (B )·P (C )=0.90×0.952=0.812.由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至少有两件不合格的概率为1-P (A ·B ·C )+0.176=1-(0.812+0.176)=0.012答:至少有两件不合格的概率为0.012.21.本小题主要考查三角函数的图象和单调性,奇偶性等基本知识,以及分析问题和推理计算能力,满分12分.解:由f (x )是偶函数,得f (-x )= f (-x ).即: ).sin()sin(ϕωϕω+=+-x x 所以-x x ωϕωϕsin cos sin cos =对任意x 都成立,且,0>ω所以得ϕcos =0.依题设0πϕ≤≤,所以解得2πϕ=,由f (x )的图象关于点M 对称,得)43()43(x f x f +-=-ππ. 取x =0,得)43(πf =-)43(πf ,所以)43(πf =0. .232,.]2,0[)2sin()(,310,2;]2,0[)22sin()(,2,1;]2,0[)232sin()(,32,0,2,1,0),12(32.2,1,0,243,0,043cos .43cos )243sin()43(==+=≥≥+===+====+=∴=+=>=∴=+=ωωππωωππωππωωππωπωωπωππωππ或综合得所以上不是单调函数在时当上是减函数在时当上是减函数在时当得又x x f k x x f k x x f k k k k k f 22.本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力,满分14分解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.∵i=(1,0),c=(0,a ), ∴).2,1(2),,(a c i a i c λλλλ-=-=+因此,直线OP 和AP 的方程分别为 λy=ax 和y -a =-2λax .消去参数λ,得点P (x ,y )的坐标满足方程y (y -a )=-2a 2x 2 ,整理得,1)2()2(81222=-+a a y x ① 因为a >0,所以得:(i )当a =22时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ii )当0<a <22时,方程①表示椭圆,焦点E )2,2121(2a a -和 )2,2121(2a a F --为合乎题意的两个定点; (iii )当a >22时,方程①表示椭圆,焦点E ())2121,0(2-+a a 和F (2121,0(2--a a ))为合乎题意的两个定点.。
2003年高考试题——数学理(全国卷)及答案
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A(0,0),B (2,0),C (2,1)和D(0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2003高考数学全国卷及答案理
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设D E KBC 1A 1B 1AFCGP:函数x cy=在R上单调递减Q:不等式1|2|>-+cxx的解集为R如果P和Q有且仅有一个正确,求c的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东东O偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 6 9 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DG k k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2 当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示22t s +,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3)— — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s 数列}{n a 中小于02t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C 依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… 27C +422222397()4145.k C C C C =+++++=。
2003年高考试题——数学文(上海卷)及答案
2003年普通高等学校招生全国统一考试(上海卷)数 学(文史类)第Ⅰ卷 (共110分)一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数)4sin(cos )4cos(sin ππ+++=x x x x y 的最小正周期T= .2.若=∈=+=απααπ则其中的解是方程),2,0(,1)cos(23x x .3.在等差数列}{n a 中,a 5=3, a 6=-2,则a 4+a 5+…+a 10= .4.已知定点A (0,1),点B 在直线x +y=0上运动,当线段AB 最短时,点B 的坐标是 . 5.在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线PA 与BC 所成角的大小等于 .(结果用反三角函数值表示)6.设集合A={x ||x |<4},B={x |x 2-4x +3>0}, 则集合{x |x ∈A 且}B A x ∉= . 7.在△ABC 中,sinA;sinB:sinC=2:3:4,则∠ABC= .(结果用反三角函数值表示)8.若首项为a 1,公比为q 的等比数列}{n a 的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )= .9.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示) 10.方程x 3+lg x =18的根x ≈ .(结果精确到0.1) 11.已知点),0,24(),2,0(),2,0(nC n B n A +-其中n 为正整数.设S n 表示△ABC 外接圆的面积,则n n S ∞→lim = .12.给出问题:F 1、F 2是双曲线201622y x -=1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17. 该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内. .二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 13.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y=tg|x |.B .y=cos(-x ).C .).2sin(π-=x y D .|2|x ctgy =. 14.在下列条件中,可判断平面α与β平行的是 ( ) A .α、β都垂直于平面r . B .α内存在不共线的三点到β的距离相等.C .l ,m 是α内两条直线,且l ∥β,m ∥β.D .l ,m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β. 15.在P (1,1)、Q (1,2)、M (2,3)和N )41,21(四点中,函数x a y =的图象与其反函数的图象的公共点只可能是点 ( ) A .P . B .Q. C .M. D .N.16.f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g (x )=af (x )+b ,则下列关于函数g (x )的叙述正确的是 ( ) A .若a <0,则函数g (x )的图象关于原点对称.B .若a =1, 0<b<2,则方程g (x )=0有大于2的实根.C .若a =-2,b=0,则函数g(x )的图象关于y 轴对称D .若 a ≠0,b=2,则方程g (x )=0有三个实根.三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.17.(本题满分12分)已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值. 18.(本题满分12分)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积. 19.(本题满分14分)已知函数xxx x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h 为6米,则隧道设计的拱 宽l 是多少?(2)若最大拱高h 不小于6米,则应如何设 计拱高h 和拱宽l ,才能使半个椭圆形隧 道的土方工程量最小? (半个椭圆的面积公式为lh S 4π=,柱体体积为:底面积乘以高.本题结果精确到0.1米)21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB|=2|OA|,且点B 的纵坐标大于零. (1)求向量的坐标;(2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值范围.22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.已知数列}{n a (n 为正整数)是首项是a 1,公比为q 的等比数列.(1)求和:;,334233132031223122021C a C a C a C a C a C a C a -+-+-(2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明. (3)设q ≠1,S n 是等比数列}{n a 的前n 项和,求:n nn n n n n n C S C S C S C S C S 134231201)1(+-++-+-2003年普通高等学校招生全国统一考试(上海卷)数学(文史类)答案一、(第1题至第12题)1.π. 2.π34. 3.-49 . 4.)21,21(-. 5.arctg2. 6.[1,3].7..611arccos 8.10,0)(21,1(1<<>q a 的一组数). 9.190119 10.2.6 . 11.4π 12.|PF 2|=17.二、(第13题至第16题)三、(第17题至第22题) 17.[解]12|||1sin cos (cos sin )|z z i θθθθ⋅=++-===故||21z z ⋅的最大值为,23最小值为2.18.[解]连结BD ,因为B 1B ⊥平面ABCD ,B 1D ⊥BC ,所以BC ⊥BD.在△BCD 中,BC=2,CD=4,所以BD=32.又因为直线B 1D 与平面ABCD 所成的角等于30°,所以 ∠B 1DB=30°,于是BB 1=31BD=2.故平行六面体ABCD —A 1B 1C 1D 1的体积为S ABCD ·BB 1=38.19.[解]x 须满足,11011,0110<<->-+⎪⎩⎪⎨⎧>-+≠x x x xx x 得由所以函数)(x f 的定义域为(-1,0)∪(0,1).因为函数)(x f 的定义域关于原点对称,且对定义域内的任意x ,有)()11log 1(11log 1)(22x f xxx x x x x f -=-+--=+---=-,所以)(x f 是奇函数. 研究)(x f 在(0,1)内的单调性,任取x 1、x 2∈(0,1),且设x 1<x 2 ,则121222221122122122122111111122()()log log )[log (1)log (1)],111111220,log (1)log (1)0,11x x f x f x x x x x x x x x x x x x ++-=--+=-+-------->--->--(由得)()(21x f x f ->0,即)(x f 在(0,1)内单调递减,由于)(x f 是奇函数,所以)(x f 在(-1,0)内单调递减.20.[解](1)如图建立直角坐标系,则点P (11,4.5), 椭圆方程为12222=+by a x .将b=h =6与点P 坐标代入椭圆方程,得3.3377882,7744≈===a l a 此时.因此隧道拱宽约为33.3米. (2)由椭圆方程12222=+by a x ,得.15.4112222=+b a2222222211 4.5211 4.59999,2,,.42211 4.51,,231.1, 6.422ab ab l a h b S lh a b ab S a b l a h b a b πππ⨯⨯+≥≥====≥======≈=≈因为即且所以当取最小值时有得此时故当拱高约为6.4米、拱宽约为31.1米时,土方工程量最小.[解二]由椭圆方程12222=+by a x ,得.15.4112222=+b a 于是,121481222-⋅=a a b222222228112181(121242)242)81121,4121412199,,121,1121a b a a ab S a a b a =-++≥=⨯-≥-===-即当取最小值时有得以下同21.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u v u AB 即则由得},3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u v u v u 因为或所以v -3>0,得v =8,故={6,8}. (2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10. 设圆心(3,-1)关于直线OB 的对称点为(x ,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年普通高等学校招生全国统一考试(全国卷)数学(文史类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式 )]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示 )]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长. )]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R )]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.直线2y x x =关于对称的直线方程为 ( )(A )12y x =- (B )12y x = (C )2y x =- (D )2y x = 2.已知,02x π⎛⎫∈- ⎪⎝⎭,54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724- 3.抛物线2y ax =的准线方程是2,y a =则的值为 ( ) (A )18 (B )18- (C )8 (D )8- 4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为( ) (A )48 (B )49 (C )50 (D )515.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F FMF ∠=︒,则双曲线的离心率为( )(A (B (C (D6.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( )(A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)7.已知5()lg ,(2)f x x f ==则( )(A )lg 2 (B )lg 32 (C )1lg 32(D )1lg 25 8.函数sin()(0)y x R ϕϕπϕ=+≤≤=是上的偶函数,则( )(A )0 (B )4π (C )2π (D )π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( )(A (B )2 (C 1 (D 110.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为( ) (A )22R π (B )249R π (C )238R π (D )252R π 11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P(入射角等于反射角)若40P P 与重合,则tg θ= ( )(A )31 (B )52 (C )21 (D )1 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )(A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试数 学(文史类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13x <的解集是____________________.14.92)21(xx -的展开式中9x 系数是 ________ . 15.在平面几何里,有勾股定理:“设22,,ABC AB AC AB AC BC += 的两边互相垂直则平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A BCD -的三个侧面A B C A C 、、两两互相垂直,则______________________________________________.”16.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤17.(本小题满分12分)已知正四棱柱111111112ABCD A BC D AB AA E CC F BD -==,,,点为中点,点为点中点(Ⅰ)证明11EF BD CC 为与的公垂线 (Ⅱ)求点1D BDE 到面的距离18.(本小题满分12分) 已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z .19.(本小题满分12分)已知数列{}n a 满足1111,3(2).n n n a a a n --==+≥(Ⅰ)求23,a a ;(Ⅱ)证明2nn a =20.(本小题满分12分) 已知函数()2sin (sin cos f x x x x =+(Ⅰ)求函数()f x 的最小正周期和最大值; ()y f x =在(Ⅱ)在给出的直角坐标系中,画出函数区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象21.(本小题满分12分)ED BA CBD CA FMx在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南(cos θθ方向西偏北︒45方向300km 的海面P 处,并以20km/h 的速度向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?22.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADC CD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一考试数学试题(文)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.东O三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.四. 只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.]4,2( 14.221- 15.2222BCD AD B ACD ABC S S S S ∆∆∆∆=++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC , ∴四边形EFMC 是矩形 ∴EF ⊥CC 1又CM ⊥面DBD 1 ∴EF ⊥面DBD 1∵BD 1⊂面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线(II )解:连结ED 1,有V由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF.∵AA 1=2·AB=1.22,2====∴EF ED BE BD 23)2(2321,2222121=⋅⋅==⋅⋅=∴∆∆DBC DBD S S 故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数 +2,r z z r z z ==+∴ 由题设|2||||1|2-⋅=-z z z即||)1)(1(=--z z 42122+-=+-r r r r r12120122--=-==-+r r r r 解得(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=∴=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--n n n 所以213-=n n a 20.解(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos2(sin 21πππ-+=-⋅+=x x x 所以函数)(x f 的最小正周期为π,最大值为21+.故函数)(x f y =在区 间]2,2[ππ-上的图象是21.解:如图建立坐标系:以O 为原点,正东方向为x 轴正向.在时刻:t (h )台风中心),(y x P 的坐标为 ⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是222)]([)()(t r y y x x ≤-+-,其中10)(=t r t+60,若在t 时,该城市O 受到台风的侵袭,则有,)6010()0()0(222+≤-+-t y x即,)6010()22201027300()2220102300(222+≤⨯+⨯-+⨯-⨯t t t 即0288362≤+-t t , 解得2412≤≤t .答:12小时后该城市开始受到台风气侵袭22.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到定点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a ) 设)10(≤≤===k k DADC CD CF BC BE , 由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ).直线OF 的方程为:0)12(2=-+y k ax , ①直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a , 整理得1)(21222=-+aa y x . 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长. 当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2. 当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2.。