flotherm 热键

合集下载

FLOTHERM经典教材

FLOTHERM经典教材

FLOTHERM Introductory一:创建和保存项目 (2)二:设置单位 (2)三:定义求解域 (2)四:定义求解域环境 (2)五:参考点设置 (3)六:画箱体 (3)七:箱体打孔 (3)八:增加热源 (4)九:设置监控点 (5)十:创建结构树 (5)十一:设置网格 (5)十二:观测温度: (5)十三:添加PCB (6)13.1:添加pcb材料 (6)13.2:设置pcb位置 (6)13.3:设置pcb尺寸 (7)13.4:加入元件 (7)13.5:加入元件功率 (7)十四:定义其它热源 (8)十六:观察机箱内 (8)十七:数据观察 (9)十八:更改求解域后恢复 (10)二十:添加风扇 (10)二十二:气流观察 (12)二十三:优化 (13)一:创建和保存项目在PM中选择[Project/New]并选择“Defaults” 表. 选中文件“DefaultSI” 并按OK. 这就按缺省设置(标准国际单位)打开一个新的工程文件,其它的设置参数也都回复为缺省值。

在PM中选择[Project/Save As](项目/保存为)。

—在Project Name (项目名称)栏中键入“Tutorial 2”。

—在Title(标题)栏中键入“Simple Electronics Box”。

—单击Notes(备注)按钮。

在文本编辑框中输入一些和项目有关的信息。

比如“This is an initial model of the electronics box.”。

单击Date(日期)和Time(时间)按钮,为项目创建日期和时间信息。

单击OK按钮,退出Edit Notes(备注编辑)对话框。

再单击确定(OK)来保存您的项目。

二:设置单位整体的缺省尺寸单位可在PM中设置。

在菜单条上, 选择[Option/Units].在‘Unit Class,’ 下面选中‘LENGTH’ 并在‘Use Units’ 中选择‘mm’。

flotherm_6.1中文版教程(完全免费)

flotherm_6.1中文版教程(完全免费)

练习题 1: FLOTHERM软件的基本操作本练习通过创建一个非常简单的算例让用户对Flotherm软件的操作有一个基本的了解。

本练习逐步指导用户完成安放在钢板的热模块的创建,具体步骤如下1.创建和保存一个新的项目2.创建实体3.定义网格、求解4.分析结果) ()在建模过程中,最好经常对项目执行存盘操作,通过菜单Save] (项目/保存)和存盘‘Save’(保存)图标可以保存当前装载的项目,用户可以通过菜单[Project / Save As] (在此,我们将求解域尺寸设置为与机箱一样大小。

在练习5 中我们将考虑另一种情况。

备注: 环境条件是连接求解区域和外部环境的边界条件。

把换热系数(Heat Transfer Coefficient)设为5 W/(m2K)时,我们就确保了任何一个与求解区域(Overall Domain)相接触的固体表面都将传递一部分热W/m2.K。

备注:1.在‘Material Property’ (材料属性)窗口中,您将注意到有一项关电阻)的设置。

提供此项设置是以便您的材料属性;3.或选择‘Flow Resistance’(流阻),定义一个与损耗系数有关的孔。

我们可以用第三种选项定义机箱的通风孔但这里我们用更加智能化的方法,它就叫作”Perforated plates”(打孔板)。

并选择简单部件N备注:在‘Snap to Object’(贴附于物体)模式下,您可以将对象的坐标值精确到小数点后5位。

因此我们建议您在可能的情况下要将‘Toggle Snap Grid’ 设回到‘Snap to Grid’(贴附于网格)模式。

,回到四视图状态。

选中视图并将其切换至全屏。

在孔High Z PlateLow Z Plate中的图标。

从4025Total25。

注:要保证创建的监控点位于机箱的中心,只有通过项目管理窗口(PM)才能实现。

定义中等网格。

软件会根据模型的情况已选中,这样,网格就可菜单应用窗口图标。

FLOTHERM热设计软件指南

FLOTHERM热设计软件指南

耗及环境变化情况下的瞬态分析;
瞬态功耗及其温度响应 z 辐射计算:全部采用 Monte-Carlo 方法进行辐射计算,完美地解决了 Monte-Carlo 方法计算量大的缺点,不采用其它精度
差的角系数计算方法,是目前唯一可以全部采用 Monte-Carlo 方法进行辐射计算的电子散热仿真软件,非常适合密闭设备
z 收敛准则:FLOMERICS 公司为 CFD 软件在电子热仿真领域的应用专门开发了收敛准则,公司的研发人员认为,一个良 好的收敛准则必须符合两个条件:1)保证收敛可靠,即如果软件认为收敛,就应该较好地得到一个真实的解,而不能像传统的 通用 CFD 软件一个需要人为地去判断解的可靠;2)收敛准则应该由软件自动提供,而不应由工程师人为提供; FloTHERM 软 件完美地实现了以上两点;
FLOTHERM
全球领先的电子热设计/仿真分析软件
上海坤道信息技术有限公司简介
上海坤道信息技术有限公司 (SIMUCAD Info Tech Co., Ltd) 是一家专注于高端计算机辅助工程(CAE)软件和 高科技仪器设备的提供商和方案咨询服务供应商,倾力于为机械电子产品之研发、生产和制造的企业和研究 机构提供先进完善的设计、分析、测试和制造解决方案以及成熟高效的技术支持和咨询服务。坤道公司的前 身为 Mentor Graphics 公司 Mechanical Analysis 部门(原英国 Flomerics 公司中国代表处)负责政府客户、国 防与航空航天领域及高校(包括中科院)和国内客户的业务部门。目前是 Mentor Graphics 公司 Mechanical Analysis Division 和 MicReD (微电子研究发展)部门全系列产品在中国大陆的总代理,负责其产品的销售和技 术服务事宜。

Flotherm软件求解收敛常见问题及处理方法

Flotherm软件求解收敛常见问题及处理方法

1. 引言随着电子设备向高集成度方向发展,系统的热功率密度越来越大,因此热设计技术在电子设备中显得越来越重要。

目前公司主要采用Flotherm商业热分析软件进行系统级、板级的热分析。

热分析过程主要分为建造模型、为模型添加物性、网格划分、求解与后处理几个过程。

在热分析的过程当中,准确的建造模型、添加物性固然重要,它将直接影响到结果的准确性,然而网格划分对于初学者来说也很重要,劣质的网格可能会导致求解发散,甚至会导致得到错误的结果。

所有的错误都会体现在残差曲线中,本文主要讲述各种有问题的残差曲线,并详细讲述处理的方法。

2. Flotherm软件默认求解收敛设置Flotherm软件实际上是采用Patankar与Spalding1972年提出的在计算流体力学及计算传热学中得到了广泛应用的SIMPLE算法来迭代求解一组由Navier—Stokes方程导出的耦合偏微分非线性方程,这种迭代自然伴随着收敛的相关判定与设置问题.Flotherm终止标准是基于系统的质量、动量和能量三个方面来设定的:•质量平衡(压力场残差)–终止标准= 0。

005M(kg/s)–强迫对流: M = Total Inlet or Outlet Flow Rate–自然对流:M = ρ。

EFCV。

Aρ:Air densityEFCV: Estimated Free Convection VelocityA: Area perpendicular to the vertical•动量平衡(速度场残差)–终止标准= 0.005MV(N)–强迫对流:V = Fan or Fixed Flow maximum velocity–自然对流: V = EFCV•能量平衡(温度场残差)–终止标准= 0。

005 Q (W)–如果在系统中有热源或热沉:Q = Total Heat Sources or Sinks–如果系统中无热源或热沉:Q = M Cp ∆Ttyp ∆Ttyp = 20 °C3. 常见残差曲线分类在利用Flotherm进行求解中,我们直观的判断求解是否收敛的依据则是依靠残差曲线,通过残差曲线我们可以了解求解是发散、振荡还是收敛,如下图所示.图一:残差曲线1) 对于大多数残差曲线收敛且监控点温度稳定的情况下,我们可以认为得到了稳定正确的数值 解,当然有时也会由于温度梯度较大的位置网格数量不足或者两种不同的物体划分到同一网格得到具有较大误差的结果。

flotherm软件应用学习精华

flotherm软件应用学习精华

flotherm软件应⽤学习精华如何现实物体表⾯的温度云:Fig.1Fig. 2关于表⾯换热系数在附件中的模型中,设置换热系数时,⽆论数值怎么改,最后的温度分布没有改变,这是为什么?==========================================对流换热系数与很多参数有关,况且不同位置这个值也不⼀样从⽹格的⾓度出发,在固体内的⽹格中,每个⽹格应该有⼀个导热系数参数,⽽在固体与流体相连的⽹格⾥,有⼀个对流换热系数参数,还有⼀个热辐射参数并且这些数值随着迭代不断变化(如果导热系数不是定值,是⼀个随温度变化的值),最终不再变化,模型也就收敛这个换热系数是⽤于考虑箱体与外界环境的换热量,求解域与箱体⼤⼩⼀致时才计算,这是软件对外界换热的⼀个近似处理,其实并不准确,因为和外界的换热系数⼀般是未知的,不应作为⼀个已知的第三类边界条件。

ambient 中的对流换热系数,仅在如下两个条件同时满⾜时才发挥作⽤: 1.对某个⽅向上的计算域边界附加了你设置的ambient 属性 2.改计算域边界和计算域内某固体表⾯重合则此ambient 种设置的对流换热系数会在与计算域边界重合的固体表⾯上发挥作⽤。

此设置有⼀个典型应⽤:你的⼀个机箱,内部采⽤强迫对流换热,此时系统90%多的热量都是靠系统内部的强迫风冷带⾛的。

但同时,机箱外表⾯也是存在⾃然对流和辐射的,只不过⾮常⼩⽽已。

在进⾏仿真计算时,⼜不想把机箱外计算域放⼤实际计算其⾃然对流。

就可以设置ambient 中的对流换热系数,近似模拟机箱外表⾯的⾃然对流和辐射。

在此情况下,⼀般设置此值为10左右即可system ⾥的fliud 设置的是求解域内的流体属性,⽐如导热系数,密度,粘性,⽐热等等;ambients 设置的是求解域外的流体温度,压⼒等,默认为空⽓,⽽且不能更改;global 设置的是求解域内初始计算的温度和压⼒,它会在计算过程中被逐步的修正。

Flotherm学习教程

Flotherm学习教程
热容网络模型,同时也提供热源和阻尼模型的建立,将器件 的热源特性和阻尼特性进行输入仿真:
薄板模型
Copyright © Sieyuan
热阻-热容网络模型
9
Flotherm 的建模
4) 高级Zoom-in 功能: 高级Zoom-in功能可将上级模型计算结果作为下级模型
计算的边界条件,使得模型计算结果层层传递,从系统级到 子系统级,简化计算过程,减轻工作量,从而大大缩减模型 分析时间。
➢ P: 压力 ➢ Vx : X 方向的速度. ➢ Vy : Y 方向的速度. ➢ Vz : Z 方向的速度 ➢ T: 温度.
3 Copyright © Sieyuan
Flotherm 介紹 3
准确度 一直是CFD软件最为人挑剔的地方. 有几项因为影响到CFD 软件的准确度:
➢ 软件本身的程式: 沒有人会看的到程式, 也不知道程式写 的对不对.
No 工作视窗 功能
用途
1 Prism
产生一个 三边体 偶尔用
2 Assembly 产生一个 目录
最常用
3 Heat Sink 产生一个 Heat sink 最常用
4
Sloping Block
产生一个 斜板体
5 Cylinder 产生一个 圆柱体 几乎不用
6 Monitor
产生一个 温度监测 点
一定要用
5 Profiles Windows 执行状态曲线
6 FLOMCAD
可将 IGS 文件 转入至 Flotherm
15 Copyright © Sieyuan
档案管理
Project Manager
复制, 移动, 阵 列
视图管理
模型
工具选项
网格划分

电子产品散热分析软件 - FloTHERM

电子产品散热分析软件 - FloTHERM

电子技术日新月异的发展在20世纪引发了一场革命,如今的电子产品体积已极大的缩小,而功耗反而有所增加。

但同时,由此产生的设备过热问题逐渐成为了导致电子设备故障的重要原因。

因此在设计阶段,如何利用仿真软件对产品散热设计进行最大限度的优化成为了电子产品设计的重中之重。

FloTHERM在电子行业的应用FloTHERM用户比所有同类竞争对手用户总和还多,毫无疑问,它是电子行业热分析软件的市场领袖。

各类大小型公司都喜欢使用FloTHERM进行热传-流动分析,并对投资回报率信心十足。

在最近的一次调查中,98% 的用户乐意向同行推荐FloTHERM,证实了当各行业领导厂商面临热管理问题时,FloTHERM 当仁不让成为了他们依赖的工具,来保持其竞争力。

FloTHERM是一款强大的应用于电子元器件以及系统热设计的三维仿真软件。

在任何实体样机建立之前,工程师就可以在设计流程初期快速并简易地创建虚拟模型,运行热分析以及测试设计更改。

FloTHERM采用先进的CFD (计算流体力学)技术,预测元器件、PCB板以及整机系统的气流、温度以及传热。

FloTHERM以专业、智能和自动而著称,区别于其他传统分析软件。

这些功能协助将热设计专家们的产能最大化,帮助将机械设计工程师的学习过程减到最少,并为客户提供了分析软件行业最高比率的投资回报率。

使用FloTHERM解决电子热设计问题所带来的显著效益的应用方面:◇生产硬件前解决热设计问题◇减少重新设计工作,降低每单位产品成本◇增强可靠性和提高整体的工程设计程度◇显著地缩短上市时间FloTHERM应用领域不同于其他热仿真软件,FloTHERM是一款专为各类电子应用而打造的分析工具,FloTHERM可以对从元器件级别到系统级别的设备进行模拟仿真。

FloTHERM可以应用在电脑和数据处理、电信设备和网络系统、半导体设备、集成电路(ICs)以及元器件、航空和国防系统、汽车和交通运输系统、消费电子等领域。

FLOTHERM.6.1版本中文教程6

FLOTHERM.6.1版本中文教程6

添加散热器和风扇本练习指导用户完成以下步骤进一步细化置顶盒的模型:1.创建一个风扇。

2.使用库操作。

3.创建一个散热器。

4.在FLOMOTION中显示粒子流。

5.诊断有关收敛的问题。

.练习题6:添加散热器和风扇Load (读取)项目“Tutorial 5”,并将其另保存为新项目,取名"Tutorial 6"。

设置其’Title’(标题)为"Addition of heat sink andfan to set top box"。

在项目管理窗口(PM)中点击图标,激活调色板(Palette)。

选中根组件‘Root Assembly’ 并点击调色板中的‘Assembly’(组件)图标,将新创建的组件更名为"Ventilation"(通风)。

练习题6:添加散热器和风扇点击项目管理窗口(PM)中的图标打开‘LibraryManager’(库管理窗口)。

在‘Libraries’(库)下找到‘Sanyo DenkiAxial Fan’(Sanyo Denki 轴流风扇),选择编号为‘109P0612H702’的风扇。

按住鼠标左键,将这一风扇拖拽到”Ventilation”组件中。

通过在项目管理窗口(PM)或绘图板(DB)中用鼠标右键点击风扇可进入’Location’(安置)对话框。

将风扇置于PSU旁,风从机箱中吹出。

风扇的位置设为(7.5,75, 270) mm。

注意:单位要正确。

练习题6:添加散热器和风扇在画图板中,确定风扇方向箭头显示在图中。

如果没有显示,选择“Modify Picture”图标进行修改。

选中“Flow/Source Direction”单选按钮.返回Drawing board 并观察风扇,你将可以看到带方向箭头的风扇。

练习题6:添加散热器和风扇在绘图板(DB)中,查看+Z视图。

如果现在绘图板显示的是四视图,请将其转换为单视图,即全屏显示+Z 方向视图。

仿真软件FlOTHERM资料(二)

仿真软件FlOTHERM资料(二)

并介绍了 T3Ster 和 TERALED 系统如何满足照明设备制造商及其客户在这方
面的需求。
13.白皮书:热仿真简化 LED 光源的研发
高功率高亮度发光二极体(LED)以其出色的色彩饱和度和使用寿命长的特点正
渗透到一些照明应用中。然而,对热设计师来说,防止LED过热是最具挑战性的
任务。因此,通过计算流体动力(CFD)模拟LED组件在应用设计过程中变得越来
8.固态照明热设计中的工艺现状分析 固态照明热设计中的工艺现状分析
9.关于高功率LED封装的高效散热技术 白炽灯主要依靠热量使灯丝发光,使发热黑体产生光能。与白炽灯不同,发 光二极管(LED)是半导体,必须保持冷却。当 LED 产生光能时,热量就是
其副产物。LED 中产生的热量会使温度增加。由于 LED 的温度增加,光输出
相应减小,光会改变颜色,LED 的寿命也会降低。温度对 LED 的照明性能和 使用寿命都有不利影响。所以,热性能管理成为固态照明(SSL)设计中最需
要解决的问题。
10.仿真帮助Philips解决环境光源电视技术的散热挑战 根据一些工程实例和分析计算,总结了影响电子设备热设计的各种不确定性 因数,并提供了大量参考数据,希望能为工程师全面准确地进行热设计工作 提供帮助。
11.电子设备热设计中的不确定性
任何一种形式的电气照明产品都产生一种负产品:热。从白炽光源到荧光照 明,代代工程师都在研发将热量最小化或将从光源或设备分离热量的方法。 然而 LED 照明,目前正以不断提高的质量和不断增加的形式,带来了新的和
不同的挑战。
12.电子设备热设计规范 按照 JESD51-14 和 CIE127-2007 的规定,利用 JEDEC 标准静态试验进行瞬 态温度测量提高了发光二极管(LED)热特性测量的精确性。这些高标准也增

FloTHERM—电子器件及设备热设计CFD解决方案

FloTHERM—电子器件及设备热设计CFD解决方案
FloTHERM Ap SW——FloTHERM 基本包:包含前后处理器以及求解器(单 核) ,实现建模、网格划分、运行计算、仿真结果展现等所有基本功能。 FloTHERM Parallel Ap SW——并行计算模块: 包含了前处理、 求解器 (多核) 和后处理功能。核数不受限,目前支持单机并行。
1.电子器件/设备热设计需求分析
在电子封装技术水平不断提高的当今, 电子产品的外形尺寸也朝着轻便小巧的 方向发展,从而使得单位热流密度值迅速增大。电子产品输出的是电信号,输入功 率的很大一部分都成为了热功耗。这部分热功耗会造成元器件结点温度的急剧升 高, 而电子产品的温度对其能否安全可靠地运行影响非常之大。 当元器件在很高的 温度下工作时,其失效率按指数关系增长。不仅如此,电子产品的行业特性决定了 其产品更迭迅速,在合理地对产品进行热设计,使其安全可靠运行的同时,如何加 快产品的研发周期也成了重中之重。 随着 CFD 技术的发展, 热设计的方法也由之前的手工计算方案转为 CFD 方案。 CFD 解决方案不仅解决了手工计算方案无法考虑 3D 计算、 计算结果不精确及无法 对系统散热性能改善提供帮助等问题,更加快了电子产品的设计周期。 作为产品设计的一部分,CFD 仿真一直以来被认为不易操作、应用不灵活和 计算费时等,直接导致绝大部分工程师没有使用 CFD 软件的技能和知识。这是因 为以前及现在很多 CFD 软件都需要用户具有深厚的计算流体动力学方面的专业 知识,从而有把握获得精确的仿真结果。例如,用户需要知道如何将他们的 CAD 模型转换到 CFD 软件中,如何对模型进行布尔操作,从而对流动区域进行实体建 模、创建网格、确定边界条件、选择正确的物理模型,调整求解设置确保迭代收敛 等其他工作。此外大部分 CFD 软件都需要用户进行大量的调整,诸如手动修改网 格以提高网格质量,调整松弛因子等求解控制选项以获得结果收敛等。 但最近几年新一代 CFD 软件的出现, 克服了这些缺点。 这种软件使用 3D CAD 模型, 自动探测流动区域和划分网格, 使不具有深厚计算流体动力学知识的工程师 也能轻松使用。新一代 CFD 软件包含了成熟的自动控制功能,不必进行手动调整 就可以确保结果收敛。 同时软件采用先进的网格划分技术, 使得计算时间大为缩短。 使工程师可以将更多的时间和精力投入到优化产品的性能当中。

FLOTHERM10.1软件使用高级详细培训教程

FLOTHERM10.1软件使用高级详细培训教程

.
网格划分
• 划分准则:
网格长宽比值越接近越好 1 最理想的状态
< 20 良好 >200 可能造成不收敛
尽量避免大尺寸网格到小尺寸网格的直 接过度
.
网格划分
• 网格长宽比例问题:
– 网格平滑工具(系统网格)
– 增加网格线减小长宽比
.
网格划分
– 网格平滑工具(系统网格)
– 增加网格线减少网格过度问题的产生
.
FLOTHERM项目的导入\导出
PDML文件: 只包括模型文件,不包括计算结果
Physical Design Model Language
Assembly PDML
只包括模型的 某部件模型
Pack文件: 包括计算结果的模型文件 Flotherm10.1全套视频教程加Q:76615399
可以导入\导出的项目(Project)文件
.
IDF导入
可导入的文件包括IDF2.0及IDF3.0 IDF文件包括 Board 文件(.brd or .emn) Library文件(.lib or .emp)
.
IDF导入
在导入过程当中,可以进行替换和筛选 如果采用Import IDF link Library 进行IDF文件的导入,可以采用库 中芯片模型进行自动替换
.
FLOTHERM使用高级培训
.
Agenda
2006.10.25 FLOTHERM的文件管理(20min) 网格划分技术(40min) FLOMOTION的使用(30min) 收敛问题及其解决(20min) FLO/MCAD的导入(30min) 优化模块的使用(30min)
2006.10.26 瞬态分析定义(30min) 芯片建模方法(90min) 批处理文件的编辑(10min) Compact Model的建立(30min) 其它使用技巧(40min) Flotherm10.1全套视频教程加Q:76615399

FLOTHERM[1].6.1版本中文教程3

FLOTHERM[1].6.1版本中文教程3

FLOTHERM/China/01/06 V6 Issue 1.0
Page 4
FLOTHERM V6 Introductory Training Course 练习 3:进一步详细定义电子设备中的热量 右键点击 PCB 进入‘Construction’。 输入以下信息: Length(长) = 190 mm; Width(宽) = 210 mm; 长 宽 Thickness(厚) = 1.6 mm. 厚 备注: 要激活 PCB 的厚度信息,需要将‘Modeling Level’(建模级别 建模级别)项设置在‘Conducting’(传导 传导)。 建模级别 传导 将‘% Conductor by Volume’(导体所占体积比 导体所占体积比)设为 导体所占体积比 10 %。在‘Dielectric Material’(绝缘体材料 绝缘体材料)项中点击 绝缘体材料 ‘Material’(材料 材料)选择‘FR4’。在‘Conductor 材料 Material’(导体材料 导体材料)项中选择‘Copper (Pure)’(纯铜 纯铜)。 导体材料 纯铜 点击‘Apply’ 应用 应用。 点击标签‘Summary’(摘要 摘要)检查平面热传导率 平面热传导率”In Plane 摘要 平面热传导率 Conductivity”和板厚度方向热传导率”Normal Conductivity”(法向热传导率 法向热传导率)两项的值。 法向热传导率 点击‘OK’(确定 确定)关闭 PCB 对话窗口。 确定 由于 PCB 板已建好,现在可加入元件。 在项目管理窗口 项目管理窗口(PM)中选中“PCB 1”,然后到调色板 调色板中 项目管理窗口 调色板 点击‘Component’(元件 元件)图标 。选中‘Component’ (元 元件 元 件)右键进入‘Construction’ 菜单。 输入功耗值 15 W。将元件的尺寸设置为与 PCB 板相同 (length = 190 mm; width = 210 mm),但将元件的高设 为 5 mm。 在‘Modeling Options’(建模选项 建模选项)选项中,选择‘Apply 建模选项 over Board’(均布于整个板 均布于整个板)将热量加在板的整个上部。 均布于整个板 点击‘OK’(确定 确定)应用新设置并退出此窗口。 确定

Flotherm V8.1 练习题 6 添加散热器

Flotherm V8.1 练习题 6 添加散热器
将该网格约束Attach(应用)于改区域的‘Override All’。
在项目管理窗口(PM)中选择“Detail Component”组件并点击‘Toggle Localize Grid’(局部网格)图标 ,使“Detail Component”组件内所有元件的周围都布满网格线。
您还可以通过选中物体或组件后按键盘热键"l"的方法来激活或取消局部网格。
内部3齿,齿高22 mm,齿宽1.25 mm。
齿间的网格单元数=3。
请确保您刚刚创建的散热器在“Detail Component”组件中。
在+Y视图中查看散热器,保证散热器的齿沿Z轴正方向排列。如果不是这样就要通过点击绘图板中的旋转图标 对散热器进行旋转,以使其置于正确的方向。
查看绘图板(DB)中的不同视图(+X或+Z),检查散热器是否正确放置在7W的元件上部。如果没有,将其拖动到正确位置。
将‘System Grid’(系统网格)设置为‘Coarse’(粗糙)。
保存此项目。在项目管理窗口(PM)菜单中选择[Solve/Re-initialize ](求解/重新初始化),然后点击图标 开始求解。
一旦明显发现模型不能收敛,请点击图标 停止求解。这样,您可以尽早停止求解以免浪费时间。
此模型有错误,因而需要执行以下纠错步骤:
在多数强制对流系统中,主要的热量是通过对流来传递,所以辐射的影响可以忽略,不需要求解。
右键点击“Chassis”进入‘Construction’菜单。将‘Modeling Level’(建模级别)项由‘Thick’(厚)改为‘Thin’(薄)。
由于不计算辐射,我们不再需要机箱壁的固体温度,所以可将它建模为‘Thin’ (薄)。另一个可这样建模的原因是通过机箱壁传导的热量很少。这样建模还有一个优势,即可减少网格数量。

FLOTHERM热设计软件指南

FLOTHERM热设计软件指南
欲了解关于以上产品的详情,请访问
Mentor Graphics Mechanical Analysis Division (原 FLOMERICS 公司) 于 1989 年开发全球第一个开发专门针对电子散热领域 的 CFD(Computational Fluid Dynamics,计算流体力学)仿真软件-FloTHERM 软件。公司的研发人员是全球第一批研究 CFD 理论的科研人员,也是最早一批将传统的 CFD 分析手段加以改变,使之达到真正意义上的工程化的先驱者。
每年 FloTHERM 用户均有机会参加坤道公司举办的各类研讨会和讲座并相互交流,非常利于设计人员水平的提高。由于有全球 主流厂商的支持,用户也可以很容易地从各供应商或 Mentor Graphics 公司用户支持区 SupportNet 获取从 IC、散热片到风扇、 电源等部件的模型用于产品整体分析,这些优势是其他同类软件产品无法相比的。
薄板模型
热阻-热容网络模型 4) 高级 Zoom-in 功能: 高级 Zoom-in 功能可将上级模型计算结果作为下级模型计算的边界条件,使得模型计算结果层层传递,从系统级到子系统级, 简化计算过程,减轻工作量,从而大大缩减模型分析时间。
专业稳定的求解器与网格技术
z 求解器:采用专门针对电子散热的有限体积法求解器,与传统的 CFD 求解器不同,FloTHERM 求解器不但应用了数值方 法的解算,同时结合了大量专门针对电子散热而开发的实验数据和经验公式。这些实验数据和经验公式多数为 Mentor Graphics Mechanical Analysis Division 独家拥有,是 Mentor Graphics Mechanical Analysis Division 专注于电子设备热设计行业二十年 中最为宝贵的财富之一;

最全的热设计基础知识及flotherm热仿真

最全的热设计基础知识及flotherm热仿真

热传导
接触热阻
导热介质
导热介质-导热脂
常由复合型导热固体填料、高温合成油(基础油如 硅油),并加有稳 定剂和改性添加剂调配而成的均 匀膏状物质,常用的导热脂为白色,也 有灰色或金 色的导热脂等颜色。导热颗粒通常采用氧化锌、氧 化铝、氮化硼、 氧化银、银粉、铜粉等。
特点:
1)为最常见的界面导热材料,常采用印刷或点涂方式进行施加。 2)用于散热器和器件之间,散热器采用机械固持,最主要的优点为维修方便, 价格便宜。 3)因可以很好的润湿散热器和器件表面,减小接触热阻,所以其导热热阻很 小, 适合大功率器件的散热。 4)使用时需要印刷或点涂,操作费时,工艺控制要求较高,难度大。
Nu

L

对流换热 导热
是流体力学中的一个无量纲数,是表示对流换热强烈程度的一个准数, 又表示流体层流底层的导热阻力与对流传热阻力的比
雷诺数:
Re

uL


惯性力 粘性力
雷诺数是流体力学中表征粘性影响的相似准则数。
普朗特数:
Pr

cp

动量扩散 热量扩散
典型雷诺数: 普通航空飞机:5 000 000 小型无人机:400 000 海鸥:100 000 滑翔蝴蝶:7000 圆形光滑管道:2320 大脑中的血液流 :100 主动脉中的血流 1000
导热介质-导热垫
我公司现有的导热硅胶垫:
供应商
奥川科技 奥川科技 奥川科技 润和科技
型号
SPE2-40-BK SPE2-25-BK SPE2-10-BK K1000
我司编码
1040100029 1040100030 1040100031 1081201032
导热系数 尺寸 (W/mk)

Flotherm V7.1中文教程8

Flotherm V7.1中文教程8
需要将后缀名为*.pdml的详细封装模型的文件导入到FLOTHERM中。
进入PM,找到并选中“Detail Component”组,它在“Electronics”组里面。右键进入‘Assembly Menu’菜单选择‘Import/ PDML’(导入/PDML)。
使用浏览找到名为“cbga_AAA”的详细模型的pdml文件并打开它。这时会显示如下对话框:
启动Visual Editor,在同Tutorial 8一样Z向位置为7.4处创建温度剖面图。
为比较结果,使得Legend Editor中温度设定与Tutorial 8一样。
显示完温度剖面后,使用 探测“PCB 1”上的“Comp1”和散热器基座的温度。
打开绘图板(DB),使用键盘热键“g”去掉网格。选中‘View 3’(视图3)并将其扩展为全屏。
按‘F6’,放大绕“cbga_AAA”组件的区域,在PM中选中该组件,请确保其最小没有被展开。
点击图标 将“cbga_AAA”旋转90°,使“cbga_AAA”的局部坐标的z轴与全局坐标的‘+y’方向一致。
点击打开链接‘New Library’(新库)。
在’Class of the Library’(库类型)框内,将设置从‘choose Class type’(选择类型)改为’Ball Grid Arrays (BGA)’(球栅阵列)
在’Type of the Package’(封装类型)框内,选择’Flip Chip CBGA’(倒装芯片陶瓷球栅阵列)封装。
创建Z向平面,剖开详细模型的中心:
-点击 ,选择‘Z’面;
-该单位‘in’,在‘Location’位置输入“7.40”;
-点击背景区域,取消任何选择,点击 ,设置为线框显示;

Flotherm中的接触热阻的设置与验证

Flotherm中的接触热阻的设置与验证

Flotherm中的接触热阻的设置与验证相信大家在使用Flotherm时都会碰到如何设置固体与固体之间的接触热阻的问题,软件对此也给出了非常方便的设置。

下面给出了设置的过程与验证结果。

首先以软件自带的Tutorial 1作为研究对象,然后分别对模型中的Large Plate 和Heated Block取Monitor(位于对象的中心)。

测量Heated Block的尺寸,Length=40mm,后面将会用到该参数。

对模型不做任何更改,直接进行计算。

下图是模型的表面温度云图,从Table 里可以知道Monitor的最终温度值。

THeated-Block=78.8552, TLarge-Plate=77.9205接下来,开始设置接触热阻。

对Heated Block进行Surface操作,在Surface Finish对话框中新建一个Surface属性22,然后在Surface Attribute里的Rsur-solid 中进行设置。

这里,希望在Heated Block和Large Plate之间的添加一个1°C/W的接触热阻,而Rsur-solid的单位是Km^2/W,其实就是(K/W)×(m^2),即所需热阻值与接触面的面积。

前面知道,Heated Block是一个边长为40mm的正方形,面积即为0.0016m^2,所以,这里需要输入的值就是:1°C/W×0.0016m^2=0.0016Km^2/W。

Heated Block与Large Plate的接触面出现在Heated Block的Xo-Low面上,就需要在Surface Finish对话框中的Attachment的下拉菜单中选择Xo-Low。

设置完成后,不再对模型做任何操作,直接进行计算。

下图是模型的表面温度云图,从Table里可以知道Monitor的最终温度值。

THeated-Block=85.7831, TLarge-Plate=77.4179将仿真结果制作成下表(Heated Block的功耗为8W):首先,这里需要澄清一些事实:热到底是如何被带走的,接触热阻到底会对什么产生影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档