初中几何辅助线的添加技巧

合集下载

初中数学三角形中14种辅助线添加方法

初中数学三角形中14种辅助线添加方法

初中数学三角形中14种辅助线添加方法在三角形中,常用的辅助线有中线、高线、中垂线、角平分线等。

下面是三角形中14种辅助线添加方法:1. 三角形中线的添加方法:在三角形的每个顶点上作一条连接对边中点的线段,则这些线段交于一点,且该点到三角形各顶点的距离相等,即为三角形的重心。

2. 三角形中垂线的添加方法:从三角形的顶点向所对边作垂线,垂足分别为A、B、C,则三个垂足所在直线相交于一点,为三角形的垂心。

3. 三角形高线的添加方法:从三角形的顶点向所对边作垂线,垂线所在直线与所对边的交点称为底部端点,连接三个底部端点,则构成一个矩形,其中两个对角线分别为三角形的两个高。

4. 角平分线的添加方法:从角的顶点向其对边作角平分线,将角平分为两个相等的角,且角平分线上的任意一点到两侧边的距离相等。

5. 外接圆的添加方法:三角形三边的中垂线交于一点,则以该点为圆心,三角形三个顶点分别为圆上的三个点的圆称为三角形的外接圆。

6. 内切圆的添加方法:三角形三条边所在直线的交点为内心,以内心为圆心,作内切圆,该圆与三角形的三边相切。

7. 垂直平分线的添加方法:从线段的中点向垂直于该线段的方向作一条线段,则该线段垂直于原线段且平分其长度。

8. 外角平分线的添加方法:从三角形的一顶点作一条射线,使其不在所在直线内,将相邻两个角的外部划分成两个大小相等的角,则这条射线为该顶点所对的角的外角平分线。

9. 旁切圆的添加方法:以三角形的某一边为半径,在其外侧作一条与该边平行的直线,使其与另外两边所在直线相交,其交点则为旁切圆心。

10. 中位线的添加方法:连接三角形任意两个顶点,则连接这两个顶点的中点的线段称为三角形的中位线,三角形三条中位线交于一点,即为三角形重心。

11. 等腰三角形的中线、高线和垂心重合。

12. 等边三角形的中线、高线、垂心和外心重合。

13. 直角三角形的垂心落在斜边上,且斜边上的高线与斜边垂直。

14. 任意三角形的外心到三个顶点的距离相等。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。

以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。

例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。

2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。

例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。

3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。

例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。

4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。

例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。

总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。

需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。

初中几何添辅助线方法

初中几何添辅助线方法

初中几何添辅助线方法初中几何学中,添辅助线是解题的常用方法之一。

通过巧妙地引入辅助线,可以简化问题,帮助我们更好地理解和解决几何问题。

本文将介绍几种常见的初中几何添辅助线方法。

一、三角形的辅助线方法1. 垂心和垂足当我们遇到一个三角形,需要证明某条线段平行于另一条线段时,可以考虑引入垂心和垂足。

通过引入垂心和垂足,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 中位线中位线是连接三角形两个顶点和中点的线段。

在解决三角形问题时,可以考虑引入中位线。

中位线将三角形分成两个全等的三角形,从而简化问题。

3. 角平分线角平分线将一个角分成两个相等的角。

在解决三角形问题时,可以考虑引入角平分线。

通过引入角平分线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

二、四边形的辅助线方法1. 对角线对角线是四边形两个非相邻顶点之间的线段。

在解决四边形问题时,可以考虑引入对角线。

通过引入对角线,我们可以将四边形分成两个全等的三角形,从而简化问题。

2. 中线中线是连接四边形两个相邻顶点中点的线段。

在解决四边形问题时,可以考虑引入中线。

中线将四边形分成两个全等的三角形,从而简化问题。

三、圆的辅助线方法1. 半径和切线在解决圆的问题时,可以考虑引入半径和切线。

通过引入半径和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 弦和切线在解决圆的问题时,可以考虑引入弦和切线。

通过引入弦和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

四、其他几何图形的辅助线方法1. 高和底边在解决梯形或三角形问题时,可以考虑引入高和底边。

通过引入高和底边,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 中线在解决平行四边形问题时,可以考虑引入中线。

中线将平行四边形分成两个全等的三角形,从而简化问题。

初中几何学中的添辅助线方法是解题的重要手段之一。

通过巧妙地引入辅助线,我们可以简化问题,帮助我们更好地理解和解决几何问题。

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线*(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法平面几何是数学中的一个重要分支,通过在平面上描述和研究几何图形之间的关系和性质。

在解决平面几何问题中,添加辅助线是一种常见且有效的方法,可以帮助我们更好地理解和分析问题。

下面是初中平面几何常见的添加辅助线的方法:1.使用垂直辅助线:垂直辅助线是指与已知线段垂直的辅助线,可以用来分割和构造几何图形。

比如,在矩形中,可以通过连接矩形的对角线来构造一条垂直辅助线,从而将矩形分割为两个等腰直角三角形。

2.使用平行辅助线:平行辅助线是指与已知线段平行的辅助线,可以用来帮助构造平行线段和证明平行性质。

例如,在平行四边形中,可以通过连接相邻顶点和平行线段的端点来构造平行辅助线,从而证明平行四边形的对边相等。

3.使用角平分线:角平分线是指将一个角平分为两个等角的辅助线。

在解决涉及角的等分、相等或相似性质问题时,添加角平分线是非常有用的方法。

例如,在等腰三角形中,可以通过连结底边中点和顶角顶点的直线来构造角平分线,从而证明等腰三角形的顶角相等。

4.使用中线:中线是指连接一个几何图形的两边中点的辅助线。

在解决涉及几何图形的中点、平行四边形和三角形性质问题时,添加中线是一种常见的方法。

例如,在四边形中,可以通过连接相对边的中点来构造中线,从而证明中线互相平分。

5.使用高线:高线是指从多边形的一个顶点向对边所引的垂线。

在解决多边形的高、重心、垂心和外心问题时,添加高线是非常有用的方法。

例如,在三角形中,可以通过从一个顶点向对边引垂线来构造高线,从而证明高线汇聚于三角形的垂心。

6.使用辅助图形:有时,我们可以通过在平面上添加一些辅助图形来辅助解决几何问题。

例如,在求解平行四边形的面积时,可以通过添加一个垂直边和一个三角形来将平行四边形划分为两个高度相等的矩形,从而方便计算面积。

在实际应用中,我们可以根据具体问题的要求来灵活地选择合适的辅助线方法。

添加辅助线不仅可以帮助我们更好地理解和分析问题,还可以提高解题效率和准确性。

初二几何辅助线添加方法

初二几何辅助线添加方法

初二几何辅助线添加方法几何辅助线是在解决几何问题时,通过添加额外的线段或线条来帮助我们更好地理解和解决问题。

在初二阶段的几何学中,辅助线的使用是非常重要的,可以帮助我们找到问题的关键点,简化问题的分析和解决过程。

下面将介绍几个常见的初二几何辅助线添加方法。

第一种方法是绘制垂直辅助线。

在解决一些关于垂直关系的问题时,我们可以通过添加垂直辅助线来辅助解题。

例如,在求两条平行直线之间的距离时,我们可以通过在两条直线上分别取一点,然后通过添加垂直辅助线来构建一个直角三角形,从而求出距离。

第二种方法是绘制平行辅助线。

在求两条直线平行或相交关系时,我们可以通过添加平行辅助线来辅助解题。

例如,在求两条平行线之间的距离时,我们可以通过添加一条与两条平行线相交的直线,然后构建一个平行四边形,从而求出距离。

第三种方法是绘制角平分线。

在解决涉及到角度的问题时,我们可以通过添加角平分线来辅助解题。

例如,在求一个角的角平分线时,我们可以通过画出这个角的两条边的延长线,然后通过它们的交点来构建角平分线。

第四种方法是绘制对称线。

在求对称形状或对称位置的问题时,我们可以通过添加对称线来辅助解题。

例如,在求一个图形的对称轴时,我们可以通过添加对称线来找到对称轴的位置。

除了上述介绍的四种常见的几何辅助线添加方法外,还有许多其他的方法。

例如,绘制中垂线来求三角形的垂心和外心,绘制角的角平分线来求多边形的内角和,等等。

每个问题都有其特定的解题方法和特定的辅助线添加方法。

总结起来,初二几何辅助线的添加方法是非常多样的。

通过合理地添加辅助线,可以帮助我们更好地理解和解决几何问题。

在解题过程中,我们应该根据问题的特点和要求,选择合适的辅助线添加方法。

同时,多进行几何练习,多掌握不同的辅助线添加方法,可以提高我们的解题能力和思维灵活性。

初中数学常见辅助线的添加方法

初中数学常见辅助线的添加方法

初中数学常见辅助线的添加方法在初中数学中,辅助线常被用来帮助解题,简化计算过程,提高解题思路的清晰度。

下面是一些常见的辅助线添加方法:1.均分法:在一条线段上取任意几点,通过连接这些点,将线段分成相等的几段。

这种方法常用于等分线段、等分角和相似三角形的证明。

2.垂线法:通过在其中一点上引垂线,将原问题转化为几个几何图形的关系,从而求解。

常见的应用包括求两直线的夹角、判断直线的平行性和垂直性等。

3.平行线法:通过在题目已给直线上引一条与之平行的线,通过相应角的等量关系,直接求得所求的角度。

这种方法常用于证明两线平行、比较两条直线角度大小等问题。

4.相似三角形法:通过在三角形中添加一条平行于边的辅助线,从而构成一形似的三角形,以解决问题。

这种方法常用于求解三角形的边长、角度和面积。

5.三角形中位线法:在三角形的一边上取一点作为中点,连接该点与另外两个顶点,得到两条中位线。

这种方法常用于证明三角形的重心等于重心的证明。

6.等腰三角形法:通过在题目中已给的等腰三角形上引一条高,来处理问题。

这种方法常用于相似三角形的证明和等腰三角形的性质证明。

7.矩形法:通过在题目中给出的矩形中添加一条线段,构成一个直角三角形或相似三角形,以解决问题。

这种方法常用于矩形的中点连接问题和直角三角形的性质证明。

8.圆的性质法:通过在题目中给出的圆中添加一条直线,以引出线段和角的关系,解决问题。

这种方法常用于圆与直线的相交性质证明和切线与弦的关系。

9.对称法:通过在题目中给出的图形中添加一条对称轴,找出对称关系,简化计算过程。

这种方法常用于图形的旋转、拆分和等比例放大缩小等。

10.长方形法:通过在题目中给出的长方形中添加一条线段,构成一个直角三角形或相似三角形,通过相似三角形性质求解问题。

这种方法常用于长方形的对角线、中点和三角形的关系证明。

这些辅助线添加方法可以帮助学生把复杂问题简化为易于解决的小问题,提高解题的效率和准确性。

初中数学辅助线的添加方法

初中数学辅助线的添加方法

初中数学辅助线的添加方法添加辅助线是数学解题中的一个重要方法,它有助于我们更好地理解问题,分析问题,解决问题。

辅助线可以将复杂的问题化简为简单的几何关系,从而使题目的解决过程更加清晰明了。

下面,我将详细介绍初中数学中常见的几种辅助线的添加方法。

一、加分割线1.正方形的割线:在正方形的任一对相对边上,添加一条相等的线段。

通过这条线段,我们可以将正方形分割为两个直角三角形,从而可以更好地利用直角三角形的性质解题。

2.长方形的割线:在长方形的相邻两个顶点上,添加一条线段。

通过这条线段,我们可以将长方形分割为两个等腰三角形,从而可以更好地利用等腰三角形的性质解题。

3.平行四边形的割线:在平行四边形的相邻两个顶点上,添加一条线段。

通过这条线段,我们可以将平行四边形分割为两个三角形,从而可以更好地运用几何关系解题。

二、连接中点在图形的两条边上,通过它们的中点,用直线将这两条边连接起来。

通过连接中点,我们可以更好地利用平行线的性质解题,同时也有助于我们观察和发现其他几何关系。

三、作垂线1.作垂线求中点:在一个线段的两个端点上作垂线,再将垂线的交点与线段的两个端点相连,连接后的线段即为线段的中点。

通过作垂线求中点,我们可以更好地利用垂直线段的性质解题,同时也有助于我们观察和发现其他几何关系。

2.作垂线求直角:在一个直线上作垂线,使直线与垂线互相垂直。

通过作垂线求直角,我们可以更好地利用垂直线的性质解题。

四、加角辅助线1.加角度平分线:在一个角的两边上,分别取两个点,再将这两个点与角的顶点相连,并使相连线段的夹角相等。

通过加角度平分线,我们可以更好地利用角度平分线的性质解题,同时也有助于我们观察和发现其他几何关系。

2.加圆心角辅助线:在圆的弧上选取两个点,再将这两个点与圆心相连,并使相连线段的夹角相等。

通过加圆心角辅助线,我们可以更好地利用圆心角的性质解题。

五、作垂直平分线在一个线段上作一条垂直平分线,将线段平分为两个相等的部分。

初中数学辅助线添加技巧

初中数学辅助线添加技巧

初中数学辅助线添加技巧
中考数学辅助线的添加原理与技巧
几何问题是困扰学生的一大难题,尤其是需要添加辅助线的几何问题.科学、准确地引导学生添加每一条辅助线,能帮助学生揭开辅助线的神秘面纱,攻克几何难题.
1.把握基本图形是科学添加辅助线的前提
(1)把握基本图形的特征.
初中几何问题是由有限的几种基本图形演绎而来.学生只有熟悉了基本图形组成的线条及其条件和结论的特征,把握了基本图形的总体轮廓,就能在解决几何问题时联想到科学合理的辅助线.一个定理、概念就有一个基本图形.在概念和定理的教学中教师不必过于追究文字的描述,而应突出其基本图形的特征,把定理的条件和结论直观地表述在图形中,使之成为一个整体,成为基本图形的符号标志,通过观察图形,培养学生的视觉美感.教师还可以给基本图形取一个直观的名字,便于学生记忆,如双垂图(如图1)、角平分线图(如图2)、垂直平分线图(如图3)等等,也有利于学生把握基本图形的特征.。

中考数学点对点-几何问题辅助线添加技巧(原卷版)

中考数学点对点-几何问题辅助线添加技巧(原卷版)

专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。

学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。

所以希望大家学深学透添加辅助线的技巧和方法。

一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3.梯形问题梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

初中数学各类几何题辅助线添加技巧

初中数学各类几何题辅助线添加技巧

初中数学各类几何题辅助线添加技巧►三角形中常见辅助线的添加1.与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2.与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3.与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60°►四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1.和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2.与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3.和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4.与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线5.与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形(2)作梯形的高,构造矩形和直角三角形(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形(5)作两腰的平行线等►圆中常见辅助线的添加1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

【初中数学22】平面几何添加辅助线方法大全,家长一定要收藏!

【初中数学22】平面几何添加辅助线方法大全,家长一定要收藏!

【初中数学22】平面几何添加辅助线方法大全,家长一定要收藏!添加辅助线的两种情况1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形:出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!

初中数学几何巧画辅助线的技巧,附例题演示,建议收藏!'河北中考' 必胜!在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,可能就是解题绕弯又出错!如何快速添加利于解题的辅助线?诀窍都在下面了!几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

例题演示一由角平分线想到的辅助线1、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自己证明。

此题的证明也可以延长BE与CD的延长线交于一点来证明。

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

初中平面几何如何添加辅助线

初中平面几何如何添加辅助线

初中平面几何如何添加辅助线平面几何作为数学的一个重要分支,研究平面上的几何图形和它们之间的关系。

在解决平面几何问题时,添加辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。

接下来,我将详细介绍平面几何中添加辅助线的方法和技巧。

一、为了更好地理解问题和图形,我们可以根据题目的条件和要求,主动添加辅助线。

具体的添加方法有以下几种:1.平分辅助线:平分辅助线是一条将一些角度或线段平分为两等分的线。

我们可以将图形的一些角度平分,以便于进行计算或找出更多的几何性质。

平分辅助线对于证明问题的唯一性或求证一些等式非常有效。

2.垂直辅助线:垂直辅助线是指与目标线段或角度相交且垂直于之前的线段或角度的线。

它能够将原有的图形分割成更容易处理的几何图形,从而解决问题。

垂直辅助线常常用于求证两条线段垂直、平行四边形性质、直角三角形性质等问题。

3.平行辅助线:平行辅助线是指通过一个点与条线段平行的线。

通过添加平行辅助线,我们可以将原有的图形拆分为多个平行四边形或相似三角形,从而更好地理解和利用图形的对称性质、比例性质等。

平行辅助线常用于证明线段平行和求证两角相等或互补、邻补等等。

4.中垂线:中垂线是指连接一个线段的中点和它的垂直平分线的线段。

通过添加中垂线,我们可以找到线段的垂直平分线,并利用垂直平分线的性质,如:两条垂直平分线相交于线段中点、垂直平分线的垂足在线段上等等。

中垂线常用于证明一个角平分线和对边中点的连线垂直、线段中点和三角形顶点的连线互相垂直等问题。

以上是常用的几种添加辅助线的方法,根据问题的不同,我们可以选择不同的方法来添加辅助线,以期达到更好地解题目的效果。

二、在实际操作过程中,我们要根据具体的题目和要求,灵活运用添加辅助线的方法。

以下是一些关于添加辅助线的技巧和要点:1.选择合适的线段或角度:在选择辅助线时,我们应该尽量选择图形中已知的线段或角度,以便于减少未知的数量,简化问题。

2.利用对称性质:对称性质是几何图形中常见的性质,可用于添加辅助线。

(完整版)初中数学添加辅助线的方法汇总

(完整版)初中数学添加辅助线的方法汇总

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

辅助线在初中几何解题中的应用与技巧

辅助线在初中几何解题中的应用与技巧

辅助线在初中几何解题中的应用与技巧在初中数学的几何解题中,辅助线是一种被广泛使用的技巧。

通过加入一些辅助线,可以使解题变得简单明了,减少错解的机会。

接下来介绍一些辅助线的常见应用与技巧。

一、同角三角形辅助线法同角三角形,是指角度相等的三角形。

同角三角形有一个重要的性质:对于同一角度,它们对应的边成比例。

因此,如果两个三角形是同角三角形,我们就可以通过比对他们的对应边,得到未知长度。

在解决同角三角形的问题时,我们常常需要加入辅助线。

具体方法如下:1.在待解三角形的某一边上引入一条辅助线BP,使之平分角B;2.画出平分线线段OD并与边AC相交于点D;3.联结点P、O、D,并作垂线OD,交BD于点E。

4.连接PE,则三角形PBE和ODA是同角三角形,因此可以写出比例$PB/OD=BE/AD$,进而求出未知量。

同理还可以得到其它未知量。

二、平行四边形的辅助线法平行四边形是指有两对边分别平行的四边形。

对于平行四边形,我们通常采用如下的辅助线方法:1.在任意一边上取一点C,并联接BC、AC;2.延长边BA,使得CB延长线与AD交于点O;3.连接OC,使之交BD于点E。

这样,通过引入辅助烈弯BQ、DE等线段,我们可以使解题变得更加简单明了。

对于三角形,角平分线是指从某一角的顶点出发,将该角平分成两个相等的角,直到相交于三角形对边的一条线段。

角平分线有着许多重要的性质,常常可以利用这些性质来解决问题。

当我们需要利用角平分线来解决问题时,我们可以采用如下方法:1.在角的顶点处引入角平分线,分别交另外两边于F、E;这样,我们就可以利用角平分线的重要性质,来得到很多未知量。

同时,在引入辅助线时,我们要注意一些常见的技巧,例如:使用平行线、使用垂线、使用锐角、使用直角等等。

除了以上列举的技巧外,辅助线法还包括了诸如相似三角形辅助线法、圆的辅助线法等等。

当然,不同的题目需要采用不同的辅助线方法,需要根据实际情况来判断。

总而言之,辅助线是解决初中几何题目的重要技巧之一。

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法1添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法在初中几何中,辅助线是解题时常常会使用的一种方法。

辅助线能够帮助我们理清思路,找到问题的关键,从而更容易解决问题。

在这里,我将介绍15种常见的添加辅助线的方法。

1.平行线辅助法:在平行的直线上添加一条辅助线,以便能够利用平行线的性质解题。

2.垂直线辅助法:在垂直的直线上添加一条辅助线,以便能够利用垂直线的性质解题。

3.切线辅助法:在圆和直线的切点处添加一条切线作为辅助线,以便能够利用切线的性质解题。

4.相等辅助法:在等长的线段上添加相等辅助线,以便能够利用线段相等的性质解题。

5.相似辅助法:在相似的图形中添加相似辅助线,以便能够利用相似图形的性质解题。

6.对称辅助法:在对称的图形中添加对称辅助线,以便能够利用对称图形的性质解题。

7.中垂线辅助法:在三角形的顶点处添加中垂线作为辅助线,以便能够利用中垂线的性质解题。

8.重心辅助法:在三角形的顶点处添加重心作为辅助线,以便能够利用重心的性质解题。

9.垂心辅助法:在三角形的顶点处添加垂心作为辅助线,以便能够利用垂心的性质解题。

10.外心辅助法:在三角形的顶点处添加外心作为辅助线,以便能够利用外心的性质解题。

11.内心辅助法:在三角形的顶点处添加内心作为辅助线,以便能够利用内心的性质解题。

12.中位线辅助法:在三角形的边上添加中位线作为辅助线,以便能够利用中位线的性质解题。

13.角平分线辅助法:在角的两边上添加角平分线作为辅助线,以便能够利用角平分线的性质解题。

14.高线辅助法:在三角形的一个顶点上添加高线作为辅助线,以便能够利用高线的性质解题。

15.弦辅助法:在圆上添加弦作为辅助线,以便能够利用弦的性质解题。

这些辅助线添加的方法,有助于我们在初中几何中更好地理解和解决问题。

当我们遇到几何问题时,可以灵活运用这些辅助线的方法,寻找问题的关键点,从而更轻松地解题。

通过多练习和实践,我们可以在初中几何中熟练地运用这些方法,从而提高解题的效率和准确性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:初中几何辅助线的添加技巧,掌握好几何题不再愁!教育梦想2017-09-14 18:07
几何问题不仅仅是初中数学的重点,到了高中也是占了相当大的比重,内容是循序渐进的,所以同学们在初中就要把几何基础给打好。

在几何问题中,添加辅助线可以说是解题的关键点!辅助线对同学们来说应该都不陌生,解几何题的时候经常用到。

当题目给出的条件不足以解出这道题,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。

一条巧妙的辅助线常常使一道难题迎刃而解。

所以同学们自己要学会巧妙的添加辅助线。

辅助线画得好,解题轻松!辅助线画的不对,解题绕弯还容易出错!如何快速、添加利于解题的辅助线??诀窍都在下面了!。

相关文档
最新文档