物理 电磁感应中的能量问题 基础篇

合集下载

电磁感应现象中的能量问题

电磁感应现象中的能量问题
电磁感应的综合应用
澧县一中
朱锋
三、电磁感应中的能量问题:
(1)思路:从能量转化和守恒着手,运用动 能定理或能量守恒定律。 ①基本思路:受力分析→弄清哪些力做功, 正功还是负功→安培 明确有哪些形式的能量参与 电 转化,哪些增哪些减 → 由动能定理或能量守 力做 流 恒定律列方程求解. 负功 做 ②能量转化特点: 功 内能(焦耳热) 其它能(如: 电能 机械能) 其他形式能
例2: 如图示:质量为m 、边长为a 的正方形金属线框自某一高 度由静止下落,依次经过B1和B2两匀强磁场区域,已知B1 =2B2, 且B2磁场的高度为a,线框在进入B1的过程中做匀速运动,速度大 小为v1 ,在B1中加速一段时间后又匀速进入和穿出B2,进入和穿 出B2时的速度恒为v2,求: ⑴ v1和v2之比 a ⑵在整个下落过程中产生的焦耳热
澧县一中 朱锋
(2)线框由静止开始运动,到cd边刚离开磁场的 过程中,根据能量守恒定律,得: 解之,得线框穿过磁场的过程中,产生的焦耳热 3 2 2 为: mg R Q mg (h 3L) 2 B 4 L4
1 2 mg (h 3L) mv Q 2
电磁感应现象的实质是不同形式的能量转化的过 程,理清能量转化过程,用“能量”观点研究问题, 往往比较简单,同时,导体棒加速时,电流是变 化的,不能直接用Q=I2Rt求解(时间也无法确 定),因而能用能量守恒的知识解决。 澧县一中 朱锋
澧县一中
朱锋
例 4、 例 1、如图所示,两足够长平行光滑的金属导轨 MN、PQ 相距为 L,
导轨平面与水平面夹角α=30°,导轨上端跨接一定值电阻 R,导 轨电阻不计.整个装置处于方向竖直向上的匀强磁场中,长为 L 的 金属棒 cd 垂直于 MN、PQ 放置在导轨上,且与导轨保持电接触良好, 金属棒的质量为 m、电阻为 r,重力加速度为 g,现将金属棒由静止 释放,当金属棒沿导轨下滑距离为 s 时,速度达到最大值 vm.求: (1)金属棒开始运动时的加速度大小; N R (2)匀强磁场的磁感应强度大小; Q c ( 3 )金属棒沿导轨下滑距离为 s 的过 d 程中,电阻 R 上产生的电热.

专题四 电磁感应中能量问题

专题四 电磁感应中能量问题

专题四 电磁感应中的能量问题一、【知识精讲】1.电磁感应过程的能量问题实质就是其他形式的能与电能间的转化.2.安培力做功与能量转化的联系(适用于导体切割磁感线产生的电能)①安培力做负功:eg :流程图: 其他形式的能(如:机械能)――→安培力做负功电能――→电流做功其他形式的能(如:内能)②安培力做正功:eg :总结:安培力做正功,是电能转化为其他形式的能的过程,安培力做多少功,就有多少电能转化为其他形式的能.2.电磁感应能量问题的求解思路(1)利用功能关系求解:电磁感应中产生的 等于 所做的功(只针对动生电动势); (2)利用能量守恒求解:若只存在机械能与电能的转化,机械能的减少量等于产生的 ;(3)利用电路特征求解:若回路中电流恒定,可利用W =UIt 或Q =I 2Rt 直接进行计算;二、【典型例题】例1.如图所示,固定在水平绝缘平面上且足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R ,一质量为m 的金属棒(电阻不计)放在导轨上并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直.用水平恒力F 把ab 棒从静止起向右拉动的过程中,下列说法正确的是( )A .恒力F 做的功等于电路产生的电能B .恒力F 和摩擦力的合力做的功等于电路中产生的电能C .克服安培力做的功等于电路中产生的电能D .恒力F 和摩擦力的合力做的功等于电阻R 产生的焦耳热和获 得的动能之和例2. 如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距L=1m,左端接有阻值R=0.4Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.5T,棒在水平向右的外力作用下,由静止开始以a=3m/s2的加速度做匀加速运动,当棒的位移x=6m时撤去外力,棒继续运动一段距离后停下来。

已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F;(4)整个过程由电阻R所产生焦耳热Q R;例3.如图所示,两根足够长的平行导轨处在与水平方向成θ=37°角的斜面上,导轨电阻不计,间距L=0.3 m,导轨两端各接一个阻值R0=2 Ω的电阻;在斜面上加有磁感应强度B=1 T、方向垂直于导轨平面的匀强磁场.一质量为m=1 kg、电阻r=2 Ω的金属棒横跨在平行导轨间,棒与导轨间的动摩擦因数μ=0.5.金属棒以平行于导轨向上、v0=10 m/s的初速度上滑,直至上升到最高点的过程中,通过上端电阻的电荷量Δq=0.1 C,求上端电阻R0产生的焦耳热Q.(g取10 m/s2)例4:图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B,两个区域的高度都为l.一质量为m、电阻为R、边长也为l的单匝矩形导线框abcd,从磁场区上方某处竖直自由下落,ab边保持水平且线框不发生转动.当ab边刚进入区域1时,线框恰开始做匀速运动;当线框的ab边下落到区域2的中间位置时,线框恰又开始做匀速运动.求:(1)当ab边刚进入区域1时做匀速运动的速度v1;(2)当ab边刚进入磁场区域2时,线框的加速度的大小与方向;(3)线框从开始运动到ab边刚要离开磁场区域2时的下落过程中产生的热量Q.强化训练1.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于()A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量2.如图所示,先后两次将同一个矩形线圈由匀强磁场中匀速拉出,两次拉动的速度相同.第一次线圈长边与磁场边界平行,将线圈全部拉出磁场区,拉力做功W1、通过导线截面的电荷量为q1,第二次线圈短边与磁场边界平行,将线圈全部拉出磁场区域,拉力做功为W、通过导线截面的电荷量为q2,则()A.W1>W2,q1=q2B.W1=W2,q1>q2C.W1<W2,q1<q2D.W1>W2,q1>q23.如图所示,电阻为R,其他电阻均可忽略,ef是一电阻可不计的水平放置的导体棒,质量为m,棒的两端分别与ab、cd保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef从静止下滑经一段时间后闭合开关S,则S闭合后()A.导体棒ef的加速度可能大于gB.导体棒ef的加速度一定小于gC.导体棒ef最终速度随S闭合时刻的不同而不同D.导体棒ef的机械能与回路内产生的电能之和一定守恒4. 如图所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( )A .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为22B L v Rsin θ 5.两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .释放瞬间金属棒的加速度等于重力加速度gB .金属棒向下运动时,流过电阻R 的电流方向为a→bC .金属棒的速度为v 时,所受的安培力大小为F =22B L v RD .电阻R 上产生的总热量等于金属棒重力势能的减少6.如图所示,固定放置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中.一质量为m(质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离l 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。

高二物理电磁感应中的能量问题(含答案)

高二物理电磁感应中的能量问题(含答案)

电磁感应中的能量问题复习精要1. 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。

导体在达到稳定状态之前,外力移动导体所做的功,一部分消耗于克服安培力做功,转化为产生感应电流的电能或最后再转化为焦耳热,另一部分用于增加导体的动能,即当导体达到稳定状态(作匀速运动时),外力所做的功,完全消耗于克服安培力做功,并转化为感应电流的电能或最后再转化为焦耳热2.在电磁感应现象中,能量是守恒的。

楞次定律与能量守恒定律是相符合的,认真分析电磁感应过程中的能量转化,熟练地应用能量转化与守恒定律是求解叫复杂的电磁感应问题常用的简便方法。

3.安培力做正功和克服安培力做功的区别:电磁感应的过程,同时总伴随着能量的转化和守恒,当外力克服安培力做功时,就有其它形式的能转化为电能;当安培力做正功时,就有电能转化为其它形式的能。

4.在较复杂的电磁感应现象中,经常涉及求解焦耳热的问题。

尤其是变化的安培力,不能直接由Q=I 2 Rt 解,用能量守恒的方法就可以不必追究变力、变电流做功的具体细节,只需弄清能量的转化途径,注意分清有多少种形式的能在相互转化,用能量的转化与守恒定律就可求解,而用能量的转化与守恒观点,只需从全过程考虑,不涉及电流的产生过程,计算简便。

这样用守恒定律求解的方法最大特点是省去许多细节,解题简捷、方便。

1.如图所示,足够长的两光滑导轨水平放置,两条导轨相距为d ,左端MN 用阻值不计的导线相连,金属棒ab 可在导轨上滑动,导轨单位长度的电阻为r 0,金属棒ab 的电阻不计。

整个装置处于竖直向下的均匀磁场中,磁场的磁感应强度随时间均匀增加,B =kt ,其中k 为常数。

金属棒ab 在水平外力的作用下,以速度v 沿导轨向右做匀速运动,t =0时,金属棒ab 与MN 相距非常近.求:(1)当t =t o 时,水平外力的大小F .(2)同学们在求t =t o 时刻闭合回路消耗的功率时,有两种不同的求法: 方法一:t =t o 时刻闭合回路消耗的功率P =F·v .方法二:由Bld =F ,得 F I Bd= 2222F R P I R B d ==(其中R 为回路总电阻)这两种方法哪一种正确?请你做出判断,并简述理由.x2.如图所示,一根电阻为R=0.6Ω的导线弯成一个圆形线圈,圆半径r=1m ,圆形线圈质量m=1kg ,此线圈放在绝缘光滑的水平面上,在y 轴右侧有垂直于线圈平面B=0.5T 的匀强磁场。

高中物理 电磁感应现象中的能量问题

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题能的转化与守恒,是贯穿物理学的基本规律之一。

从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。

电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。

此过程中,其他形式的能量转化为电能。

当感应电流通过用电器时,电能又转化为其他形式的能量。

“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。

同理,安培力做功的过程,是电能转化为其它形式能的过程。

安培力做了多少功,就有多少电能转化为其它形式的能。

认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。

一、安培力做功的微观本质1、安培力做功的微观本质设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。

所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。

因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。

场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。

当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。

导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。

由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。

电磁感应中的能量问题

电磁感应中的能量问题
BLV I
由以上各式解得:Q=0.2J
1:如图所示,正方形线框边长L=0.2m,质量为m=0.1kg, 电阻为R=0.1Ω,倾角为30°的光滑斜面上的物体质量为 M=0.4kg,水平方向的匀强磁场磁感应强度为0.5T。当物体沿斜 面下滑,线框开始进入磁场时,它恰做匀速运动(不计一切摩擦). 求:线框进入磁场的过程中产生多少焦耳热? 解法(二):利用Q=W克服安培力 对M:T=MgSin300 对m:T=mg+F安 W克服安培力=F安L Q=W克服安培力
二、电磁感应中的能量问题
1、问题的情景: 电磁感应过程往往涉 及多种能量形式的转化,因此从功和能的 观点入手,分析清楚能量转化的关系,往 往是解决电磁感应问题的重要途径;在运 用功能关系解决问题时,应注意能量转化 的来龙去脉,顺着受力分析、做功分析、 能量分析的思路严格进行,并注意能量流 向和分配关系。
的过程
1 (mg+Ff)h= 2 mv12
线框从最高点回落至进入磁场瞬间

1 (mg-Ff)h= mv22 2

由②③④联立解得
mg Ff v1= mg F v2 f
=
2 2 ( mg ) F f 2 2 B a
R
(3)设线框在向上通过磁场过程中,线框刚进入磁
场时速度为v0,由能量守恒定律有 1 1 2 mv0 - mv12=Q+(mg+Ff)(a+b) 2 2 v0=2v1 3mR 2 2-F 2]-(mg+F )(a+b) Q= [ ( mg ) f f 2B 4a 4
例3 如图所示,矩形线框先后以不同的速度v1和 v 2匀速地完全拉出有界匀强磁场.设线框电阻为R, 且两次的始末位置相同,求 (1)两次拉出过程外力做功之比 (2)两次拉出过程中电流的功率之比 解:

电磁感应中的能量及图像问题

电磁感应中的能量及图像问题

电磁感应中的能量问题1.思路:从能量转化和守恒着手,运用动能定理或能量守恒定律。

①根本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.②能量转化特点:其它能〔如:机械能〕−−−−−−→安培力做负功电能−−−−−→电流做功内能〔焦耳热〕 2.电能求解的三种方法:①功能关系:电磁感应过程产生的电能等于该过程克制安培力所做功:Q =-W 安②能量守恒:电磁感应过程中产生的电能等于该过程中其他形式能的减少量:Q =ΔE 其他③利用电流做功:电磁感应过程中产生的电能等于通过电路中电流所做的功:Q=I 2Rt 【例1】如下图,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 长为l 的导体棒从ab 位置获得平行于斜面的,大小为v 的初速度向上运动,最远到达a ′b ′的位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.那么( )A .上滑过程中导体棒受到的最大安培力为B 2l 2vRB .上滑过程中电流做功发出的热量为12mv 2-mgs sin θC .上滑过程中导体棒克制安培力做的功为12mv 2D .上滑过程中导体棒损失的机械能为12mv 2-mgs sin θ【例2】如下图,AB 、CD 为两个平行的水平光滑金属导轨,处在方向竖直向下,磁感应强度为B 的匀强磁场中.AB 、CD 的间距为L ,左右两端均接有阻值为R 的电阻.质量为m 长为L 且不计电阻的导体棒MN 放在导轨上,与导轨接触良好,并与轻质弹簧组成弹簧振动系统.开场时,弹簧处于自然长度,导体棒MN 具有水平向左的初速度v 0,经过一段时间,导体棒MN 第一次运动到最右端,这一过程中AC 间的电阻R 上产生的焦耳热为Q ,那么( C )A .初始时刻导体棒所受的安培力大小为B 2L 2v 0RB .从初始时刻至导体棒第一次到达最左端的过程中,整个回路产生的焦耳热为2Q 3C .当导体棒第一次到达最右端时,弹簧具有的弹性势能为12mv 20-2QD .当导体棒再次回到初始位置时,AC 间电阻R 的热功率为B 2L 2v 20R【例3】如下图,在倾角为θa b 边到达gg ’与ff ’中间位置时,线框又恰好做匀速运动,那么:(1)当a b 边刚越过ff ′时,线框加速度的值为多少?(2)求线框开场进入磁场到a b 边到达gg ′与ff ′中点的过程中产生热量是多少?【例4】如下图,空间分布着水平方向的匀强磁场,磁场区域的水平宽度d=,,竖直方向足够长,磁感应强度B =0.5T 。

专题10电磁感应中的动力学问题和能量问题

专题10电磁感应中的动力学问题和能量问题

电磁感应现象的定义
电磁感应现象的发现
电磁感应现象的应用
动力学问题的基本原理
电磁感应定律:法拉第电磁感应定律是电磁感应中的基本原理,它描述了磁场变化时在导体中产生感应电动势的现象。
动力学方程:在电磁感应中,由于磁场的变化,导体中的电荷会受到洛伦兹力的作用,从而产生加速度。因此,需要建立动力学方程来描述电荷的运动。
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
测量仪器误差
减小误差的方法
环境因素误差 减小误差的方法
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
选择高精度测量仪器
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
多次测量求平均值
阻尼效应:在电磁感应中,由于导体的电阻和电感的存在,电荷的运动会受到阻尼效应的影响。阻尼效应会导致电荷的运动逐渐减慢,直至停止。
能量转换:在电磁感应中,磁场能会转化为电能,而电能又会通过电阻和电感等元件转化为热能或其他形式的能量。因此,电磁感应中的动力学问题也涉及到能量转换的问题。
电磁感应与动力学问题的关系
解题思路和方法总结:总结典型例题的解题思路和方法,提炼出一般性的规律和技巧,帮助学生更好地理解和掌握电磁感应中的动力学问题。
实际应用举例:介绍电磁感应中的动力学问题在现实生活中的应用,如发电机、变压器等,增强学生对知识的理解和应用能力。
03
电磁感应中的能量问题
电磁感应中的能量转化
电磁感应中的能量损失与效率问题
电磁感应中的能量损失:主要来源于电阻发热、涡流损耗和磁滞损耗。
电磁感应中的效率问题:主要取决于电路的阻抗匹配和能量转换效率。
电磁感应中的能量损失与效率问题在现实生活中的应用:例如变压器、电动机等设备的效率问题,可以通过优化设计、选用合适的材料和改进工艺等方法来提高设备的效率和减少能量损失。

电磁感应中的能量转换问题

电磁感应中的能量转换问题

电磁感应中的能量转换问题电磁感应是电磁学中的重要概念,指的是磁场的变化可以在导体中产生感应电动势,进而转化为电能。

这一现象的应用广泛,如电磁感应发电机、变压器等,都是能量转换的典型代表。

本文将探讨电磁感应中的能量转换问题,以及它们在现代社会中的应用。

1.电磁感应原理电磁感应原理由法拉第发现,并由法拉第电磁感应定律完整表述。

根据这一定律,当导体的回路与磁场发生相对运动时,导体中会产生感应电动势,从而产生感应电流。

这一原理可以简单地表述为:改变磁通量,就会产生感应电动势。

2.电磁感应中的能量转换在电磁感应中,磁场的变化会引起电动势的产生,进而导致电流的流动。

在这一过程中,能量会从磁场转化为电能,完成能量转换。

具体而言,当导体与磁场相对运动时,由于磁感线的变化,磁通量也会随之改变。

根据法拉第电磁感应定律,磁通量的变化会引起感应电动势的产生。

而感应电动势作用于导体内部的自由电子,使其在导体内运动,形成感应电流。

这个过程中,原本由能量形式的磁场能量或机械能,便被转化为电能。

3.电磁感应中的转换效率在电磁感应中,能量的转换过程并非完全高效。

由于导体内存在电阻,感应电流经过导体时会产生焦耳热,导致能量的损失。

因此,电磁感应转换的效率往往不会达到百分之百。

为了提高转换效率,可以采取一系列措施,如增加导体的截面积、降低导体材料的电阻率,以减少能量的损失。

4.电磁感应在发电机中的应用电磁感应广泛应用于发电机中,将其转换为电能的过程主要由发电机完成。

发电机通过旋转的励磁线圈切割磁力线,产生感应电动势。

通过导线的接通,感应电动势使电流流经导线,从而实现了能量的转换过程。

这种转换过程是由机械能转化为电能,供应给电网或其他电力设备。

5.电磁感应在变压器中的应用电磁感应还被应用于变压器中,实现电能的输送和变换。

变压器由两个相互绝缘的线圈组成,它能够根据电磁感应原理,将一个交流电压转换为另一个交流电压。

通过在主线圈中加入交流电源,产生交变磁场。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题
(1)确定研究对象(导体棒或回路);
(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量
相互转化;
(3)根据能量守恒定律列式求解.
(18 分)(2012·高考天津卷)如图所示,一对光滑的平行金属 导轨固定在同一水平面内,导轨间距 l=0.5 m,左端接有阻值 R=0.3 Ω 的电阻.一质量 m=0.1 kg,电阻 r=0.1 Ω 的金属棒 MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁 场的磁感应强度 B=0.4 T.棒在水平向右的外力作用下,由静
力为多大?整个过程拉力的最大值为多大?
(3)若第 4 s 末以后,拉力的功率保持不变,ab 杆能达到的最大
速度为多大?
[答案] (2)μmg μmg ma (3)(μmg+BR2l+2vrm)vm
(2012·山东潍坊一模理综)如图所示,水平地面上方矩形
虚线区域内有垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ和
止开始以 a=2 m/s2 的加速度做匀加速运动,当棒的位移 x=9
m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力
前后回路中产生的焦耳热之比 Q1∶Q2=2∶1.导轨足够长且电
阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良 好接触.求:
(1)棒在匀加速运动过程中,
通过电阻 R 的电荷量 q;
一、电磁感应中的能量问题 1.能量转化 导体切割磁感线或磁通量发生变化,在回路中产生感应 电流,这个过程中机械能或其他形式的能转化为电能 .具有 感应电流的导体在磁场中受安培力作用或通过电阻发热,又 可使电能转机化械为能 内或能 .因此,电磁感应过程中总是 伴随着能量的转化. 2.能量转化的实质:电磁感应现象的能量转化实质是其 他形式能和电能之间的转化. 3.热量的计算:电流做功产生的热量用焦耳定律计算, 公式为Q= I2Rt .

[含答案及解析]电磁感应中的能量问题分析范文

[含答案及解析]电磁感应中的能量问题分析范文

电磁感应中的能量问题分析一、基础知识1、过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2、求解思路(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.3、电磁感应中能量转化问题的分析技巧a、电磁感应过程往往涉及多种能量的转化(1)如图中金属棒ab沿导轨由静止下滑时,重力势能减少,一部分用来克服安培力做功,转化为感应电流的电能,最终在R上转化为焦耳热,另一部分转化为金属棒的动能.(2)若导轨足够长,棒最终达到稳定状态做匀速运动,之后重力势能的减小则完全用来克服安培力做功,转化为感应电流的电能.b、安培力做功和电能变化的特定对应关系(1)“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.(2)安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.c 、解决此类问题的步骤(1)用法拉第电磁感应定律和楞次定律(包括右手定则)确定感应电动势的大小和方向.(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,联立求解.二、练习1、如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h 时开始做匀速运动,在此过程中 ( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLh R +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量答案 BD解析 金属棒由静止释放后,当a =0时,速度最大,即mg -BL BL v m R +r=0,解得v m =mg (R +r )B 2L 2,A 项错误.此过程通过R 的电荷量q =I Δt =BLh (R +r )Δt ·Δt =BLh R +r,B 项正确.导体棒克服安培力做的功等于整个电路产生的热量,C 项错误.由动能定理知对导体棒有ΔE k =W 重+W 安,D 项正确.2、如图所示,倾角为θ=30°、足够长的光滑平行金属导轨MN 、PQ 相距L 1=0.4 m ,B 1=5 T的匀强磁场垂直导轨平面向上.一质量m =1.6 kg 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,其电阻r =1 Ω.金属导轨上端连接右侧电路,R 1=1 Ω,R 2=1.5 Ω.R 2两端通过细导线连接质量M =0.6 kg 的正方形金属框cdef ,正方形边长L 2=0.2 m ,每条边电阻r 0为1 Ω,金属框处在一方向垂直纸面向里、B 2=3 T 的匀强磁场中.现将金属棒由静止释放,不计其他电阻及滑轮摩擦,g 取10 m/s 2.(1)若将电键S 断开,求棒下滑过程中的最大速度.(2)若电键S闭合,每根细导线能承受的最大拉力为3.6 N,求细导线刚好被拉断时棒的速度.(3)若电键S闭合后,从棒释放到细导线被拉断的过程中,棒上产生的电热为2 J,求此过程中棒下滑的高度(结果保留一位有效数字).解析(1)棒下滑过程中,沿导轨的合力为0时,速度最大,mg sin θ-F安=0F安=B1IL1I=Er+R1+R2E=B1L1v max代入数据解得:v max=7 m/s(2)闭合S后,设细导线刚断开时,通过金属框ef边电流为I′,则通过cd边的电流为3I′则:2F T-Mg-B2I′L2-3B2I′L2=0解得I′=0.5 A通过R2的电流I2=3I′r0 R2I2=1 A电路总电流I1=I2+4I′=3 A金属框接入电路总电阻R框=34ΩR2与R框并联电阻为R′,R′=R框R2R框+R2=1 2Ω设此时棒的速度为v1,则有I 1=B 1L 1v 1r +R 1+R ′解得v 1=3.75 m/s(3)当棒下滑高度为h 时,棒上产生的热量为Q ab ,R 1上产生的热量为Q 1,R 2与R 框上产生的总热量为Q ′,根据能量转化与守恒定律有mgh =12m v 21+Q ab +Q 1+Q ′ Q ab =2 JQ 1=Q ab =2 JQ ′=Q ab 2=1 J 解得h ≈1 m答案 (1)7 m/s (2)3.75 m/s (3)1 m3、如图所示电路,两根光滑金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用.金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是( )A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热答案 AC解析 根据动能定理,合力做的功等于动能的增量,故A 对;重力做的功等于重力势能的减少,重力做的功等于克服F 所做的功与产生的电能之和,而克服安培力做的功等于电阻R 上产生的焦耳热,所以B 、D 错,C 对.4、(2011·上海单科·32)如图所示,电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上.阻值r =0.5 Ω、质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q r =0.1 J .(取g =10 m/s 2)求:(1)金属棒在此过程中克服安培力做的功W 安;(2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W G -W 安=12m v 2m,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答. 答案 (1)0.4 J (2)3.2 m/s 2 (3)见解析解析 (1)下滑过程中安培力做的功即为电阻上产生的焦耳热,由于R =3r ,因此Q R =3Q r =0.3 J所以W 安=Q =Q R +Q r =0.4 J(2)金属棒下滑时受重力和安培力F 安=BIL =B 2L 2R +rv 由牛顿第二定律得mg sin 30°-B 2L 2R +rv =ma 所以a =g sin 30°-B 2L 2m (R +r )v =[10×12-0.82×0.752×20.2×(1.5+0.5)] m/s 2=3.2 m/s 2 (3)此解法正确.金属棒下滑时受重力和安培力作用,其运动满足mg sin 30°-B 2L 2R +rv =ma 上式表明,加速度随速度增大而减小,棒做加速度减小的加速运动.无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大.由动能定理可以得到棒的最大速度,因此上述解法正确.mgs sin 30°-Q =12m v 2m 所以v m = 2gs sin 30°-2Q m= 2×10×1.15×12-2×0.40.2m/s ≈2.74 m/s. 5、如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直方向的磁场中,整个磁场由若干个宽度皆为d 的条形匀强磁场区域1、2、3、4……组成,磁感应强度B 1、B 2的方向相反,大小相等,即B 1=B 2=B .导轨左端MP 间接一电阻R ,质量为m 、电阻为r 的细导体棒ab 垂直放置在导轨上,与导轨接触良好,不计导轨的电阻.现对棒ab 施加水平向右的拉力,使其从区域1磁场左边界位置开始以速度v 0向右做匀速直线运动并穿越n 个磁场区域.(1)求棒ab 穿越区域1磁场的过程中电阻R 产生的焦耳热Q ;(2)求棒ab 穿越n 个磁场区域的过程中拉力对棒ab 所做的功W ;(3)规定棒中从a 到b 的电流方向为正,画出上述过程中通过棒ab 的电流I 随时间t 变化的图象;(4)求棒ab 穿越n 个磁场区域的过程中通过电阻R 的净电荷量q .答案 (1)B 2L 2v 0Rd (R +r )2 (2)nB 2L 2v 0d R +r(3)见解析图 (4)BLd R +r或0 解析 (1)棒产生的感应电动势E =BL v 0通过棒的感应电流I =E R +r电阻R 产生的焦耳热Q =(E R +r)2R ·d v 0=B 2L 2v 0Rd (R +r )2 (2)拉力对棒ab 所做的功W =E 2R +r ·d v 0·n =nB 2L 2v 0d R +r(3)I -t 图象如图所示(4)若n 为奇数,通过电阻R 的净电荷量q =ΔΦ1R +r =BLd R +r若n为偶数,通过电阻R的净电荷量q=ΔΦ2=0R+r注:(2)问中功W也可用功的定义式求解;(4)问中的电荷量也可用(3)问中的图象面积求出.。

2.电磁感应中能量问题

2.电磁感应中能量问题

一、电磁感应中的动力学问题1.安培力的大小⎭⎪⎬⎪⎫安培力公式:F A =BIl 感应电动势:E =Bl v 感应电流:I =E R ⇒F A =B 2l 2v R 2.安培力的方向(1)用左手定则判断:先用右手定则判断感应电流的方向,再用左手定则判定安培力的方向。

(2)用楞次定律判断:安培力的方向一定与导体切割磁感线的运动方向相反。

3.安培力参与下物体的运动导体棒(或线框)在安培力和其他力的作用下,可以做加速运动、减速运动、匀速运动、静止或做其他类型的运动,可应用动能定理、牛顿运动定律等规律解题。

4.题型简述感应电流在磁场中受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律、楞次定律)及力学中的有关规律(共点力的平衡条件、牛顿运动定律、动能定理等).5.两种状态及处理方法7.动态分析的基本思路解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度最大值或最小值的条件.具体思路如下:导体受外力运动――→E =Bl v感应电动势――→E I R r+=感应电流――→F =BIl 导体受安培力→合力变化――→F 合=ma 加速度变化→速度变化→临界状态8.常见模型:“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变①单杆水平式(导轨光滑)匀强磁场与导轨垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,初速度为零,拉力恒为F ,水平导轨光滑,除电阻R 外,其他电阻不计设运动过程中某时刻棒的速度为v ,加速度为a =F m -B 2L 2v mR ,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,v m =FR B 2L 2 I =BLv R 恒定②单杆倾斜式(导轨光滑)匀强磁场与导轨垂直,磁感应强度为B ,导轨间距L ,导体棒质量m ,电阻R ,导轨光滑,电阻不计 ab 棒释放后下滑,此时a =g sin α,速度v ↑E =BLv ↑I =E R ↑F =BIL ↑a ↓,当安培力F =mg sin α时,a =0,v 最大,v m =mgR sin αB 2L 2③双杆切割式(导轨光滑)导体棒NM 受安培力的作用做加速度减小的减速运动,导体棒QP 受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动,在此过程中系统动量守恒,棒NM 动能的减少量=棒QP 动能的增加量+焦耳热④含“源”水平光滑导轨(v 0=0)S 闭合,ab 杆受安培力F=r BLE ,此时a=mr BLE ,速度v ↑E =BLv ↑I =E R ↓F =BIL ↓a ↓,当E 感=E 时,v 最大,且v m =BL E 例1.如图11所示,竖直平面内有足够长的平行金属导轨,间距为0.2 m ,金属导体ab 可在导轨上无摩擦地上下滑动,ab 的电阻为0.4 Ω,导轨电阻不计,导体ab 的质量为0.2 g ,垂直纸面向里的匀强磁场的磁感应强度为0.2 T ,且磁场区域足够大,当导体ab 自由下落0.4 s 时,突然闭合开关S ,则:(g 取10 m/s 2)图11(1)试说出开关S 闭合后,导体ab 的运动情况;(2)导体ab 匀速下落的速度是多少?二、电磁感应中的能量问题1.题型简述电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程.①实质电磁感应现象的能量转化,实质是其他形式的能和电能之间的转化。

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题一、感应电流在磁场中所受的安培力1.安培力的大小:F=BIL= ⑴.由F=知,v 转变时,F 转变,物体所受合外力转变,物体的加速度转变,因此可用牛顿运动定律进行动态分析.⑵.在求某时刻速度时,可先依照受力情形确信该时刻的安培力,然后用上述公式进行求解.2.安培力的方向判定(1)右手定那么和左手定那么相结合,先用右手定那么确信感应电流方向,再用 左手定那么判定感应电流所受安培力的方向.(2)用楞次定律判定,感应电流所受安培力的方向必然和导体切割磁感线运动的方向垂直。

热点一 对导体的受力分析及运动分析从运动和力的关系着手,运用牛顿第二定律.大体方式是:受力分析→运动分析(确信运动进程和最终的稳固状态)→由牛顿第二定律列方程求解.运动的动态结构:如此周而复始的循环,循环终止时加速度等于零,导体达到平稳状态.在分析进程中要抓住a=0时速度v 达到最大这一关键.专门提示1.对电学对象要画好必要的等效电路图.2.对力学对象要画好必要的受力分析图和进程示用意二、电磁感应的能量转化1.电磁感应现象的实质是其他形式的能和电能之间的转化.2.感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.3.电流做功产生的热量用焦耳定律计算,公式为Q=I 2Rt热点二 电路中的能量转化分析从能量的观点着手,运用动能定理或能量守恒定律.大体方式是:受力分析→弄清哪些力做功,做正功仍是负功→明确有哪些形式的能参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.专门提示在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情形,因为安培力做的功是电能和其他形式的能之间彼此转化的“桥梁”.简单表示如下: 安培力做正功 电能 其他形式能.R L B R E BL v 22=⋅R LB 22安培力做副功其它形式能电能如何求解电磁感应中的力学问题,一直是高中物理教学的一个难点,也是近几年来高考的热点。

《电磁感应》中的能量问题

《电磁感应》中的能量问题
6 00
碍 引 起 感 应 电流 的 导体 ( 磁 体 ) 的相 对 运 动 。 ” 或 间 即引 起 感 应 电流 的 导 体 ( 磁体 ) 近 或 远 离 的过 程 中都 或 靠

要 克服 电磁 力 做 功 ,外 力 克 服 电磁 力 做 功 的 过程 就 是 把 其 他
《电 磁 感 应 》 中 的 能 量 问 题
关 晓 颖
( 庆 市第 四 中学 , 龙江 大 庆 大 黑 《 电磁 感 应 》 章 中涉 及 的 问题 主 要 就 是 感 应 电流 的方 向 一 和 大 小 问题 。下 面 从 能 量 角 度 来 分析 这 两 方 面 问题 。 从 能 量 守 恒 角 度看 楞 次 定 律 产生 电磁 感 应 现象 的根 本 原 因 是 磁 通 量 发 生 变 化 ,而 引 起 磁 通 量 变 化 的 原 因 主 要 有 : 场 变 化 、 圈 变 化 、 对 运 动 磁 线 相 等。“ 碍” 阻 的作 用 是 把 其 他 形式 的 能 量 ( 其 他 电路 的 电能 ) 或 转化( 转移 ) 或 为感 应 电 流所 在 回 路 的 电 能 , 这 个 过 程 中 , 在 能 量 是 守 恒 的 因此 。 次 定 律 的实 质 。 是 能 量 转 化 与 守 恒 定 楞 正 律 在 电 磁 感 应 现 象 中 的 体 现 。而 这 种 能 量 的 转 化 与 守 恒 关 系 是 通 过 “ 碍 ” 用 具 体 体 现 出来 的 。 阻 作 1磁 场 变 化 所 引起 的 电磁 感 应 现 象 . 磁 场 变 化 会 在 空 间激 发 感 生 电场 ,感 生 电场 对 自由 电荷 做 功 , 磁 场 能 转化 为 电场 能 。 把 例 1 两 圆 环 A、 置 于 同 一 水 平 面 上 . : B 其 中A为 均 匀 带 电 绝 缘 环 , 为 导 体 环 . 当A以 B 如 图 所 示 的 方 向绕 中心 转 动 的角 速 度 发 生 变 化 时 , 中 产生 如 图所 示 方 向 的感 应 电流 , B 则 (C 。 B ) A- 可 能 带 正 电且 转 速 减 小 A B A可 能带 正 电且 转 速 增 大 . CA可 能带 负 电且 转 速 减 小 . D A 能 带 负 电 且 转 速增 大 -可 例 2 如 图所 示 ,b 一 个 可 绕 垂 直 于 纸 面 的 轴 O 动 的闭 : a是 转 合 矩 形 线 框 , 滑 动 变 阻 器 的滑 片P自左 向 右 滑 动 时 , 纸 外 当 从 向 纸 内看 , 线框 a 将 ( ) b C。 A 保 持静 止 不 动 . B. 时 针 转 动 逆 C 顺 时 针 转 动 . D. 生转 动 , 因 电 源 极 性 不 明 , 发 但 无 法确定转动方 向 2相 对 运 动 所 引 起 的 电磁 感 应 现 象 . 楞 次定 律 的另 一 种 表 述 :电磁 感 应 所 产 生 的 效 果 总 是 阻 “
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理总复习:电磁感应中的能量问题【考纲要求】理解安培力做功在电磁感应现象中能量转化方面所起的作用。

【考点梳理】考点、电磁感应中的能量问题要点诠释:电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。

分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。

电能求解的主要思路:(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。

(2)利用能量守恒求解:机械能的减少量等于产生的电能。

(3)利用电路特征求解:通过电路中所产生的电流来计算。

【典型例题】类型一、根据能量守恒定律判断有关问题例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将()A.往复摆动B.很快停在竖直方向平衡而不再摆动C.经过很长时间摆动后最后停下D.线圈中产生的热量小于线圈机械能的减少量【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。

【答案】B【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。

根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。

【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。

上述线圈所出现的现象叫做电磁阻尼。

用能量转化和守恒定律解决此类问题往往十分简便。

磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。

举一反三【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )A .mgbB .212mvC .()mg b a -D .21()2mg b a mv -+ 【答案】D【解析】小金属块在进出磁场的过程中,金属块内部产生感应电流,其机械能转化为电热,在磁场内运动,没有感应电流,没有内能产生,不损失机械能,最终,小金属块在光滑曲面上(y a ≤)往返运动,在y=a 处,速度为零。

初态的机械能:212mgb mv +,末态的机械能:mga ,由能量守恒定律,产生的焦耳热即减少的机械能:21()2Q E mg b a mv =∆=-+, D 选项正确。

类型二、“杆”+水平导轨(竖直导轨)问题例2、以速率v 将矩形线圈从一个有界匀强磁场中拉出线圈中感应电流为I ,感应电流通过线圈导线横截面的电量为q ,拉力做功为W 。

若该速率为2v 将线圈从磁场中拉出,求:(1)线圈中感应电流;(2)通过线圈导线横截面的电量;(3)拉力做功。

【思路点拨】分别写出感应电动势、感应电流、安培力、电量、拉力的功在速度为v 时的表达式,再分析速率为2v 时的感应电流、电量、拉力做的功。

【答案】(1)2I ;(2)q ;(3)2W.【解析】(1)感应电动势E BLv =,感应电流E BLv I R R== 安培力22B L v F BIL R==,电量q It =,拉力做功W Pt Fvt == 当速率为2v 时,2I I '=;(2)时间为12t t '=,q I t q '''== (3)2F F '=,12t t '=,2v v '=,12222W P t F v t W '''==⋅⋅=。

【总结升华】熟练应用基本公式,写出变化后的量与变化前的倍数关系,代入公式计算。

举一反三【变式】水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆,金属杆与导轨的电阻忽略不计。

均匀磁场竖直向下,用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动。

当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 和F 的关系如图(b )所示(取重力加速度g=10m/s 2)(1)金属杆在匀速运动之前做什么运动? (2)若m=0.5Kg ,L=0.5m ,R=0.5Ω;则磁感应强度B 为多大?(3)由v —F 图线的截距可求得什么物理量?其值为多少?【答案】(1)变加速运动(加速度减小的加速运动)或变速运动(2)1B T =(3)0.4μ=【解析】(1)变加速运动(加速度减小的加速运动)或变速运动(2)当杆匀速运动时,0A F f F --=,A F BIL =,E BLv I R R== 22A B L v F R =,则有220B L v F f R--= 所以22()R F f v B L -=…① 由(b )可知2f N =代入① 220.54(42)0.5B =-⨯,所以1B T = (3)由截距求得f ,并能求得μ。

2f N =,解得0.4μ=。

例3、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计。

在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡。

整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。

现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放。

金属棒下落过程中保持水平,且与导轨接触良好。

已知某时刻后两灯泡保持正常发光。

重力加速度为g 。

求:(1)磁感应强度的大小:(2)灯泡正常发光时导体棒的运动速率。

【思路点拨】“两灯泡保持正常发光”的意思是金属棒做匀速运动,安培力等于重力,感应电流可以根据额定值写出,即可求出磁感应强度;由于电阻不计,感应电动势等于灯泡两端的电压,电压可以根据额定值写出,即可求导体棒的运动速率。

【答案】(1)2mg PR B PL =(2)2PR P v BL mg== 【解析】每个灯上的额定电流为P I R =额定电压为:P U R = (1)最后MN 匀速运动,安培力等于重力,2B IL mg = 求得2mg PR B PL=。

(2)U BLv = 得:2PR P v BL mg==。

【总结升华】通过金属棒的电流是干路电流,由于金属棒的电阻不计,金属棒两端的电压等于感应电动势,如果金属棒电阻不能忽略,灯泡的电压就是路端电压。

对竖直导轨,导体的重力是有用的,伴随着能量的变化。

举一反三【变式1】图中回路竖直放在匀强磁场中,磁场的方向垂直于回路平面向内。

导线AC 可以贴着光滑竖直长导轨下滑。

设回路的总电阻恒定为R ,当导线AC 从静止开始下落后,下面有关回路能量转化的叙述中正确的是( )A.导线下落过程中机械能守恒;B.导线加速下落过程中,导线减少的重力势能全部转化为回路产生的热量;C.导线加速下落过程中,导线减少的重力势能全部转化为导线增加的动能;D.导线加速下落过程中,导线减少的重力势能转化为导线增加的动能和回路增加的内能【答案】D【变式2】如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。

磁感应强度为B 的匀强磁场方向垂直于纸面向外。

金属棒ab 的质量为m ,与导轨接触良好,不计摩擦。

从静止释放后ab 保持水平而下滑。

试求ab 下滑的最大速度v m 。

【答案】22L B mgR v m = 类型三、“杆”+倾斜导轨问题例4、如图所示,两根金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻8R =Ω,导轨自身电阻不计.匀强磁场垂直于斜面向上,磁感应强度为0.5B T =.质量为0.1m kg =,电阻为2r =Ω的金属棒ab 由静止释放,沿导轨下滑,如图所示.设导轨足够长,导轨宽度2L m =,金属棒ab 下滑过程中始终与导轨接触良好,当金属棒下滑的高度为3h m =时,恰好达到最大速度2/m v m s =,求此过程中(1)金属棒受到的摩擦阻力;(2)电阻R 中产生的热量(3)通过电阻R 的电量.【思路点拨】求“杆”+倾斜导轨问题的能量问题的基本方法,仍然是受力分析、运动分析,关键是安培力的大小和方向,安培力做的功转化为内能,再应用能量守恒定律。

【答案】(1)0.3f N =(2)0.8R Q J =(3)0.6q C =【解析】(1)感应电流的方向从b 到a ,做受力图。

当金属棒速度恰好达到最大速度时,加速度为零,则sin mg BIL f θ=+根据法拉笫电磁感应定律:m E BLv =根据闭合电路欧姆定律:E I R r=+, 联立以上各式解得22sin 0.3m B L v f mg N R rθ=-=+. (2)下滑过程,根据能量守恒定律,重力势能的减少量等于摩擦力做的功、安培力做的功(转化为热量)以及动能之和21sin 2m h mgh f Q mv θ-⋅-= 代入数据解得电路中产生的总电热为:Q=1J 此过程中电阻R 中产生的热量:810.882R R Q Q J J R r ==⨯=++ (3)设通过电阻R 的电量为q ,由E tφ∆=∆,E I R r =+ 得0.6()()sin BLh q I t C R r R r φθ∆=∆===++【总结升华】对“杆”+倾斜导轨问题,正确进行受力分析是首要问题,安培力方向与磁场方向垂直沿斜面向上(如果磁场方向竖直向上,安培力方向就水平向右了,还要分解)。

能量守恒定律的应用至关重要,也可以这样分析:初态的的能量:重力势能;末态的能量:有动能、克服摩擦力做功消耗的能量、克服安培力做功消耗的能量,能量守恒定律就是总量不变,即初态的能量等于末态的能量。

举一反三【变式】如图所示,平行金属导轨与水平面成θ角,R 1=R 2=2R ,匀强磁场垂直穿过导轨平面,有一导体棒ab 质量为m ,棒的电阻为2R ,棒与导轨之间的动摩擦因数为μ。

导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,定值电阻R 2消耗的电功率为P ,下列说法正确的是( )A .整个装置因摩擦而产生的热功率为cos mgv μθB .整个装置消耗的机械功率为4cos P mgv μθ+C .导体棒受到的安培力的大小为6P vD .导体棒受到的安培力的大小为4P v【答案】AC【解析】棒ab 上滑速度为v 时,切割磁感线产生感应电动势E Blv =,棒电阻为2R , R 1=R 2=2R ,回路的总电阻=3R R 总,通过电阻R 1的电流与通过电阻R 2的电流相等,通过棒ab 的电流等于通过电阻R 2的电流的2倍,导体棒ab 功率是电阻R 2的4倍, 即4ab P P =,总功率为6P ,则有6P Fv =,所以导体棒受到的安培力的大小6P F v=, C 对D 错;杆与导轨的摩擦力cos f mg μθ=,故摩擦消耗的热功率为cos f P f v mgv μθ=⋅=,A 对;整个装置消耗的机械功率为摩擦消耗的热功率与三部分导体的热功率之和, =+6cos f P P P P mgv μθ=+总热,B 错。

相关文档
最新文档