人教版八年级上册数学习题13.3答案
人教版八年级上册数学《等腰三角形》同步训练含答案
八年级数学上册《13.3等腰三角形》同步达标测评一.选择题(共8小题,满分32分)1.等腰三角形一腰上的高与另一腰的夹角是36°,则此等腰三角形的两个相等底角的度数大小是()A.54°B.63°C.27°D.27°或63°2.已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是()A.20°、20°、140°B.40°、40°、100°C.70°、70°、40°D.40°、40°、100°或70°、70°、40°3.如图,△ABC中,DE∥BC,FB,FC分别平分∠ABC和∠ACB,已知BC=20,AB=18,AC=16,则△ADE的周长是()A.30B.32C.34D.364.如图钢架BAC中,焊上等长的钢条来加固钢架,若P1A=P1P2,量得∠BP5P4=100°,则∠A=()度.A.10B.20C.15D.255.如图,为了加固屋顶的钢架,焊上等长的钢条(P1P2、P2P3等).若∠A=15°,AP1=P1P2,则这样的钢条最多只能焊上()条.A.4B.5C.6D.76.如图,AB=BC=CD=DE=EF=FG,则∠A的范围是()A.0°<∠A<15°B.0°<∠A<18°C.0°<∠A<20°D.0°<∠A<22.5°7.如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上;△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形.若OA1=1,则△A2021B2021A2022的边长为()A.4044B.4046C.22020D.220218.如图,直线AB⊥CD,垂足为O,点P在∠BOC的平分线上,点E在直线AB上,且△EOP是等腰三角形,则这样的点P有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分)9.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.10.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=.11.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.12.如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.13.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.14.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有个.15.如果△ABM和△ACN分别是以△ABC的边AB、AC为边的形外等边三角形,MC交BN 于P,连P A,则∠APN=.三.解答题(共9小题,满分60分)16.如图,在△ABC中,已知AD平分∠BAC,过AD上一点P作EF⊥AD,交AB于E、交AC于F,交BC延长线于M,则有正确结论:∠M=(∠ACB﹣∠B).请说明理由.17.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.18.如图,已知△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC.求证:DE+DF=BG.19.如图,已知∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC,点F为BC中点.求证:AF⊥BC.20.如图,在等腰△ABC中,AB=AC,BD为∠ABC平分线,延长BC到点E,使CE=CD,作DH⊥BE于H,求证:H为BE的中点.21.已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.22.如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三角形.23.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE 交CB于点P,点P为DE中点(1)求证:CD=BE;(2)若DE⊥AC,求BP的长.24.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故选:D.2.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个角度数为40°,100°.故选:D.3.解:∵DE∥BC,∴∠BFD=∠FBC,∠EFC=∠BCF,∵FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠BCF,∴∠BFD=∠DBF,∠EFC=∠ECF,∴DF=DB,EF=EC,∵△ADE的周长=AD+AE+DE,DE=DF+EF,∴△ADE的周长=AD+BD+AE+EC=AB+AC,∵AB=18,AC=16,∴△ADE的周长=34.故选:C.4.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠P3P5P4+∠BP5P4=180°,∠BP5P4=100°,∴∠P3P5P4=80°,∴∠A=20°.故选:B.5.解:∵∠A=∠P1P2A=15°∴∠P2P1P3=30°,∠P1P3P2=30°∴∠P1P2P3=120°∴∠P3P2P4=45°∴∠P3P2P4=45°∴∠P2P3P4=90°∴∠P4P3P5=60°∴∠P3P5P4=60°∴∠P3P4P5=60°∴∠P5P4P6=75°∴∠P4P6P5=75°∴∠P4P5P6=30°∴∠P6P5P7=90°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选:B.6.解:采用排除法:①∵AB=BC=CD=DE=EF=FG,当∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠FGE=∠GEF=∠EFD+∠A=60°+15°=75°,即此时符合;①当∠A=18°时,同法求出∠FEG=∠FGE=90°,此时△FEG不存在,此时不符合,同样,当∠A取大于18°的角都不符合,当∠A=小于18°的数时,△FEG存在,即选项A、C、D错误,只有选项B正确;故选:B.7.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A2021B2021A2022的边长为22020.故选:C.8.解:如图,①当OP=OE时,这样的点E由2个,②当PE=OE时,这样的点E由1个,③当OP=PE时,这样的点E由1个,∴这样的点P有4个,故选:D.二.填空题(共7小题,满分28分)9.解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,故①小题正确;∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ,故③小题正确;PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小题正确;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小题错误.综上所述,正确的是①②③.故答案为:①②③.10.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为211.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.12.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15,所以∠EDC的度数是15°.故答案是:15°.13.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.14.解:△AOP,△BOP,△COP,△DOP就是所求的三角形.15.解:∵△ABM和△ACN都是等边三角形,∴AB=AM,AN=AC,∠BAM=∠CAN=60°,∴∠BAM+∠BAC=∠CAN+∠BAC,即∠CAM=∠BAN,在△ABN与△AMC中,,∴△ABN≌△AMC(SAS),∴∠ANP=∠ACP,又∵∠AEN=∠PEC(对顶角相等),∵∠AEP=∠NEC(对顶角相等),∴∠APN=∠ACN=60°.故答案为:60°.三.解答题(共9小题,满分60分)16.证明:∵EF⊥AD,AD平分∠BAC,∴∠1=∠2,∠APE=∠APF=90°,又∵∠AEF=180°﹣∠1﹣∠APE,∠AFE=180°﹣∠2﹣∠APF,∴∠AEF=∠AFE,∵∠CFM=∠AFE,∴∠AEF=∠AFE=∠CFM,∵∠AEF=∠B+∠M,∠MFC=∠ACB﹣∠M,∴∠B+∠M=∠ACB﹣∠M,即:∠M=(∠ACB﹣∠B).17.证明:延长BD至F,使DF=BC,连接EF,∵EC=ED,∴∠ECD=∠EDC,∴∠ECB=∠EDF,∴△ECB≌△EDF(SAS),∴BE=EF,∠B=60°,∴△BEF为等边三角形,∴BE=BF,∵AE=BD,∴DF=AB,BC=DF,∴AB=BC,∴△ABC是等边三角形.18.证明:连接AD.则△ABC的面积=△ABD的面积+△ACD的面积,AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG.19.证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C,∴AB=AC,∵点F为BC中点,∴AF⊥BC.20.证明:∵AB=AC,∴∠ABC=∠SCB,∵BD平分∠ABC,∴∠ABD=∠CBD,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠E+∠CDE=2∠DBC,∴∠DBC=∠E,∴△BDE为等腰三角形,BD=ED,∵DH垂直于BE,∴H为BE中点(三线合一).21.证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.22.证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,∴∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,AM=BN;∴AC=BC,∠CAD=∠CBE,AM=BN,∴△AMC≌△BNC(SAS),∴CM=CN,∠ACM=∠BCN;又∵∠NCM=∠BCN﹣∠BCM,∠ACB=∠ACM﹣∠BCM,∴∠NCM=∠ACB=60°,∴△CMN是等边三角形.23.(1)证明:作DF∥AB交BC于F,如图所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∵DF∥AB,∴∠CDF=∠A=60°,∠DFC=∠ABC=60°,∠DFP=∠EBP,∴△CDF是等边三角形,∴CD=DF,∵点P为DE中点,∴PD=PE,在△PDF和△PEB中,,∴△PDF≌△PEB(AAS),∴DF=BE,∴CD=BE;(2)解:∵DE⊥AC,∴∠ADE=90°,∴∠E=90°﹣∠A=30°,∴AD=AE,∠BPE=∠ACB﹣∠E=30°=∠E,∴BP=BE,由(1)得:CD=BE,∴BP=BE=CD,设BP=x,则BE=CD=x,AD=12﹣x,∵AE=2AD,∴12+x=2(12﹣x),解得:x=4,即BP的长为4.24.(1)证明:如图,过P做PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD ∵△ABC为等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴△APF是等边三角形;∵AP=PF,AP=CQ,∴PF=CQ∴△PFD≌△QCD,∴PD=DQ.(2)△APF是等边三角形,∵PE⊥AC,∴AE=EF,△PFD≌△QCD,∴CD=DF,DE=EF+DF=AC,∵AC=1,DE=.。
人教版数学八年级上册 13.2---13.3同步练习题含答案
13.2画对称图形一.选择题1.点A(2,﹣1)关于y轴对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)2.点A(a,﹣5)关于y轴对称点的坐标(﹣2,b),则a、b的值是()A.a=2,b=5B.a=2,b=﹣5C.a=﹣2,b=5D.a=﹣2,b=﹣5 3.在平面直角坐标系中,将点A(﹣1,2)向右平移4个单位长度得到点B,则点B关于y轴的对称点B′的坐标为()A.(﹣3,2)B.(3,﹣2)C.(3,2)D.(2,﹣3)4.已知点P(m﹣1,4)与点Q(2,n+2)关于y轴对称,则n m的值为()A.﹣2B.C.﹣D.15.在平面直角坐标系中,若点P(m,2)与点Q(3,n)关于y轴对称,则m,n的值分别是()A.﹣3,2B.3,﹣2C.﹣3,﹣2D.3,26.下列结论:①在第一象限的点N到x轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1);②m≠0,点P(m2,﹣m)在第四象限;③与点(﹣3,4)关于y轴对称的点的坐标是(﹣3,﹣4);④横坐标为﹣3的点在经过点(﹣3,0)且平行于y轴的直线上.其中正确的是()A.①③B.②④C.①④D.②③7.在平面直角坐标系中,点A(﹣2,a)与点B(b,3)关于x轴对称,则a+b的值是()A.﹣5B.﹣1C.1D.58.如图,△ABC顶点B的坐标是(﹣5,2),先把△ABC向右平移3个单位得到△A1B1C1,再作△A1B1C1关于y轴的对称图形△A2B2C2,则顶点B2的坐标是()A.C.9.在平面直角坐标系中,已知点A(﹣2a,6)与B(4,b+2)关于x轴对称,则a,b的值为()A.a=2,b=﹣8B.a=2,b=8C.a=﹣2,b=8D.a=﹣2,b=﹣8 10.已知点A(a,3),B(﹣3,b),若点A、B关于x轴对称,则点P(﹣a,﹣b)在第_____象限,若点A、B关于y轴对称,则点P(﹣a,﹣b)在第_____象限.关于x轴对称的点的坐标为.12.将点P(﹣2,y)先向下平移4个单位,再向左平移2个单位,然后把点关于x轴对称得到点Q(x,﹣1)、则x+y=.13.点P(a,b)关于x轴的对称点的坐标为,关于y轴的对称点的坐标为.14.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是.15.如图,在平面直角坐标系内,点P(a,b)为△ABC的边AC上一点,将△ABC先向左平移2个单位,再作关于x轴的轴对称图形,得到△A′B′C',则点P的对应点P'的坐标为.三.解答题16.如图,△DEF的顶点在正方形网格的格点上.(1)画△DEF关于直线HG的轴对称图形△ABC(不写画法);(2)作△DEF中DE边上的中线(尺规作图,不写作法,保留作图痕迹).17.如图在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣3,4),B(﹣4,1),C(﹣1,1)(1)请在图中画出△ABC关于y轴的对称图形△A′B′C′,点A、B、C的对称点分别为A′、B′、C′,其中A′的坐标为;B′的坐标为;C′的坐标为,(2)请求出△A′B′C'的面积.18.如图,平面直角坐标系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).(1)作出△ABC关于直线x=1对称的图形△A1B1C1并写出△A1B1C1各顶点的坐标;(2)将△A1B1C1向左平移2个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△ABC和△A2B2C2,它们是否关于某直线对称?若是,请指出对称轴,并求△ABC的面积.19.如图,已知:∠AOB=90°,OC平分∠AOB,点P在射线OC上.点E在射线OA上,点F在射线OB上,且∠EPF=90°.(1)如图1,求证:PE=PF;(2)如图2,作点F关于直线EP的对称点F′,过F′点作FH⊥OF于H,连接EF′,F′H与EP交于点M.连接FM,图中与∠EFM相等的角共有个.参考答案与试题解析一.选择题1.【解答】解:A(2,﹣1)关于y轴对称的点的坐标是(﹣2,﹣1),故选:B.2.【解答】解:∵点A(a,﹣5)关于y轴的对称点的坐标为(﹣2,b),∴a=2,b=﹣5,故选:B.3.【解答】解:点A(﹣1,2)向右平移4个单位长度得到的B的坐标为(﹣1+4,2),即(3,2),则点B关于y轴的对称点B′的坐标是:(﹣3,2).故选:A.4.【解答】解:∵点P(m﹣1,4)与点Q(2,n+2)关于y轴对称,∴m﹣1=﹣2,n+2=4,解得:m=﹣1,n=2,则n m的值为:2﹣1=.故选:B.5.【解答】解:∵点P(m,2)与点Q(3,n)关于y轴对称,∴m=﹣3,n=2,则m,n的值分别是:﹣3,2.故选:A.6.【解答】解:①在第一象限的点N到x轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1),说法正确;②m≠0,点P(m2,﹣m)在第四象限,说法错误;③与点(﹣3,4)关于y轴对称的点的坐标是(﹣3,﹣4),说法错误;④横坐标为﹣3的点在经过点(﹣3,0)且平行于y轴的直线上,说法正确.正确的说法是①④,故选:C.7.【解答】解:∵点A(﹣2,a)与点B(b,3)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b的值是:﹣3﹣2=﹣5.故选:A.8.【解答】解:∵顶点B的坐标是(﹣5,2),将其向右平移3个单位得到顶点B1,∴顶点B1的坐标为(﹣2,2).又∵顶点B2和顶点B1关于y轴对称,∴顶点B2的坐标为(2,2).故选:C.9.【解答】解:∵点A(﹣2a,6)与B(4,b+2)关于x轴对称,∴﹣2a=4,b+2=﹣6,解得:a=﹣2,b=﹣8,故选:D.10.【解答】解:∵点A(a,3),B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣3,∴﹣a>0,﹣b>0,∴点P(﹣a,﹣b)在第一象限,∵点A(a,3),B(﹣3,b)关于y轴对称,∴a=3,b=3,∴﹣a<0,﹣b<0,∴点P(﹣a,﹣b)在第三象限,故选:A.二.填空题(共5小题)11.【解答】解:点(﹣2017,2018)关于x轴对称的点的坐标为:(﹣2017,﹣2018).故答案为:(﹣2017,﹣2018).12.【解答】解:∵将点P(﹣2,y)先向下平移4个单位,再向左平移2个单位,∴平移后的坐标为:(﹣4,y﹣4),∵把点关于x轴对称得到点Q(x,﹣1),∴x=﹣4,y﹣4=1,解得:x=﹣4,y=5,则x+y=1.故答案为:1.13.【解答】解:点P(a,b)关于x轴的对称点的坐标为:(a,﹣b);关于y轴的对称点的坐标为:(﹣a,b).故答案为:(a,﹣b),(﹣a,b).14.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,∴A′的坐标为:(1,2),∵将点A′向上平移2个单位,∴得到点A″坐标为:(1,4).故答案为:(1,4).15.【解答】解:由题意点P(a,b)先向左平移2个单位得到(a﹣2,b),(a﹣2,b)关于x轴的对称点P′(a﹣2,﹣b),故答案为(a﹣2,﹣b).三.解答题(共4小题)16.【解答】解:(1)如图,△ABC为所作;(2)如图,FM为所作.17.【解答】解:(1)如图所示,△A′B′C′即为所求,A′的坐标为(3,4);B′的坐标为(4,1);C′的坐标为(1,1);故答案为:(3,4);(4,1);(1,1);(2)△A′B′C'的面积=×3×3=.18.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(6,6),B1(3,2),C1(6,1).(2)如图所示,△A2B2C2即为所求,A2(4,6),B2(1,2),C2(4,1);(3)△ABC和△A2B2C2关于y轴对称,△ABC的面积为×5×3=7.5.19.【解答】解:(1)如图1,过P作PG⊥OB于G,PH⊥AO于H,则∠PGF=∠PHE=90°,∵OC平分∠AOB,PG⊥OB,PH⊥AO,∴PH=PG,∵∠AOB=∠EPF=90°,∴∠PFG+∠PEO=180°,又∵∠PEH+∠PEO=180°,∴∠PEH=∠PFG,∴△PEH≌△PFG(AAS),∴PE=PF;(2)由轴对称可得,∠EFM=∠EF'M,∵F'H⊥OF,AO⊥OB,∴AO∥F'F,∴∠EF'M=∠AEF',∵∠AEF'+∠OEF=∠OFE+∠OEF=90°,∴∠AEF'=∠OFE,由题可得,P是FF'的中点,EF=EF',∴EP平分∠FEF',∵PE=PF,∠EPF=90°,∴∠PEF=45°=∠PEF',又∵∠AOP=∠AOB=45°,且∠AEP=∠AOP+∠OPE,∴∠AEF'+45°=45°+∠OPE,∴∠AEF'=∠OPE,∴与∠EFM相等的角有4个:∠EF'M,∠AEF',∠EFO,∠EPO.故答案为:4.13.3 等腰三角形一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A .甲、乙两种作法都正确B .甲的作法正确,乙的作法不正确C .甲的作法不正确,乙的作法正确D .甲、乙两种作法都不正确2. (2019•天水)如图,等边OAB △的边长为2,则点B 的坐标为A .(11),B .(13),C .(31),D .(33),3. (2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°4. (2020·聊城)如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120° B.130° C.145° D .150°F EC5. (2020·青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A.55°,55° B.70°,40°或70°,55°C.70°,40° D.55°,55°或70°,40°6. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是( )A. 6B. 7C. 8D. 97. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个8. (2020·宜宾)如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=13BE,AN=13AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形9. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为( )A. 2B. 4C. 6D. 810. (2020·绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠PAH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小二、填空题(本大题共6道小题)11. 等腰三角形的两边长分别为6 cm,13 cm,其周长为________ cm.12. (2020·齐齐哈尔)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是.13. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD14. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.15. 在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是________.16. 【题目】(2020·滨州)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于点D,AD=4 cm,求BC的长.18. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.19. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB =DC ,过点D 作DE ∥AC ,交射线AB 于点E ,连接AD 交BC 于点F. (1)求证:AD ⊥BC ;(2)如图①,当点E 在线段AB 上且不与点B 重合时,求证:DE =AE ; (3)如图②,当点E 在线段AB 的延长线上时,请直接写出线段DE ,AC ,BE 的数量关系.20. 如图①,在△ABC 中,AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E ,F ,H .易证PE +PF =CH .证明过程如下: 连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB ·PE ,S △ACP =12AC ·PF ,S △ABC =12AB ·CH . 又∵S △ABP +S △ACP =S △ABC , ∴12AB ·PE +12AC ·PF =12AB ·CH . ∵AB =AC ,∴PE +PF =CH .如图②,若P 为BC 延长线上的点,其他条件不变,PE ,PF ,CH 之间又有怎样的数量关系?请写出你的猜想,并加以证明.人教版 八年级数学 13.3 等腰三角形 同步训练-答案一、选择题(本大题共10道小题) 1. 【答案】A2. 【答案】B【解析】如图,过点B 作BH AO ⊥于H 点,∵OAB △是等边三角形,∴1OH =,22=213BH -=∴点B 的坐标为(13),.故选B .3. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°. 5. 【答案】D【解析】(1)当70°是顶角时,另两个角相等,都等于12×(180°-70°)=55°;(2)当70°是底角时,另一个底角也是70°,顶角=180°-70°×2=40°.因此另外两个内角的底数分别是55°,55°或70°,40°.故选D.6. 【答案】C7. 【答案】D[解析] ∵∠BAC=72°,∠C=36°,∴∠ABC=72°.∴∠BAC=∠ABC.∴CA=CB.∴△ABC是等腰三角形.∵∠BAC的平分线AD交BC于点D,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.8. 【答案】C【解析】由△ABC和△ECD都是等边三角形,可得△BCE≌△ACD(SAS),∴∠MBC=∠NAC,BE=AD,∵BM=13BE,AN=13AD,∴BM=AN,∴△MBC≌△NAC(SAS),∴MC=NC,∠BCM=∠ACN,∵∠BCM+∠MCA=60°,∴∠NCA+∠MCA=60°,∴∠MCN =60°,∴△MCN是等边三角形.9. 【答案】B10. 【答案】C【解析】本题考查了等腰三角形的性质,三角形的内角和,旋转的性质.由旋转得BC=BP=BA,∴△BCP和△ABP均是等腰三角形.在△BCP中,∠CBP=θ,BC=BP,∴∠BPC=90°-12θ.在△ABP中,∠ABP=90°-θ,同理得∠APB=45°+12θ,∴∠APC=∠BPC +∠APB =135°,又∵∠AHC=90°,∴∠PAH=45°,即其度数是个定值,不变.因此本题选C.二、填空题(本大题共6道小题)11. 【答案】32[解析] 由题意知,应分两种情况:(1)当腰长为6 cm时,三角形的三边长为6 cm,6 cm,13 cm,6+6<13,不能构成三角形;(2)当腰长为13 cm时,三角形的三边长为6 cm,13 cm,13 cm,能构成三角形,周长=2×13+6=32(cm).12. 【答案】10或11.【解析】分3是腰长与底边长两种情况讨论求解即可.①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.13. 【答案】②③④【解析】14. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.15. 【答案】(-2,2)[解析] ∵点P(4,2),∴点P到直线x=1的距离为4-1=3.∴点P关于直线x=1的对称点P′到直线x=1的距离为3.∴点P′的横坐标为1-3=-2.∴对称点P′的坐标为(-2,2).16. 【答案】80°【解析】本题考查了等腰三角形的性质,∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°,因此本题填80°.三、解答题(本大题共4道小题)17. 【答案】解:∵AB=AC,∠C=30°,∴∠B=30°.∵AB⊥AD,AD=4 cm,∴BD=8 cm.∵∠ADB=90°-∠B=60°,∠C=30°,∴∠DAC=30°=∠C.∴CD=AD=4 cm.∴BC=BD+CD=8+4=12(cm).18. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF. ∴CF=CE.∴△CEF是等腰三角形.19. 【答案】解:(1)证明:∵AB=AC,∴点A在BC的垂直平分线上.∵DB=DC,∴点D在BC的垂直平分线上.∴直线AD是BC的垂直平分线.∴AD⊥BC.(2)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.(3)DE=AC+BE.理由:同(2)得∠BAD=∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.∵AB=AC,∴DE=AB+BE=AC+BE.20. 【答案】解:PE =PF +CH.证明如下: 连接AP.∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB·PE ,S △ACP =12AC·PF ,S △ABC =12AB·CH.∵S △ABP =S △ACP +S △ABC , ∴12AB·PE =12AC·PF +12AB·CH. ∵AB =AC ,∴PE =PF +CH.。
人教版八年级上册数学习题13.3答案
人教版八年级上册数学习题13.3 答案1.(1) 35 度, 35°;(2)解:当 80°的角是等腰三角形的一个底角时,那么等腰三角形的另一个底角为 80°,根据三角形的内角和定理可以求出顶角为 180°-80 °-80 °=20°;当80°的角是等腰三角形的顶角时,那么它的两个底角相等,均为1/2〔 180°-80 °〕=50°.综上,等腰三角形的另外两个角是20°,80°或 50°,50°.2.3.解:∵五角星的五个角都是顶角为36°的等腰三角形,∴每个底角的度数是1/2 ×〔180°- 36 〕°=72°.∴∠ AMB=180° -72 °108°.4.5.证明: CE//DA, ∴∠ A=∠ CEB.6.7.8.:如图 13 -3-29 所示,点 P 是直线 AB 上一点,求作直线CD ,使 CD ⊥AB 于点 P.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.。
人教版八年级上册数学书习题13.3答案
Page 81 1(1)等腰三角形的一个角是110°,它的另外两个角是多少度?(2)等腰三角形的一个角是80°,它的另外两个角是多少度?Page82 2如图,AD ∥ BC ,BD 平分∠ABC ,求证:AD=AB 。
分析:题目要求我们证明AD=AB 。
观察图形,AB 与AD 位于△ABD 中。
由已知AD ∥BC , BD 平分∠ABC ,可考虑用等腰三角形的判定方法“等角对等边”来证明。
用已知的平行关系,可将∠ADB 与∠CBD 于关联起来,再有角平分线把∠ABD 与∠CBD 关联起来。
证明:∵AD ∥ BC ,∴∠ADB=∠CBD 。
又∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∴∠ADB=∠ABD ,∴AD=AB 。
Page82 3如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠AMBPage82 4如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC ,立柱AD ⊥ BC ,且顶角∠BAC=120°∠B ,∠C ,∠BAD ,∠CAD 各是多少度?解:∵AB =AC ,∠BAC=120°∴∠B=∠C= 12×(180-120)°=30°。
又∵AD ⊥BC ,∴∠BAD ,∠CAD = 12 ∠BAC = 12×120°= 60°。
Page82 5如图,∠A=∠B ,CE ∥DA ,CE 交AB 于点E 。
求证:△CEB 是等腰三角形。
证明:∵CE//DA ,MA B C D E n m ∴∠A=∠CEB 。
∵∠A=∠B,∴∠CEB=∠B,∴CE=CB ,∴△CEB 是等腰三角形。
Page82 6如图,点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE 。
求证:BD=CE 。
证明:∵AB =AC ,∴∠B =∠C 。
又∵AD =AE ,∴∠ADE =∠AED 。
2022-2023学年人教版八年级数学上册《13-3等腰三角形》同步达标测试题(附答案)
2022-2023学年人教版八年级数学上册《13.3等腰三角形》同步达标测试题(附答案)一.选择题(共10小题,满分40分)1.已知等腰三角形三边的长分别为4,x,10,则x的值是()A.4B.10C.4 或10D.6 或102.已知等腰三角形ABC的周长为20cm,BC=8cm,则AB的长度是()A.8cm B.6cmC.8cm或6cm D.8cm或6cm或4cm3.已知等腰三角形的一个底角为70°,则其顶角为()A.50°B.60°C.30°D.40°4.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为()A.65°B.105°C.55°或105°D.65°或115°5.如图,在△ABC中,D、E是两边AB、AC上的点,DE∥BC,DE=BE,若∠DBC=20°,∠C=65°,则∠A的度数是()A.60°B.65°C.70°D.75°6.如图,已知点B,C,D,E在同一直线上,△ABC是等边三角形,且CG=CD,DF=DE,则∠E=()A.35°B.30°C.25°D.15°7.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()°A.150B.120C.90D.808.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD于点D.∠ABD=∠A,若BD=1,BC=3,则AC的长为()A.2B.3C.4D.59.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是()A.10B.8C.6D.410.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为()A.B.C.D.无法确定二.填空题(共6小题,满分30分)11.等腰三角形一边长等于4,一边长等于9,它的周长是.12.已知△ABC中有一个内角是30°,AB=AC,AB边上的中垂线交直线BC于点D,连结AD,则∠DAC=.13.如图,AD是△ABC的高,且AB+BD=DC,∠BAD=40°,则∠C的度数为.14.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E =60°,若BE=4cm,DE=3cm,则BC=cm.15.如图,∠ABC的平分线BF与△ABC的相邻外角∠ACG的平分线CF相交于F,过F 作DF∥BC,交AB于D,交AC于E,若BD=8cm,CE=5cm,则DE的长为.16.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB 于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.(填序号)三.解答题(共5小题,满分50分)17.已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.18.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.19.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.20.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB 的大小为(直接写出结果,不证明)21.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.参考答案一.选择题(共10小题,满分40分)1.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.2.解:(1)当BC=8cm为底边时,AB为腰,由等腰三角形的性质,得AB=(20﹣BC)=6cm;(2)当BC=8cm为腰时,①若AB为腰,则BC=AB=8cm;②若AB为底,则AB=20﹣2BC=4cm,故选:D.3.解:∵等腰三角形的一个底角为70°,∴顶角=180°﹣70°×2=40°.故选:D.4.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣25°=65°.故选:D.5.解:∵DE=BE,∴∠EBD=∠EDB,∵DE∥BC,∴∠EDB=∠DBC=20°,∴∠DBE=∠BDE=20°,∴∠ABC=40°,∵∠C=65°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣40°﹣65°=75°,故选:D.6.解:如图所示,∵△ABC是等边三角形,∴∠B=∠1=60°,∵CD=CG,∴∠CGD=∠2,∴∠1=2∠2,同理有∠2=2∠E,∴4∠E=60°,∴∠E=15°.故选:D.7.解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.8.解:延长BD交AC于E,如图,∵CD平分∠ACB,BD⊥CD,∴△BCE为等腰三角形,∴DE=BD=1,CE=CB=3,∵∠A=∠ABD,∴EA=EB=2,∴AC=AE+CE=2+3=5.故选:D.9.解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC=S△ABC=×12=6,故选:C.10.解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故选:A.二.填空题(共6小题,满分30分)11.解:∵4+4=8<9,0<4<9+9=18∴腰的不应为4,而应为9∴等腰三角形的周长=4+9+9=22故填:22.12.解:∠B=30°是底角,如图1:∵AB=AC,∠B=30°,∴∠C=30°,∵AB边上的中垂线交直线BC于点D,∴∠BAD=∠B=30°,∴∠ADC=30°+30°=60°,∴∠DAC=180°﹣30°﹣60°=90°;∠BAC=30°的角是顶角,如图2:∵AB=AC,∠BAC=30°,∴∠B=∠ACB=(180°﹣30°)÷2=75°,∵AB边上的中垂线交直线BC于点D,∴∠BED=∠AED=90°﹣75°=15°,∴∠ADC=15°+15°=30°,∴∠DAC=75°﹣30°=45°.故∠DAC=90°或45°.故答案为:90°或45°.13.解:在线段DC上取一点E,使DE=DB,连接AE,∵AD是△ABC的高,∴AD⊥BC,∴AD垂直平分BE,∴AB=AE,∴∠EAD=∠BAD=40°,∠AEB=∠B=90°﹣∠BAD=50°,∵AB+BD=DC,DE+CE=DC,∴AB=CE,∴AE=CE,∴∠EAC=∠C,∵∠AEB=∠EAC+∠C=2∠C,∴∠C=∠AEB=25°,故答案为:25°.14.解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=4cm,DE=3cm,∴DM=1cm,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=cm,∴BN=cm,∴BC=2BN=7cm,故答案为7.15.解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD=8cm,EF=CE=5cm,∴BD﹣CE=FD﹣EF=DE=8﹣5=3(cm),故答案为:3cm.16.解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故答案是:①②③三.解答题(共5小题,满分50分)17.证明:(1)∵AE∥BC,∴∠DAE=∠B,∠EAC=∠ACB,∵E为△ABC的外角平分线上的一点,∴∠DAE=∠EAC,∴∠B=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)在△ABF和△CAE中,,∴△ABF≌△CAE(SAS),∴AF=CE.18.(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B (3)∵由(2)知△BDE≌△CEF,∴∠BDE=∠CEF,∴∠CEF+∠DEF=∠BDE+∠B,∴∠DEF=∠B,∴AB=AC,∠A=40°,∴∠DEF=∠B==70°.19.证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN(ASA),∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.20.解:(1)①证明:∵∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC,∴∠AOC=∠BOD.在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD;②证明:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴∠OAC+∠AOB=∠OBD+∠APB,∴∠OAC+60°=∠OBD+∠APB,∴∠APB=60°;(2)AC=BD,∠APB=α.21.解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.。
2022年人教版八年级数学上册第十三章练习题及答案 等边三角形(第2课时)
第十三章轴对称13.3 等腰三角形13.3.2 等边三角形第2课时1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )A.6米B.9米C.12米D.15米2.某市在旧城绿化改造中,计划在一块如图所示的△ABC空地上种植草皮优化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.300a元B.150a元C.450a元D.225a元3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC =___________ .4.如图,Rt△ABC中,∠A= 30°,AB+BC=12cm,则AB=______cm.5. 在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,BE=5,则求AC的长.6. 在△ABC中,AB=AC,∠BAC=120° ,D是BC的中点,DE⊥AB于E点,求证:BE=3EA.7. 如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.参考答案:1.B2.B3.54.85. 解:连接AE,∵DE是AB的垂直平分线,∴BE=AE,∴∠EAB=∠B=15°,∴∠AEC=∠EAB+∠B=30°.∵∠C=90°,∴AC= 12AE= 12BE=2.5.6. 证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵ D是BC的中点,∴AD⊥BC.∴∠ADC=90°,∠BAD=∠DAC=60°.∴AB=2AD.∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,∴AD=2AE.∴AB=4AE,∴BE=3AE.7. 证明:∵△ABC为等边三角形,∴AC=BC=AB ,∠C=∠BAC=60°,∵CD=AE,∴△ADC≌△BEA.∴∠CAD=∠ABE.∵∠BAP+∠CAD=60°,∴∠ABE+∠BAP=60°.∴∠BPQ=60°.又∵ BQ⊥AD,∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.。
人教版八年级上册数学《等腰三角形》同步训练附答案
人教版八年级数学上册《13.3等腰三角形》同步训练1.如图,△ABC是等边三角形,△BCD是等腰三角形,且BD=CD,过点D作AB的平行线交AC于点E,若AB=8,DE=6,则BD的长为()A.6B.C.D.2.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证AB=AC.以下是排乱的证明过程:①又∠1=∠2,②∴∠B=∠C,③∵AD∥BC,④∴∠1=∠B,∠2=∠C,⑤∴AB=AC.证明步骤正确的顺序是()A.③→②→①→④→⑤B.③→④→①→②→⑤C..①→②→④→③→⑤D.①→④→③→②→⑤3.如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=BC,则∠AFE=()A.100°B.105°C.110°D.115°4.如图,已知△ABC是等边三角形,D是BC边上的一个动点(异于点B、C),过点D作DE⊥AB,垂足为E,DE的垂直平分线分别交AC、BC于点F、G,连接FD,FE.当点D在BC边上移动时,有下列三个结论:①△DEF一定为等腰三角形;②△CFG一定为等边三角形;③△FDC可能为等腰三角形.其中正确的有()A.0个B.1个C.2个D.3个5.如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为()A.12B.16C.20D.86.如图,AB∥CD,CB平分∠ACD,点E在AB上,DE⊥CB,垂足为F,连接AF则下列结论中错误的是()A.AB=AC B.∠AFC=∠DC.∠AEF+∠D=180°D.∠AFC>∠FCD7.如果一个等腰三角形的两边长为2和5,那么这个三角形的周长是()A.9B.12C.9或12D.不确定8.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°9.若等腰三角形一边长9cm,另一边长4cm,则它的周长为()A.22cm B.17cm C.22cm或17cm D.22cm或19cm 10.等腰三角形一边长9cm,另一边长4cm,它的第三边是()cm.A.4 B.9 C.4或9 D.大于5且小于1311.下列对△ABC的判断,错误的是()A.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.若AB=BC,∠C=50°,则∠B=50°C.若AB=BC,∠A=60°,则△ABC是等边三角形D.若∠A=20°,∠C=80°,则△ABC是等腰三角形12.已知等腰三角形的周长为19,一边长为8,则此等腰三角形的底边长为()A.3B.8C.3或8D.8或5.513.若等腰三角形的顶角是大于60°的锐角,则底角度数的取值范围是()A.x<60°B.x≤60°C.45°<x<60°D.45°≤x<60°14.△ABC中,∠BAC=∠BCA,AD平分∠BAC,DE∥AC,下列说法正确的是()A.∠B=36°B.∠ADB=108°C.∠ADB=3∠EDA D.∠AED=3∠B 15.等腰三角形的两边长为3和8,则这个等腰三角形的周长是()A.14B.19C.14或19D.2016.如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.则下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD⋅BC17.如图,在△ABC中,AB=AC,AC的垂直平分线l交BC于点D.若∠BAD=78°,则∠B的度数是()A.34°B.30°C.28°D.26°18.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM 交AB于点E.若AE=5,BE=1,则EC的长度是()A.B.C.9D.19.如图,在等腰△ABD中,∠A=32°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD,则∠EBD的度数为.20.如图,在△ABC中,AB=AC,以点B为圆心,BC长为半径画弧交AC于点C和点D,再分别以点C和点D为圆心,大于DC长为半径画弧,两弧相交于点F,作射线BF交AC于点E.若∠A=40°,则∠EBC=度.21.如图,在边长为2的等边三角形ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.22.如图,在△ABC中,AB=AC,∠B=35°,D是BC边上的动点,连接AD,若△ABD 为直角三角形,则∠DAC的度数为.23.已知等腰三角形的一个内角为110°,则等腰三角形的底角的度数为.24.用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.25.如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BC=16cm,则BD=cm.26.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,0),在y轴上取一点C使△ABC为等腰三角形,符合条件的C点有个.27.如图,在△ABC中,AB=AC,∠BAC=108°,AC的中垂线交BC于点D,交AC于点E,连接AD,则图中等腰三角形有个.28.如图,在△ABC中,以点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=32°,求∠DAC的度数.29.如图,已知△ABC中,AB=AC,∠ABC、∠ACB的平分线交于点E,直线AE交BC于点D,说明AD⊥BC的理由.30.若关于x,y的二元一次方程组的解都是正数.(1)求a的取值范围;(2)若此方程组的解是一个等腰三角形的一条腰和底边的长,且这个等腰三角形的周长为12,求a的值.31.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.参考答案1.解:连接AD交BC于点O,取AC中点N,连接ON,如图,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ABC=60°,∵△BCD是等腰三角形,∴BD=DC,∴AD垂直平分BC,∴BO=CO=4,∵AN=CN,∴ON=AB=4,ON∥AB,∵AB∥DE,∴ON∥DE,∴OD=AO,∴AO=4,∴OD=2,在Rt△BOD中,BD==2.故选:B.2.解:∵③AD∥BC,∴④∠1=∠B,∠2=∠C,∵①∠1=∠2,∴②∠B=∠C,∴⑤AB=AC,故证明步骤正确的顺序是③→④→①→②→⑤,3.解:∵△ABC是等边三角形,∴∠BAC=60°,∵AD是BC边上的中线,∴∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,∴∠CDE=90°,∵DE=BC,∴DE=DC,∴∠DEC=∠DCE=45°,∴∠AEF=∠DEC=45°,∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°,故选:B.4.解:∵DE的垂直平分线分别交AC、BC于点F、G,∴FE=FD,∴△DEF一定为等腰三角形,故①正确;∵DE⊥AB,DE⊥FG,∴AB∥FG,∴∠FGC=∠B=60°,又∵△ABC是等边三角形,∴∠C=60°,∴△CFG中,∠C=∠CFG=∠CGF,∴△CFG一定为等边三角形;故②正确;∵∠FDC>∠FGC=60°,∠C=60°,∠CFD<∠CFG=60°,∴△FDC不可能为等腰三角形.故③错误;5.解:∵CM平分∠ACB交AB于点M,∴∠NCM=∠BCM,∵MN∥BC∴∠NCM=∠BCM=∠NMC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠B,∴∠ACB=2∠B,NM=NC,∴∠B=30°;∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12,故选:A.6.解:∵AB∥CD,∴∠B=∠BCD,∠AEF+∠D=180°,故C选项正确;∵CB平分∠ACD,∴∠ACB=∠BCD,∴∠ACB=∠B,∴AC=AB,故A选项正确;∵DE⊥CB,∴∠CFD=90°,∴∠D+∠BCD=90°,假如∠AFC=∠D,则∠CAF=∠CFD=90°,而∠CAF不一定是90°,∴∠AFC与∠D不一定相等,故B选项错误;∵∠AFC是△ABF的外角,∴∠AFC>∠B,∵∠B=∠FCD,∴∠AFC>∠FCD,故D选项正确,故选:B.7.解:∵2+2=4<5,∴腰的长不能为2,只能为5,∴等腰三角形的周长=2×5+2=12,故选:B.8.解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,底角∠A=50°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,底角∠B=70°.故这个等腰三角形的底角的度数为50°或70°.故选:C.9.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,此时等腰三角形的周长是4cm+9cm+9cm=22cm,故选:A.10.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,所以三角形的第三边为9cm,故选:B.11.解:A.若∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°,所以△ABC是直角三角形,故此选项正确,不符合题意;B.若AB=BC,∠C=50°,则∠A=∠C=50°,∠B=100°,故此选项错误,符合题意;C.若AB=BC,∠A=60°,则∠A=∠C=60°,∠B=60°,所以△ABC是等边三角形,故此选项正确,不符合题意;D.若∠A=20°,∠C=80°,则∠B=80°,∠C=∠B=80°,所以△ABC是等腰三角形,故此选项正确,不符合题意.故选:B.12.解:本题可分两种情况:①当腰长为8时,底边长=19﹣2×8=3;经检验,符合三角形三边关系;②底边长为8,此时腰长=(19﹣8)÷2=5.5,经检验,符合三角形三边关系;因此该等腰三角形的底边长为3或8.故选:C.13.解:设等腰三角形的底角为x°,则顶角为(180°﹣2x),由题意可得:60°<180°﹣2x<90°,∴45°<x<60°,∴底角度数的取值范围是45°<x<60°,故选:C.14.解:设∠CAD=x°,∵AD平分∠BAC,∠BAC=∠BCA,∴∠BCA=∠BAC=2x°,∵DE∥AC,∴∠BDE=∠BCA=2x°,∠ADE=∠CAD=x°,∴∠ADB=∠BDE+∠ADE=2x°+x°=3x°,即∠ADB=3∠EDA,故选:C.15.解:①若3是腰,则另一腰也是3,底是8,但是3+3<8,故不构成三角形,舍去.②若3是底,则腰是8,8.3+8>8,符合条件.成立.故周长为:3+8+8=19.故选:B.16.解:根据作图方法可得BC=BD=CD,∵BD=CD,∴点D在BC的垂直平分线上,∵AB=AC,∴点A在BC的垂直平分线上,∴AD是BC的垂直平分线,故C结论正确;∴O为BC中点,∴AO是△BAC的中线,∵AB=AC,∴∠BAD=∠CAD,故A结论正确;∵BC=BD=CD,∴△BCD是等边三角形,故B结论正确;∵四边形ABDC的面积=S△BCD+S△ABC=BC•DO+BC•AO=BC•AD,故D选项错误,故选:D.17.解:∵AB=AC,∴∠B=∠C,∵AC的垂直平分线l交BC于点D,∴AD=DC,∴∠DAC=∠C,∵∠ADB=∠DAC+∠C=2∠C,∴∠ADB=2∠B,∵∠BAD=78°,∴∠B+∠ADB+∠BAD=∠B+2∠B+78°=180°,∴∠B=34°,故选:A.18.解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=5+1=6,在Rt△ACE中,CE==,故选:A.19.解:∵AD=AB,∠A=32°,∴∠ABD=∠ADB=(180°﹣∠A)=74°,由作图可知,EA=EB,∴∠ABE=∠A=32°,∴∠EBD=∠ABD﹣∠ABE=74°﹣32°=42°,故答案为:42°.20.解:∵AB=AC,∠A=40°,∴∠ACB=(180°﹣40°)÷2=70°,由题意可知,BC=BD,∴∠BDC=∠ACB=70°,∴∠CBD=180°﹣70°×2=40°,由题意可知,BF平分∠DBC,∴∠EBC=∠CBD=20°.故答案为:20.21.解:连接DE,∵在边长为2的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=1,且DE∥AC,BD=BE=EC=1,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=,故EF===,∵G为EF的中点,∴EG=,∴DG==,故答案为:.22.解:如图,∵AB=AC,∠B=35°,∴∠B=∠C=35°,∴∠BAC=110°,当∠BAD=90°时,∠DAC=110°﹣90°=20°;当∠ADB=90°时,∵AB=AC,AD⊥BC,∴∠DAC=∠BAD=55°.故答案为:20°或55°.23.解:∵等腰三角形的一个内角是110°,∴等腰三角形的顶角为110°,∴等腰三角形的底角为35°,故答案为:35°.24.解:组成等腰三角形的两根木棒的长度分别为3cm和6cm,根据三角形三边关系可得,组成等腰三角形的第三根木棒长为6cm,故答案为:6.25.解:∵AB=AC,AD平分∠BAC交BC于点D,∴BD=DC=BC,∵BC=16cm,故答案为:8.26.解:观察图形可知,若以点A为圆心,以AB为半径画弧,与y轴有2个交点,但其中一个与B点重合,故此时符合条件的点由1个;若以点B为圆心,以AB为半径画弧,与y轴有2个交点;线段AB的垂直平分线与y轴有1个交点;∴符合条件的C点有:1+2+1=4(个),故答案为:4.27.解:∵AB=AC,∠BAC=108°,∴△ABC是等腰三角形,∠B=∠C=(180°﹣∠BAC)÷2=36°,∵AC的中垂线交BC于点D,交AC于点E,∴AD=CD,∴△ADC是等腰三角形,∠DAC=∠C=36°,∴∠BAD=∠BAC﹣∠DAC=72°,∠ADB=∠DAC+∠C=72°,∴∠BAD=∠ADB,∴△BAD是等腰三角形.故图中等腰三角形有3个.故答案为:3.28.解:∵∠B=40°,∠C=32°,∴∠BAC=180°﹣∠B﹣∠C=108°,由作图可知:BA=BD,∴∠BAD=∠BDA=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=38°.29.证明:∵AB=AC,∴∠ABC=∠ACB,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=,,∴∠EBC=∠ECB,∴EB=EC,∴AE垂直平分BC,∴AD⊥BC.30.解:(1)解得,∵若关于x、y的二元一次方程组的解都为正数,∴,解得:a>1;(2)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为12,∴2(a﹣1)+a+2=12,解得:a=4,∴x=3,y=6,故3,3,6不能组成三角形,∴2(a+2)+a﹣1=12,解得:a=3,∴x=2,y=5,故2,5,5能组成等腰三角形,∴a的值是3.31.证明:∵∠1=∠2,∴DB=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴AB=AC.。
人教版数学八年级上册 第十三章 13.3.2 等边三角形 培优练习 (答案版)
人教版数学八年级上册第十三章13.3.2 等边三角形培优练习一、选择题1.等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°【答案】B2. 以下说法中,正确的命题是()(1)等腰三角形的一边长为4 cm,一边长为9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(4)(5)【答案】D3. 已知直线DE与不等边△ABC的两边AC,AB分别交于点D,E,若△CAB=60°,则图中△CDE+△BED=()A.180°B.210°C.240°D.270°【答案】C4. 如图,△DAC和△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,有如下结论:△△ACE△△DCB;△CM=CN;△AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个【答案】B.5. 如图,已知△MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64【答案】C.6.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.8【答案】A7.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B。
2022-2023学年人教版八年级数学上册《13-3等腰三角形》同步达标测试题(附答案) (2)
2022-2023学年人教版八年级数学上册《13.3等腰三角形》同步达标测试题(附答案)一.选择题(共10小题,满分30分)1.如果等腰三角形两边长是6 cm和12 cm,那么它的周长是()A.18 cm B.24 cm C.30 cm D.24或30 cm 2.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°3.如图,在△ABC中,AB=AC>BC,点D、E分别在AB、AC上,连接BE、CD,相交于点F,BE=BC,∠ABE=∠BCD,若CE=5,则CF的长为()A.6B.5C.4D.34.若(a﹣2)2+|b﹣5|=0,则以a、b为边长的等腰三角形的周长为()A.7B.12C.9D.9或125.如图,已知AE交CD于点O,AB∥CD,OC=OE,∠A=50°,则∠C的大小为()A.10°B.15°C.25°D.30°6.如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为()A.3B.4C.5D.67.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC8.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积为()A.2cm2B.4cm2C.6cm2D.8cm29.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的是()①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③B.②③④C.①③④D.①②③④10.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A =18°,则∠GEF的度数是()A.108°B.100°C.90°D.80°二.填空题(共10小题,满分30分)11.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为.12.等腰三角形的一个内角是80°,则它顶角的度数是.13.如果等腰三角形的一个外角是100°,那么它的底角为.14.等腰三角形的一边长为3,另一边长为6,则该三角形的周长是.15.如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,则∠CDE的度数为.16.等腰三角形的一个角是70°,则它的一腰上的高与底边的夹角是.17.在等腰△ABC中,∠A:∠B:∠C=1:m:4,则m的值是.18.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有个.19.如图,在△ABC中,边AB的垂直平分线分别交AB、AC于点D,E,若AD为4cm,△ABC的周长为26cm,则△BCE的周长为cm.20.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.三.解答题(共7小题,满分60分)21.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边长.22.如图,在△ABC中,∠ABC=90°,点E在BC上,点F在AB的延长线上,连接AE,CF,且AE=CF,BF=BE.求证:△ABC是等腰三角形.23.如图,△ABC中,AB=AC,D点在BC上,∠BAD=30°,且∠ADC=60°,BD=3,求CD.24.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD 交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.25.如图所示,在△ABC中,AB=AC,分别在边AB、AC上取点D、E,使DE∥BC,△ADE是等腰三角形吗?说明理由.26.如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.(1)∠1=∠2=°.(2)∠1与∠3相等吗?为什么?(3)试判断线段AB与BD,DH之间有何数量关系,并说明理由.27.已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.参考答案一.选择题(共10小题,满分30分)1.解:当12为腰,6为底时,12﹣6<12<12+6,能构成等腰三角形,周长为12+12+6=30;当6为腰,12为底时,6+6=12,不能构成三角形.故选:C.2.解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,底角∠A=50°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,底角∠B=70°.故这个等腰三角形的底角的度数为50°或70°.故选:C.3.解:∵AB=AC,BE=BC,∴∠ABC=∠ACB.∠BEC=∠BCE,∴∠ABC=∠ACB=∠BEC,∵∠ABE=∠BCD,∴∠EBC=∠ECD,∵∠CFE为△CBF的外角,∴∠CFE=∠CBF+∠FCB,∵∠ABE=∠BCD,∴∠CFE=∠CBF+∠FCB=∠ABC,∴∠CFE=∠CEF,∴CF=CE=5,故选:B.4.解:∵(a﹣2)2+|b﹣5|=0,∴a﹣2=0,b﹣5=0,解得a=2,b=5,∴等腰三角形的三边长分别为2,2,5或2,5,5,∵2+2<5,2+5>5,∴边长分别为2,2,5的等腰三角形不存在,∴以a、b为边长的等腰三角形的周长为2+5+5=12,5.解:∵AB∥CD,∠A=50°,∴∠DOE=∠A=50°,∵OC=OE,∴∠C=∠E,∴∠C=∠DOE=25°,故选:C.6.解:∵△ABC中,AB=AC,AD⊥BC,∴AD是△ABC的中线,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=2AB,∵S△ABC=AC•BF,∴AC•BF=2AB,∵AC=AB,∴BF=2,∴BF=4,故选:B.7.解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.8.解:∵S△ABC=12cm2,∴阴影部分面积=12÷2=6cm2.9.解:∵BE是△ABC的中线,∴AE=CE,∴△ABE的面积等于△BCE的面积,故①正确;∵AD是△ABC的高线,∴∠ADC=90°,∴∠ABC+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAD=90°,∴∠ABC=∠CAD,∵CF为△ABC的角平分线,∴∠ACF=∠BCF=∠ACB,∵∠AFC=∠ABD+∠BCF,∠AGF=∠ACF+∠CAD,∴∠AFC=∠AGF,故②正确;∵∠BAD+∠CAD=∠ACB+∠CAD=90°,∴∠BAD=∠ACD,∴∠F AG=2∠ACF,故③正确;根据已知条件无法证明BH=CH,故④错误,故选:A.10.解:∵∠A=18°,AB=BC=CD=DE=EF,∴∠ACB=18°,根据三角形外角和外角性质得出∠BCD=108°,∴∠CBD=∠CDB=×(180°﹣108°)=36°,∵∠ECD=180°﹣∠BCD﹣∠ACB=180°﹣108°﹣18°=54°,∴∠ECD=∠CED=54°∴∠CDE=180°﹣54°×2=72°,∵∠EDF=∠EFD=180°﹣(∠CDB+∠CDE)=72°,∴∠DEF=180°﹣(∠EDF+∠EFD)=36°,∴∠GEF=180°﹣(∠CED+∠DEF)=90°,即∠GEF=90°.二.填空题(共10小题,满分30分)11.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣25°=65°.故答案为:115°或65°.12.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20°.13.解:∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角是180°﹣100°=80°,①80°角是顶角时,它的底角为:(180°﹣80°)=50°,②80°角是底角时,它的底角80°,所以,它的底角是50°或80°.故答案为:50°或80°.14.解:∵等腰三角形的一边长为3,另一边长为6,∴有两种情况:①6为底,3为腰,而3+3=6,那么应舍去;②3为底,6为腰,那么6+6+3=15;∴该三角形的周长是6+6+3=15.故填15.15.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE=(180°﹣∠CAD)=70°,∴∠CDE=90°﹣70°=20°,故答案为:20°.16.解:如图:△ABC,AB=AC,BD⊥AC当底角为70°时,即∠ABC=∠C=70°,∵BD⊥AC,∴∠BDC=90°,∴∠CBD=90°﹣∠C=90°﹣70°=20°;当顶角为70°时,即∠A=70°,∵AB=AC,∴∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣∠C=90°﹣55°=35°,综上,它的一腰上的高与底边的夹角是20°或35°.故答案为20°或35°.17.解:当∠A为顶角时,此时∠B和∠C为底角,∴此时∠A:∠B:∠C=1:4:4,即:m=4;当∠A为底角时,此时∠C为顶角,所以,∠A:∠B:∠C=1:1:4,即:m=1,故答案为1或4.18.解:∵∠C=72°,∠DBC=36°,∠A=36°,∴∠ABD=180°﹣72°﹣36°﹣36°=36°=∠A,∴AD=BD,△ADB是等腰三角形,∵根据三角形内角和定理知∠BDC=180°﹣72°﹣36°=72°=∠C,∴BD=BC,△BDC是等腰三角形,∵∠C=∠ABC=72°,∴AB=AC,△ABC是等腰三角形.故图中共3个等腰三角形.故答案为:3.19.解:∵ED垂直平分AB,∴AE=BE,∴BD=AD=4cm,AB=8cm,∵△ABC的周长为26cm,∴AC+BC=18cm,△BCE的周长=BC+CE+AE=BC+CE+AE=18cm.故填18.20.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.三.解答题(共7小题,满分60分)21.解:如图,AB=AC,BD为腰AC上的中线,设AD=DC=x,BC=y,根据题意得或,解得或,当x=4,y=17时,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系,舍去;当x=7,y=5时,等腰三角形的三边为14,14,5,答:这个等腰三角形的底边长是5.22.证明:∵∠ABC=90°,∴∠CBF=180°﹣∠ABC=90°,在Rt△ABE和Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL),∴AB=CB,∴△ABC是等腰三角形.23.证明:∵∠ADC=60°,∠BAD=30°,∴∠B=∠ADC﹣∠BAD=60°﹣30°=30°=∠BAD,∴BD=AD=3,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∴∠DAC=120°﹣30°=90°,∴CD=2AD=6.24.(1)证明:∵AD=CD,∴∠DAC=∠DCA,∵AB∥CD,∴∠DAC=∠CAB,∴AC是∠EAB的角平分线,∵CE⊥AE,CB⊥AB,∴CE=CB;(2)AC垂直平分BE,证明:由(1)知,CE=CB,∵CE⊥AE,CB⊥AB,∴∠CEA=∠CBA=90°,在Rt△CEA和Rt△CBA中,,∴Rt△CEA≌Rt△CBA(HL),∴AE=AB,CE=CB,∴点A、点C在线段BE的垂直平分线上,∴AC垂直平分BE.25.解:△ADE是等腰三角形,理由:在△ABC中,AB=AC,∴∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形.26.解:(1)∵AD为BC边上的高,∵AD=BD,∴∠ABD=∠BAD=(180°﹣∠ADB)=45°,∵BE平分∠ABC,∴∠1=∠2=ABD=22.5°,故答案为:22.5;(2)∠1=∠3,理由是:∵AB=BC,BE平分∠ABC,∴BE⊥AC,∴∠BEA=90°=∠ADB,∵∠3+∠BEA+∠AHE=180°,∠2+∠ADB+∠BHD=180°,∠AHE=∠BHD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3;(3)AB=BD+DH,理由是:∵在△BDH和△ADC中,∴△BDH≌△ADC(ASA),∴DH=DC,∴BC=BD+DC=BD+DH,∵AB=BC,∴AB=BD+DH.27.解:∵AB=AC,∴∠B=∠C(等边对等角),∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB(等角的余角相等),∵∠EDB=∠ADF(对顶角相等),∴∠EFC=∠ADF,∴AD=AF,∴△ADF是等腰三角形.。
人教版 八年级数学 13.3 等腰三角形 针对训练 (含答案)
人教版八年级数学13.3 等腰三角形针对训练一、选择题1. 如图,在△ABC中,∠C=90°,∠B=30°,AC=3,P是BC边上的动点,则AP的长可能是()A.2 B.5.2 C.7.8 D.82. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°3. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是()A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC4. 下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.有一个角是60°的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 107. 如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE ∥BC交AB于点E.若△AED的周长为16,则边AB的长为()A.6 B.8 C.10 D.128. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.309. 如图,在△ABC中,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于点E,D.若AC=3,AB=4,则DE的长为()A.6 B.7 C.8 D.910. 如图所示,在三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的点E处,那么下列等式成立的是()A. AC=AD+BDB. AC=AB+CDC. AC=AD+CDD. AC=AB+BD二、填空题11. 如图,等腰三角形ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于________.12. 如图,在△ABC中,AB=AC,∠BAC=40°,AD是中线,BE是高,AD与BE交于点F,则∠BFD=________°.13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.15. 如图,在△ABC中,∠B=20°,∠A=105°,点P在△ABC的三边上运动,当△P AC为等腰三角形时,顶角的度数是__________.三、解答题16. 如图所示,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1,求AD的长.17. 如图所示,点E在△ABC中AC边的延长线上,点D在AB边上,DE交BC 于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.18. 如图①,在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F.探究一:猜想图①中线段EF 与BE ,CF 间的数量关系,并证明. 探究二:设AB =8,AC =6,求△AEF 的周长.探究三:如图②,在△ABC 中,∠ABC 的平分线BO 与△ABC 的外角平分线CO 交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F.猜想这时EF 与BE ,CF 间又是什么数量关系,并证明.19. 如图①,在△ABC 中,AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E ,F ,H .易证PE +PF =CH .证明过程如下: 连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB ·PE ,S △ACP =12AC ·PF ,S △ABC =12AB ·CH . 又∵S △ABP +S △ACP =S △ABC , ∴12AB ·PE +12AC ·PF =12AB ·CH . ∵AB =AC ,∴PE +PF =CH .如图②,若P 为BC 延长线上的点,其他条件不变,PE ,PF ,CH 之间又有怎样的数量关系?请写出你的猜想,并加以证明.20. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.人教版八年级数学13.3 等腰三角形针对训练-答案一、选择题1. 【答案】B[解析] 根据垂线段最短,可知AP的长不能小于3.∵在△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=6.∴AP的长不能大于 6.2. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.3. 【答案】C4. 【答案】D[解析] 有两个内角是60°的三角形,有一个角是60°的等腰三角形,腰和底相等的等腰三角形均可以得到等边三角形,而有两个角相等的等腰三角形不能得到等边三角形.5. 【答案】D[解析] 由∠BAD+∠B=∠CAD+∠C可得∠ADB=∠ADC,又∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°,又BD=DC,由垂直平分线的性质可得AB=AC.由等式的性质,根据AB-BD=AC-CD,AB+BD=AC+CD,又BD=CD,均可得AB=AC.选项D不能得到AB=AC.6. 【答案】C【解析】∵AB=AC,AD平分∠BAC,∴根据等腰三角形三线合一性质可知AD⊥BC,BD=CD,在Rt△ABD中,AB=5,AD=3,由勾股定理得BD=4,∴BC=2BD=8.7. 【答案】C[解析] ∵BD平分∠ABC,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.∵△AED的周长为16,∴AE+DE+AD=AE+BE+AD=AB+AD=16.∵AD=6,∴AB=10.8. 【答案】B[解析] ∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°.∴△ADE为等边三角形.∵AB =10,BD=6,∴AD=AB-BD=10-6=4.∴△ADE的周长为4×3=12.9. 【答案】B[解析] 由题意得∠EBC=∠ABE,∠ACD=∠DCB.根据平行线的性质得∠DCB=∠ADC,∠EBC=∠AEB,所以∠ADC=∠ACD,∠ABE=∠AEB.所以AD=AC,AB=AE.所以DE=AD+AE=AC+AB=3+4=7.10. 【答案】D二、填空题11. 【答案】36[解析] 过点B作BD⊥AC于点D.∵∠A=30°,AB=12,∴在Rt△ABD中,BD=12AB=12×12=6.∴S △ABC =12AC·BD =12×12×6=36.12. 【答案】7013. 【答案】30[解析] ∵MN ∥BC ,∴∠MOB =∠OBC.∵∠OBM =∠OBC , ∴∠MOB =∠OBM. ∴MO =MB.同理NO =NC.∴△AMN 的周长=AM +MO +AN +NO =AM +MB +AN +NC =AB +AC =30.14. 【答案】85或14 [解析] ①当∠A 为顶角时,等腰三角形两底角的度数为180°-80°2=50°, ∴特征值k =80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.15. 【答案】105°或55°或70° [解析] (1)如图①,点P 在AB 上时,AP =AC ,顶角∠A =105°.(2)∵∠B =20°,∠BAC =105°, ∴∠ACB =180°-20°-105°=55°.点P 在BC 上时,如图②,若AC =PC ,则顶角∠C =55°.如图③,若AC =AP ,则顶角∠CAP =180°-2∠C =180°-2×55°=70°. 综上所述,顶角为105°或55°或70°.三、解答题16. 【答案】[解析] 由已知条件易知△ABE ≌△CAD ,从而BE =AD ,只需求PB 的长即可,由BQ ⊥AD 知,若在Rt △BPQ 中有∠PBQ =30°就可以求出BP 的长,于是求证∠BPQ =60°是解决问题的突破口. 解:∵△ABC 为等边三角形, ∴∠BAC =∠C =60°,AB =CA. 又AE =CD ,∴△ABE ≌△CAD. ∴∠ABE =∠CAD ,BE =AD.∴∠BPQ =∠BAP +∠ABE =∠BAP +∠CAD =∠BAC =60°. 又BQ ⊥AD ,∴∠PBQ =30°. ∴PB =2PQ =6.∴BE =PB +PE =7.∴AD =BE =7.17. 【答案】证明:如图所示,过点D 作DG ∥AC 交BC 于点G ,则∠GDF =∠E ,∠DGB =∠ACB. 在△DFG 和△EFC 中,⎩⎨⎧∠DFG =∠EFC ,DF =EF ,∠GDF =∠E ,∴△DFG ≌△EFC(ASA).∴GD =CE.∵BD =CE ,∴BD =GD.∴∠B =∠DGB.∴∠B =∠ACB.∴AB =AC ,即△ABC 是等腰三角形.18. 【答案】解:探究一:猜想:EF =BE +CF.证明如下: ∵BO 平分∠ABC ,∴∠ABO =∠CBO. ∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠ABO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE +OF =BE +CF.探究二:C △AEF =AE +EF +AF =AE +(OE +OF)+AF =(AE +BE)+(AF +CF)=AB +AC =8+6=14. 探究三:猜想:EF =BE -CF.证明如下:∵BO 平分∠ABC , ∴∠EBO =∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠EBO =∠EOB.∴BE =OE. 同理:OF =CF ,∴EF =OE -OF =BE -CF.19. 【答案】解:PE =PF +CH.证明如下: 连接AP.∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB·PE ,S △ACP =12AC·PF ,S △ABC =12AB·CH.∵S △ABP =S △ACP +S △ABC , ∴12AB·PE =12AC·PF +12AB·CH. ∵AB =AC ,∴PE =PF +CH.20. 【答案】解:(1)证明:∵AB =AC , ∴点A 在BC 的垂直平分线上.∵DB =DC ,∴点D 在BC 的垂直平分线上. ∴直线AD 是BC 的垂直平分线.∴AD ⊥BC. (2)证明:∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD.∵DE ∥AC ,∴∠EDA =∠CAD. ∴∠BAD =∠EDA.∴DE =AE. (3)DE =AC +BE.理由:同(2)得∠BAD =∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.∵AB=AC,∴DE=AB+BE=AC+BE.。
_ 13.3 等腰三角形 同步课时训练(含答案)2021-2022学年人教版 八年级数学上册
人教版八年级数学上册13.3 等腰三角形同步课时训练一、选择题1. 如图,在等边三角形ABC中,AD⊥BC于点D,则∠BAD的度数为()A.60°B.50°C.40°D.30°2. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°3. 已知:如图,直线PO与AB交于点O,P A=PB,则下列结论中正确的是()A.AO=BOB.PO⊥ABC.PO是线段AB的垂直平分线D.点P在线段AB的垂直平分线上4. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. (2020·宜宾)如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=13 BE,AN=13AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形6. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°7. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.8. 如图所示,在三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的点E处,那么下列等式成立的是()A. AC=AD+BDB. AC=AB+CDC. AC=AD+CDD. AC=AB+BD二、填空题9. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD10. 如图,在等边三角形ABC中,D是AB的中点,DE⊥AC于点E,EF⊥BC于点F,已知AB=8,则BF的长为________.11. 如图,在△ABC中,AB=AC,E为BC的中点,BD⊥AC,垂足为D.若∠EAD =20°,则∠ABD=________°.12. (2020·宜昌)如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC= 60°,∠ACB= 60°,BC= 48米,则AC= 米.13. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.14. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、作图题15. 尺规作图:已知线段a(如图),画一个底边长度为a,底边上的高也为a的等腰三角形.(保留作图痕迹,不写作法)16. 如图,在△ABC中,∠A=90°,∠B=67.5°.请画一条直线,把这个三角形分割成两个等腰三角形.(请你把所有不同的分割方法都画出来,只需画图,不必说明理由,但要在图中标出相等两角的度数)四、解答题17. 如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于点D,AD=4 cm,求BC的长.18. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD 交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.人教版八年级数学上册13.3 等腰三角形同步课时训练-答案一、选择题1. 【答案】D[解析] ∵△ABC是等边三角形,∴∠BAC=60°.∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°.2. 【答案】D[解析] 由题意得,∠A=70°,当∠B=∠A=70°时,△ABC为等腰三角形;当∠B=55°时,可得∠C=55°,∠B=∠C,△ABC为等腰三角形;当∠B=40°时,可得∠C=70°=∠A,△ABC为等腰三角形.3. 【答案】D4. 【答案】C[解析] ∵OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,∴∠AOM=∠BOM=25°,MA=MB.∴∠OMA=∠OMB=65°.∴∠AMB=130°.∴∠MAB=12×(180°-130°)=25°.故选C.5. 【答案】C【解析】由△ABC和△ECD都是等边三角形,可得△BCE≌△ACD(SAS),∴∠MBC=∠NAC,BE=AD,∵BM=13BE,AN=13AD,∴BM=AN,∴△MBC≌△NAC(SAS),∴MC=NC,∠BCM=∠ACN,∵∠BCM+∠MCA=60°,∴∠NCA+∠MCA=60°,∴∠MCN=60°,∴△MCN是等边三角形.6. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.7. 【答案】最小的等腰直角三角形的面积42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.8. 【答案】D二、填空题②③④【解析】序号正误逐项分析①×△BAD与△ACD中,虽有两角和一边相等,但不是对应关系的角和边,所以不能判定两三角形全等,因而也就不能得出AB=AC②√∠BAD=∠CAD结合AD是△ABC的边BC上的高,可得∠B=∠C,所以AB=AC,因而△ABC是等腰三角形③√由于AD是△ABC的边BC上的高,所以∠ADB=∠ADC=90°,因而AB2-BD2=AC2-CD2,于是(AB+BD)(AB-BD)=(AC+CD)(AC-CD),由AB+BD=AC+CD ,得AB-BD=AC-CD ,两式相加得2AB=2AC,所以,AB=AC,得△ABC是等腰三角形④√由于AD是△ABC的边BC上的高,所以∠ADB=∠ADC=90°,因而AB2-BD2=AC2-CD2,于是(AB+BD)(AB-BD)=(AC+CD)(AC-CD),由AB-BD=AC-CD ,得AB+BD=AC+CD ,两式相加得2AB=2AC,所以AB=AC,得△ABC是等腰三角形10. 【答案】5[解析] ∵在等边三角形ABC中,D是AB的中点,AB=8,∴AD =4,BC=AC=AB=8,∠A=∠C=60°.∵DE⊥AC于点E,EF⊥BC于点F,∴∠AED=∠CFE=90°.∴AE=12AD=2.∴CE=8-2=6.∴CF=12CE=3.∴BF=5.11. 【答案】50[解析] ∵AB=AC,E为BC的中点,∴∠BAE=∠EAD=20°.∴∠BAD=40°,又∵BD⊥AC,∴∠ABD=90°-∠BAD=90°-40°=50°.12. 【答案】48【解析】∵∠ABC=60°,∠ACB=60°,∴∠A=180°-60°-60°=60°,∴△ABC 是等边三角形,∴AB=BC=AC,∵BC=48,∴AC=4813. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.14. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、作图题15. 【答案】解:如图所示,△ABC即为所求.16. 【答案】解:如图所示:四、解答题17. 【答案】解:∵AB=AC,∠C=30°,∴∠B=30°. ∵AB⊥AD,AD=4 cm,∴BD=8 cm.∵∠ADB=90°-∠B=60°,∠C=30°,∴∠DAC=30°=∠C.∴CD=AD=4 cm.∴BC=BD+CD=8+4=12(cm).18. 【答案】解:(1)∵四边形ABCD是长方形,∴AD∥BC.∴∠BEG=∠AGC′=48°.由折叠的性质得∠CEF=∠C′EF,∴∠CEF=12(180°-48°)=66°.(2)证明:∵四边形ABCD是长方形,∴AD∥BC.∴∠GFE=∠CEF.由折叠的性质得∠CEF=∠C′EF,∴∠GFE=∠C′EF.∴GE=GF,即△EFG是等腰三角形.19. 【答案】解:(1)证明:∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵CE⊥BD,∴∠BCE+∠DBC=90°.∴∠ABD=∠BCE.在△DAB和△EBC中,⎩⎨⎧∠ABD =∠BCE ,AB =BC ,∠DAB =∠EBC =90°,∴△DAB ≌△EBC(ASA). ∴AD =BE.(2)证明:∵E 是AB 的中点,∴AE =BE. ∵BE =AD , ∴AE =AD.∴点A 在线段ED 的垂直平分线上. ∵AB =BC ,∠ABC =90°, ∴∠BAC =∠BCA =45°. ∵∠BAD =90°, ∴∠BAC =∠DAC =45°. 在△EAC 和△DAC 中,⎩⎨⎧AE =AD ,∠EAC =∠DAC ,AC =AC ,∴△EAC ≌△DAC(SAS). ∴CE =CD.∴点C 在线段ED 的垂直平分线上. ∴AC 是线段ED 的垂直平分线. (3)△DBC 是等腰三角形.理由:由(1)知△DAB ≌△EBC ,∴BD =CE. 由(2)知CE =CD. ∴BD =CD.∴△DBC 是等腰三角形.。
人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)
人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)一、选择题1.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )A. 2cmB. 4cmC. 6cmD. 8cm2.如图,BC=10cm,∠B=∠BAC=15°,AD⊥BC于点D,则AD的长为( )A. 3cmB. 4cmC. 5cmD. 6cm3.如图,△ABC是等边三角形,AD⊥BC于点D,点E在AC上,且AE=AD,则∠DEC的度数为( )A. 105°B. 95°C. 85°D. 75°4.如图,直线l1//l2,△ABC是等边三角形∠1=50°,则∠2的大小为( )A. 60°B. 80°C. 70°D. 100°5.如图,Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3则BD的长是( )A. 12B. 9C. 6D. 36.如图,直线l//m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为18°,则∠α的度数为( )A. 60°B. 42°C. 36°D. 30°7.如图,△ABC中,AB=AC,∠BAC=120∘,AC的垂直平分线交BC于D,交AC于E,DE=2,则BC=( )A. 8B. 10C. 12D. 158.如图,四边形ABCD中∠C=30∘,∠B=90∘,∠ADC=120∘若AB=2,CD=8,则AD=( )A. 4B. 5C. 6D. 79.如图,已知∠AOB=60°,点P在边OA上OP=12,点M,N在边OB上PM=PN,若MN=2,则OM的长是( )A. 3B. 4C. 5D. 610.如图,C为线段AB上一动点(不与点A、B重合),在AB同侧分别作正三角形ACD和正三角形BCE,AE与BD 交于点F,AE与CD交于点G,BD与CE交于点H,连接GH.以下五个结论:①AE=BD②GH//AB③AD=DH ④GE=HB⑤∠AFD=60°一定成立的是( )A. ①②③④B. ①②④⑤C. ①②③⑤D. ①③④⑤二、填空题11.若一个等边三角形的周长是30cm,一边上的高是5√ 3cm,则这个等边三角形的面积是.12.如图∠MAN=60°,点B在射线AM上,且AB=2,点C在射线AN上.若△ABC是锐角三角形,则AC的取值范围是______.13.在△ABC中,若AB=AC=7,∠B=30°,则BC边上的高AD=.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为________米.15.如图,将一副三角板如图所示叠放在一起,若AB=8cm,则阴影部分的面积是cm2.16.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.17.如图,在△ABC中∠B=30°,BC的垂直平分线交AB于点E,垂足为点D,若ED=5,则EC的长为.18.在△ABC中∠B=10°,∠C=20°,AC=2cm,CD⊥AB且CD交BA的延长线于点D,则CD的长为.19.如图,将边长为5cm的等边△ABC向右平移1cm,得到△A′B′C′,此时阴影部分的周长为cm.20.如图,△ABC为等边三角形DE//AC,点O为线段EC上一点,DO的延长线与AC的延长线交于点F,DO= FO.若AC=7,FC=3,则OC的长为.三、解答题21.如图,在Rt△ABC中∠A=90°,∠B=30°,请用尺规作图法在AB上求作一点D,使得AB=3AD.(保留作图痕迹,不写作法)22.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.23.如图∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足分别为D、E,CE交AB于点F.(1)求证:BE=CD;(2)若∠ECA=75°,求证:DE=1AB.224.如图,在△ABC中AB=AC=8,∠CBA=45°.(1)求证:AC⊥AB;(2)分别以点A,C为圆心,AC长为半径作弧,两弧交于点D(点D在AC的左侧),连接CD,AD,BD.求△ABD 的面积.25.如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.(1)尺规作图:在直线BC的下方,过点B作∠CBE=∠CBA,作NC的延长线,与BE相交于点E.(2)求证:△BEC是等边三角形;(3)求证:∠AMN=60°.答案和解析1.【答案】B【解析】【分析】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.根据直角三角形30°角所对的直角边等于斜边的一半解答.【解析】解:∵直角三角形中30°角所对的直角边为2cm∴斜边的长为2×2=4cm.故选:B.2.【答案】C【解析】解:∵∠B=∠BAC=15°∴AC=BC∵∠ACD=∠B+∠BAC=15°+15°=30°又∵AD⊥BCAC=5cm.∴AD=12故选:C.根据等角对等边的性质可得AC=BC=10cm,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.本题考查了等角对等边的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.3.【答案】A【解析】【分析】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.先根据△ABC是等边三角形,AD⊥BC可得∠CAD=30°,再由AD=AE可知∠ADE=∠AED,根据三角形内角和定理即可求出∠AED的度数,故可得出∠DEC的度数.【解答】解:∵△ABC是等边三角形∴∠BAC=60°.∵AD⊥BC ∴AD平分∠BAC∴∠DAC=30°.∵AD=AE∴∠ADE=∠AED=180°−30°2=75°∴∠DEC=∠DAC+∠ADE=105°.故选:A4.【答案】C【解析】【分析】本题考查了等边三角形的性质和平行线的性质,熟记等边三角形的性质和平行线的性质是解题的关键.根据等边三角形的性质及外角性质可求∠3,再根据平行线的性质即可得到结论.【解答】解:如图∵△ABC是等边三角形∴∠A=60°∵∠1=50°∴∠3=∠1+∠A=50°+60°=110°∵直线l1//l2∴∠2+∠3=180°∴∠2=180°−∠3=70°故选:C.5.【答案】B【解析】解:∵CD⊥AB,∠ACB=90°∴∠ADC=90°=∠ACB∵∠B=30°∴∠A=90°−∠B=60°∴∠ACD=90°−∠A=30°∵AD=3∴AC=2AD=6∴AB=2AC=12∴BD=AB−AD=12−3=9故选:B.根据三角形的内角和求出∠A,根据余角的定义求出∠ACD,根据含30°角的直角三角形性质求出AC=2AD,AB=2AC求出AB即可.本题主要考查的是含30°角的直角三角形性质和三角形内角和定理的应用,关键是求出AC=2AD,AB=2AC.6.【答案】B【解析】解:∵△ABC是等边三角形∴∠A=∠ABC=60°.∵l//m∴∠1=∠ABC+18°=78°.∴∠α=180°−∠A−∠1=180°−60°−78°=42°.故选:B.先利用等边三角形的性质得到∠A、∠ABC的度数,再利用平行线的性质求出∠1的度数,最后利用三角形的内角和定理求出∠a.本题考查了平行线的性质、等边三角形的性质等知识点,掌握“等边三角形的每个内角都是60°”、“三角形的内角和是180°”及平行线的性质是解决本题的关键.另解决本题亦可过点C作直线l的平行线,利用平行线的性质求解.7.【答案】C【解析】解:连接AD,如图所示:∵AB=AC,∠BAC=120∘∴∠B=∠C=30∘∵AC的垂直平分线交BC于D∴DA=DC,∠DEC=90∘∴CD=2DE=4∴AD=4∵∠BAD=120∘−30∘=90∘∴BD=2AD=8∴BC=BD+CD=8+4=12∴故选C.8.【答案】A【解析】【分析】本题考查了含30∘角的直角三角形的性质,通过作辅助线得出直角三角形是解决问题的关键.作DE⊥BC于E,作AF⊥DE于F,先求出EF=AB=2,再根据含30∘角的直角三角形的性质得出DE= 12CD=4,进而得到DF=DE−EF=2,进而可得出答案.【解答】解:作DE⊥BC于E,作AF⊥DE于F,如图所示:则∠DEC=∠AFD=90∘,EF=AB=2∵∠C=30∘∴∠CDE=60°∴∠ADE=120°−60°=60∘,DE=12CD=4∴DF=DE−EF=2∵∠AFD=90°∴∠DAF=30∘∴AD=2DF=4.故选A.9.【答案】C【解析】【分析】此题考查了含30°角的直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用含30°角的直角三角形的性质得出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD−MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D在Rt△OPD中∠AOB=60°,OP=12∴∠OPD=30°∴OD=12OP=6∵PM=PN,PD⊥MN,MN=2∴MD=ND=12MN=1∴OM=OD−MD=6−1=5.故选C.10.【答案】B【解析】【分析】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键.根据等边三角形的性质可以得出△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,进而得出结论.【解答】解:∵△ACD和△BCE是等边三角形∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.∴∠DCE =60°.∴∠DCE =∠BCE .∴∠ACD +∠DCE =∠BCE +∠DCE∴∠ACE =∠DCB .在△ACE 和△DCB 中{AC =DC ∠ACE =∠DCB CE =CB∴△ACE ≌△DCB(SAS)∴AE =BD ,∠CAE =∠CDB ,∠AEC =∠DBC.故①正确;在△CEG 和△CBH 中{∠GEC =∠HBC CE =CB ∠GCE =∠HCB,∴△CEG ≌△CBH(ASA)∴CG =CH ,GE =HB ,故④正确;∴△CGH 为等边三角形∴∠GHC =60°∴∠GHC =∠BCH∴GH//AB ,故②正确;∵∠AFD =∠EAB +∠CBD∴∠AFD =∠CDB +∠CBD =∠ACD =60°,故⑤正确;∵∠DHC =∠HCB +∠HBC =60°+∠HBC∴∠DCH ≠∠DHC∴CD ≠DH∴AD ≠DH ,故③不正确;综上所述,正确的有:①②④⑤.故选B .11.【答案】25√ 3cm 2【解析】【分析】根据周长可求边长;根据三角形面积公式计算.此题考查等边三角形的性质和三角形的面积计算,属基础题.【解答】解:∵等边三角形的周长是30厘米∴边长为10厘米.∵高是√ 102−52=√ 75=5√ 3厘米∴面积=10×5√ 3÷2=25√ 3(cm2).故答案是:25√ 3cm2.12.【答案】1<AC<4【解析】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中AB=2,∠A=60°∴∠ABC1=30°∴AC1=12AB=1在Rt△ABC2中AB=2,∠A=60°∴∠AC2B=30°∴AC2=4当点C在C1和C2之间时,△ABC是锐角三角形∴AC的取值范围是1<AC<4故答案为:1<AC<4.当点C在射线AN上运动,△ABC的形状可能是钝角三角形、直角三角形或锐角三角形.画出相应的图形,根据运动三角形的变化,构造含30°角的直角三角形,即可得到AC的取值范围.本题考查了直角三角形中30°的角所对的直角边等于斜边的一半,能熟记含30°角的直角三角形的性质是解此题的关键.13.【答案】3.5【解析】【分析】本题考查了含30°角的直角三角形的性质,熟练掌握含30°角的直角三角形的性质是解题关键.根据含30°角的直角三角形的性质即可得.【解答】解:∵在△ABC中AB=AC=7,∠B=30°,AD⊥BC∴AD=12AB=3.5故答案为:3.5.14.【答案】12【解析】【分析】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面4米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图∵∠BAC=30°,∠BCA=90°∴AB=2CB而BC=4米∴AB=8米∴这棵大树在折断前的高度为AB+BC=12米.故答案为12.15.【答案】8【解析】【分析】本题主要考查含30°角的直角三角形,等腰直角三角形,平行线的判定与性质等知识点,熟记公式是解题的关键.先利用直角三角形的性质求出AC的长,再根据平行线的性质及等腰直角三角形的性质求出CF的长即可.【解答】解:∵∠B=30°,∠ACB=90°,AB=8cm∴AC=4cm.由题意可知BC//ED∴∠AFC=∠ADE=45°∴AC=CF=4cm.×4×4=8(cm2).故S△ACF=12故答案为8.16.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点∴EF=2∵DE//AB,DF//AC∴△DEF是等边三角形∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.本题考查了等边三角形的判定与性质,平行线的性质,关键是证明△DEF是等边三角形.17.【答案】10【解析】【分析】本题考查的是线段垂直平分线的性质和含30°角的直角三角形的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.【解答】解:在△ABC中∠B=30°,BC的垂直平分线交AB于E,ED=5所以BE=CE所以∠B=∠DCE=30°在Rt△CDE中因为∠DCE=30°,ED=5所以CE=2DE=10.故答案为:10.18.【答案】1cm【解析】【分析】根据三角形的外角的性质可求得∠DAC=30°,再根据直角三角形中有一个角是30°,则这个角所对的边等于斜边的一半,从而求得CD的长.本题考查直角三角形的性质的综合运用.【解答】解:∵∠B=10°,∠C=20°∴∠DAC=30°.∵CD⊥AB∴CD=1/2AC=1cm.故CD的长度是1cm.19.【答案】12【解析】【分析】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了平移的性质.利用等边三角形的性质得到AB=BC=5cm,∠B=∠ACB=60°,再根据平移的性质得到∠A′B′C′=∠B= 60°,BB′=1cm,B′C=4cm,于是可判断阴影部分为等边三角形,从而得到阴影部分的周长.【解答】解:∵△ABC为等边三角形∴AB=BC=5cm,∠B=∠ACB=60°∵等边△ABC向右平移1cm得到△A′B′C′∴∠A′B′C′=∠B=60°,BB′=1cm∴∠A′B′C′=∠ACB=60°,B′C=BC−BB′=5−1=4cm∴阴影部分为等边三角形∴阴影部分的周长为3×4=12(cm).故答案为:12.20.【答案】221.【答案】解:如下图:点D即为所求.【解析】本题考查了尺规作图,掌握作一个角的平分线的方法是解题的关键.作∠ACB 的平分线即可.22.【答案】解:(1)∵△ABD 、△AEC 都是等边三角形∴AD =AB ,AC =AE ,∠DAB =∠DBA =∠ADB =60°,∠CAE =60°∵∠DAB =∠DAC +∠CAB ,∠CAE =∠BAE +∠CAB∴∠DAC =∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC≌△BAE∴CD =BE .(2)∵△DAC≌△BAE∴∠ADC =∠ABE∴∠CFE =∠BDF +∠DBF=∠BDF +∠DBA +∠ABF=∠BDF +∠DBA +∠ADC=∠BDA +∠DBA=60°+60°=120°.【解析】本题考查了全等三角形的性质与判定,解决本题的关键是证明△DAC≌△BAE .(1)利用△ABD 、△AEC 都是等边三角形,证明△DAC≌△BAE ,即可得到CD =BE ;(2)由△DAC≌△BAE ,得到∠ADC =∠ABE ,再由∠CFE =∠BDF +∠DBF =∠BDF +∠DBA +∠ABF ,即可解答.23.【答案】证明:(1)∵∠ACB =90°,AD ⊥CE ,BE ⊥CE∴∠ACD +∠BCE =90°,∠ACD +∠CAD =90°,∠ADC =∠CEB =90°∴∠BCE =∠CAD在△ADC 和△CEB 中{∠ADC =∠CEB ∠CAD =∠BCE AC =BC∴△ADC≌△CEB(AAS)∴BE =CD ;(2)∵∠ECA=75°∴∠CAD=15°=∠BCE ∵∠ACB=90°,AC=BC∴∠CBA=∠CAB=45°∴∠BFE=60°,∠DAF=30°∴∠FBE=30°,DF=12AF∴EF=12BF∴DE=DF+EF=12(AF+BF)=12AB.【解析】(1)由“AAS”可证△ADC≌△CEB,可得BE=CD;(2)由直角三角形的性质可得DF=12AF,EF=12BF,可得结论.本题考查了全等三角形的判定和性质,30°所对的直角边是斜边的一半,直角三角形的性质,证明三角形全等是解题的关键.24.【答案】(1)证明:∵AB=AC∴∠CBA=∠ACB=45°∴∠CAB=180°−∠ACB−∠CBA=90°∴AC⊥AB.(2)解:过点D作DE⊥BA,交BA的延长线于点E由题意得:AC=AD=CD=8∴△ACD是等边三角形∴∠DAC=60°∴∠DAE=180°−∠DAC−∠CAB=30°∴DE=12AD=4∴△ABD的面积=12AB⋅DE=12×8×4=16∴△ABD的面积为16.【解析】(1)利用等腰三角形的性质可得∠CBA=∠ACB=45°,然后利用三角形内角和定理求出∠CAB=90°,即可解答;(2)过点D作DE⊥BA,交BA的延长线于点E,根据题意可得:AC=AD=CD=8,从而可得△ACD是等边三角形,然后利用等边三角形的性质可得∠DAC=60°,从而利用平角定义可得∠DAE=30°,最后在Rt△DEA中,利用含30°角的直角三角形的性质可得DE=4,从而利用三角形的面积进行计算即可解答.本题考查了等腰三角形的性质,等边三角形的判定与性质,含30°角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【答案】(1)解:如图所示:(2)证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∴∠ACH=120°∵CN平分∠ACH∴∠HCN=∠BCE=60°∵∠CBE=∠CBA=60°∴∠EBC=∠BCE=∠BEC=60°∴△BEC是等边三角形;(3)证明:连接ME∵△ABC和△BCE是等边三角形∴AB=BC=BE在△ABM和△EBM中∵{AB=EB∠ABM=∠EBM BM=BM,∴△ABM≌△EBM(SAS)∴AM=EM,∠BAM=∠BEM∵AM=MN∴MN=EM∴∠N=∠CEM∵∠HCN=∠N+∠CMN=60°∠BEC=∠BEM+∠CEM=60°∴∠CMN=∠BEM=∠BAM∵∠AMC=∠ABC+∠BAM=∠AMN+∠CMN∴∠AMN=60°.【解析】【分析】此题是三角形综合题目,考查了等边三角形的性质和判定,作一个角等于已知角的基本作图,全等三角形的判定与性质,三角形的外角性质等知识;熟练掌握等边三角形的性质,通过作辅助线构造三角形全等是解本题的关键.(1)以B为圆心,以任意长为半径画弧,交AB、BC两边为D和F,以F为圆心,以DF为半径画弧,交前弧于G,作射线BG,交NC的延长线于E,则∠CBE=∠CBA;(2)证明△BCE三个角都是60°,可得结论;(3)作辅助线,构建三角形全等,证明△ABM≌△EBM(SAS),得AM=EM,∠BAM=∠BEM,证明∠CMN=∠BEM=∠BAM根据三角形外角的性质可得结论.。
人教版数学八年级上册 第13章 13.1--13.3随堂练习题含答案
13.1轴对称一.选择题1.下列图形中是轴对称图形的是()A.B.C.D.2.三角形中,到三个顶点距离相等的点是()A.三边垂直平分线的交点B.三条中线的交点C.三条角平分线的交点D.三条高线的交点3.如图,AC=AD,BC=BD,则下列判断正确的是()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB4.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=()A.25cm B.45cm C.50cm D.55cm5.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD 于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,AG=3DG,其中不正确的结论的个数为()A.1B.2C.3D.46.下列说法错误的是()A.关于某直线成轴对称的两个图形一定能完全重合B.线段是轴对称图形C.全等的两个三角形一定关于某直线成轴对称D.轴对称图形的对称轴至少有一条7.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1 cm B.2 cm C.3 cm D.4cm8.下列条件中,不能判定直线MN是线段AB(M,N不在AB上)的垂直平分线的是()A.MA=MB,NA=NB B.MA=MB,MN⊥ABC.MA=NA,MB=NB D.MA=MB,MN平分AB9.下列图形中,对称轴的条数最少的图形是()A.B.C.D.10.如图,在△ABC中,分别以点A,B为圆心,大于AB长为半径画弧,两弧分别交于点D,E,则直线DE是()A.∠A的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线二.填空题11.如图,在△ABC中,点D、E在直线AB上,且点D、E分别是线段AC、BC的垂直平分线上的点.若∠ACB=30°,则∠DCE=12.如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于D,若CD=2cm,则AD=cm.13.已知△ABC中,AB边的垂直平分线交BC边于点D,AC边的垂直平分线交BC边于点E,若AD=5,AE=7,DE=3,则BC=.14.如图,在△ABC中,DE是AC的中垂线,∠C=30°,∠BAD=50°,则∠B=.15.如图,AB=AC,DE垂直AB于D,交AC于E,且AD=BD,若△BEC的周长为20,BC=6,那么△ABC的周长为.三.解答题16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?18.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.19.如图1,△ABC中,AB=AC,∠BAC=130°,边AB、AC的垂直平分线交BC于点P、Q.(1)求∠P AQ的度数;(2)如图2,△ABC中,AB>AC,且90°<∠BAC<180°,边AB、AC的垂直平分线交BC于点P、Q.①若∠BAC=130°,则∠P AQ=°,若∠BAC=α,则∠P AQ用含有α的代数式表示为;②当∠BAC=°时,能使得P A⊥AQ;③若BC=10cm,则△P AQ的周长为cm.参考答案与试题解析一.选择题1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意.故选:C.2.【解答】解:∵垂直平分线上任意一点,到线段两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A.3.【解答】解:在△ABC与△BDC中,,∴△ABC≌△ABD,∴∠CAB=∠DAB,∴AB垂直平分CD,故选:A.4.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故选:C.5.【解答】解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD平分∠EDF;③正确;∵AD平分∠BAC,∵AE=AF,DE=DF,∴AD垂直平分EF,①正确;②错误,∵∠BAC=60°,∴∠DAG=30°,∴AG=AE,AD=AE,∴DG=AE,∴AG=3DG,④正确.故选:A.6.【解答】解:A、关于某直线成轴对称的两个图形一定能完全重合,正确,故本选项错误;B、线段是轴对称图形,正确,故本选项错误;C、全等的两个三角形不一定关于某直线成轴对称,但关于某直线成轴对称的两个三角形一定,故本选项正确;D、轴对称图形的对称轴至少有一条,正确,故本选项错误.故选:C.7.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.8.【解答】解:∵MA=MB,NA=NB,∴直线MN是线段AB的垂直平分线;∵MA=MB,MN⊥AB,∴直线MN是线段AB的垂直平分线;当MA=NA,MB=NB时,直线MN不一定是线段AB的垂直平分线;∵MA=MB,MN平分AB,∴直线MN是线段AB的垂直平分线,故选:C.9.【解答】解:A、有4条对称轴,故此选项错误;B、有3条对称轴,故此选项错误;C、有2条对称轴,故此选项正确;D、有4条对称轴,故此选项错误;故选:C.10.【解答】解:∵分别以点A,B为圆心,大于AB长为半径画弧,两弧分别交于点D,E,∴DA=DB,EA=EB,∴点D,E在线段AB的垂直平分线上,故选:D.二.填空题(共5小题)11.【解答】解:∵∠ACB=30°,∴△ABC中,∠ABC+∠BAC=150°,∵点D、E分别是线段AC、BC的垂直平分线上的点,∴EB=EC,DC=DA,∴∠E=180°﹣2∠ABC,∠D=180°﹣2∠BAC,∴△DCE中,∠DCE=180°﹣(∠E+∠D)=180°﹣(180°﹣2∠ABC+180°﹣2∠BAC)=180°﹣180°+2∠ABC﹣180°+2∠BAC=2(∠ABC+∠BAC)﹣180°=2×150°﹣180°=120°.故答案为:120°.12.【解答】解:∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线DE交AC于D,∴∠ABD=∠A=30°,∴∠DBC=30°.∵CD=2cm,∴BD=2CD=4cm,∴AD=4cm.故答案为:4.13.【解答】解:分两种情况:①如图,∵DF、EG分别是线段AB、AC的垂直平分线,∴BD=AD=5,CE=AE=7,∴BC=BD+DE+CE=5+3+7=15;②如图,∵DF、EG分别是线段AB、AC的垂直平分线,∴BD=AD=5,CE=AE=7,∴BC=BD﹣DE+CE=5﹣3+7=9;综上所述,BC的长为15或9.故答案为:15或9.14.【解答】解:∵DE是AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAC=80°,∴∠B=180°﹣(∠BAC+∠C)=70°,故答案为:70°.15.【解答】解:∵DE垂直AB于D,且AD=BD,∴DE是线段AB的垂直平分线,∴EA=EB,∵△BEC的周长为20,∴BC+CE+BE=BC+CE+AE=BC+AC=20,∴AC=20﹣BC=14,∴△ABC的周长=AC+AB+BC=34,故答案为:34.三.解答题(共4小题)16.【解答】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.17.【解答】解:①以O为圆心,以任意长为半径画圆,分别交直线a、b于点A、B;②分别以A、B为圆心,以大于AB为半径画圆,两圆相交于点C,连接OC;③连接ED,分别以E、D为圆心,以大于ED为半径画圆,两圆相交于F、G两点,连接FG;④FG与OC相交于点H,则H即为工厂的位置.同法可得H′也满足条件,故点H或H′即为工厂的位置.18.【解答】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.19.【解答】解:(1)∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠P AQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;(2)①∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠P AQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=α,∴∠B+∠C=180°﹣∠BAC=180°﹣α,∴∠BAP+∠CAQ=180°﹣α,∴∠P AQ=∠BAC﹣(∠BAP+∠CAQ)=α﹣(180°﹣α)=2α﹣180°;②当∠P AQ=90°,即2α﹣180°=90°时,P A⊥AQ,解得:α=135°,∴当∠BAC=135°时,能使得P A⊥AQ;③∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∵BC=10cm,即BP+PQ+CQ=AP+PQ+AQ=10cm,∴△P AQ的周长为10cm.故答案为:①80,2α﹣180°;②135;③10.13.2 画轴对称图形一、选择题(5道小题,每题7分,共35分)更正1、如图,在△ABC中,AB的中垂线交BC于点E,若BE=2则A、E两点的距离是().A.4B.2C.3D.122、如图,AB垂直平分CD,若AC=1.6cm,BC=2.3cm,则四边形ABCD的周长是()cm.A.3.9B.7.8C.4D.4.63、如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC其中正确的结论有()A.1个 B 2个 C 3个 D 4个4、下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有()A.1个B.2个C.3个D.4个5、在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A、三角形三条角平分线的交点;B、三角形三条垂直平分线的交点;C、三角形三条中线的交点;D、三角形三条高的交点。
人教版数学八年级上册 第十三章 13.1---13.3同步测试题含答案
人教版数学八年级上册第十三章13.1 轴对称一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC2. 如图,在△ABC中,BC=8,△ABC的周长为20,BC边的垂直平分线交AB于点E.则△AEC的周长为()A.24B.20C.16D.123. 如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥4. 在汉字“生活中的日常用品”中,是轴对称图形的有()1A.2个B.3个C.4个D.5个5. 如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于12AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.136. 将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()7. 点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (3,-2)C. (-3,-2)D. (3,2)8. 在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个9.如图,△ABC和△A′B′C′关于直线对称,下列结论中:正确的有()23①△ABC ≌△A′B′C′;②∠BAC′=∠B′AC ;③l 垂直平分CC′;④直线BC 和B′C′的交点不一定在l 上,A .4个B .3个C .2个D .1个10. 如图所示,线段AB ,AC 的垂直平分线相交于点P ,则PB 与PC 的关系是( )A .PB >PCB .PB =PC C .PB <PCD .PB =2PC 11. 如图,在△ABC 中,DE 垂直平分AB ,交AB 于点E ,交BC 于点D ,若AD=4,BC=3DC ,则BC 等于 ( )A.4B.4.5C.5D.612. 在数学课上,老师提出如下问题:如图,已知△ABC 中,AB<BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PB=BC.下面是四名同学的作法,其中正确的是 ( )二、填空题13. 如图是某时刻在镜子中看到准确时钟的情况,则实际时间是14. 若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n= .15. 如图所示的五角星是轴对称图形,它的对称轴共有________条.16.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.17. 如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.18. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.4三、解答题19. 如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.20. 如图所示,两个四边形关于直线l对称,∠C=90°,试写出边a,b的长,并求出∠G的度数.521. 如图,在四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A.求证:点A在线段CD的垂直平分线上.622. 如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,若△ABC与△EBC的周长分别是26 cm和16 cm,求AC的长.23. 如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G 处,EF为折痕.(1)求证:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.724. 如图,已知△ABC.(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.8人教版数学八年级上册第十三章13.1 轴对称9培优练习—参考答案一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC【答案】C2. 如图,在△ABC中,BC=8,△ABC的周长为20,BC边的垂直平分线交AB 于点E.则△AEC的周长为()A.24B.20C.16D.12【答案】D【解答】解:∵△ABC的周长为20,∴AB+AC+BC=20,∵BC=8,∴AB+AC=12,∵BC边的垂直平分线交AB于点E,∴EB=EC,∴△AEC的周长=AE+EC+AC=AE+EB+AC=AB+AC=12,故选:D.10113. 如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥【答案】答案为:B4. 在汉字“生活中的日常用品”中,是轴对称图形的有( )A.2个B.3个C.4个D.5个【答案】B[解析] 根据轴对称图形的定义,在汉字“生活中的日常用品”中,是轴对称图形的有“中”“日”“品”3个.故选B.5. 如图,在Rt △ABC 中∠C =90°,AB >BC ,分别以顶点A 、B 为圆心,大于12AB 长为半径作圆弧,两条圆弧交于点M 、N ,作直线MN 交边CB 于D .若AD =5,CD =3,则BC 长是( )A .7B .8C .12D .13【答案】B6. 将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )【答案】答案为:B.7. 点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (3,-2)C. (-3,-2)D. (3,2)【答案】B8. 在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个【答案】C9.如图,△ABC和△A′B′C′关于直线对称,下列结论中:正确的有()①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,A.4个B.3个C.2个D.1个12【答案】B10. 如图所示,线段AB,AC的垂直平分线相交于点P,则PB与PC的关系是()A.PB>PC B.PB=PCC.PB<PC D.PB=2PC【答案】B[解析] 如图,连接AP.∵线段AB,AC的垂直平分线相交于点P,∴AP=PB,AP=PC.∴PB=PC.11. 如图,在△ABC中,DE垂直平分AB,交AB于点E,交BC于点D,若AD=4,BC=3DC,则BC等于()A.4B.4.5C.5D.6【答案】D[解析] ∵DE垂直平分AB,AD=4,∴BD=AD=4.∵BC=3DC,∴BD=2CD.∴CD=2.∴BC=BD+CD=6.故选D.12. 在数学课上,老师提出如下问题:如图,已知△ABC中,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PB=BC.下面是四名同学的作法,其中正确的是()1314【答案】C[解析] ∵PA+PB=BC ,而PC+PB=BC ,∴PA=PC. ∴点P 为线段AC 的垂直平分线与BC 的交点.显然只有选项C 符合题意.二、填空题13. 如图是某时刻在镜子中看到准确时钟的情况,则实际时间是【答案】答案为:4:40.14. 若点A(1﹣m ,6)与B(2+n ,6)关于某坐标轴对称,则m ﹣n= .【答案】答案为:3.15. 如图所示的五角星是轴对称图形,它的对称轴共有________条.【答案】5 [解析] 如图,五角星的对称轴共有5条.16. 如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有 个.【答案】答案为:4.17. 如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.【答案】答案为:4.18. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.【答案】13【解析】∵DE垂直平分AB,∴AE=BE,∵AE+EC=8,∴EC+BE=8,∴△BCE的周长为BE+EC+BC=13.三、解答题19. 如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.15【答案】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.20. 如图所示,两个四边形关于直线l对称,∠C=90°,试写出边a,b的长,并求出∠G的度数.【答案】解:∵两个四边形关于直线l对称,∴四边形ABCD≌四边形FEHG,∴∠H=∠C=90°,∠A=∠F=80°,∠E=∠B=135°,a=5 cm,b=4 cm.∴∠G=360°-∠H-∠E-∠F=55°.161721. 如图,在四边形ABCD 中,AB =AD ,BC 边的垂直平分线MN 经过点A .求证:点A 在线段CD 的垂直平分线上.【答案】证明:连接AC.∵点A 在线段BC 的垂直平分线MN 上,∴AB=AC.∵AB =AD ,∴AC =AD.∴点 A 在线段CD 的垂直平分线上.22. 如图,在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若△ABC 与△EBC 的周长分别是26 cm 和16 cm ,求AC 的长.【答案】解:∵DE 是AB 的垂直平分线,∴AE =BE.∵△EBC 的周长是16 cm ,∴BC +BE +EC =16 cm ,即BC +AE +EC =AC +BC =16 cm.∵△ABC 的周长是26 cm ,∴AB+AC+BC=26 cm,∴AC=AB=10 cm.23. 如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G 处,EF为折痕.(1)求证:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.【答案】解:(1)证明:在长方形ABCD中,DA=BC,∠A=∠D=∠B=∠BCD=90°.由折叠的性质,得GC=DA,∠G=∠D=90°,∠GCE=∠A=90°.∴GC=BC,∠GCF+∠FCE=90°,∠FCE+∠BCE=90°.∴∠GCF=∠BCE.又∵∠G=∠B=90°,GC=BC,∴△FGC≌△EBC(ASA).(2)由(1)知,DF=GF=BE,∴S四边形ECGF =S△FGC+S△EFC=S△EBC+S△EFC=S四边形BCFE=(BE+CF)·AD2=(DF+CF)·AD2=8×42=16.24. 如图,已知△ABC.18(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.【答案】解:(1)如图所示.(2)证明:如图,连接OA.∵l1是AB的垂直平分线,∴OA=OB.同理,OA=OC.∴OB=OC.解:(1)如图所示.(2)证明:如图,连接OA.∵l1是AB的垂直平分线,∴OA=OB.同理,OA=OC.∴OB=OC.13.2画对称图形一.选择题19201.点A (﹣3,1)关于x 轴的对称点为( )A . C .2.点M (3,﹣2)与Q (a ,b )关于y 轴对称,则a +b 的值为( )A .5B .﹣5C .1D .﹣13.下列语句正确的是( )A .平行于x 轴的直线上所有点的横坐标都相同B .表示两个不同的点C .若点P (a ,b )在y 轴上,则b =0D .若点Q (﹣2,﹣1),则Q 关于x 轴对称点的坐标为(2,﹣1)4.已知点A (3,2)是点B (a ,b )关于y 轴的对称点,则a ,b 的值分别为( ) A .﹣3,2 B .3,﹣2 C .﹣3,﹣2 D .2,35.如图,在平面直角坐标系xOy 中,△ABC 的顶点C (3,﹣1),则点C 关于x 轴、y 轴对称的点的坐标分别为( )A .B .C .D . 6.如图,小琪和小亮下棋,小琪执圆形棋子,小亮执方形棋子,若棋盘中心的圆形棋子位置用(﹣1,1)表示,小亮将第4枚方形棋子放入棋盘后,所有棋子构成轴对称图形,则小亮放方形棋子的位置可能是()A.C.7.点P(﹣2,3)关于y轴对称点的坐标在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都乘以﹣1,纵坐标不变,并把得到的顶点依次连接,那么得到的封闭图形与原来图形相比位置上()A.向左平移了1个单位B.关于y轴对称C.关于x轴对称D.向下平移了2个单位9.如果点S(3a﹣3,2+a)关于y轴的对称点S′在第二象限,那么a的取值范围是()A.a<1B.a>﹣2C.a>1D.﹣2<a<1 10.已知点P(﹣2,3),作点P关于x轴的对称点P1,再作点P1关于y轴的对称点P2,接着作P2关于x轴的对称点P3,继续作点P3关于y轴的对称点P4,按照这种方法一直做下去,则P2017的坐标为()A.C.二.填空题11.若点A(a,2)与B(3,b)关于x轴对称,则a﹣b=.12.已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b),关于y轴对称,则(4a+b)2020的值是.2113.在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为.14.在平面直角坐标系中有一个对称图形,点A(3,2)与点B(3,﹣2)是此图形上的互为对称点,则在此图形上的另一点C(﹣1,﹣3)的对称点坐标为.15.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后所得的A1坐标是(a,﹣b),则经过第2020次变换后所得的点A2020坐标是.三.解答题16.;(2)一个多边形的内角和与外角和的和是1440°,求它的边数.17.在如图所示的直角坐标系中,解答下列问题:(1)A、B两点的坐标分别为,;(2)画出△ABC关于x轴对称的图形△AB1C1;(3)B1C1的长为.2218.分别在下面正方形网格中按要求画图:(1)在图(1)中画出以MN为轴,对折后的图形;(2)在图(2)中画出向右平移两格后的图形.19.如图,已知△ABC的三个顶点坐标分别为A(﹣1,2),B(﹣1,﹣4),C(2,﹣3).(1)将△ABC先向右平移4个单位,再向上平移6个单位,得到△A1B1C1,作出△A1B1C1,线段AC在平移过程中扫的面积为;(2)作出△A1B1C1关于y轴对称的图形△A2B2C2,则坐标C2为;(2)若△ABD与△ABC全等,则点D的坐标为(点C与点D不重合)2324参考答案与试题解析一.选择题1.【解答】解:点A(﹣3,1)关于x轴的对称点为(﹣3,﹣1),故选:B.2.【解答】解:∵点M(3,﹣2)与Q(a,b)关于y轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5,故选:B.3.【解答】解:A.平行于x轴的直线上所有点的纵坐标都相同,故本选项错误;B.表示两个不同的点,故本选项正确;C.若点P(a,b)在y轴上,则a=0,故本选项错误;D.若点Q(﹣2,﹣1),则Q关于x轴对称点的坐标为(﹣2,1),故本选项错误;故选:B.4.【解答】解:∵点A(3,2)是点B(a,b)关于y轴的对称点,∴a=﹣3,b=2,故选:A.5.【解答】解:∵在平面直角坐标系xOy中,△ABC的顶点C(3,﹣1),∴点C关于x轴、y轴对称的点的坐标分别为.故选:A.6.【解答】解:如图:符合题意的点为(﹣1,2)25故选:D.7.【解答】解:点P(﹣2,3)关于y轴的对称点的坐标为(2,3),则此点在第一象限.故选:A.8.【解答】解:∵封闭图形的各个顶点的横坐标都乘以﹣1,纵坐标不变,∴原图形各点的纵坐标相同,横坐标互为相反数,∴得到的封闭图形与原来图形相比位置上关于y轴对称.故选:B.9.【解答】解:∵点S(3a﹣3,2+a)关于y轴的对称点S′在第二象限,∴点S在第一象限,∴,解得:a>1,故选:C.10.【解答】解:∵点P(﹣2,3),∴点P关于x轴的对称点P1(﹣2,﹣3),∴点P1关于y轴的对称点P2(2,﹣3),26∴P2关于x轴的对称点P3(2,3),∴点P3关于y轴的对称点P4(﹣2,3),依此类推,2017÷4=506…1,∴P2017的坐标(﹣2,﹣3),故选:C.二.填空题(共5小题)11.【解答】解:∵点A(a,2)与点B(3,b)关于x轴对称,∴a=3,b=﹣2,∴a﹣b=3﹣(﹣2)=3+2=5,故答案为:5.12.【解答】解:∵点A(2a﹣b,5+a),B(2b﹣1,﹣a+b),关于y轴对称,∴,解得,则(4a+b)2020=(﹣4+3)2020=1,故答案为:1.13.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'坐标为:(0,2),∴点P'关于x轴的对称点的坐标为(0,﹣2).故答案为:(0,﹣2).2714.【解答】解:∵点A(3,2)与点B(3,﹣2)是此图形上的互为对称点,∴点A与点B关于x轴对称,∴此图形上的另一点C(﹣1,﹣3)的对称点坐标为(﹣1,3),故答案为:(﹣1,3).15.【解答】解:点A第一次关于x轴对称后在第四象限,点A第二次关于y轴对称后在第三象限,点A第三次关于x轴对称后在第二象限,点A第四次关于y轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2020÷4=505,∴经过第2020次变换后所得的A点与第一次变换的位置相同,在第四象限,坐标为(a,﹣b).故答案为(a,﹣b).三.解答题(共4小题)16.【解答】解:(1)如图所示,直线l即为所求;28(2)设此多边形的边数为n,则:(n﹣2)180=1440+360,解得:n=12.答:这个多边形的边数为12.17.【解答】解:(1)A点坐标为(2,0),B点坐标为(﹣1,﹣4);(2)如图,△AB1C1为所作;(3)B1C1的长==.故答案为(2,0),(﹣1,﹣4),.18.【解答】解:(1)对折后的图形,如图(1)所示:(2)向右平移两格后的图形,如图(2)所示:2919.【解答】解:(1)如图,△A1B1C1为所作;线段AC在平移过程中扫的面积=11×7﹣13.3轴对称与等腰三角形-等腰三角形性质与判定一、选择题1.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或202.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25B.25或32C.32D.193.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.12B.4C.8D.不确定4.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()30A.BD=CE B.AD=AE C.DA=DE D.BE=CD5.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°6.如果等腰三角形的一个底角为α,那么()A.α不大于45°B.0°<α<90°C.α不大于90°D.45°<α<90°7.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P 点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP8.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°9.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()31A.110°B.120°C.130°D.140°10.如图,已知下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③二、填空题11.一个等腰三角形的一个角为80°,则它的顶角的度数是.12.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.13.若等腰三角形的一个外角为70°,则它的底角为度.14.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.15.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC 的面积为18cm2,则图中阴影部分面积为 cm2.3216.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三、解答题17.如图,已知D、E两点在线段BC上,AB=AC,AD=AE.证明:BD=CE.18.如图所示,已知在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.3319.在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.20.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.21.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.3422.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.35参考答案1.C2.C3.C4.C5.D6.B7.C8.A9.答案为:A.10.A.11.答案为:80°或20°.12.答案为:120°或20°.13.答案为:35.14.答案为:20°.15.答案为:9.16.答案为:45.17.证明:36过A作AF⊥BC于F,∵AB=AC,AD=AE,AF⊥BC,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF,∴BD=CE.18.解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C==77°×=38.5°.19.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE==2.5.3720.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.21.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.3822.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,39在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).40。
人教版 八年级数学上册 13.1--13.3分节测试题 (含答案)
人教版八年级数学上册13.1--13.3分节测试题(含答案)13.1 轴对称一、选择题1. 下列四个交通标志图中,为轴对称图形的是()2. 在下列图形中是轴对称图形的是()3. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()4. 如图,已知直线MN是线段AB的垂直平分线,垂足为N,AM=5 cm,△MAB 的周长为16 cm,那么AN的长为()A.3 cmB.4 cmC.5 cmD.6 cm5. 图中的四个图形,对称轴的条数为4的图形有()A.1个B.2个C.3个D.4个6. 如图,线段AB与A'B'(AB=A'B')不关于直线l成轴对称的是()7. 在汉字“生活中的日常用品”中,是轴对称图形的有()A.2个B.3个C.4个D.5个8. 如图,点A在直线l上,△ABC与△AB'C'关于直线l对称,连接BB'分别交AC,AC'于点D,D',连接CC',下列结论不一定正确的是()A.∠BAC=∠B'AC''∥BB'C.BD=B'D'D.AD=DD'9. 如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA长为半径画弧①;步骤2:以点B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.则下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD10. 图中序号(1)(2)(3)(4)对应的四个三角形都是由△ABC进行了一次变换之后得到的,其中是通过轴对称变换得到的是()A.(1)B.(2)C.(3)D.(4)二、填空题11. 如图,在△ABC中,AB=BC,∠ABC=110°.AB的垂直平分线DE交AC 于点D,连接BD,则∠ABD=________度.12. 在平面直角坐标系中,点A的坐标是(-1,2).作点A关于x轴的对称点,得到点A1,再将点A1向下平移4个单位长度,得到点A2,则点A2的坐标是________.13. 如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F.若△AEF的周长为10 cm,则BC的长为cm.14. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.15. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.三、作图题16. 如图,已知△ABC.(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.17. 小强拿几张正方形的纸(如图4①),沿虚线对折一次得到图②,再沿虚线对折一次得到图③,然后用剪刀沿图④中不同位置的虚线剪去中心的一块,请参照例图,在后面的正方形中画出图④的纸片打开后的形状.(不写作法,保留作图痕迹)四、解答题18. 如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若ED=4 cm,FC=1 cm,∠BAC=76°,∠EAC=58°.(1)求BF的长度;(2)求∠CAD的度数;(3)连接EC,线段EC与直线MN有什么关系?19. 如图所示,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标.20. 拓广探究如图,△ABC在平面直角坐标系中,点A,B,C的坐标分别为A(-2,1),B(-4,5),C(-5,2),直线l经过点(-1,0)且与y轴平行.(1)作△ABC关于直线l对称的△A1B1C1,其中点A,B,C的对称点分别为点A1,B1,C1;(2)写出点A1,B1,C1的坐标;(3)在图中画出△A2B2C2,其中A2(-2,-2),B2(-4,-6),C2(-5,-3),并指出△A2B2C2和△ABC的对称轴.21. 如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接OB,OC,AD,AE.若△ADE的周长为12 cm,△OBC的周长为32 cm.(1)求线段BC的长;(2)连接OA,求线段OA的长.22. 如图,DF为△ABC的边BC的垂直平分线,F为垂足,DF交△ABC的外角平分线AD于点D,DE⊥AB于点E,且AB>AC,连接BD,CD.求证:(1)∠DBE=∠DCA;(2)BE=AC+AE.人教版八年级数学上册13.1 轴对称课时训练-答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】A4. 【答案】A5. 【答案】B[解析] 图①是轴对称图形,有6条对称轴;图②是轴对称图形,有4条对称轴;图③是轴对称图形,有2条对称轴;图④是轴对称图形,有4条对称轴.故对称轴的条数为4的图形有2个.6. 【答案】A[解析] 选项A中,A'B'是由线段AB平移得到的,所以线段AB与A'B'不关于直线l成轴对称.7. 【答案】B[解析] 根据轴对称图形的定义,在汉字“生活中的日常用品”中,是轴对称图形的有“中”“日”“品”3个.故选B.8. 【答案】D[解析] 如图,设BB'交直线l于点O.∵△ABC与△AB'C'关于直线l对称,∴△ABC≌△AB'C',BB'⊥l,CC'⊥l,AB=AB',AC=AC',OD=OD',OB=OB'.∴∠BAC=∠B'AC',BB'∥CC',BD=B'D'.故选项A,B,C正确.故选D.9. 【答案】A[解析] 如图,连接CD,BD.∵CA=CD,BA=BD,∴点C,B都在线段AD的垂直平分线上.∴BH垂直平分线段AD.故选A.10. 【答案】A二、填空题11. 【答案】35【解析】∵AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵DE 垂直平分AB,∴DA=DB,∴∠ABD=∠A=35°.12. 【答案】(-1,-6)[解析] ∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴点A1的坐标是(-1,-2).∵将点A1向下平移4个单位长度,得到点A2,∴点A2的坐标是(-1,-6).13. 【答案】10[解析] ∵AB,AC的垂直平分线分别交BC于点E,F,∴AE=BE,AF=CF.∴BC=BE+EF+CF=AE+EF+AF=10 cm.14. 【答案】解:如图.故填3,4,5,6,n.15. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.三、作图题16. 【答案】解:(1)如图所示.(2)证明:如图,连接OA.∵l1是AB的垂直平分线,∴OA=OB.同理,OA=OC.∴OB=OC.17. 【答案】解:如图所示:四、解答题18. 【答案】解:(1)∵△ABC 与△ADE 关于直线MN 对称,ED =4 cm , ∴BC =ED =4 cm. 又∵FC =1 cm , ∴BF =BC -FC =3 cm.(2)∵△ABC 与△ADE 关于直线MN 对称,∠BAC =76°, ∴∠EAD =∠BAC =76°. 又∵∠EAC =58°,∴∠CAD =∠EAD -∠EAC =76°-58°=18°. (3)结论:直线MN 垂直平分线段EC. 理由如下:∵E ,C 关于直线MN 对称, ∴直线MN 垂直平分线段EC.19. 【答案】解:(1)△A 1B 1C 1如图所示.(2)A 1(-1,2),B 1(-3,1),C 1(2,-1).20. 【答案】(1)△A 1B 1C 1如图所示.(2)A 1(0,1),B 1(2,5),C 1(3,2).(3)△A 2B 2C 2如图所示.△A 2B 2C 2和△ABC 的对称轴是经过点⎝ ⎛⎭⎪⎫0,-12且与x 轴平行的直线.21. 【答案】解:(1)∵l1是AB边的垂直平分线,∴DA=DB.∵l2是AC边的垂直平分线,∴EA=EC.∵△ADE的周长为12 cm,∴DA+DE+EA=12 cm.∴BC=BD+DE+EC=DA+DE+EA=12 cm.(2)如图,连接OA.∵l1是AB边的垂直平分线,∴OA=OB.∵l2是AC边的垂直平分线,∴OA=OC.∵△OBC的周长为32 cm,∴OB+OC+BC=32 cm.∵BC=12 cm,∴OA=OB=OC=10 cm.22. 【答案】证明:(1)如图,过点D作DG⊥CA交CA的延长线于点G.∵DF是BC的垂直平分线,∴BD=CD.∵AD是△ABC的外角平分线,DE⊥AB,DG⊥CA,∴DE=DG,∠DEB=∠DGC=90°.在Rt△DBE和Rt△DCG中,∴Rt△DBE≌Rt△DCG(HL).∴∠DBE=∠DCA.(2)∵Rt△DBE≌Rt△DCG,∴BE=CG.在Rt△DEA和Rt△DGA中,∴Rt△DEA≌Rt△DGA(HL).∴AE=AG.∴BE=CG=AC+AG=AC+AE,即BE=AC+AE.《13.2 画轴对称图形》一.填空题1.(3分)将点M(﹣5,m)向上平移6个单位得到的点与点M关于x轴对称,则m的值为.2.(3分)如图,在平面直角坐标系中,点A的坐标是(2,1),点B的坐标是(2,0).作点B关于OA的对称点B′,则点B′的坐标是(,).3.(3分)写出点A(2,3)关于直线n(直线n上各点的纵坐标都是﹣1)对称点B的坐标.4.(3分)若P(m,2m﹣3)在x轴上,则点P的坐标为,其关于y轴对称的点的坐标为.5.(3分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第象限.6.(3分)点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),则a b=.7.(3分)如图,在3×3的正方形网格中有四个格点,A、B、C、D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是点.8.若点P(3,﹣1)关于y轴的对称点Q的坐标是(m,﹣1),则m的值为.9.(3分)如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0),点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,…,且这些对称中心依次循环,已知点P1的坐标是(1,1),那么点P2008的坐标为.10.(3分)已知点P(1﹣a,a+2)关于y轴的对称点在第二象限,则a的取值范围是.二.解答题11.已知:如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC沿y轴翻折,则翻折后点A的对应点的坐标是.(2)作出△ABC关于y轴对称的图形△A1B1C1,画△A1B1C1,并直接写出点A1的坐标.(3)将△ABC向下平移平移6个单位,向右平移7个单位得到△A2B2C2,画出平移后的图形.(4)若以D、B、C为顶点的三角形与△ABC全等,请画出所有符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在图中的网格平面内画出平面直角坐标系,使点A坐标为(7,6),点C坐标为(2,1);(2)在(1)的条件下,①请画出点B关于y轴的对称点D,并写出点D的坐标;②点E是边AC上的一个动点,连接BD,BE,DE,则△BDE周长的最小值为.13.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A'B'C'.(2)若网格中最小正方形的边长为1,求△ABC的面积.(3)点P在直线MN上,当△PAC周长最小时,P点在什么位置,在图中标出P点.14.请按要求完成下面三道小题(本题作图不要求尺规作图)(1)如图1,AB=AC.这两条线段一定关于∠BAC的所在直线对称,请画出该直线.(2)如图2,已知线段AB和点C.求作线段CD,使它与AB成轴对称,且A与C是对称点,对称轴是线段AC的.(3)如图3,任意位置(不成轴对称)的两条线段AB,CD,AB=CD.你能从(1),(2)问中获得的启示,对其中一条线段作两次轴对称使它们重合吗?如果能,请画出图形并简要描述操作步骤;如果不能,请说明理由.15.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.点A、B、C、F都是格点.用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,①画线段AD,使AD∥BC,且AD=BC;②画∠APB=45°;③在线段AB上画点E,使AE=2.(2)在图2中,画点M,使点M与点F关于AB对称.16.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.17.在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上).(1)写出△ABC的面积;(2)画出△ABC关于y轴对称的△A1B1C1;(3)写出点A及其对称点A1的坐标.参考答案一.填空题1.解:∵点M(﹣5,m)向上平移6个单位长度,∴平移后的点的坐标为:(﹣5,m+6),∵点M(﹣5,m)向上平移6个单位长度后所得到的点与点M关于x轴对称,∴m+m+6=0,解得:m=﹣3.故答案为:﹣3.2.解:设OA交BB′于J.∵A(2,1),∴直线OA是解析式为y=x,∵B(2,0),BB′⊥OA,∴可以设直线BB′是解析式为y=﹣2x+b,把(2,0)代入y=﹣2x+b中,得到b=4,∴直线BB′的解析式为y=﹣2x+4,由,解得,∴J(,),∵JB=JB′,设B′(m,n),∴=,=,∴m=,n=,∴B′(,).故答案为,.3.解:如图,观察图象可知点B的坐标为(2,﹣5).故答案为(2,﹣5).4.解:∵P(m,2m﹣3)在x轴上,∴2m﹣3=0,m=,∴点P的坐标为,∴关于y轴对称的点的坐标为.5.解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故答案是:三6.解:∵点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),∴2+a=4,2﹣b=3,解得a=2,b=﹣1,所以,a b=2﹣1=.故答案为:.7.解:当以点B为原点时,A(﹣1,﹣1),C(1,﹣1),则点A和点C关于y轴对称,符合条件.故答案为:B点.8.解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(m,﹣1),∴3+m=0,解得:m=﹣3.故答案是:﹣3.9.解:如图:P2的坐标是(1,﹣1),P7的坐标是(1,1),理由:作P1关于A点的对称点,即可得到P2(1,﹣1),分析题意,知6个点一个循环,坐标与P4的坐标一样,故P7的坐标与P1的坐标一样,P2008的=P334×6+4所以P7的坐标等同于P1的坐标为(1,1),P2008的坐标等同于P4的坐标为(1,﹣3).故答案为:(1,﹣3).10.解:∵点P(1﹣a,a+2)关于y轴的对称点在第二象限,∴点P在第一象限,∴,解得:﹣2<a<1,故答案为:﹣2<a<1.二.解答题11.解:(1)翻折后点A的对应点的坐标是:(2,3);故答案为:(2,3);(2)如图所示:△A1B1C1即为所求,A1(2,3);(3)如图所示:△A2B2C2即为所求;(4)如图所示:△DBC即为所求,D(﹣2,﹣3)或(﹣5,3)或(﹣5,﹣3).12.解:(1)如图所示:(2)①如图所示,点D即为所求,D(﹣1,6);②如图所示,作点B关于AC的对称点F,则F(7,0),连接DF,交AC于点E,连接BE,则DE+BE的最小值为DF的长,由勾股定理可得,DF==10,又∵BD=2,∴△BDE周长的最小值为10+2=12,故答案为:12.13.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积为:3×2=3;(3)因为点A关于MN的对称点为A′,连接A′C交直线MN于点P,此时△PAC周长最小.所以点P即为所求.14.解:(1)如图1,作∠ABC的平分线所在直线a,则a即为所求.(答案不唯一)故答案为:角平分线;(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.故答案为:垂直平分线;(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.15.解:(1)①如图1中,线段AD即为所求.②如图1中,∠APB即为所求.③如图1中,点E即为所求.(2)如图2中,点M即为所求.16.解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);(2)S=6×6﹣×5×6﹣×6×3﹣×1×3,△ABC=36﹣15﹣9﹣1,=10.17.解:(1)△ABC的面积=×7×2=7;(1分)(2)画图如图所示;(3分)(3)由图形可知,点A坐标为:(﹣1,3),(4分)点A1的坐标为:(1,3).(5分)13.3 等腰三角形一、选择题1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°3. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°4. 如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE ∥BC交AB于点E.若△AED的周长为16,则边AB的长为()A.6 B.8 C.10 D.125. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图直线a∥b∥c,等边三角形ABC的顶点B,C分别在直线b和c上,边BC与直线c所夹的锐角为20°,则∠α的度数为()A.20°B.40°C.60°D.80°7. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个8. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题9. 若等腰三角形的一个内角为50°,则它的顶角的度数为____________.10. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.11. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.12. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.13. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.14. 如图,在△ABC中,∠B=20°,∠A=105°,点P在△ABC的三边上运动,当△P AC为等腰三角形时,顶角的度数是__________.15. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.三、解答题16. 如图,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.17. 如图,△ABC和△CDE均为等边三角形,连接BD,AE交于点O,BC与AE 相交于点P.求证:∠AOB=60°.18. 如图所示,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠BAE的度数.(2)求∠DAE的度数.(3)探究:小明认为如果只知道∠B-∠C=40°,也可以得出∠DAE的度数,你认为可以吗?若可以,请你写出解答过程;若不可以,请说明理由.人教版八年级数学13.3 等腰三角形课后训练-答案一、选择题1. 【答案】C2. 【答案】D[解析] 由题意得,∠A=70°,当∠B=∠A=70°时,△ABC为等腰三角形;当∠B=55°时,可得∠C=55°,∠B=∠C,△ABC为等腰三角形;当∠B=40°时,可得∠C=70°=∠A,△ABC为等腰三角形.3. 【答案】C[解析] ∵OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,∴∠AOM=∠BOM=25°,MA=MB.∴∠OMA=∠OMB=65°.∴∠AMB=130°.∴∠MAB=12×(180°-130°)=25°.故选C.4. 【答案】C[解析] ∵BD平分∠ABC,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.∵△AED的周长为16,∴AE+DE+AD=AE+BE+AD=AB+AD=16. ∵AD=6,∴AB=10.5. 【答案】D[解析] 选项A由等角对等边可得△ABC是等腰三角形;选项B由所给条件可得△ADB≌△ADC,由全等三角形的性质可得AB=AC;选项C由垂直平分线的性质可得AB=AC;选项D不可以得到AB=AC.6. 【答案】D[解析] ∵a∥b∥c,∴∠ACE=∠α.∵△ABC是等边三角形,∴∠ACB=60°.∴∠α=∠ACE=∠ACB+∠BCE=60°+20°=80°.7. 【答案】D[解析] ∵∠BAC=72°,∠C=36°,∴∠ABC=72°.∴∠BAC=∠ABC.∴CA=CB.∴△ABC是等腰三角形.∵∠BAC的平分线AD交BC于点D,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.8. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题9. 【答案】50°或80°10. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.11. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.12. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.13. 【答案】28 cm14. 【答案】105°或55°或70°[解析] (1)如图①,点P在AB上时,AP=AC,顶角∠A=105°.(2)∵∠B=20°,∠BAC=105°,∴∠ACB=180°-20°-105°=55°.点P在BC上时,如图②,若AC=PC,则顶角∠C=55°.如图③,若AC=AP,则顶角∠CAP=180°-2∠C=180°-2×55°=70°.综上所述,顶角为105°或55°或70°.15. 【答案】85或14[解析] ①当∠A为顶角时,等腰三角形两底角的度数为180°-80°2=50°,∴特征值k =80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.三、解答题16. 【答案】解:(1)证明:∵△ABC 为等边三角形, ∴∠BAC =∠C =60°,AB =CA.在△ABE 和△CAD 中,⎩⎨⎧AB =CA ,∠BAE =∠C ,AE =CD ,∴△ABE ≌△CAD.(2)∵△ABE ≌△CAD ,∴∠ABE =∠CAD. ∵∠BFD =∠ABE +∠BAD ,∴∠BFD =∠CAD +∠BAD =∠BAC =60°.17. 【答案】证明:∵△ABC 和△CDE 均为等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°. ∴∠ACB +∠BCE =∠DCE +∠BCE , 即∠ACE =∠BCD.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD.∴∠CAE =∠CBD. 又∠APC =∠BPO ,∴∠AOB =∠ACB =60°.18. 【答案】解: (1)∵∠B=70°,∠C=30°, ∴∠BAC=180°-70°-30°=80°.又∵AE 平分∠BAC ,∴∠BAE=40°. (2)∵AD ⊥BC ,∠B=70°, ∴∠BAD=90°-∠B=90°-70°=20°. 又∵∠BAE=40°,∴∠DAE=20°. (3)可以. 解答过程如下:∵AE平分∠BAC,∴∠BAE=.∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=-(90°-∠B)=. 若∠B-∠C=40°,则∠DAE=20°.。
人教版八年级数学上册 13.3 等腰三角形 同步练习卷 含答案
13.3 等腰三角形一.选择题(共10小题)1.如果等腰三角形的一个角是80°,那么它的底角是()A.80°或50°B.50°或20°C.80°或20°D.50°2.已知等腰三角形的周长是20,其中一边长为6,则其它两边的长度分别是()A.6和8 B.7和7 C.6和8或7和7 D.3和113.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有()A.3个B.4个C.5个D.2个4.如图,在△ABD中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥AB交AB于N,交AC于N,若BM+CN=8,则线段MN的长为()A.5 B.6 C.7 D.85.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的度数为()A.30°B.36°C.45°D.48°6.如图,等腰△ABC的面积为S,AB=AC=m,点D为BC边上任意一点,DE⊥AB于E,DF ⊥AC于F,则DE+DF=()A.B.C.D.7.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A.3 B.4 C.5 D.68.如图,已知每个小方格的边长为1,A,B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是以AB为腰的等腰三角形,这样的格点C有()A.3个B.4个C.5个D.6个9.如果等腰三角形的周长20cm,那么这个等腰三角形腰长x的取值范围是()A.x≥5cm B.5cm≤x<10cm C.x<10cm D.5cm<x<10cm 10.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个二.填空题(共11小题)11.在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.12.如图,在△ABC中,AC=BC,点D在BC边上,∠BAD+∠C=90°,点E在AC边上,∠AED=2∠BAD,若BD=16,CE=7,则DE的长为.13.在△ABC中,AB=AC,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE=4,则AD+AE的值为.14.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为.15.等腰三角形的一个外角等于100°,则这个等腰三角形顶角的度数为.16.△ABC中,AB=AC=5,S△ABC=7.5,则BC的长为.17.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为.18.如图,线段AB=a,点P是AB中垂线MN上的一动点,过点P作直线CD∥AB.若在直线CD上存在点Q使得△ABQ为等腰三角形,且满足条件的点Q有且只有3个,则PM的长为.19.如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是.20.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的序号是.三.解答题(共5小题)21.(1)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D.请说明△BDC 是等腰三角形;(2)在(1)的条件下请设计四个不同的方案,将△ABC分割成三个等腰三角形,请直接画出示意图并标出每个等腰三角形顶角度数;(3)若有一个内角为36°的三角形被分割成两个等腰三角形,则原三角形中最大内角的所有可能值为.22.数学课上,张老师举了下面的例题:例1:等腰△ABC中,∠A=110°,求∠B的度数;例2:等腰△ABC中,∠A=40°,求∠B的度数.爱思考的小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰△ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案一.选择题(共10小题)1.解:根据题意,一个等腰三角形的一个角等于80°,①当这个角是底角时,即该等腰三角形的底角的度数是80°,②当这个角80°是顶角,设等腰三角形的底角是x°,则2x+80°=180°,解可得,x=50°,即该等腰三角形的底角的度数是50°;故选:A.2.解:当腰为6时,另一腰也为6,则底为20﹣2×6=8,∵6+6=12>8,∴三边能构成三角形.当底为6时,腰为(20﹣6)÷2=7,∵7+7>6,∴三边能构成三角形.故选:C.3.解:共有5个.∵AB=AC∴△ABC是等腰三角形;∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:C.4.解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN.∵BM+CN=8,∴MN=8,故选:D.5.解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故选:C.6.解:如图所示:连接AD,∵AB=AC=m,△ABC的面积是S,∴AB•DE+AC•DF=S,∵AB=AC=m,∴DE+DF=,故选:B.7.解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=AB,BD6=CD,故能得到符合题意的等腰三角形6个.故选:D.8.解:当AB为腰时,分别以A、B点为顶点,以AB为半径作圆,可找出格点点C的个数有6个;故使△ABC是以AB为腰的等腰三角形的格点C有6个.故选:D.9.解:∵等腰三角形的腰长为xcm,周长20cm,∴底边为(20﹣2x)cm,∴20﹣2x>0且2x>20﹣2x,解得x<10且x>5.∴腰长x的取值范围是 5cm<x<10cm.故选:D.10.解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.二.填空题(共11小题)11.解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.12.解:设∠C=2α,∵∠BAD+∠C=90°,∴∠BAD=90°﹣2α,∵AC=BC,∴∠B=∠BAC=90°﹣α,∴∠CAD=α,作∠ADF=∠DAE=α交AE于F,∴∠DFE=2α,AF=DF,∵∠AED=2∠BAD=180°﹣4α,∴∠EDF=2α,∴∠EFD=∠EDF=∠C,∴EF=DE,DF=CD,∴AF=CD,∴CF=BD=16,∵CE=7,∴EF=DE=9,故答案为:9.13.解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=10,DE=4,当BD与CE无重合时,如图1,AD+AE=BD+CE=BC﹣DE=10﹣4=6,当BD与CE有重合时,如图2,AD+AE=BD+CE=BC+DE=10+4=14,综上所述,AD+AE=6或14.故答案为:6或14.14.解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=x,∵点D为AC的中点,∴AD=CD=AB,BC=17﹣(AB+AC)=17﹣2x.①当△ABD的周长大于△BCD的周长时,∵AB+AD+BD﹣(BC+CD+BD)=4,∴AB﹣BC=4,即x﹣(17﹣2x)=4,解得x=7,17﹣2x=3,7,7,3能够组成三角形,符合题意;②当△BCD的周长大于△ABD的周长时,∵BC+CD+BD﹣(AB+AD+BD)=4,∴BC﹣AB=4,即17﹣2x﹣x=4,解得x=,17﹣2x=,,,能够组成三角形,符合题意.综上所述,这个等腰三角形的底边长为3或,故答案为:3或,15.解:当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;所以这个等腰三角形顶角的度数为80°或20°.故答案为80°或20°.16.解:若△ABC是锐角三角形时,过点C作CD⊥AB于点D,过点A作AE⊥BC于点E,∵AB•CD=,∴CD=3,∴由勾股定理可知:AD=4,∴BD=1,∴BC=,若△ABC是钝角三角形时,同理可求出得BC=3,故答案为:或317.解:(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°﹣25°×2=130°.故答案为:130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴∠A=.故答案为:.18.解:如图所示,分别以A,B为圆心,AB长为半径画弧,①当直线CD经过两弧的交点时,直线CD与两弧共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,△PAB是等边三角形,∴PM=a;②当直线CD与两弧均相切时,直线CD与两弧、直线MN共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,∴PM=AG1=AB=a,故答案为:a或a.19.解:分三种情况:①当CD=DE时,∴∠DCE=∠DEC=70°,∴∠ADC=∠B+∠DCE=110°,②当DE=CE时,∵∠CDE=40°,∴∠DCE=∠CDE=40°,∴∠ADC=∠DCE+∠B=80°.③当EC=CD时,∠BCD=180°﹣∠CED﹣∠CDE=180°﹣40°﹣40°=100°,∵∠ACB=100°,∴此时,点D与点A重合,不合题意.综上所述,若△ADC是等腰三角形,则∠ADC的度数为80°或110°.故答案为:80°或110°.20.解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图2,在AC上截取AE=PA,连接PB,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AB=AC=AE+CE=AO+AP;故④正确;本题正确的结论有:①③④,故答案为①③④.三.解答题(共5小题)21.解:(1)∵AB=AC,∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形;(2)如图方案1,做∠B的角平分线BD交AC于点D,作∠BDC得角平分线DE交BC于点E,∵∠A=36°,∴∠C=∠ABC=72°,∴∠DBC=36°,∠BDC=72°,∴∠EDG=∠BDE=36°,∴△ABD,△BDE,△DEC为等腰三角形;如图方案2,做∠B的角平分线BF交AC于点F,作∠C得角平分线CM交BF于点M,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠FBC=∠ABF=36°,∠FCM=∠MCB=72°,∴∠CFM=∠CMF=72°,∴△ABF,△BMC,△CMF为等腰三角形;如图方案3,做∠C的角平分线CN交AB于点N,作∠BNC得角平分线NP交BC于点P,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCN=∠ACN=36°,∠BNC=∠B=72°,∴∠BNP=∠PNC=36°,∠NPB=72°,∴△ANC,△NPC,△BNP为等腰三角形;如图方案4,作∠B的角平分线BD交AC于点D,作∠BDE=∠BDC交AB于点E,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCD=∠BDE=∠BED=72°,∠AED=108°,∴∠A=∠ADE=36°,∴△AED,△BDE,△BCD为等腰三角形;(3)①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.故答案为:72°,90°,108°,132°,126°.22.解:例题1:根据三角形内角和定理,∵∠A=110°>90°,∠B=∠C=35°;例题2:若∠A为顶角,则∠B=(180°﹣∠A)÷2=70°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×40°=100°;若∠A为底角,∠B为底角,则∠B=40°;故∠B=50°或20°或80°;问题:分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学习题13.3答案
1.(1) 35度,35°;
(2) 解:当80°的角是等腰三角形的一个底角时,那么等腰三角形的另一个底角为80°,根据三角形的内角和定理可以求出顶角为180°-80°-
80°=20°;当80°的角是等腰三角形的顶角时,那么它的两个底角相等,均为1/2(180°-80°)=50°.
综上,等腰三角形的另外两个角是20°,80°或50°,50°.
2.
3.解:∵五角星的五个角都是顶角为36°的等腰三角形,
∴每个底角的度数是1/2×(180° - 36°)=72°.∴∠AMB=180°-72°108°.4.
5.证明:CE//DA,∴∠A=∠CEB.
6.
7.
8.已知:如图13 -3-29所示,点P是直线AB上一点,求作直线CD,使CD ⊥AB于点P.
作法:(1)以点P为圆心作弧交AB于点E,F,
(2)分别以点E,F为圆心,大于1/2EF的长为半径作弧,两弧相交于点C,过C,P作直线CD,则直线CD为所求直线.
9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.
10.
11.
12.
13.解:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.以等腰三角形两腰上的高相等为例进行证明.
已知:在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D,E求证:BD=CE.
14.
15.解:如图13-3-31所示,作∠BAC的平分线AD交BC于点D,过点D作DE⊥AB于点E,则△ADC≌△ADE≌△BDE.
人教版八年级上册数学第91页复习题答案1.解:除了第三个图形,其余的都是轴对称图形.找对称轴略.
2.解:如图13-5-22所示.
3.证明:连接BC,∵点D是AB的中点,CD⊥AB,∴AC= BC.同理,
AB=BC,∴AC=AB.
4.解:点A与点B关于x轴对称;点B与点E关于y轴对称;点C与点E 不关于x轴对称,因为它们的纵坐标分别是3,-2,不互为相反数.
5.解:∠D=25°,∠E=40°,∠DAE=115°.
6.
7.
8.解:等边三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形右6条对称轴,正八边形有8条对称轴,正n边形有n条对称轴.
9.解:(1)(4)是轴对称;(2)(3)是平移. (1)的对称轴是y轴;(4)的对称轴是x
轴;(2)中图形I先向下平移3个单位长度,再向左平移5个单位长度得到图形Ⅱ;(3)中图形I先向右平移5个单位长度,再向下平移3个单位长度得到图形Ⅱ.
10.证明:因为AD是△ABC的角平分线,DE,DF分别垂直于AB,AC于点E,F,所以DE= DF,∠DEA= ∠DFA= 90°.又因为DA=DA,所以Rt△ADE≌Rt△ADF,所以AE=AF,所以AD垂直平分EF.
11.证明:∵△ABC是等边三角形,
∴AB=BC=AC,/A=∠B=∠C=60°,
又∵AD= BE=CF,
∴BD=CE=AF.
∴△ADF≌△BED≌△CFF,.
∴DF=ED=FE.
即△DEF是等边三角形.
12.解:这5个点为正五边形的5个顶点,如图13 - 5-23所示,正五边形的每一个内角为108°,以A,B两点为例,△ABC,△ABD,△ABE都是等腰三角形.同理,其他任意三点组成的三角形也都是等腰三角形.
点拨:由正五边形的各边都相等,各角都为108°,各对角线都相等可联想到本题结论.
13.
14.
15.解:如图13-5-24所示,作点A关于MN的对称点A′,再作点B关于L 的对称点B′,连接A'B',交MN于点C,交L于点D,则A一C一D一B是牧马人定的最短路径.。